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ABSTRACT

Automatically generating medical reports is an effective solution to the diagnostic
bottleneck caused by physician shortage. Existing methods have demonstrated ex-
emplary performance in generating high-textual-quality reports. Due to the high
similarity among medical images as well as the structural and content homogene-
ity of medical reports, these methods often make it difficult to fully capture the
semantic information in medical images. To address this issue, we propose a
training-free Retrieval Information injectioN (RIN) method by simulating the pro-
cess of Multidisciplinary Consultation. The essence of this method lies in fully uti-
lizing similar reports of target images to enhance the performance of pre-trained
medical report generation models. Specifically, we first retrieve images most sim-
ilar to the target image from a pre-constructed image feature database. Then, the
reports corresponding to these images are inputted into a report generator of the
pre-trained model, obtaining the distributions of retrieved reports. RIN gener-
ates final reports by integrating prediction distributions of the pre-trained model
and the average distributions of retrieved reports, thereby enhancing the accu-
racy and reliability of the generated report. Comprehensive experimental results
demonstrate that RIN significantly enhances clinical efficacy in chest X-rays re-
port generation task. Compared to the current state-of-the-art methods, it achieves
competitive results.

1 INTRODUCTION

Information technology has made significant contributions to modern medicine. Non-invasive med-
ical imaging technologies, such as X-rays, ultrasound and MRI, have become essential tools for dis-
ease diagnosis and patient monitoring (Panayides et al., 2020). These imaging techniques provide
high-resolution images of internal structures, helping in the early detection and diagnosis of various
conditions. Since medical images usually involve multiple anatomical structures and pathological
features, clinical practice requires specialized radiologists to interpret and write reports.

In this context, deep learning technology has made significant progress in automatic medical re-
port generation, particularly in the chest X-rays (Chen et al., 2020; 2022; Liu et al., 2021c) report
generation. However, one of the main challenges in this field is achieving cross-modal consistency
between medical images and their corresponding reports (Li et al., 2018; Liu et al., 2021b; Li et al.,
2020; 2024). Existing methods have demonstrated exemplary performance in generating reports of
high textual quality, but it is often difficult to fully capture the semantic information in medical im-
ages (Kaur & Mittal, 2022; Park et al., 2020; Pellegrini et al., 2023; Divya et al., 2024). Specifically,
medical images are highly similar, with essential areas taking up only a more minor part, while med-
ical reports’ textual structure and content are highly repetitive. This situation leads to the generated
medical report that achieves high textual similarity with reference reports but ignores the accurate
description of disease diagnosis. Such accuracy in disease diagnosis is crucial. In the medical field,
insufficient diagnostic accuracy can have severe consequences (Kalra, 2004; Fabri & Zayas-Castro,
2008; Sarker & Vincent, 2005). For example, missed diagnoses of lung cancer are relatively com-
mon, and such oversights can lead to delays in disease assessment and the initiation of treatment
(Turkington et al., 2002). In order to capture the semantic information in medical images, sev-
eral initial approaches have been explored, including the use of contrastive information (Liu et al.,
2021d; Li et al., 2023) to focus on the abnormal regions, construct knowledge graphs to provide
additional supervision signals (Zhang et al., 2020; Huang et al., 2023), introduce detectors to direct
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identification of medical observations (Pino et al., 2021; Tanida et al., 2023; Li et al., 2024). These
methods rely on explicit prior knowledge, such as high-quality annotated data (Pino et al., 2021;
Tanida et al., 2023) or professional expertise (Li et al., 2019; Zhang et al., 2023), which is currently
lacking in medical report tasks (Liu et al., 2021e; Li et al., 2023). Furthermore, these methods gener-
ally inject information by making complex adjustments to the attention modules (Liu et al., 2021e;
Li et al., 2023), resulting in a training process that requires high computational overhead. Given
these considerations, a crucial question is:

Can we design a general method to enhance clinical efficacy without explicit prior knowledge and
training?

In this work, we propose a training-free Retrieval Information injectioN (RIN) method that aims to
generate accurate and effective reports by simulating the process of Multidisciplinary Consultation.
In clinical practice, the Multidisciplinary Consultation by multiple experts’ diagnoses and jointly
analyzing the patient’s condition helps reduce the likelihood of misdiagnosis (Sigl et al., 2023).
This approach is widely applied in fields such as radiology and pathology (Kane et al., 2007; Mal-
lory et al., 2015) Inspired by this collaborative approach, we proposed a retrieval method that does
not rely on explicit prior knowledge. Specifically, we retrieved images similar to the target image
from the database and used the corresponding reports as retrieved-reports for the target image. This
approach simulates the process of multiple experts jointly analyzing cases during the expert con-
sultation. Drawing from the experience of contrastive decoding that can inject information without
training, we inject the retrieved retrieved-reports information directly into the pre-trained medical
report generation model in a training-free manner. The pre-trained model generates reports by inte-
grating its predictions and the retrieved information, thereby enhancing the accuracy and reliability
of the final generated report.

In summary, our main contributions are as follows:

• We proposed a retrieval strategy that simulates the Multidisciplinary Consultation by extracting
information from similar cases, thereby enhancing the accuracy of generated reports.

• We introduce a training-free information injection method that requires only adjusting the re-
port’s distribution of the generation stage without additional training.

• We demonstrated the effectiveness of our method across two distinct medical report genera-
tion tasks. The results showed that our method could significantly improve the clinical efficacy of
generated reports while not reducing too much textual quality.

2 RELATED WORK

2.1 MEDICAL REPORT GENERATION

Early work on automatic medical report generation typically employed CNN-RNN structures (Jing
et al., 2017; Yin et al., 2019). Recently, transformer models have demonstrated their vast poten-
tial in medical diagnostics within multi-modal domains (Xu et al., 2023; Chen et al., 2020; 2022;
Alfarghaly et al., 2021). Although these methods have demonstrated exemplary performance in
generating reports of high textual quality, they still faced a challenge in the cross-modal consistency
between medical images and reports (Li et al., 2018; Liu et al., 2021b; Li et al., 2020; 2024). Specif-
ically, medical images are highly similar, with essential areas taking up only a more minor part,
while medical reports’ textual structure and content are highly repetitive. Much of the existing work
is influenced by previous image caption work. It focuses more on improving textual quality, ignoring
the accurate description of critical information such as diseases and equipment within the medical
images. However, in medical report generation tasks, textual quality is often unimportant. Tanida
et al. (2023) found that using lowercase can significantly enhance the textual quality of radiology
report generation. Some recent works have aimed at aligning medical images with reports. These
works can be divided into four main categories. The first is using contrastive information (Liu et al.,
2021d; Li et al., 2023) to focus on the abnormal regions. This contrast can come from image-image
(Liu et al., 2021d) or image-report (Li et al., 2023). Liu et al. (2021d) compares the current input im-
age with normal images to distill the contrastive information. Li et al. (2023) built an Image-Report
Contrastive Loss (IRC) to activate radiology reporting by encouraging the positive image-report
pairs to have similar representations in contrast to the negative pairs. The second is constructing
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knowledge graphs to provide additional supervision signals and incorporating knowledge into the
model through cross-attention (Zhang et al., 2020; Huang et al., 2023). Huang et al. (2023) pro-
posed a Knowledge-injected U-Transformer (KiUT) to learn multi-level visual representation and
adaptively distill the information with contextual and clinical knowledge for word prediction. The
third is introducing detectors to direct identification of medical observations. Such detectors include
recognition image classifiers (Pino et al., 2021; Tanida et al., 2023), text classifiers (Liu et al., 2019) ,
and other detectors (Li et al., 2024) . Li et al. (2024) introduced the concept of counterfactuals, iden-
tified key regions by constructing counterfactual images, and effectively fine-tuned the pre-trained
LLM through learnable prompts to generate more accurate and comprehensive medical reports. The
fourth is retrieval-augmented style of generation(Syeda-Mahmood et al., 2020; Ranjit et al., 2023) .
Compared to the previous three works, our method does not rely on proprietary models or explicit
prior knowledge but adjusts the distribution by training-free contrast decoding, thereby improving
clinical efficacy. Compared with the last work, since we do not rely on fixed templates or classifiers,
the generated reports are more natural.

2.2 CONTRASTIVE DECODING METHODS

Contrastive decoding is a training-free method to select the optimal result by evaluating and con-
trasting outputs from different generation strategies or models. Li et al. (2022) utilized the dif-
ference in predicted likelihood between expert and amateur language models (LMs) as a basis for
decision-making, constraining the LMs to generate more reliable information. Similar work was
used for language detoxification and sentiment-controlled generation (Liu et al., 2021a). Shi et al.
(2023) emphasized context information during the generation stage by introducing context-aware
decoding. Recent advancements have extended to the visual language models. Zhao et al. (2024) in-
troduced a training-free and API-free framework to guide Large Vision-Language Models (LVLMs)
in mitigating hallucinations during the generation process. Wan et al. (2024) employed the mask
to generate a comparative image derived from the original image. Contrasting the two different
images enhanced the visual prompt. Kornblith et al. (2023) implement classifier-free guidance (Ho
& Salimans, 2022) to an auto-regressive captioning model by fine-tuning it to estimate conditional
and unconditional caption distributions. Some recent works (Kim et al., 2024; Qiu et al., 2024)
have introduced RAG into contrastive decoding methods, aiming to improve the open-domain ques-
tion answering capabilities of LLM. These existing methods aim to reduce decoding noise in expert
models by obtaining contrast coding results between expert models and amateur models, while our
approach is to introduce retrieved information as additional knowledge to supplement the results of
the expert model.

3 APPROACH

This section introduces the detailed implementation of our proposed training-free Retrieval Infor-
mation injectioN (RIN) for medical report generation. Figure 1 illustrates that RIN consists of a
reports retrieval module, an information injection module and a report filter module.

3.1 REPORTS RETRIEVAL

Our approach is grounded in several critical observations:

• The models often produce nearly identical reports when processing semantically similar sam-
ples, leading to information omissions. This phenomenon may stem from the high structural and
content similarity among medical reports, which causes the model to cluster similar reports together
during training. Models tend to produce averaged outputs across these similar reports, resulting in
information loss and inconsistencies. Meanwhile, medical report descriptions are lengthy, and ex-
isting methods usually truncate overly long content during the data pre-processing stage, possibly
leading to information loss. The diversity of medical report word order exacerbates this problem.
Reports containing the same semantics may cause different information omissions when the content
is too long due to different word orders.

• The generated reports sometimes focus excessively on localized information within chest X-
rays, overlooking other critical medical observations. This issue is particularly pronounced in sam-
ples involving external medical devices, where the model tends to provide detailed descriptions of
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the device’s position and trajectory while neglecting other relevant medical observations. This issue
is often data-driven, as certain reports within the dataset concentrate solely on localized information,
leading to this bias in the model’s outputs.

To address these challenges, we propose an improved strategy: retrieve images similar to the target
image from the pre-constructed image feature database and fill in the missing information in the
generated report with the reports corresponding to the images. Figure 2 shows the construction of
the image feature database and retrieval process.

Mixture Distribution 
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Reports

Report 1

Report 2

…

Report k
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       Filter
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Figure 1: The workflow of Retrieval Information injectioN (RIN). RIN consists of a retrieved-
reports retrieval module, an information injection module and a report filter module. In step 1,
the medical image being processed through a pre-trained Vanilla Model (depicted by the blue line)
to generate a predicted report distribution. In step 2, concurrently, the medical image is encoded
by an additional external image encoder (depicted by the yellow line) to extract image features.
These features retrieve the k most similar images from the image feature database. In step 3, the
retrieved-reports corresponding to these similar images are input into the pre-trained report gener-
ator, obtaining k retrieved-reports distributions. In step 4, the average of the retrieved-reports is
computed and then combined with the predicted report distribution to form a mixture distribution.
In step 5, the text decoder independently decodes both predicted report distribution and the mixture
distribution into reports. In step 6, the report filter compares the generated reports with the retrieved
reports and selects the most similar one as the final report.

Utilizing Pre-trained Models for Image Encoding The medical reports are often noisy, and de-
scriptions with different sentences may represent the same content, which increases the difficulty
of processing and understanding the report of the model. This challenge makes it harder to retrieve
useful retrieved-reports from medical images. Contrastive learning methods, such as CLIP (Radford
et al., 2021), can train on large-scale datasets without explicit labels to align images and text. This
approach overcomes the issues of prior works Tanida et al. (2023); Li et al. (2024) requiring anno-
tated data or subject to the classifier category. Specifically, we leveraged the image encoder from
the BiomedVLP model (Bannur et al., 2023) as external image encoder to extract image features
from the training set and built an image feature retrieval database. BiomedVLP is a pre-trained
contrastive learning model specifically on the chest X-rays field. The training set sample images
are encoded by the image encoder of BiomedVLP to finally obtain a set of 128-dimensional image
features E ∈ Rbatch×128.

Utilizing Similarity Calculation for Retrieving Reports We begin by encoding each medical im-
age using an external image encoder to extract image features. Next, we perform a nearest neighbor
search based on cosine similarity to identify the k most similar images from a pre-constructed image
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Top K

Retrieved Reports

<Report 2>

Figure 2: Illustration of the process of retrieved-report retrieval. First, images from the train set are
encoded using an external image encoder to generate an image feature database. The target image
is then encoded using the same image encoder to obtain its feature representation. Cosine similarity
is employed to match the k nearest image features in the database, and the corresponding reports of
the matched image features as the retrieved-reports.

feature retrieval database. Finally, the k reports corresponding to these images serve as retrieved-
reports to assist in generating the final medical report.

3.2 INJECTING RETRIEVAL INFORMATION INTO MEDICAL REPORT GENERATION

For a typical medical report generation problem, given a pre-trained medical report generation model
θ, a medical image I ∈ RW×H×3, and t tokens of report Y = [y1, · · · , yt], this process can be
expressed as:

yt ∼ pθ(yt | I, y<t) ∝ exp (logitθ(yt | I, y<t)) (1)

Training-free Information Injection We introduce a training-free approach to inject retrieval in-
formation into the pre-trained medical report generation model through adjustments in the decoding
process. Firstly, we use PMI (Pointwise Mutual Information) to measure the amount of information
sharing between the generated token Y and the retrieval information C ∈ Rk×t, where k represents
k retrieved-reports. We simplify C ∈ Rk×t to C ∈ Rt, given an image I and t tokens of retrieval
information C = [c1, · · · , ct] as follows,

PMI(Y ;C | I) = log
P (Y,C | I)

P (Y | I) · P (C | I)
= log

P (Y | I, C)

P (Y | I) (2)

Based on the experience of Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) and Contrastive
Region Guidance (CRG) (Wan et al., 2024), the adjustment formula is obtained:

Y ∼ pθ(Y | I, C) ∝ pθ(Y | I) ·
(
pθ(Y | I, C)

pθ(Y | I)

)α

(3)

In practice, for generating a single token yt , we aim to precisely measure the difference between
the retrieval information c<t and the previously generated tokens y<t. Apply softmax to convert
the adjusted logits into probabilities. The following formula is used, where the softmax function is
applied to convert the adjusted logits from the first line into probabilities. pθ(yt | I, c<t) represents
the average distribution obtained by averaging over k external retrieved retrieved-reports :

yt ∼ pθ(yt | I, c<t, y<t) ∝ pθ(yt | I, y<t) ·
(
pθ(yt | I, c<t)

pθ(yt | I, y<t)

)α

(4)
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∼ softmax [(1− α) · logitθ(yt | I, y<t) + α · logitθ(yt | I, c<t)] (5)

pθ(yt | I, c<t) =
1

k

k∑
i=1

pθ(yt | I, ci<t) (6)

Here, α ∈ [0, 1] is a hyperparameter that balances the vanilla model knowledge and the external re-
trieval knowledge obtained through the retrieval mechanism. A higher value of α indicates stronger
control; for example, α = 1 represents highly used control, α = 0 means standard decoding without
control, and α = 1

3 is suitable for this design, this maintains the same proportions as previous work
(Shi et al., 2023; Wan et al., 2024). To observe the influence of different α on information injection,
we plot all results from our hyperparameter grid in Figure 5. Besides, we provide a pseudo-code of
our information injection in Appendix A.1.1.

3.3 REPORT FILTER

Although retrieval information injection (RIN) can effectively enhance the information injection
capabilities of generative models, we have observed that RIN may occasionally introduce false pos-
itive information that does not exist in the retrieved data. This phenomenon may stem from the
characteristics of the auto-regressive generation method. Auto-regressive models generate content
sequentially, relying on previously generated outputs, making them prone to propagating errors if
any inaccuracies are introduced early in the generation process. To mitigate this issue, we imple-
mented a simple filtering strategy that compares the similarity between the reports generated by the
vanilla model, the reports generated after applying RIN, and the retrieved reports to get the report
that is most similar to the retrieved information. Specifically, Chexbert(Smit et al., 2020) can auto-
matically encode the radiological report into 14 medical observations. We calculate the average F-1
score of medical observations between the vanilla model generated report, the RIN generated report,
and the K retrieved reports using CheXbert. Finally, we select the report with the highest F-1 score
from the original or RIN-generated reports as the final output.

4 EXPERIMENTS

In this section, we first describe the implementation details. Then, we experimentally validate our
method is work on chest X-rays report generation, presenting extensive performance analysis on our
retrieved-reports retrieval and information injection modules. Additional details and quantitative
findings are in Appendix A.2.

4.1 EXPERIMENTAL SETTINGS

We conducted all experiments using one single NVIDIA RTX A5500 GPU.

Retrieved-reports retrieval module We utilized the image encoder from the BiomedVLP model
pre-trained by Bannur et al. (2023), a contrastive learning model specifically trained on chest X-rays
data, to encode images.

Information injection module To ensure reproducibility in the contrastive decoding stage, we
adopted a greedy decoding strategy and set the beam search width to 4, hyperparameter α = 1

3 ,
k = 4 . We employed CvT2DistilGPT2 (Nicolson et al., 2023) as the vanilla model, applying the
pre-trained weights from Nicolson et al. (2023).

4.2 EVALUATION METRICS

We follow previous work (Liu et al., 2019) in evaluating clinical efficacy (CE). The CE metrics are
computed from CheXbert (Smit et al., 2020), a medical report observations classifier that can run
on GPUs, providing more accurate and faster extraction of the medical observations compared to
CheXpert (Irvin et al., 2019). It can label chest X-rays reports as positive, negative, or uncertain for
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each medical observation, then calculates the example-based precision, recall, and F-1 scores of the
generated report and corresponding reference report as the CE metrics scores.

At the report level, we follow natural language generation (NLG) metrics, including BLEU (Papineni
et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004) and CIDEr (Vedantam
et al., 2015). These metrics measure the similarity between generated and reference reports by
calculating the overlap of n-grams (i.e., word overlap).

4.3 DATASET AND PRE-PROCESSING

MIMIC-CXR For the chest X-rays report generation task, we utilized the MIMIC-CXR dataset
(Johnson et al., 2019), which was proposed by the Massachusetts Institute of Technology. It is
a large-scale de-identified dataset containing 377,110 images and 227,835 radiology reports. The
“findings” section of the report includes the observations of radioactive materials. Following pre-
vious work (Chen et al., 2020), we excluded samples without the findings section from the dataset,
using the findings section as the reference report. The total dataset was adjusted to 276,778 sam-
ples. For model training and evaluation, the data were divided into 270,790 training samples, 2,130
validation samples, and 3,858 test samples. To ensure comparability with previous radiology report
generation methods, we set the maximum number of words in the report to 60, converted all upper-
case letters to lowercase, removed special characters, and replaced words that appeared fewer than
three times in the corpus with special unknown tokens. These processing steps are consistent with
those used settings of Chen et al. (2020).

4.4 MAIN RESULTS

We compare our method with the state-of-the-art report generation systems across automatic chest
X-rays report generation. Table 8, Table 2 shows the results. The best ones are marked in bold in the
table, and the suboptimal results are marked underlined. We followed the same experimental setup
for the automatic chest X-rays report generation task in the original papers, citing their reported
results directly.

We compare with the baseline method R2Gen (Chen et al., 2020), CMN (Chen et al., 2022), CA
(Liu et al., 2021c), AlignTrans (You et al., 2021), XPRONET(Wang et al., 2022), and the state-of-
the-art methods KiUT (Huang et al., 2023), MGSK (Yang et al., 2022), DCL (Li et al., 2023),
CvT2DistilGPT2 (as Vanilla model)(Nicolson et al., 2023). As shown in Table 8, our method
achieved 0.481, 0.445, and 0.433 in Precision, Recall, and F-1 score, respectively. Compared with
the vanilla model, it is improved by 15.1%, 21.3%, and 18.0%, respectively. Although the quality
of the NLG metrics has slightly declined, our method still shows strong competitiveness compared
with other existing methods. This suggests that our approach has significantly enhanced the clinical
efficacy of reports in the chest X-rays automatic report generation task.

NLG metrics CE metrics
Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L Precision Recall F-1
R2Gen 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276
CMN 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278
CA 0.350 0.219 0.152 0.109 0.151 0.283 0.352 0.298 0.303
AlignTrans 0.378 0.235 0.156 0.112 0.158 0.283 - - -
XPRONET 0.344 0.215 0.146 0.105 0.138 0.279 - - -
KiUT 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321
MGSK 0.363 0.228 0.156 0.115 - 0.284 0.458 0.348 0.371
DCL - - - 0.109 0.150 0.284 0.471 0.352 0.373
CvT2DistilGPT2 0.393 0.248 0.171 0.127 0.155 0.286 0.418 0.367 0.367
+RIN (Ours) 0.404 0.247 0.165 0.117 0.158 0.290 0.481 0.445 0.433

Table 1: The performance in NLG metrics and CE metrics of our proposed method compared to
other competitive methods on the MIMIC-CXR datasets.

Table 2 shows a comparison of our method with the RGRG (Tanida et al., 2023) and CoFE (Li
et al., 2024). Both of them only utilized frontal chest X-rays images. Therefore, we extracted frontal
images in the test set for a fair comparison. The results indicate that our method demonstrates
competitive performance on clinical efficacy metrics compared to state-of-the-art models. Moreover,
compared with the vanilla model, our method improves BLEU-1, BLEU-2, METEOR, and ROUGE-
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L. It is worth noting that the comparison remains somewhat unfair due to the RGRG splitting the
MIMIC-CXR train and test set differently from the previous work.

NLG metrics CE metrics
Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L Precision Recall F-1
RGRG 0.373 0.249 0.175 0.126 0.168 0.264 0.461 0.475 0.447
CoFE - - - 0.125 0.176 0.304 0.489 0.370 0.405
CvT2DistilGPT2 0.386 0.242 0.166 0.122 0.152 0.282 0.452 0.340 0.397
+RIN (Ours) 0.401 0.244 0.162 0.114 0.157 0.288 0.513 0.481 0.466

Table 2: The performance in NLG metrics and CE metrics of our proposed method compared to
other competitive methods on MIMIC-CXR datasets’ frontal images.

Compared to the vanilla model, our method demonstrates a comprehensive improvement in CE
metrics. In terms of NLG metrics, our approach either matches or surpasses the vanilla model in
BLEU-1, BLEU-2, METEOR, and ROUGE-L scores, indicating that it generates more lexically pre-
cise outputs by selecting words that are closer to the reference text. Additionally, our method shows
enhanced performance in capturing overall semantic expression and sentence structure. However,
the decrease in BLEU-3 and BLEU-4 scores suggests a limitation in effectively capturing long-range
dependencies within our method generated reports.

4.5 PERFORMANCE ANALYSIS

Case Study To further evaluate the effectiveness of our proposed method, we conducted a com-
prehensive qualitative analysis comparing the vanilla model with our RIN approach on the MIMIC-
CXR dataset. The analysis results show that compared with the vanilla model, our method sup-
plemented the missing information when generating reports and correcting some error information.
Specifically, in Figure 3 (a), our approach supplemented crucial details, such as cardiomegaly, pleu-
ral effusions and edema, while recorrecting the error information generated by the vanilla model,
such as opacity. In Figure 3 (b) shows our method supplemented atelectasis and accurately empha-
sized the need for further observation of pneumonia. This observation supports the effectiveness of
our information retrieval and information injection mechanism.

Image Ground Truth Report Vanilla Model Report Ours

portable ap upright chest 

radiograph obtained . the 

heart is moderately enlarged

and there is diffuse 

pulmonary edema . effusions

are likely also present . 

single portable view of the 

chest is compared to 

previous exam from earlier 

the same day at <unk> pm . 

there has been interval 

progression of the bilateral 

parenchymal opacities right 

greater than left . 

cardiomediastinal silhouette 

is stable . osseous and soft 

tissue structures are 

unremarkable. 

single ap upright portable 

chest radiograph was 

obtained . there is diffuse 

pulmonary edema with likely 

bilateral small pleural 

effusions . the cardiac 

silhouette is enlarged . 

mediastinal contours are 

unremarkable . no 

pneumothorax is seen . 

cardiac silhouette is mildly 

enlarged and accompanied by 

pulmonary vascular 

congestion and mild 

interstitial edema . patchy 

opacities persist at the 

bases and likely reflect 

atelectasis . followup

radiographs may be helpful 

to exclude pneumonia in the 

appropriate clinical 

setting . 

as compared to the previous 

radiograph the patient has 

been extubated and the 

nasogastric tube has been 

removed. the lung volumes 

remain low. moderate 

cardiomegaly with signs of 

mild-to-moderate pulmonary 

edema. no larger pleural 

effusions. no pneumothorax. 

in comparison with the study 

of there again are low lung 

volumes with enlargement of 

the cardiac silhouette and 

prominence of interstitial 

markings consistent with 

pulmonary edema . 

atelectatic changes are seen 

at the right base . in the 

appropriate clinical setting 

supervening pneumonia would 

have to be considered . 

(a)

(b)

Figure 3: Illustration of reports generated by the vanilla model and our RIN on the MIMIC-CXR
dataset. The text in different colors demonstrates the ground truth of medical observations, and the
underlining represents the incorrect observation results.

The Influence of different k values To further explore the effect of different number of retrieved-
report on the clinical efficacy of the generated reports and the text quality. We systematically ad-
justed the k values ranging from 1 to 10 without using the report filter. Experimental results of
Figure 4 reveal the following trends:

• Variation in CE metrics We use F1, which combines Recall and Precision to represent the
CE metrics. Initially, the F-1 score gradually increases with the increase of the k value, indicating
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that increasing the k value within this range can enhance the vanilla model’s performance. Lower k
values limit the scope of neighboring reports, resulting in more constrained retrieval outcomes. As
k values increase, the vanilla model can consider more neighboring reports, capturing more com-
prehensive information, which helps improve retrieval accuracy. However, when k values continue
to increase a certain threshold (in this experiment, k = 4), the F-1 score begins to oscillate. This
phenomenon suggests that at higher k values, the model starts to incorporate an excessive number
of neighboring reports, which may introduce more additional noise or irrelevant information, thus
affecting the quality of the retrieval results and causing an oscillation in the F-1 score.

• Variation in NLG metrics Compared to the CE metrics, the NLG metrics show a consistent
upward trend as the k value increases, which may be attributed to the fact that as k increases, the
retrieved information is more average, making the generated report more semantically, stylistically
richer, and more natural.

0 2 4 6 8 10
Number of retrieved-reports

0.370

0.380
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0.400

F-
1

0 2 4 6 8 10
Number of retrieved-reports

0.385

0.390

0.395

0.400
BL

EU
-1

0 2 4 6 8 10
Number of retrieved-reports

0.265

0.270

0.275

0.280

0.285

RO
UG

E-
L

Figure 4: Comparison of metrics over k values.

The Influence of Different α on Information Injection To investigate the influence of hyperpa-
rameters on information injection, we further analyze the trade-off associated with the hyperparam-
eter α without using the report filter. In Figure 5, we plot all results from our hyperparameter α grid
for k = 4. The experiments demonstrate that α = 1

3 strikes the best balance, maintaining both high
text quality and clinical efficacy.

0 0.1 0.2 0.3 0.4 0.5
BLEU-1

0.30

0.35
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0.45
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1
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0.30

0.35

0.40
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ROUGE-L
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1/3
1/2
2/3
3/4
1

Figure 5: Illustration of all results from our hyperparameter grid.

Pre-trained Model
Prediction Distribution

Retrieved-reports
Average Distribution Report Filter Precision Recall F-1

✓ 0.418 0.367 0.367
✓ 0.363 0.365 0.337

✓ ✓ 0.452 0.411 0.403
✓ ✓ ✓ 0.481 0.445 0.433

Table 3: The performance in CE metrics of ablation study on
each module.

Ablation Experiment Re-
trieval information injection can
be conceptualized as leveraging
the retrieved information as con-
text to enhance the performance
of the vanilla model. In order
to fully demonstrate the effect
of our retrieval information
injection, we compared the
performance of different modules. The ”Pre-trained model prediction distribution” refers to the
distribution predicted by the vanilla model, ”retrieved-reports average distribution” denotes the
distribution of retrieved information processed by the vanilla model’s report generator Additionally,
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the ”Report Filter” represents the final report selection strategy mentioned in our methodology. The
results are shown in the table 3, Table 4. The observation results show that RIN can effectively en-
hance the clinical efficacy of the vanilla model while using only retrieval information. Furthermore,
the performance is further improved by using the report filter.

Pre-trained Model
Prediction Distribution

Retrieved-reports
Average Distribution Report Filter BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

✓ 0.393 0.248 0.171 0.127 0.155 0.286
✓ 0.282 0.093 0.034 0.016 0.101 0.198

✓ ✓ 0.400 0.245 0.162 0.114 0.157 0.288
✓ ✓ ✓ 0.404 0.247 0.165 0.117 0.158 0.290

Table 4: The performance in NLG metrics of ablation study on each module.
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Figure 6: Time expenses of different number of
injected retrieved-reports.

Algorithm Complexity Analysis We ana-
lyze the complexity increase introduced by re-
trieval information injection (RIN) relative to
the vanilla model, denoted as O(n). A standard
medical report generation model typically con-
sists of an image encoder and a text decoder.
Since our method does not involve modifying
the image encoder, the complexity of the im-
age encoding stage is consistent with the vanilla
model simplified as O(d). We only need to
focus on the changes in the complexity of the
text generation stage. For the vanilla model, the
time complexity of the text decoder can be sim-
plified to O(t2 ·v), where t represents the length
of the generated text sequence and v denotes the
hidden layer. To introduce our method, during
the text generation phase, the text decoder’s time complexity is adjusted to O((k+1) · t2 · v), where
k represents the number of retrieved retrieved-reports. This adjustment accounts for the additional
computation required to calculate the distribution of the retrieved retrieved-reports. As a result, the
overall complexity is : O(n) = O(d) +O((k + 1) · t2 · v). Figure 6 shows the change in inference
time of RIN when the batch size is 1 and injected the number of retrieved-reports k increases from
1 to 10, further proving that our method only increases the time linearly. Despite the complexity
increase, our method provides a training-free injection of retrieval information, enhancing the ac-
curacy and relevance of the generated reports and making this complexity increase reasonable and
worthwhile.

5 CONCLUSION

In this paper, we introduce a training-free method, Retrieval Information injectioN (RIN), to ad-
dress the issue of cross-modal consistency between medical images and reports. First, we design
a retriever to extract similar images to the target medical image from an image feature database.
Then, we employ a contrastive decoding approach, injecting the average distribution of the reports
corresponding to the retrieved images as knowledge directly into a pre-trained medical report gen-
eration model. Experiments on chest X-rays report generation tasks demonstrate that our approach
produces more accurate and clinically efficacy reports.

6 LIMITED

The quality of the report generation is affected by the retrieval effect. Poor retrieval performance
may not enhance the generation effect of the report generation model and may even have adverse
effects. Therefore, in future work, we plan to introduce more accurate retrieval methods to improve
the clinical efficacy of generated reports. In addition, the quality of the report in the dataset can also
impact the generated reports. Therefore, we aim to refine the contrastive encoding method to better
adapt to and handle complex text. With these improvements, we hope to significantly improve the
overall quality and accuracy of report generation.
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A APPENDIX

The structure of our Appendix is as follows. Appendix A.1 provides more details of our RIN frame-
work introduced in section 3 of the main text. Appendix A.2 provides more experimental details
and results to help us better understand the capability of RIN. Appendix A.3 analyzes other forms
of information injection.

A.1 IMPLEMENTATION DETAILS OF RIN

In this section, we elaborate on the missing details of RIN in the main text. In particular, we present
a summary of the pseudo code for information injection and outline more details of our method’s
implementation.

A.1.1 PSEUDO CODE

For clarification, we summarize the pseudo code of Information Injection.
1

2 # Input Definitions
3 # img_embed: Image embedding obtained from an image encoder
4 # model: Report generation model that predicts token probabilities
5 # generated_sequence: List to store the sequence of generated tokens,

initialized as an empty list
6 # input_ids: List containing the initial input token(s) for generation,

initialized with [START_TOKEN]
7 # retrieval_information_ids_list: List of retrieval information tokens

used to guide the generation process
8 # alpha: A hyperparameter (0 <= alpha <= 1) that balances the influence

of the vanilla model and retrieval information
9 # max_length: The maximum allowable length for the generated sequence

10 # [END_TOKEN]: A special token that signifies the end of the sequence
11

12 # Initialize generated_sequence and decoder_input
13 generated_sequence = [] # Stores the tokens generated during the process
14 decoder_input = input_ids.copy() # Current input to the decoder,

starting with [START_TOKEN]
15

16 # Begin the generation loop
17 while [END_TOKEN] not in generated_sequence and len(generated_sequence) <

max_length:
18 # Step 1: Predict the next token probabilities using the vanilla

model
19 # The model takes the image embedding (img_embed) and the decoder

input (decoder_input) as input
20 next_token_probabilities = model.predict(img_embed, decoder_input)
21

22 # Step 2: Initialize retrieval information token probabilities to 0
23 retrieval_information_next_token_probabilities = 0.0 # This will

accumulate probabilities guided by retrieval information tokens
24

25 # Step 3: Loop through each retrieval information token set in
retrieval_information_ids_list

26 for retrieval_information_ids in retrieval_information_ids_list:
27 # Predict probabilities using the retrieval information token as

additional input
28 # The model predicts how likely the next token is when guided by

retrieval_information_ids
29 retrieval_information_token_probabilities = model.predict(

img_embed, retrieval_information_ids)
30

31 # Accumulate these probabilities
32 retrieval_information_next_token_probabilities +=

retrieval_information_token_probabilities
33
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Figure 7: Scatter Plot of Frequency and Word Count.

34 # Step 4: Compute the average of retrieval_information token
probabilities

35 # Normalize the accumulated retrieval information probabilities by
dividing by the number of retrieval information tokens

36 retrieval_information_next_token_probabilities_average = (
37 retrieval_information_next_token_probabilities / len(

retrieval_information_ids_list)
38 )
39

40 # Step 5: Combine vanilla model probabilities with retrieval
information

41 # Use alpha to balance between the two sets of probabilities
42 scores = ((1 - alpha) * next_token_probabilities) + (
43 alpha * retrieval_information_next_token_probabilities_average
44 )
45

46 # Step 6: Select the next token based on the combined scores
47 # The function ‘select_token‘ chooses the next token
48 next_token = select_token(scores)
49

50 # Step 7: Append the selected token to the generated sequence
51 generated_sequence.append(next_token)
52

53 # Step 8: Update the decoder input with the newly selected token
54 decoder_input.append(next_token)
55

56 # Return the final generated sequence
57 return generated_sequence

A.1.2 ADDITIONAL DETAILS OF RIN

Retrieval dataset settings

In the MIMIC-CXR dataset, we observed a notable imbalance in the length of reports. To address
this issue, we conducted a detailed analysis of the word count for each report in the training set
and utilized a scatter plot to visually present the distribution. As shown in Figure 7, the scatter plot
analysis revealed that the word counts predominantly fall within a specific range, with the interquar-
tile range (IQR) spanning [37,65]. Within this range, a total of 137,832 samples were identified in
the training set. Building on this observation, to enhance retrieval effectiveness, reduce noise inter-
ference, and improve retrieval efficiency, we further refined the selection to 71,877 samples falling
within the narrower range of [44, 58], thereby constructing a more precise retrieval dataset.

The quality of the retrieved data largely determines the final performance of our approach without
using the report filter. Table5 compares the performance of using all training samples and using
only filtered samples as retrieval data in the task of automatically generating chest X-rays reports.
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Experimental results show that using filtered samples can significantly improve the effect of report
generation, verifying the effectiveness of the report filter in improving the quality of retrieval data.

NLG metrics CE metrics
Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L Precision Recall F-1
RIN (all training samples) 0.390 0.237 0.156 0.108 0.152 0.274 0.434 0.399 0.386
RIN (filtered samples) 0.400 0.245 0.162 0.114 0.157 0.288 0.452 0.411 0.403

Table 5: The performance in NLG metrics and CE metrics of all training samples and filtered sam-
ples on the MIMIC-CXR datasets.

A.2 MORE RESULTS

In this section, we present additional experimental results to further demonstrate the effectiveness
of RIN.

A.2.1 FURTHER CASE ANALYSIS

In Figure 8, we conducted a further qualitative analysis on the MIMIC-CXR dataset, comparing the
vanilla model, retrieved reports, and our approach. The results indicate that compared to the vanilla
model, our method effectively supplements the missing information on cardiomegaly and pleural
effusion, while accurately describes pleural effusion occurring in bilateral occurrence, and removes
the retrieved noise information edema (worsening fluid overload) under our Multidisciplinary Con-
sultation. This observation supports the effectiveness of our information retrieval and information
injection mechanisms. However, we also noticed that atelectasis information was commonly found
in the retrieved retrieved-reports led to false positive information in the generated reports. Fur-
thermore, since only one retrieved report mentioned opacity, our Multidisciplinary Consultation
incorrectly identified this as noise and excluded it, which exposed the limitation of our approach.
Therefore, further optimization of the retrieveall mechanism is still necessary to reduce potential
false positive results, thereby enhancing the accuracy and reliability of the generated reports.

Image Ground Truth Report Vanilla Model Report Retrieved Reports (K=4)

Ours

comparison is made to 

previous study from . the 

endotracheal tube and right-

sided ij central venous line 

are unchanged in position 

and appropriately sited . 

there is also a left-sided 

subclavian catheter with 

distal lead tip in the 

proximal svc . there is 

stable cardiomegaly . there 

are again seen bilateral 

pleural effusions and a left 

retrocardiac opacity 

as compared to the previous 

radiograph the patient has 

been intubated. the tip of 

the endotracheal tube 

projects 4 cm above the 

carina. the patient has also 

received a right internal 

jugular vein catheter. the 

course of the catheter is 

unremarkable the tip of the 

catheter projects over the 

mid svc. there is no 

evidence

in comparison with the study 

of there is little overall 

change . monitoring and 

support devices remain in 

place . there is continued 

enlargement of the cardiac 

silhouette with bilateral 

pleural effusions more 

prominent on the right and 

associated compressive 

atelectasis at the bases . 

in the appropriate clinical 

setting supervening 

pneumonia would have to be 

considered

in comparison with the study 

of the monitoring and 

support devices remain in 

place . the ij catheter tip

is in the mid portion of the 

svc . the cardiac silhouette 

is within normal limits . 

hazy opacification is seen 

in both lower lungs 

consistent with pleural 

effusion and underlying 

compressive atelectasis .

tip of the endotracheal tube 

is in good position . the 

remaining support devices 

are in good position . the 

moderate right-sided

effusion and adjacent 

atelectasis has slightly 

improved there is improved 

aeration medially of the 

right lower lobe . the right 

lung remains clear . no 

pneumothorax .

ng tube can be followed up 

until mid esophagus but its 

distal end is not clearly 

seen in this patient with 

known hiatal hernia . 

bilateral moderate pleural 

effusions are unchanged with 

bibasilar atelectasis . ng 

tube ends 25 cm above the 

carina . there is a new line 

coming from the abdomen 

going to mid mediastinum 

the et tube ng tube and 

right ij line are unchanged . 

there is mild cardiomegaly

and bilateral pleural 

effusions which have 

increased compared to the 

prior study . pulmonary 

vascular indistinctness is 

also increased . the overall 

impression is that of 

worsening fluid overload .

Figure 8: Illustration of the vanilla model, our RIN, and retrieved reports on the MIMIC-CXR
dataset. The colored text indicates different medical observations, and underlining indicates false
positive information.

A.2.2 DETAILED CLINICAL EFFICACY METRICS RESULTS

Table 6 detailed results of the clinical efficacy (CE) metrics for each observation as well as micro
averaged over all 14 observations.
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Observation Precision Recall F-1
Micro-Average 0.522 0.485 0.503
Atelectasis 0.388 0.402 0.395
Cardiomegaly 0.557 0.692 0.618
Consolidation 0.194 0.068 0.101
Edema 0.438 0.316 0.367
Pleural Effusion 0.620 0.633 0.626
Enlarged Cardiomediastinum 0.095 0.041 0.057
Fracture 0.059 0.020 0.030
Lung Lesion 0.213 0.050 0.081
Lung Opacity 0.561 0.358 0.437
No Finding 0.222 0.467 0.301
Pleural Other 0.148 0.033 0.054
Pneumonia 0.189 0.121 0.148
Pneumothorax 0.474 0.240 0.319
Support Devices 0.745 0.804 0.773

Table 6: The performance of all 14 observations.

A.3 DIFFERENT STRATEGY OF INFORMATION INJECTION

The construction of retrieval information C directly affects the information injection effect, so we
tried different forms of construction and compared them with our method through experiments.

The retrieval information is represented as C ∈ Rk×t and the retrieval-reports is represented as
R ∈ Rk×m, where k represents k retrieved-reports. We simplify C ∈ Rk×t to C ∈ Rt and R ∈ Rk×m

to R ∈ Rm, means t tokens of retrieval information C = [c1, · · · , ct] and m tokens of retrieved-
reports R = [r1, · · · , rm]

Form 1

We directly replace the token generated by the vanilla model before, that is y<t−1, with the report
token as the injection information. We use padding and truncation to complete or truncate the tokens
in R that are less than or more than t. At this time C = [r1, · · · , rt−1]

Form2

We inject the complete retrieval information in a prompt-like form. Specifically, when
injecting information, we concatenate the retrieved information R with y<t into C =
[r1, · · · , rm, y1, · · · , yt−1] to generate the next token.

RIN

We inject the retrieval information token by token, only replace y=t−1, with the report token as the
injection information. We use padding and truncation to complete or truncate the tokens in R that
are less than or more than t. At this time C = [y1, · · · , yt−2, rt−1]

NLG metrics CE metrics
Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L Precision Recall F-1
Form1 0.390 0.241 0.160 0.111 0.152 0.285 0.447 0.393 0.391
Form2 0.028 0.017 0.012 0.009 0.057 0.151 0.235 0.178 0.192
RIN 0.400 0.245 0.162 0.114 0.157 0.288 0.452 0.411 0.403

Table 7: The performance in different information injection.

We compared different information injection methods without using report filter. Table 7 shows the
experimental results indicate that our method effectively injects information, whereas Form1 and
Form2 fail to achieve similar success. The failure of Form1 may be attributed to its reliance solely
on retrieved reports for information, which leads to a loss of memory regarding previously generated
tokens by the model. In contrast, the failure of Form2 could stem from the model not being trained
to incorporate prompts as input information, resulting in an inability to decode in conjunction with
the prompts.
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A.4 REBUTTAL

A.4.1 FOR REVIEWER FSKN

Thanks to the precious suggestions made by the Reviewer Fskn. These suggestions provide us with
a lot of insights and help us improve the quality of our work. We are also highly grateful to the
reviewer for dedicating her/his time and effort to help us improve the quality of our paper.

Q1: Although the improvement in results is significant, there is a lack of intuitive explanation or
insight into the source of this improvement.

A1: Thanks for your comment. As mentioned in the abstract (line 017-019), ”The essence of this
method lies in fully utilizing similar reports of target images to enhance the performance of pre-
trained medical report generation models.”

Q2: Additionally, it remains unclear whether this decode strategy can be applied to other report
generation methods.

A2: In our original manuscripts, we integrated our RINmodule in CvT2DistilGPT2.
CvT2DistilGPT2 uses GPT2 as Report Generator. In A4, we integrated our modules to the latest
SOTA model PromptMRG(Jin et al., 2024). PromptMRG uses Bert as Report Generator, proving
that our method is Model-Agnostic and generally applicable to various autoregressive generation
methods.

Q3: If space permits, I suggest moving the details of the INFORMATION INJECTION (currently
at the end of the supplementary materials) into the Methods section. Additionally, the current
pseudocode is not detailed enough and should be elaborated further.

A3: Thanks for your suggestion, we will move it to the Methods section later. Besides, We have
rewritten the pseudocode, please refer to Appendix A.1.1 in our manuscript.

Q4: The experimental results in Table 1 do not reach the current state-of-the-art (SOTA) level.
The authors could try to combine more advanced methods to verify the stability of the proposed
decoding strategy.

A4:Thank you for providing us with the latest SOTA baseline PromptMRG(Jin et al., 2024). We
have supplemented the results of adding our method to the pre-trained PromptMRG model. The
detailed parameters are as follows: k=3, α = 1/3 (this is the default setting in our paper), beam
search within to 3 (this is the default setting in the author’s paper(Jin et al., 2024)), and the results
are shown in the following table. The experimental results show that our method has achieved 2.8%,
4.1%, and 3.8% improvements in the three CE metrics of precision recall F1, respectively.

NLG metrics CE metrics
Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L Precision Recall F-1
R2Gen 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276
CMN 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278
CA 0.350 0.219 0.152 0.109 0.151 0.283 0.352 0.298 0.303
AlignTrans 0.378 0.235 0.156 0.112 0.158 0.283 - - -
XPRONET 0.344 0.215 0.146 0.105 0.138 0.279 - - -
KiUT 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321
MGSK 0.363 0.228 0.156 0.115 - 0.284 0.458 0.348 0.371
DCL - - - 0.109 0.150 0.284 0.471 0.352 0.373
CvT2DistilGPT2 0.393 0.248 0.171 0.127 0.155 0.286 0.418 0.367 0.367
+RIN (Ours) 0.404 0.247 0.165 0.117 0.158 0.290 0.481 0.445 0.433
PromptMRG* 0.387 0.230 0.147 0.100 0.148 0.261 0.505 0.461 0.452
+RIN (Ours) 0.370 0.220 0.140 0.094 0.154 0.264 0.519 0.480 0.469

Table 8: The performance in NLG metrics and CE metrics of our proposed method compared to
other competitive methods on the MIMIC-CXR datasets.

*Since we do not have access to the MIMIC-CXR Database preprocessed by R2Gen, our experi-
ments are conducted directly on the original MIMIC-CXR Database provided by physionet, which
results in lower baseline results than the performance in the author’s paper.

Q5: In Table 3, it appears that the proposed retrieved-reports average distribution ... could further
strengthen this method.
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A5: Thank you for your suggestion. We will consider introducing a more suitable denoising module
in the next version.

Q6: Does this decoding strategy heavily rely on retrieval accuracy?

A6: Thanks for your comment. Our decoding strategy depends on, but is not entirely dependent on,
retrieval accuracy. RIN generates reports based on the hyperparameter α-balanced retrieval infor-
mation and vanilla model prediction results, We tried experimenting with different external image
encoders and distance metrics, and the results showed that even using a simple clip as an exter-
nal encoder for retrieval can improve CE metrics’ performance. However, more accurate retrieval
information obviously helps generate more effective results.

Model L1 Distance L2 Distance Cosine Similarity Precision Recall F-1
✓ 0.456 0.424 0.412

CLIP ✓ 0.454 0.428 0.412
✓ 0.454 0.422 0.410

✓ 0.475 0.438 0.427
BiomedVLP ✓ 0.481 0.447 0.434

✓ 0.481 0.445 0.433

Table 9: The performance in CE metrics of ablation study on each module.

Model L1 Distance L2 Distance Cosine Similarity BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
✓ 0.403 0.245 0.164 0.117 0.157 0.288

CLIP ✓ 0.403 0.246 0.165 0.118 0.157 0.288
✓ 0.402 0.245 0.163 0.116 0.157 0.288

✓ 0.403 0.245 0.164 0.116 0.157 0.289
BiomedVLP ✓ 0.404 0.247 0.165 0.117 0.158 0.290

✓ 0.404 0.247 0.165 0.117 0.158 0.290

Table 10: The performance in NLG metrics of ablation study on each module.

A.4.2 FOR REVIEWER WUQZ

Thanks to the precious suggestions made by the Reviewer WUqZ. These suggestions provide us
with a lot of insights and help us improve the quality of our work. We are also highly grateful to the
reviewer for dedicating her/his time and effort to help us improve the quality of our paper.

Q1: In Section REPORTS RETRIEVAL, ... This work does not further explain the design and
effectiveness of the retrieval method. The authors are advised to further validate the effectiveness
of the retrieval model.

A1: Thanks for your comment.To further validate the effectiveness of the retrieval process, we de-
signed an ablation study to compare the performance of different models and distance metrics on
the final results. The outcomes are summarized in the table below. The experimental results demon-
strate that employing BiomedVLP, a model pretrained on biomedical data, outperforms directly
using CLIP for encoding. Additionally, the choice of distance metric has little effect on the results.

Model L1 Distance L2 Distance Cosine Similarity Precision Recall F-1
✓ 0.456 0.424 0.412

CLIP ✓ 0.454 0.428 0.412
✓ 0.454 0.422 0.410

✓ 0.475 0.438 0.427
BiomedVLP ✓ 0.481 0.447 0.434

✓ 0.481 0.445 0.433

Table 11: The performance in CE metrics of ablation study on each module.

Q2: In the ablation study, as shown in Table 4, the model using Pre-trained Model Prediction
Distribution, Retrieved-reports Average Distribution, and Report Filter did not achieve the best
results in BLEU-2, BLEU-3, and BLEU-4. The authors are advised to further analyze the reasons
for the poor performance of the model

A2: Thanks for your suggestion. When evaluating BLEU scores, it is essential to simultaneously
consider additional text metrics such as METEOR and ROUGE. BLEU primarily measures exact n-
gram matches, whereas METEOR and ROUGE emphasize semantic relevance and content coverage.
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Model L1 Distance L2 Distance Cosine Similarity BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
✓ 0.403 0.245 0.164 0.117 0.157 0.288

CLIP ✓ 0.403 0.246 0.165 0.118 0.157 0.288
✓ 0.402 0.245 0.163 0.116 0.157 0.288

✓ 0.403 0.245 0.164 0.116 0.157 0.289
BiomedVLP ✓ 0.404 0.247 0.165 0.117 0.158 0.290

✓ 0.404 0.247 0.165 0.117 0.158 0.290

Table 12: The performance in NLG metrics of ablation study on each module.

As illustrated in Table 4, our approach enhances METEOR and ROUGE scores while exhibiting
a decrease in BLEU. This may be because the report generated by our method will cover more
semantic information, but the vocabulary in the generated report may have morphological changes.

Moreover, natural language generation (NLG) scores are of limited importance in medical report
generation tasks. NLG scores heavily depend on the specific preprocessing applied to reference re-
ports(Tanida et al., 2023). For instance, converting text to lowercase has been shown to substantially
improve BLEU scores when compared to uppercase references(Tanida et al., 2023). In contrast,
clinical efficacy (CE) metrics are invariant to such preprocessing because they compare the presence
or absence of diseases between reference and generated reports(Tanida et al., 2023).

Q3: The authors are advised to supplement the setting details of hyperparameters, as well as a
discussion of model effects using different hyperparame

A3: Thank you for your suggestion. We have added the hyperparameter α and k introduced in
Section 3.2 and Section 4.5 to EXPERIMENTAL SETTINGS. We have discussed the effects of
different hyperparameters in Section 4.5 PERFORMANCE ANALYSIS. Please refer to Figure 4
and Figure 5 .

Q4: Please further explain the differences between the proposed retrieval module and the existing
report retrieval methods.

A4: Thank you for your comment. Existing report retrieval methods can generally be divided into
two main categories:

Methods fully dependent on retrieval

This approach typically populates a predefined template with the retrieved key information(Syeda-
Mahmood et al., 2020). While this ensures consistency, it limits flexibility and adaptability by
producing fixed sentence structures. Recent advancements have use of retrieved information as input
to large language models (LLMs)(Ranjit et al., 2023) to guide report generation. This enables more
natural and diverse outputs but LLMs may struggle to accurately perceive the multiple retrieved
reports, leading to biases or omissions(Zhou et al., 2024) in the generated reports.

Methods integrating retrieval information with report generation models

These methods incorporate retrieval information into models through mechanisms like attention(Jin
et al., 2024). This facilitates more dynamic and context-aware report generation but comes with the
drawback of significant training costs.

Our approach generates reports by balancing the knowledge of the vanilla report generation model
with the retrieved information in the decoding stage. This allows us to inject additional retrieval
information without requiring further training, while preserving the language fluency of the original
model.

Q5: Report generation needs to retrieve k highly relevant reports, how to determine the value of
k, and what is the specific value of k used in this paper.

A5: Thank you for your comment. There are several ways to determine the value of k. Here, we
introduce two feasible approaches.

Firstly, we need to experiments on the validation set to identify the optimal k for retrieving similar
reports. For each validation sample, we retrieved the top-k most similar reports (k=1 to 10).

Evaluate generated reports in validation set to determine the value of k
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For different candidate k values, we generate corresponding reports on the validation set and cal-
culate the CE metrics between the generated report and the ground truth report to quantify the
generation quality. By comparing the CE performance corresponding to each k value, we finally
select the k value with the highest F1 score (best performance) as the determined k value to ensure
that the model generation performance is optimal.

Evaluate retrieved reports to determine the value of k

We calculate the CE metrics between the different retrieved reports of k values and the ground truth
reports on the validation set to quantify the generation quality. By comparing the average F1 score
performance corresponding to different retrieval reports of k values, we finally select the k value
with the highest F1 score (best performance) as the determined k value to ensure that the model
generation performance is optimal.

In our manuscript we set k = 4.

A.4.3 FOR REVIEWER KHTY

Thanks to the precious suggestions made by the Reviewer KHTY. These suggestions provide us
with a lot of insights and help us improve the quality of our work. We are also highly grateful to the
reviewer for dedicating her/his time and effort to help us improve the quality of our paper.

Q1:There are multiple methods that have taken the RAG ... In general, the relation of retrieval in-
jection to RAG will have to be explained. A1: Thank you for your suggestion. We have incorporated
the mentioned papers into the related work section to ensure a comprehensive contextualization of
our study. Below, we provide a detailed explanation of the distinctions between our approach and
these referenced methods:

Report retrieval methods

• Methods fully dependent on retrieval This approach typically populates a predefined template
with the retrieved key information(Syeda-Mahmood et al., 2020). While this ensures consistency,
it limits flexibility and adaptability by producing fixed sentence structures. Recent advancements
have use of retrieved information as input to large language models (LLMs)(Ranjit et al., 2023) to
guide report generation. This enables more natural and diverse outputs but LLMs may struggle to
accurately perceive the multiple retrieved reports, leading to biases or omissions(Zhou et al., 2024)
in the generated reports.

• Methods integrating retrieval information with report generation models These methods
incorporate retrieval information into models through mechanisms like attention(Jin et al., 2024).
This facilitates more dynamic and context-aware report generation but comes with the drawback of
significant training costs.

Our approach generates reports by balancing the knowledge of the vanilla report generation model
with the retrieved information in the decoding stage. This allows us to inject additional retrieval
information without requiring further training, while preserving the language fluency of the original
model.

Contrastive decoding in RAG

Some recent works(Kim et al., 2024; Qiu et al., 2024) have introduced RAG into contrastive decod-
ing methods, aiming to improve the open-domain question answering capabilities of LLM. This
work focuses on mitigating the distractibility issue from both external retrieved documents and
parametric knowledge. And these tasks are basically applied to short-form QA tasks. Our job is
to generate long reports with clinical efficacy.

Q2: The terminology used to explain Figure 1 is confusing. You mention text decoders and report
generators. Are there referring to the same module or two different modules. If different, this is
not reflected in Figure 1.

A2: Thanks for your comment. They are different. The output of the report generator is a probability
distribution, and the text decoder (Beam Search is used in our work) selects the next token based on
these probability distributions.
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Q3: The use of image encoding features to retrieve similar images needs to be evaluated to see
the type of reports retrieved. What is the ratio of overlap of findings of such retrieved reports with
the ground truth reports associated with these chest X-rays. Since MIMIC dataset is used, all the
chest X-ray images (train-test-validate) should have ground truth reports.

A3:Thanks for your suggestion. We calculated the clinical efficacy coverage of the retrieval report
and the groundtruth of the test set, and the specific results are as follows. We found that the per-
formance of the simple retrieval result is lower than the result of the final generated report, which
also reflects that our method is that balances the vanilla model knowledge and the external retrieval
knowledge obtained to generate the report.

Metric Value
Precision 0.419
Recall 0.465
F-1 0.410

Table 13: Performance metrics for CE Precision, Recall, and F1 at the example level.

Q4: Line 296 - Average F-1 score should be based on match to ground truth. Is that what is meant
in line 296 or F-1 score is computed relative to which report?

A4: Thank you for your comment. For each test sample, we calculated the F1 scores between the
top-k retrieved reports and the reports generated by the vanilla model as well as the reports generated
with RIN. Among vanilla model generated report and RIN generated report, we selected the report
with the highest average F1 score as the final report.

Q5: Steps 1-6 described in Figure 1 are not very clear. Is image information used only in step 3
or also in step 5?

A5: Thanks for your comment. Image information is only used in steps 1 and 2. Step 1 is used as the
image input for the vanilla report generation model, and step 2 is used for image feature extraction
for the retrieval report.

Q6: Instead of using Bio-VLP for image-to-image matching why not use it di-
rectly to retrieve radiology reports as done in earlier papers with CLIP-based retrieval
(https://proceedings.mlr.press/v158/endo21a/endo21a.pdf) since Bio-VLP is a multimodal model?

A6: Thanks for your suggestion, we found that it seems that image-to-text matching is still difficult,
which may be due to the diversity of radioactive reports, so we only use the image encoder for image-
to-image matching. In order to verify the effectiveness of image-to-image matching. We conducted
the following experiments. Experiments show that injecting the image-to-image retrieved reports
into the vanilla model can generate higher quality report:

img2txt img2img Precision Recall F-1
✓ 0.461 0.421 0.412

✓ 0.481 0.445 0.433

Table 14: The performance in CE metrics of ablation study on each module.

img2txt mg2img BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
✓ 0.397 0.240 0.159 0.112 0.154 0.285

✓ 0.404 0.247 0.165 0.117 0.158 0.290

Table 15: The performance in NLG metrics of ablation study on each module.

Q7: The use of the term ’distribution’ to refer to the generated output from report generator is
confusing. Are multiple reports coming out in one step from the report generator?

A7: Thank you for your comment. The report generator models a probability distribution over the
next token, aligning with the interpretation of ”distribution” frequently discussed in the provided
paper(Qiu et al., 2024). Notably, the generator’s ability to produce multiple distinct reports is di-
rectly influenced by the configuration of the batch size, which governs the diversity and volume of
generated outputs.
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Q8: Were the results from CheXBert freshly generated for the datasets by the authors or a reuse
of numbers quoted from previous work since the ChexBert using the Allen NLP has some depen-
dencies on older CUDA libraries.

A8: Thank you for your comment. I apologize if I misunderstood your point. I’ll make an effort to
understand it better. In our process, we use Chexbert twice: once for filtering and once for evaluating
the final effect, and both instances require recalculations.

A.4.4 FOR REVIEWER GLQW

Thanks to the precious suggestions made by the Reviewer gLqw. These suggestions provide us with
a lot of insights and help us improve the quality of our work. We are also highly grateful to the
reviewer for dedicating her/his time and effort to help us improve the quality of our paper.

Q1: Has the method been tested on modalities other than chest X-rays, such as MRIs or CT scans,
to assess its adaptability and effectiveness?

A1: Thank you for your suggestion. We attempted to evaluate the effectiveness of our method on
the Caption Prediction Task of the ImageCLEFmedical Caption 2023 challenge. The evaluation
was conducted on the ROCO V2 dataset, which includes various types of medical images such as
ultrasound, X-ray, PET, CT, MRI, and angiography. We incorporated our method into the pretrained
MedICap model and present the results. To build the image retrieval database, we used BioMedCLIP
instead of BiomedVLP, this is a contrastive learning model pretrained on various medical image
types. During the decoding phase, our settings were as follows: k=7, α = 1/3 (the default settings
in our paper), and beam search within 4 (as reported by the authors). The results are shown in the
table below.

We found that existing methods seem to be unable to effectively measure the subtle differences in
the generated reports, which may be because these methods were not developed for medical text
evaluation. In the absence of methods to evaluate clinical efficacy in the task, we employ the MED-
CON metric (Yim et al., 2023) to assess the alignment between generated and referenced reports.
MEDCON metric is currently widely used in different types of medical text evaluation(Yim et al.,
2024; Van Veen et al., 2023). Different terminological systems may employ varying names or codes
to represent the same concept. Within the Unified Medical Language System (UMLS)(Bodenreider,
2004), each medical concept is assigned a distinct Concept Unique Identifier (CUI). MEDCON ex-
tracts each medical concept’s unique identifier (CUI) in the surgical report through the QuickUMLS
(Soldaini & Goharian, 2016) and computes the F1-score to determine the similarity between the
UMLS concept sets in predicted and referenced reports. Experiments show that our method can
effectively improve the accuracy of medical concept description

Team Name Run ID BERTScore ROUGE BLEURT BLEU METEOR CIDEr CLIPScore
SSNSheerinKavitha 4 0.544 0.087 0.215 0.075 0.026 0.014 0.687
IUST NLPLAB 6 0.567 0.290 0.223 0.268 0.100 0.177 0.807
Bluefield-2023 3 0.578 0.153 0.272 0.154 0.060 0.101 0.784
Clef-CSE-GAN-Team 2 0.582 0.218 0.269 0.145 0.070 0.174 0.789
CS Morgan 10 0.582 0.156 0.224 0.057 0.044 0.084 0.759
DLNU CCSE 1 0.601 0.203 0.263 0.106 0.056 0.133 0.773
SSN MLRG 1 0.602 0.211 0.277 0.142 0.062 0.128 0.776
KDE-Lab Med 3 0.615 0.222 0.301 0.156 0.072 0.182 0.806
VCMI 5 0.615 0.218 0.308 0.165 0.073 0.172 0.808
PCLmed 5 0.615 0.253 0.317 0.217 0.092 0.232 0.802
AUEB-NLP-Group 2 0.617 0.213 0.295 0.169 0.072 0.147 0.804
closeAI2023 7 0.628 0.240 0.321 0.185 0.087 0.238 0.807
CSIRO (MedICap)* 4 0.644 0.248 0.314 0.175 0.096 0.208 0.820
+RIN / 0.647 0.248 0.314 0.175 0.096 0.209 0.820

Table 16: Performance metrics for different teams (reversed order).

Methods Medcon
CSIRO (MedICap)* 0.202
+RIN 0.245

Table 17: Performance metrics for different teams (reversed order).
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Q2: Since medical images are highly similar as mentioned in the paper, is it possible for the
workflow to retrieve images that are similar but have distinct symptoms, leading to inaccurate
diagnosis?

A2: Thanks for your comment. The retrieved reports may include false-positive observations, which
we address by employing an averaging mechanism during the decoding and report filtering stages.
This approach mimics the voting process in expert consensus, aiming to mitigate the impact of such
false positives. However, in extreme cases—when the majority of the retrieved reports contain the
same false-positive observations—this mechanism may fail. For instance, as illustrated in Appendix
A.2, most retrieved reports incorrectly identified false-positive observations of atelectasis, leading
RIN to erroneous inclusion of atelectasis in the generated results.
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