
A Lyapunov Condition for Training ODEs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Control theory is widely used in the study of differential equations to obtain desired1

behavior from underlying dynamics. We propose a novel method for training2

ordinary differential equations by using a control-theoretic Lyapunov Condition for3

stability. This method avoids rolling-out ODE’s during training and thus saves the4

cost of back propagating through a solver or using the adjoint method. We validate5

our approach experimentally and verify that it has similar performance to ODEs6

trained by backpropagating through rollouts.7

1 Introduction8

We begin by reviewing how to use ordinary differential equations (ODEs) as a learnable component9

and some related background in control theory.10

1.1 Ordinary Differential Equations as Learnable Components11

As originally presented in [6, 7], we are concerned with learning a map x → y using functions12

φ(·; θφ), ψ(·; θψ) and f(·, ·, θf ). so that they satisfy the following:13

h(t0) = φ(x; θφ) (1)
dh

dt
= f(h, t; θf ) (2)

y = ψ(h(T ); θψ) (3)

Where, without loss of generality, we assume integration in the time interval [t0, T ]. In this formula-14

tion, computing gradients with respect to θ requires rolling out the dynamics and can be done either15

by backpropagation through a solver or use of the adjoint method.16

1.2 Lyapunov Conditions for Stability17

In a Lyapunov analysis we are primarily concerned with the stability property of a dynamical system:18

dh

dt
= f(h) (4)

h(t0) = h0 (5)

Although Lyapunov Theory applies generally to time-varying systems, we will focus on autonomous19

systems for ease of exposition. The statement of Lyapunov is as follows from [9]:20

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Theorem 1. Consider the ODE in Equation (5). Let f : E → Rn be a locally Lipschitz continuous21

function defined on the open and connected set E ⊆ Rn. Let h∗ ∈ E be an equilibrium point22

(f(h∗) = 0) and Vh∗ : E → R be continuously differentiable. If the following conditions hold a23

system is exponentially stable to h∗.24

Vh∗ Positive Definite:25

Vh∗(h) > 0 for all h ∈ E \ {h∗} (6)
Vh∗(h∗) = 0

Local Stability Conditions h ∈ E:26

k1‖h‖2 ≤ V ∗h (h) ≤ k2‖h‖2 (7)
dVh∗

dt
≤ −k3‖h‖2

where k1, k2, k3 ∈ R≥0.27

Exponential stability implies the following rate of convergence ‖x(t)‖ ≤ (k2k1 )
1
2 e−

k3
2k2

(t−t0) for all28

t ≥ t0.29

Proof of this theorem is outside the scope of this paper. We note that many common functions in30

Deep Learning satisfy the requirements of the theorem. For example, Convolutions and ReLu layers31

are locally Lipschitz. Furthermore, we note that Equation (7) is a local state-dependent condition32

that when satisfied over the entirety of the state space of the dynamical system, guarantees a global33

property: exponential stability to an equilibrium point h∗ .34

1.3 Contribution35

We frame the learning problem in a framework amenable to Control Lyapunov Analysis. This36

includes showing that various types of loss functions satisfy the requirements of a positive definite37

function and providing an equivalent reformulation of Equation (3) as an inverse control problem.38

We then introduce a training procedure that minimizes the violation of the Lyapunov Conditions in39

expectation. Finally, we present an empirical evaluation of our method that results in a 4x speed up40

during training while maintaining similar performance with ODE models trained with traditional41

methods.42

2 Method43

2.1 Loss Functions as Lyapunov Functions44

Consider the output of a prediction model z(x; θ). When training a model we typically consider the45

optimization problem argminθ L(z(x; θ), y) for some loss functionL. Possible loss functions include46

squared error L(z, y) = ‖z−y‖22 or cross entropy L(z, y) = − log
(

exp zy∑
i exp zi

)
. In either case, given47

a label y the function L is convex on input z which allows to conclude that the loss function satisfies48

the positive definite condition of Lyapunov Functions so that L(z(x; θ), y) = Vy(z(x; θ)). If z is the49

output of a dynamical system, we can consider L as a Lyapunov Function with an equilibrium point50

at the correct label for x.51

2.2 Supervised Learning as Inverse Control52

In a similar fashion to Equation (3), we will attempt to learn the parameters of an underlying53

dynamical system:54

2



h(t0) = h0

dh

dt
= f(h, φ(x; θφ); θf ) (8)

z = ψ(h(T ); θψ)

We can thus interpret the supervised learning problem as finding the parameters θ that render the55

input x stable to the label y. This can be achieved by satisfying the following condition:56

for all h ∈ E V̇y(z) =
∂L
∂z

∂ψ

∂h
f(h, φ(x, φ(x; θφ); θf ) ≤ −σVy(z) (9)

2.3 Monte Carlo Method for Inverse Control57

The above condition must apply over the all the dynamics state space to guarantee exponential58

convergence. We can alternatively express Equation (9) as the state integral:59

∫
E

max
{
0, V̇y(z) + σVy(z)

}
dz (10)

For each sample in our dataset we can then approximate this integral through Monte Carlo integration60

by sampling sates using a uniform distribution over E:61

Ez∼U(E)

[
max

{
0, V̇y(z) + σVy(z)

}]
(11)

We can thus summarize the proposed lyapunov learning method as shown in Figure 1.

Figure 1: On the left the information flow diagram for Deep Learning where inference flows from the input
data to the neural network and the loss. In Neural ODEs, the adjoint method is used to differentiate through
the integrator to update the dynamics. Finally, in the Lyapunov learning technique presented here, the stability
control theoretic condition allows us to bypass the need to differentiate through the integrator.

62

3



3 Experiments63

We use this Lyapunov method on the MNIST [11] and CIFAR-10 [10] Datasets and compare it with64

the Adjoint method as presented in [6] as well as AlexNet. The state space of the dynamics satisfies65

h ∈ R10 for the following experiments.66

LyaNet Neural ODE AlexNet
MNIST Mean Test Error 0.92% 0.72% 0.93%
MNIST Std. Dev. Test Error 0.13% 0.09% 0.23%
CIFAR-10 Mean Test Error 29.13% 28.81% 31.55%
CIFAR-10 Std. Dev. Test Error 0.98% 1.00% 0.47%
Number of Parameters (1e3) 52 52 57,000
Training Time (seconds/epoch) 77.70 316.78 12.45

Figure 2: For both MNIST and CIFAR-10, AlexNet, NeuralOde and LyaNet (the Lyapunov Learning Method)
are compared. For each model the number of parameters and the number seconds per epoch on average across
all datasets are included. 5 random seeds were used to run these experiments.

The experiments in Figure 2 were run with a batch size of 128 and learning rate of 0.001 optimized67

with Adam. These experiments with run on an a system with a single NVIDIA Titan X GPU. We did68

not perform any tuning to choose these hyper-parameters. Overall we observe similar performance69

on the ODE-based models that is comparable with the results obtained with AlexNet.70

4 Related Work71

Prior Work in Learning Dynamical Systems: Most prior work has focused on using the adjoint72

method to infer dynamics [6, 2] . The proposal by [7] even discusses properties like controllability but73

ultimately frames inference as an optimal control problem. Although optimal control is a powerful74

framework, this representational power comes at cost the cost of fragile solutions and weak guarantees.75

Alternative approaches have used a similar dynamical system representation in combination with the76

implicit function theorem to learn a Lyapunov function with its equilibrium point, learn equilibrium77

networks and even stable equilibrium networks in a similar classification setting[12, 4, 3]. Also,78

[8] learns stable-by-construction networks that learn a negative-definite decomposition. Still these79

approaches fail to exploit the Lyapunov-like properties of the loss function as proposed here.80

Prior Work in Learning and Control: Prior work at the intersection of learning theory and control81

has focused on using results from one field in the other. For example, [16] use Lyapunov theory82

to analyze the dynamical system implicit in the momentum updates of stochastic gradient descent,83

[1, 15] differentiate through controllers like MPC and [13] learn control policies directly for a real84

system. [14] safely learn physical dynamics by taking into account lyapunov-like conditons during85

training.[5] use an adversarial approach to learn Lyapunov functions for control.86

5 Further Work87

Future work will focus on scaling this methodology to work with larger networks that have a larger88

dynamics state. During training we noted that that networks with large dynamics states, in the order89

of what ResNet uses, would overfit. We also wish to further explore the theoretical properties that90

stability confers to the learned model in terms of Generalization and Adversarial Robustness.91

4



References92

[1] Brandon Amos et al. “Differentiable MPC for End-to-end Planning and Control”. In: CoRR93

(2018). arXiv: 1810.13400. URL: http://arxiv.org/abs/1810.13400.94

[2] Eric Aislan Antonelo et al. “Physics-Informed Neural Nets-based Control”. In: (Apr. 6, 2021).95

URL: https://arxiv.org/abs/2104.02556v1 (visited on 06/08/2021).96

[3] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. “Deep Equilibrium Models”. In: (Sept. 3,97

2019). URL: https://arxiv.org/abs/1909.01377v2 (visited on 08/26/2021).98

[4] Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. “Stabilizing Equilibrium Models by Jacobian99

Regularization”. In: (June 28, 2021). URL: https://arxiv.org/abs/2106.14342v1100

(visited on 08/26/2021).101

[5] Ya-Chien Chang, Nima Roohi, and Sicun Gao. “Neural Lyapunov Control”. In:102

arXiv:2005.00611 [cs, eess, stat] (Dec. 19, 2020). arXiv: 2005.00611. URL: http://103

arxiv.org/abs/2005.00611 (visited on 06/12/2021).104

[6] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In: arXiv:1806.07366 [cs,105

stat] (Dec. 13, 2019). arXiv: 1806.07366. URL: http://arxiv.org/abs/1806.07366106

(visited on 04/20/2021).107

[7] Weinan E. “A Proposal on Machine Learning via Dynamical Systems”. In: Communications108

in Mathematics and Statistics 5.1 (Mar. 2017), pp. 1–11. ISSN: 2194-6701, 2194-671X. DOI:109

10.1007/s40304-017-0103-z. URL: http://link.springer.com/10.1007/s40304-110

017-0103-z (visited on 05/07/2021).111

[8] Eldad Haber and Lars Ruthotto. “Stable Architectures for Deep Neural Networks”. In: (May 9,112

2017). DOI: 10.1088/1361- 6420/aa9a90. URL: https://arxiv.org/abs/1705.113

03341v3 (visited on 06/08/2021).114

[9] Hassan K Khalil. “Nonlinear systems third edition”. In: Patience Hall (2002).115

[10] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny116

images”. In: (2009).117

[11] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceedings118

of the IEEE 86.11 (1998), pp. 2278–2324.119

[12] Gaurav Manek and J. Zico Kolter. “Learning Stable Deep Dynamics Models”. In: (Jan. 17,120

2020). URL: https://arxiv.org/abs/2001.06116v1 (visited on 08/26/2021).121

[13] Xue Bin Peng et al. Learning Agile Robotic Locomotion Skills by Imitating Animals. 2020.122

arXiv: 2004.00784 [cs.RO].123

[14] Spencer M. Richards, Felix Berkenkamp, and Andreas Krause. “The Lyapunov Neural124

Network: Adaptive Stability Certification for Safe Learning of Dynamical Systems”. In:125

arXiv:1808.00924 [cs] (Oct. 1, 2018). arXiv: 1808.00924. URL: http://arxiv.org/abs/126

1808.00924 (visited on 06/12/2021).127

[15] Grady Williams et al. “Information theoretic MPC for model-based reinforcement learning”.128

In: 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017, pp. 1714–129

1721. DOI: 10.1109/ICRA.2017.7989202.130

[16] Ashia C. Wilson, Benjamin Recht, and Michael I. Jordan. “A Lyapunov Analysis of Momentum131

Methods in Optimization”. In: arXiv:1611.02635 [cs, math] (Mar. 12, 2018). arXiv: 1611.132

02635. URL: http://arxiv.org/abs/1611.02635 (visited on 04/20/2021).133

5

https://arxiv.org/abs/1810.13400
http://arxiv.org/abs/1810.13400
https://arxiv.org/abs/2104.02556v1
https://arxiv.org/abs/1909.01377v2
https://arxiv.org/abs/2106.14342v1
https://arxiv.org/abs/2005.00611
http://arxiv.org/abs/2005.00611
http://arxiv.org/abs/2005.00611
http://arxiv.org/abs/2005.00611
https://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
https://doi.org/10.1007/s40304-017-0103-z
http://link.springer.com/10.1007/s40304-017-0103-z
http://link.springer.com/10.1007/s40304-017-0103-z
http://link.springer.com/10.1007/s40304-017-0103-z
https://doi.org/10.1088/1361-6420/aa9a90
https://arxiv.org/abs/1705.03341v3
https://arxiv.org/abs/1705.03341v3
https://arxiv.org/abs/1705.03341v3
https://arxiv.org/abs/2001.06116v1
https://arxiv.org/abs/2004.00784
https://arxiv.org/abs/1808.00924
http://arxiv.org/abs/1808.00924
http://arxiv.org/abs/1808.00924
http://arxiv.org/abs/1808.00924
https://doi.org/10.1109/ICRA.2017.7989202
https://arxiv.org/abs/1611.02635
https://arxiv.org/abs/1611.02635
https://arxiv.org/abs/1611.02635
http://arxiv.org/abs/1611.02635


Checklist134

1. For all authors...135

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s136

contributions and scope? [Yes]137

(b) Did you describe the limitations of your work? [Yes]138

(c) Did you discuss any potential negative societal impacts of your work? [No] This is139

just a neural network optimization algorithm. There are no obvious societal impacts.140

(d) Have you read the ethics review guidelines and ensured that your paper conforms to141

them? [Yes]142

2. If you are including theoretical results...143

(a) Did you state the full set of assumptions of all theoretical results? [N/A]144

(b) Did you include complete proofs of all theoretical results? [N/A]145

3. If you ran experiments...146

(a) Did you include the code, data, and instructions needed to reproduce the main experi-147

mental results (either in the supplemental material or as a URL)? [No] To be released148

with Archival Publication.149

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they150

were chosen)? [Yes]151

(c) Did you report error bars (e.g., with respect to the random seed after running experi-152

ments multiple times)? [Yes]153

(d) Did you include the total amount of compute and the type of resources used (e.g., type154

of GPUs, internal cluster, or cloud provider)? [Yes]155

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...156

(a) If your work uses existing assets, did you cite the creators? [Yes]157

(b) Did you mention the license of the assets? [N/A]158

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]159

160

(d) Did you discuss whether and how consent was obtained from people whose data you’re161

using/curating? [N/A]162

(e) Did you discuss whether the data you are using/curating contains personally identifiable163

information or offensive content? [N/A]164

5. If you used crowdsourcing or conducted research with human subjects...165

(a) Did you include the full text of instructions given to participants and screenshots, if166

applicable? [N/A]167

(b) Did you describe any potential participant risks, with links to Institutional Review168

Board (IRB) approvals, if applicable? [N/A]169

(c) Did you include the estimated hourly wage paid to participants and the total amount170

spent on participant compensation? [N/A]171

6


	Introduction
	Ordinary Differential Equations as Learnable Components
	Lyapunov Conditions for Stability
	Contribution

	Method
	Loss Functions as Lyapunov Functions
	Supervised Learning as Inverse Control
	Monte Carlo Method for Inverse Control

	Experiments
	Related Work
	Further Work

