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ABSTRACT

Conventionally trained neural networks excel at prediction but often struggle to
model uncertainty in their own predictions. We explore this challenge in a meta-
learning bandit decision-making problem for news recommendations; this setting
require decision-making algorithms to incorporate pretrained language models to
process text data for the best performance. We present a scalable approach to
Bayesian uncertainty quantification by posing it as a problem of autoregressive
generative modeling of future rewards. First, we use historical data on previously
released news articles to pre-train a generative model to predict sequences of fu-
ture potential rewards. At inference time, our algorithm makes decisions based
on limited previous rewards and autoregressively generated future rewards. Far
from a heuristic, we synthesize insights from the literature to show our method
is a novel implementation of Thompson (posterior) sampling, a prominent bandit
algorithm. We prove our pretraining loss directly controls online decision-making
performance, and we demonstrate our framework on a news recommendation task
where we integrate end-to-end fine-tuning of a pretrained language model to pro-
cess news article headline text to improve performance.

1 INTRODUCTION

Settings with recurring interactions between humans and an AI decision-making system are becom-
ing increasingly prevalent. Some examples include systems that recommend to users what to buy,
and settings in digital health and online education that encourage people towards behaviors aligned
with their goals. In these domains, there is a need for decision-making algorithms that can leverage
neural networks. Although neural networks excel at making predictions based on intricate text and
visual inputs, effective sequential decision-making requires the ability to comprehend uncertainty—
to recognize when the model is unsure in its predictions and what additional information might
benefit future decision-making. Here neural networks often struggle (Gawlikowski et al., 2023).

In this work we focus on a particular problem setup that is stylized, but which we believe captures
key challenges of real-world human-interactive decision-making problems. As depicted in Figure
1 we consider a news recommendation problem where each day, a set of news articles is released.
These released articles have no associated historical recommendation data that can be used to learn
about those particular articles. However, a neural network model with a large language model (LLM)
component can be trained using historical recommendation data on articles from previous days to
predict how likely users are to click on a new article if recommended, based on the article’s text. At
the same time, the neural network’s predictions based on the LLM are not perfect, and it is important
for the algorithm to know how much to “trust” these predictions. Thus, the challenge is designing
a decision-making algorithm that is able to (i) incorporate the LLM’s initial prediction/beliefs, (ii)
sharpen its beliefs as it recommends that article throughout the day, and (iii) use the LLM’s belief to
make recommendation decisions in a way that balances exploration and exploitation.

We frame this problem as a meta-learning multi-armed bandit problem. Effective algorithms must
be able to learn from user interactions within each day, as well learn from historical recommendation
data collected from previously released news articles. This problem requires algorithms to grapple
with uncertainty: with more data we could more precisely learn the effectiveness of a particular
action. Is it worth taking that action to learn more? Thompson (posterior) sampling (Russo et al.,
2020) manages this trade-off by taking actions based on samples from the posterior distribution over
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Figure 1: Daily Online Decision-Making Problem. Every day a set of news articles is released and
the system must recommend these articles to users. The decision-making algorithm incorporates
an LLM that reads the text and provides an initial belief/prediction each article’s performance if
recommended. This belief is refined as the algorithm interacts with users and collects more data.

mean rewards. To scale this idea to modern decision making problems, a variety of heuristics have
been proposed to approximate this with neural networks (Riquelme et al., 2018; Snoek et al., 2015;
Osband et al., 2018; 2023; Qin et al., 2022b; Lee et al., 2023b; Weitong et al., 2021).

We propose a markedly different approach to Thompson sampling that does not explicitly model
unknown latent variables. Rather, our algorithm focuses on modeling missing rewards (including
future rewards) and considers missing rewards the source of the decision-maker’s uncertainty. Our
meta-learning procedure operates by using historical data to implicitly learn a Bayesian model,
by pre-training an autoregressive generative sequence model to predict future rewards. At infer-
ence/decision time, we use the sequence model to autoregressively sample values of missing out-
comes to make decisions; additional training of this model is not required. We synthesize insights
from the literature to explain that this approach is no heuristic: It is a novel implementation of
proper Thompson sampling (with approximate empirical Bayes) if the autoregressive model accu-
rately reflects the data distribution. In designing this algorithm, we re-frame a problem of sequential
decision-making and uncertainty quantification as a problem of training an autoregressive generative
model to impute missing outcomes. A summary of our contributions is as follows:

1. Conceptual. We formalize a meta-bandit problem setting (based on the news recommendation
problem) that both motivates and crystallizes insights connecting posterior sampling and gener-
ative sequence modeling of missing rewards (Section 2).

2. Algorithm. We connect these insights to decision-making and use them to derive a new, scalable
implementation of Thompson sampling that can easily incorporate neural networks (Section 3).
Our approach obviates the need to use complicated and/or heuristic posterior approximation
methods (like MCMC or Bayesian neural networks) when incorporating neural network models.
Our procedure implicitly learns the Bayesian model via pre-training by minimizing a sequence
prediction loss via gradient descent.

3. Theory. We provide formal links between interactive decision-making and sequence prediction,
including a novel regret bound that scales with the pre-training loss of the sequence model (Sec-
tion 4). Our result formally shows that our approach effectively reduces a challenging sequential
decision-making problem to one of learning a sequence prediction model with low loss.

4. Experiments. We demonstrate that our theoretical insights bear out in simulations, and even
scale even to the news article recommendation setting where incorporating a pre-trained language
model to read the article headline is needed for the best performance. We also find that our se-
quence pre-training approach implicitly learns a Bayesian model with very accurate uncertainty
quantification (credible intervals), which is typically very challenging with neural networks.

2 PROBLEM FORMULATION

Online Decision-Making Problem. As seen in Figure 1, each online decision-making phase begins
with new articles (actions) Anew being released. Each article a 2 A

new is associated with news article
text (and possibly images) Z(a). These differ from “context” variables, which are common in bandit
problems; here, Z(a) is associated with the action.1 The system interacts sequentially with distinct

1Throughout we focus on the setting without context; we extend to settings with context in Appendix B.
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users t 2 {1, 2, . . . , T} and can adapt future recommendations based on previous user feedback. To
the tth user, it recommends At 2 A

new, and associates with this a reward Rt 2 [0, 1]. In particular,
each action a has T potential rewards R(a)

1:T = (R(a)
1 , ..., R(a)

T ). The observed reward is Rt  R(At)
t

if article At is recommended to the tth user. Our goal is to develop a decision-making algorithm ⇡
that maximizes the total expected reward, or equivalently minimize regret (formalized in Section 4).

Historical Data. We assume we have access to historical data D
hist =

�
Z(a), R(a)

1:T

 
a2Ahist on

previously released news articles Ahist. We use D
hist to pre-train our sequence models. We assume

that the articles Ahist and A
new come from the same data generating process (formalized below). In

real data settings, we may only have access to short sequences R(a)
1:n for some n  T ; we discuss

training techniques to get around this in practice in Section 6.

Data Generating Process. We model articles as independent draws from an unknown distribution
p⇤:

�
R(a)

1:T , Z
(a)
 
⇠ p⇤ independently across a 2 A

hist
[A

new. We require p⇤ to be exchangeable:

Assumption 1 (Exchangeable). p⇤ is an exchangeable sequence model, i.e., for any z, for R(a)
1:T ⇠

p⇤( · | Z(a) = z) the following are equal in distribution for any permutation � over T elements:
�
R(a)

1 , . . . , R(a)
T

�
|
�
Z(a) = z

� D
=

�
R(a)

�(1), . . . , R
(a)
�(T )

�
|
�
Z(a) = z

�
.

Assumption 1 ensures that the rewards R(a)
1:T are permutation invariant. A key running example of

exchangeable sequence models p⇤ are those associated with a conditionally i.i.d. data generation
process (p⇤ can be computed via Bayes rule). One simple example of this is the case of a Bayesian
mixture model with a prior on some latent variable U (a), where

U (a)
⇠ P (U (a)

2 · | Z(a)) then, R(a)
1 , . . . , R(a)

T | U (a) i.i.d.
⇠ P (R(a)

t 2 · | U (a), Z(a)). (1)
The p⇤ sequence model associated with the above data generating process satisfies Assumption 1.

3 POSTERIOR SAMPLING VIA AUTOREGRESSIVE GENERATION

Classical Thompson Sampling (TS) samples from a posterior distribution over mean rewards for
each action and selects the action with the highest sample (Russo et al., 2020). TS requires the
algorithm designer to (i) specify a meaningful belief (prior) over latent model parameters (e.g.,
unknown mean rewards for each action) and (ii) update that belief as the algorithm collects data.
Both (i) and (ii) can be significant challenges when using neural networks (Riquelme et al., 2018).

Figure 2: Missing data viewpoint. We view uncertainty about unobserved outcomes as the source
of uncertainty, avoiding explicit reference to latent parameters or variables. Calibrated generation
(imputation) of missing outcomes enables uncertainty quantification and decision-making.

In this work we implement Thompson sampling (TS) without explicitly modeling latent parameters.
The impetus of our approach is that unobserved rewards are the source of the decision-maker’s un-
certainty (Figure 2): feedback on an article has only been gathered from a subset of users, and there
is residual uncertainty in how future users would respond. Inspired by this viewpoint, our method
proceeds in two steps. First, we pretrain an autoregressive sequence model to predict successive
rewards using historical data D

hist. Then, at decision time the algorithm uses imputed values of the
missing rewards (R̂’s) generated autoregressively from the pretrained sequence model to make de-
cisions. We show this procedure is an principled implementation of TS. Our main insight applies to
general autoregressive sequence models (e.g., transformers), but works well empirically even with
simpler sequence model architectures (Section 6).
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3.1 KEY INSIGHTS: CONNECTING SEQUENCE MODELLING AND BAYESIAN INFERENCE

What formal connection is there between sequence modeling and uncertainty quantification? It turns
out there are two ideas in Bayesian inference that closely connect these two concepts.

(1) Standard Bayesian models specify (exchangeable) autoregressive sequence models.
Bayesian models akin to those from equation 1 (i.e., with a prior on an unobserved latent variable
and rewards that are i.i.d. given the latent) each uniquely define an exchangeable, autoregressive
sequence model. Specifically, this sequence model is called the posterior predictive distribution
(Gelman et al., 2013) and can be computed by integrating over the latent variable. This model speci-
fies the distribution of R(a)

t given Z(a), R(a)
1:t�1, which for the true data generating process we denote

using p⇤(R(a)
t 2 · | Z(a), R(a)

1:t�1) (recall we introduced this notation in Section 2).

(2) One can sample from the posterior distribution of the mean reward by autoregressively
generating from the posterior predictive. In the Bayesian mixture model setting from equation 1,
if we only had access to the posterior predictive distribution p⇤, how can we obtain samples of the
posterior for the expected reward µ(a) :=

R
r r ·P (R(a)

t = r | U (a), Z(a))dr for each action a, which
are needed for Thompson Sampling? It turns out approximate posterior samples can be obtained by
autoregressively generating from the posterior predictive distribution p⇤.

We form an approximate sample of µ(a) from its posterior distribution given R(a)
1:t�1. Sample

R̂(a)
t ⇠ p⇤(R(a)

t 2 · | Z(a), R(a)
1:t�1), R̂

(a)
t+1 ⇠ p⇤(R(a)

t+1 2 · | Z(a), R(a)
1:t�1, R̂

(a)
t ), and so on

until R̂T ⇠ p⇤(R(a)
T 2 · | Z(a), R(a)

1:t�1, R̂
(a)
t+1:T�1). Then, form the approximate posterior sample

µ̂(a)
T := 1

T

�Pt�1
k=1 R

(a)
k +

PT
k=t R̂

(a)
k

 
. µ̂(a)

T is an exact posterior draw for the mean of the under-
lying T reward potential outcomes µ(a)

T := 1
T

PT
t=1 R

(a)
t . Specifically, the following are equal in

distribution for any z and r1:t (since R̂(a)
t:T and R(a)

t:T are drawn from the same distribution p⇤):

µ̂(a)
T | (Z(a) = z,R(a)

1:t�1 = r1:t�1)
D
= µ(a)

T | (Z(a) = z,R(a)
1:t�1 = r1:t�1).

For large T , µ(a)
T is close to the latent mean µ(a) =

R
rP (R(a)

t = r | U (a), Z(a))dr (Appendix D.1).

The connection between autoregressive sampling and Bayesian inference rests on a link between
exchangeable sequence modeling and Bayesian inference that has been known since de Finetti’s
seminal work (Finetti, 1933), and has appeared in several different literatures (Berti et al., 1998;
Fortini et al., 2000; Fortini and Petrone, 2014; Hahn et al., 2018; Berti et al., 2021; 2022; Fong et al.,
2023; Lee et al., 2023a). This is also related to Bayesian methods that impute missing outcomes by
sampling from a posterior predictive distribution (Rubin, 1987; Gelman et al., 2013).

3.2 OUR ALGORITHM: POSTERIOR SAMPLING VIA AUTOREGRESSIVE GENERATION

The connection between Bayesian inference and sequence modeling suggests that one could imple-
ment Thompson sampling in complex settings without closed form posteriors, if one had access to
the true posterior predictive distribution. This leads to several natural questions:

1. How can we specify/learn good posterior predictive models when using neural networks?
We learn approximate posterior predictive distributions using autoregressive sequence models
by training neural networks models to minimize a sequence prediction loss via gradient descent.

2. What if the learned posterior predictive distribution is imperfect? What if it is not exactly
exchangeable? How does that impact decision-making performance? In practice, it is diffi-
cult to ensure that neural network-based sequence models are exactly exchangeable. We prove
that the regret of an autoregressive generation version of Thompson sampling is controlled by
how well the pretrained sequence model minimizes (the expected analogue of) the sequence loss
it is trained on from equation 2, (regardless of whether the model is exactly exchangeable).

Phase 1: Pretraining an Autoregressive Model. We train an autoregressive sequence model p✓,
parameterized by ✓ 2 ⇥, that can predict missing rewards, conditioned on article text, and limited
previously observed rewards. This will enable us to generate hypothetical completions of the poten-
tial outcome table in Figure 2. Formally, this model specifies a probability p✓(R

(a)
t | Z(a), R(a)

1:t�1)

4
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Figure 3: Posterior Sampling via Autoregressive Generation (PS-AR). PS-AR uses autoregres-
sive generation (imputation) of unobserved potential outcomes to (implicitly) reason about uncer-
tainty and drive exploration of arms that could plausibly be optimal. After imputing all missing
rewards, the algorithm fits an optimal policy and executes the best action according to that policy.

of observing outcome R(a)
t from the next interaction conditioned on article attributes Z(a) and pre-

vious outcomes R(a)
1:t�1. These one-step conditional probabilities generate a probability distribution

over sequences as p✓(R
(a)
t:T | Z(a), R(a)

1:t�1) =
QT

k=0 p✓(R
(a)
t+k | Z(a), R(a)

1:t+k�1). We use historical
data D

hist to minimize the following loss function:

`(p✓;D
hist) := �

X

a2Ahist

TX

t=1

log p✓
�
R(a)

t | Z(a), R(a)
1:t�1

�
. (2)

In our experiments, we use bootstrap resampling to help ensure the sequence model is approximately
exchangeable, reflecting Assumption 1. Our approach to pretraining approximately exchangeable
sequence models closely mirrors recent work on neural processes (Garnelo et al., 2018b; Jha et al.,
2022; Nguyen and Grover, 2022; Lee et al., 2023a) and prior-data fitted networks (Müller et al.,
2022x). Our main contribution is linking this pretrained sequence model to online decision-making.

Algorithm 1 Posterior Sampling via Autoregressive Generation (PS-AR)

Require: Autoregressive generative model p✓, actions Anew with {Z(a)
}a2Anew

1: Initialize list of missing entries M (a)
 [1, . . . , T ] for each a 2 A

new

2: for t = 1, . . . , T do
3: for a 2 A

new do
4: for ⌧ 2M (a) do
5: Sample missing reward: R̂(a)

⌧ ⇠ p✓
�
· | Z(a) ,

�
R(a)

i

�
i 62M(a) ,

�
R̂(a)

i

�
i2M(a)

�

6: end for
7: Form imputed average reward: µ̂(a)

t  
1
T

�P
⌧ 62M(a) R

(a)
⌧ +

P
⌧2M(a) R̂

(a)
⌧
 

8: end for
9: Select action At  argmaxa2Anew

�
µ̂(a)
t

 
(break ties deterministically)

10: Remove t from the list of missing entries M (At)

11: Observe reward Rt  R(At)
t from action At.

12: end for

Phase 2: Online Decision-Making via Autoregressive Generation. After a sequence model p✓
is trained on historical data, it is deployed and used for decision-making. No additional training of
p✓ is needed. At each decision time, our algorithm uses p✓ to autoregressively generate (impute)
missing rewards for each candidate action a 2 A

new (Algorithm 1). Our algorithm then uses both
the observed and generated rewards to fit an optimal policy and selects the best action according to
that policy. In this simple setting without context, an optimal policy consists of taking a mean of
the rewards for each arm to form µ̂(a)

t and selecting At  argmaxa2Anew

�
µ̂(a)
t

 
. Through this

process, actions that are optimal under some likely generation of the missing rewards according to
p✓ have a chance of being selected. Once no plausible sample of missing rewards could result in
an action being optimal, it is essentially written off. Good performance of the algorithm relies on
the model p✓ matching the data generating process closely (Section 4). We formally prove that our
algorithm is an implementation of Thompson sampling in Appendix D.3.

Disadvantages of Alternative Approaches to Using Sequence Models to Approximate Posterior
Draws. In line 7 of Algorithm 1, we average the imputed and observed rewards to form an approx-
imate posterior draw. Alternative approaches of sampling from sequence models to approximate
Thompson Sampling easily result in poor decision-making by over- or under-exploring (Figure 4).
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Figure 4: Comparing to Alterna-
tive Sampling Approaches. All
methods use the same p✓ model,
but PS-AR has the lowest regret at
longer horizons: Appendix E.2.

Several works (Nguyen and Grover, 2022; Müller et al.,
2022x; Garnelo et al., 2018a) propose choosing actions using
the single-step predictive uncertainty in the next outcome (no
averaging across users); while this works well when rewards
are non-random, this reduces to random selection when re-
wards are random, as is the case in most real-world problems.

On the other hand, averaging across many independent (non-
autoregressive) draws of the next outcome reduces to the
mean of the predictive distribution and results in playing the
action currently believed to be best, without purposeful explo-
ration. Similar limitations apply if one uses the most likely
sequence of outcomes, instead of sampling them randomly.

Advantages of the Autoregressive Approach to Thompson
Sampling (TS). In Table 1 we compare traditional TS with
our generative version of TS (PS-AR). TS traditionally re-
quires specifying a Bayesian model for latent parameters and
performing explicit Bayesian inference over them; with neu-
ral networks this often involves making simplifying modeling assumptions, expensive Markov chain
Monte Carlo, or heuristic posterior approximations. In contrast our autoregressive sequence model-
ing approach focuses on predicting missing rewards. This allows us to learn a Bayesian model from
data using an easily measurable metric, i.e., the loss functions from equation 2.

Autoregressive sampling also aligns with emerging engineering practice. Pretraining using the loss
from equation 2 requires learning a predictive model via loss minimization, as is standard prac-
tice. The PS-AR approach to uncertainty quantification can also take advantage of computational
advances in autoregressive generation that are developed for other problem settings, e.g., LLMs.

Traditional Thompson Sampling Generative Thompson Sampling
Algorithmic Procedure Sample latent model parameters, con-

ditioned on observed rewards; opti-
mize decisions with sampled latents

Probabilistically generate missing /
future rewards; optimize decisions
with generated rewards

Objects to Model
(Bayesian)

Latent parameters and observed re-
wards (i.e., prior and likelihood)

Sequences of rewards (i.e., prior /
posterior predictive distributions)

Learning the Bayesian
Model (Pretraining)

Fit hyperparameters of prior and like-
lihood via empirical Bayes

Train an autoregressive sequence
model to predict missing rewards

Online Decision-Making
(Updating Beliefs Online)

Posterior inference (e.g., MCMC) Condition on observed rewards in the
sequence model

Table 1: Comparison of “Traditional Thompson Sampling” vs “Generative Thompson Sampling”

3.3 INTERPRETING OUR PRE-TRAINING PROCEDURE AS EMPIRICAL BAYES

Empirical Bayes (Type-II maximum likelihood) is a method to fit Bayesian models (especially the
prior distribution) to observed data (Murphy, 2022; Casella, 1985; Normand, 1999). Typically,
Empirical Bayes is used to fit simple, Bayesian models with conjugate priors. It turns out that our
pretraining procedure optimizes the same criterion used in Empirical Bayes.

For simplicity, consider a conjugate Bayesian model (without Z(a)) where µ(a)
⇠ Beta(↵,�) and

R(a)
1 , . . . R(a)

T | µ(a) i.i.d.
⇠ Bernoulli(µ(a)). Empirical Bayes fits the hyperparameters of the prior

distribution, (↵,�), by maximizing the marginal likelihood of the data Dhist =
�
R(a)

1:T : a 2 A
hist
 

:

P
�
D

hist; (↵,�)
�
=

X

a2Ahist

Z

µ

TY

t=1

P
�
R(a)

t | µ(a) = µ
�
P
�
µ(a) = µ; (↵,�)

�
dµ.

Note that the marginal likelihood can also be decomposed via an autoregressive sequence criterion:

P
�
D

hist; (↵,�)
�
=

X

a2Ahist

TY

t=1

P
�
R(a)

t | R(a)
1:t�1; (↵,�)

�
.
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Note that maximizing the above criterion is eqiuvalent to minimizing our training loss from equa-
tion 2, when the sequence model p✓ equals P

�
· ; (↵,�)

�
. We show in this Beta-Bernoulli setting

that we are able to recover the true Bayesian prior by training on our sequence loss (Appendix E.3).

4 REGRET BOUND

In this section we show that the expected loss of the learned sequence model p✓ controls the decision-
making performance of our algorithm, reducing a challenging sequential decision-making problem
to a loss minimization problem. Concretely, we establish a strong regret bound for PS-AR that
depends on the expected loss achieved by p✓. The expected analogue of the loss from equation 2
(i.e., averaged over the draw of news articles) is

`(p✓) := E

�

TX

t=1

log p✓
�
R(a)

t | Z(a), R(a)
1:t�1

��
. (3)

We bound the expected per-user regret:

�(⇡; p⇤) := Ep⇤,⇡


max
a2Anew

⇢
1

T

TX

t=1

R(a)
t

�
�

1

T

TX

t=1

R(At)
t

�
. (4)

In equation 4 above, we calculate the gap in reward relative to a oracle that always recommends the
action with best performance in the population.2 The above is a Bayesian regret, the expectation
is taken over draws of potential outcomes {Z(a), R(a)

1:T }a2Anew , in addition any randomness in the ⇡
itself. Because of the recurring nature of our problem (depicted in Figure 1), the expectation has a
physical rather than philosophical meaning: �(⇡) is the long-run average regret the system would
incur if ⇡ were deployed across many days (and hence across many instances of the bandit task).
Proposition 1. Under Assumption 1, for PS-AR (Algorithm 1) applied with p✓ (denoted ⇡PS-AR(p✓)),

�
�
⇡PS-AR(p✓); p

⇤�


r
|Anew| log(|Anew|)

2T| {z }
Regret bound for Thompson sampling

+

r
|Anew|

2

�
`(p✓)� `(p⇤)

 

| {z }
Penalty for sub-optimal prediction

.

Wen et al. (2021) prove a regret bound that looks similar to ours, however their result requires a
specific conditional KL divergence to be small, which does not appear to follow from training a
model with low validation loss. Moreover we use a very different proof technique. Our Proposition
1 relies on Theorem 1, which is a result that may be of independent interest.

Theorem 1 uses an information-theoretic approach to show that when the distributions p✓ and p⇤ are
nearly indistinguishable in a Neyman-Pearson sense (i.e., the expected log likelihood ratio `n(p✓)�
`n(p⇤) is small), any function of the potential outcomes generated under p✓ vs. p⇤ must also be
nearly indistinguishable. Below we use Ep✓ to denote expectations under the distribution where the
potential outcomes R(a)

1:T are generated autoregressively from p✓, i.e., R(a)
1:T | Z(a)

⇠ p✓( · | Z(a)).

Theorem 1. Let Onew :=
�
Z(a), R(a)

1:T

 
a2Anew denote the potential outcomes table. Independent of

Onew, let ⇠ ⇠ Uniform[0, 1]. Under Assumption 1, for real-valued functions f of Onew and ⇠,

sup
f :kfk11

��Ep⇤
⇥
f (Onew, ⇠)

⇤
| {z }

Real Distribution

�Ep✓

⇥
f (Onew, ⇠)

⇤
| {z }
Simulated Distribution

�� 
p

(|Anew|/2) {`(p✓)� `(p⇤)}| {z }
Penalty for sub-optimal simulator

.

We can apply Theorem 1 to show equation 5 because the per-user regret of an algorithm ⇡ is simply a
bounded function of all possible potential outcomes Onew and exogenous noise ⇠ if ⇡ is a randomized
algorithm. We formalize and prove this statement in Appendix D.5.

Bounding the Regret of any Bandit Algorithm via a Simulator. A consequence of Theorem 1 is
that we can use it to bound the deployment regret of any policy ⇡, i.e., �

�
⇡; p⇤

�
, in terms of the

2The difference between this oracle and one that selects the best expected reward is small (Appendix C).
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regret under the simulator, �
�
⇡; p✓

�
, and the gap in prediction loss `(p✓)� `(p⇤):

�
�
⇡; p⇤

�
| {z }

Deployment regret

 �
�
⇡; p✓

�
| {z }

Regret under simulator

+
p

(|Anew|/2) {`(p✓)� `(p⇤)}| {z }
Penalty for sub-optimal simulator

. (5)

Equation 5 says that the regret achieved by ⇡ under the reward simulator p✓ is close to the regret of
⇡ when deployed in the true environment p⇤, so long as the prediction loss under p✓ and p⇤ is close.

Regret Bounds for Thompson Sampling (TS) with Misspecified Priors. The secondary conse-
quence of Theorem 1 is that it characterizes the regret of TS algorithms with misspecified priors. To
see this, pick ⇡ to be TS with a misspecified prior and pick p✓ to be the data generating distribution
under the misspecified prior; then �

�
⇡; p✓

�
will have the typical regret bound for TS and the second

term on the RHS of equation 5 characterizes the penalty for having a misspecified prior. Our result
builds on previous literature which prove lower bounds for TS under misspecified priors (Liu and
Li, 2016) and upper bound the regret of a “k-shot” version of TS (Simchowitz et al., 2021).

5 RELATED WORK

Meta-Learning in Bandits. There are a variety of meta-learning bandit algorithms (Wan et al.,
2023; Cella et al., 2020; Kveton et al., 2021; Bastani et al., 2022); these methods primarily focus on
simpler settings (e.g. Gaussian or linear reward models). There are also deep meta-learning methods
developed for recommendation systems and the cold-start problem (Wang et al., 2022; Zhang et al.,
2021; Zheng et al., 2021). These works primarily focus on more complex recommendation settings
(e.g. tracking one user over time) and not on uncertainty. In contrast, our goal is to showcase our
uncertainty quantification method for decision making with foundation models.

Reinforcement Learning (RL) with Pre-Trained Autoregressive Models. Many recent works in
RL leverage sequence models that are pretrained on a large volume of data collected by an expert
policy. Some use goal-conditioned sampling of actions to improve over average expert behavior
(Janner et al., 2021; Chen et al., 2021; Ding et al., 2019); this works well in some settings but is
provably sub-optimal others (Brandfonbrener et al., 2022; Malenica and Murphy, 2023). In contrast
to these works, we do not require data collected by expert policies for training.

Decision Pretrained Transformers (DPT) (Lee et al., 2023b) relate sampling from a sequence model
that predicts the next expert action to Thompson sampling. Similar to PS-AR, DPT focuses on a
meta-learning setting and pretrains their sequence models on historical data. However, while PS-
AR sequence models are trained to predict future rewards, DPT sequence models are trained to
predict the next expert action (if an expert action is not available, it is trained to mimic an approxi-
mate optimal policy fit from data). We have preliminary experiments comparing to DPT (Appendix
E.6) and find that it performs similarly to PS-AR; further investigation is needed to understand the
benefits of predicting future rewards versus expert actions.

Autoregressive predictive models are also used in Liu et al. (2023), however they focus on non-
stationary environments and settings with closed-form posterior distributions (like AR processes);
they do not discuss incorporating deep learning models or characterizing model performance when
the sequence model is misspecified.

Thompson Sampling with Neural Networks. Several classes of approaches that have emerged to
scale Thompson sampling to modern large scale decision-making problems with neural networks.
The first class places a Bayesian prior on the weights of the neural network itself. These methods
include those that form a Bayesian linear regression model from the last layer of a trained neural
network (Riquelme et al., 2018; Snoek et al., 2015), as well as Bayesian neural networks (Zhang
et al., 2020). A second class of approaches involves forming using an ensemble of neural networks
to simulate samples from a posterior distribution (Osband et al., 2018; Lu and Van Roy, 2017; Qin
et al., 2022a). This class also includes algorithms that build on Epinets (Osband et al., 2024; Zhu and
Van Roy, 2023; Osband et al., 2023) and HyperModels (Dwaracherla et al., 2020; Li et al.), which
attempt to retain the performance of the ensembling with lower computational cost. Notably, Os-
band et al. (2024) uses sequence prediction loss to evaluate the quality of (“epistemic”) uncertainty
quantification, inspiring our efforts to construct bandit algorithms using sequence models.
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6 EXPERIMENTS

We evaluate our approach in a synthetic setting and in a semi-realistic news recommendation setting.
While our method applies more broadly, we focus on binary rewards (Rt 2 {0, 1}) as the news
dataset we build on has binary click/no click outcomes. We first discuss implementation techniques:

(1) Bootstrapping Training Data. In practice, the historical Dhist may have sequences R(a)
1:n for

some n less than the horizon T . To ensure the learned sequence model p✓ has low prediction loss,
`(p✓), for longer sequences, we bootstrap the data in training by computing the loss on bootstrapped
sequences of rewards sampled with replacement (see Appendix A for details). This procedure also
helps ensure the sequence model is approximately exchangeable, reflecting Assumption 1.

(2) Truncating Generation Lengths. When the population size T is large, generating missing
outcomes for the entire population can be costly. To save computation, we implement a slightly
modified version of PS-AR that instead generates only m missing outcomes per action and averages
those m outcomes to form µ̂(a)

t . We find as long as m is sufficiently large, truncation makes little
difference in practice (see Figure 8).

6.1 SYNTHETIC SETTING: MIXTURE BETA-BERNOULLI

Our synthetic experiments use a mixture model where Z(a)
2 R2 and the prior is a mixture of two

Betas and the likelihood is Bernoulli. See Appendix E.1 for more details.

Models. We consider two sequence model p✓ variants. (i) FLEXIBLE NN is a neural network that
takes Z(a) and a summary of the past outcomes for action a as input. (ii) BETA-BERNOULLI NN,
is the closed-form posterior predictive for the Beta-Bernoulli model; its hyperparameters ↵✓(Z(a))
and �✓(Z(a)) are parameterized by neural networks that take Z(a) as input.

Figure 5: Evaluation in mixture Beta-Bernoulli Setting. Left: cumulative regret with |A
new

| = 10,
averaged over 500 repetitions. Right: evaluating uncertainty quantification (coverage and interval
width) averaged over 1000 actions not seen in training. Error bars are ±1 s.e.

Regret: Figure 5 (Left). PS ORACLE, which implements Thompson (posterior) sampling with a
prior that matches the data generating process, has the lowest regret. PS-AR FLEXIBLE NN closely
matches the performance of PS ORACLE. PS-AR BETA-BERNOULLI NN which uses a sequence
model with a misspecified, unimodal Beta prior performs similarly to PS BETA-BERNOULLI (UNI-
FORM PRIOR) which performs exact Thompson sampling with a uniform prior. These Thompson
sampling-based algorithms outperform the UCB algorithm (Abbasi-Yadkori et al., 2011) PS NEU-
RAL LINEAR, Thompson sampling with a linear Gaussian bayesian model with an uninformative
prior on top of learned text embeddings, and DPT, a sequence model trained to predict best action
from a set of histories (Lee et al., 2023b). See more on baseline algorithms in Appendix E.5.

Uncertainty Quantification: Figure 5 (Right). For 1000 articles not seen in training, we form
250 posterior samples µ̂(a)

1 by autoregressively generating outcomes conditional on Z(a) using p✓.
We use the percentiles of the sampled µ̂(a)

1 ’s to form credible intervals and evaluate how often the
true µ(a)

1 is within these intervals. The intervals generated by the FLEXIBLE NN sequence model

9
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have excellent coverage; moreover, the width of the intervals are the narrowest that have correct
coverage (matching PS ORACLE). In contrast, the BETA-BERNOULLI NN sequence model which
has a unimodal (misspecified) Beta prior has worse coverage.

6.2 NEWS RECOMMENDATION SETTING

We build a semi-realistic news recommendation task using the MIcrosoft News Dataset (MIND)
(Wu et al., 2020). This setting demonstrates how PS-AR easily integrates with pretrained language
models. Here Z(a) is article headline text or news category information (e.g. “politics” or “sports”).
Rewards are binary click/no-click outcomes. After pre-processing, the dataset has ⇡ 11k articles.

Models We use three p✓ model variants: (i) FLEXIBLE NN (TEXT) and (ii) BETA-BERNOULLI
NN (TEXT), are analogous to those from Section 6.1, but we modify them to use article text Z(a)

embedded using DistilBERT (Sanh et al., 2019), which is fine-tuned end-to-end during pretraining.
(iii) FLEXIBLE NN (CATEGORY) the final model uses category information instead of headline text.

Regret and Uncertainty Quantification: Figure 6 In terms of regret, the PS-AR models that
use sequence models p✓ that incorporate text features outperform all other algorithms (baselines
described in Section 6.1). We use an analogous procedure as used in Section 6.1 to form uncertainty
intervals for µ(a)

1 for the 2280 actions not seen in training. All PS-AR models have intervals with
correct coverage, but the text-based models have slightly narrower intervals. We also compare to an
ensemble of 50 models, which we found has poor coverage. See Appendix E.4 for more details.

Figure 6: Evaluation on news data. Left: cumulative regret with |A
new

| = 10, averaged over 500
repetitions. Right: evaluating uncertainty quantification (coverage and interval width), averaged
over 2280 actions not seen in training. Error bars are ±1 s.e.

7 DISCUSSION

We formulate a loss minimization problem that implicitly learns an informed prior using historical
data, in order to model the posterior distribution of rewards for decision-making. This connection
enables using modern ML tools to learn rich representations to comprehend uncertainty, in an ac-
tionable way. Our formulation introduces a fresh approach to the longstanding challenge of scaling
Thompson sampling to incorporate neural networks that incorporate unstructured inputs such as
images and text (Riquelme et al., 2018). The main ideas behind our algorithm generalize to contex-
tual settings where user-specific contexts Xt can be used to tailor recommendation decisions. We
describe generalizing PS-AR to this setting in Appendix B and leave a deeper dive to future work.

Limitations. We assume articles are i.i.d. between pretraining and online evaluation, and user
outcomes for each action are exchangeable. Such assumptions may not be appropriate in practice,
e.g., if user preferences are nonstationary. In conducting this work, we struggled to find publicly
available datasets on which to evaluate our method, which led us to build our news recommendation
setting. Building public benchmarks for bandit problems that require using complex inputs (e.g. text
and/or images) for best performance is an important open direction. A limitation of this work is we
do not provide a thorough answer as to the quality of the historical data (e.g., amount of data and/or
how data was collected) necessary to ensure learning good sequence models.
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Reproducibility Statement. Full details for reproducing the experiments, including data process-
ing, are in Appendix E, with code in the supplemental materials. For theoretical results in Section 4,
the proofs are in Appendix D.
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Sébastien Bubeck and Ronen Eldan. Multi-scale exploration of convex functions and bandit convex
optimization. In Conference on Learning Theory, pages 583–589. PMLR, 2016.
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Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge, 2019.

Hyungi Lee, Eunggu Yun, Giung Nam, Edwin Fong, and Juho Lee. Martingale posterior neural
processes, 2023a.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and
Emma Brunskill. In-context decision-making from supervised pretraining. In ICML Work-
shop on New Frontiers in Learning, Control, and Dynamical Systems, 2023b. URL https:
//openreview.net/forum?id=WIzyLD6j6E.

Yingru Li, Jiawei Xu, Lei Han, and Zhi-Quan Luo. Q-star meets scalable posterior sampling: Bridg-
ing theory and practice via hyperagent. In Forty-first International Conference on Machine Learn-
ing.

Che-Yu Liu and Lihong Li. On the prior sensitivity of thompson sampling. In International Confer-
ence on Algorithmic Learning Theory, pages 321–336. Springer, 2016.

12

https://books.google.com/books?id=ZXL6AQAAQBAJ
https://books.google.com/books?id=ZXL6AQAAQBAJ
https://openreview.net/forum?id=WIzyLD6j6E
https://openreview.net/forum?id=WIzyLD6j6E


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yueyang Liu, Benjamin Van Roy, and Kuang Xu. Nonstationary bandit learning via predictive
sampling. In International Conference on Artificial Intelligence and Statistics, pages 6215–6244.
PMLR, 2023.

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. Advances in neural information processing
systems, 30, 2017.

Ivana Malenica and Susan Murphy. Causality in goal conditioned rl: Return to no future? In
NeurIPS 2023 Workshop on Goal-Conditioned Reinforcement Learning, 2023.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference. In Proceedings of the Tenth International Conference on
Learning Representations, 2022x.

Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022. URL
probml.ai.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learn-
ing via sequence modeling. In Proceedings of the 39th International Conference on Machine
Learning, 2022.

Sharon-Lise T Normand. Meta-analysis: formulating, evaluating, combining, and reporting. Statis-
tics in medicine, 18(3):321–359, 1999.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Approximate thompson sampling via epistemic neural
networks. In Uncertainty in Artificial Intelligence, pages 1586–1595. PMLR, 2023.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. Advances in Neural Information
Processing Systems, 36, 2024.

Chao Qin, Zheng Wen, Xiuyuan Lu, and Benjamin Van Roy. An analysis of ensemble sampling. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 21602–21614. Curran Associates, Inc.,
2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/874f5e53d7ce44f65fbf27a7b9406983-Paper-Conference.pdf.

Chao Qin, Zheng Wen, Xiuyuan Lu, and Benjamin Van Roy. An analysis of ensemble sampling.
Advances in Neural Information Processing Systems, 35:21602–21614, 2022b.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empir-
ical comparison of bayesian deep networks for thompson sampling. In International Conference
on Learning Representations, 2018.

D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. Wiley, 1987.

Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thompson sampling.
Journal of Machine Learning Research, 17(68):1–30, 2016.

Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on
thompson sampling, 2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel J Hsu, Thodoris Lykouris, Miro
Dudik, and Robert E Schapire. Bayesian decision-making under misspecified priors with appli-
cations to meta-learning. Advances in Neural Information Processing Systems, 34:26382–26394,
2021.

13

probml.ai
https://proceedings.neurips.cc/paper_files/paper/2022/file/874f5e53d7ce44f65fbf27a7b9406983-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/874f5e53d7ce44f65fbf27a7b9406983-Paper-Conference.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep
neural networks. In International conference on machine learning, pages 2171–2180. PMLR,
2015.

Runzhe Wan, Lin Ge, and Rui Song. Towards scalable and robust structured bandits: A meta-
learning framework. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors,
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, volume
206 of Proceedings of Machine Learning Research, pages 1144–1173. PMLR, 25–27 Apr 2023.
URL https://proceedings.mlr.press/v206/wan23a.html.

Chunyang Wang, Yanmin Zhu, Haobing Liu, Tianzi Zang, Jiadi Yu, and Feilong Tang. Deep meta-
learning in recommendation systems: A survey. arXiv preprint arXiv:2206.04415, 2022.

Zhang Weitong, Zhou Dongruo, Li Lihong, and Gu Quanquan. Neural thompson sampling. In
Proceedings of theInternational Conference on Learning Representations (ICLR’21), 2021.

Zheng Wen, Ian Osband, Chao Qin, Xiuyuan Lu, Morteza Ibrahimi, Vikranth Dwaracherla, Mo-
hammad Asghari, and Benjamin Van Roy. From predictions to decisions: The importance of joint
predictive distributions. arXiv preprint arXiv:2107.09224, 2021.

Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian, Danyang Liu, Xing
Xie, Jianfeng Gao, Winnie Wu, et al. Mind: A large-scale dataset for news recommendation. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
3597–3606, 2020.

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. arXiv
preprint arXiv:2010.00827, 2020.

Yin Zhang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong, and Ed H Chi. A
model of two tales: Dual transfer learning framework for improved long-tail item recommenda-
tion. In Proceedings of the web conference 2021, pages 2220–2231, 2021.

Yujia Zheng, Siyi Liu, Zekun Li, and Shu Wu. Cold-start sequential recommendation via meta
learner. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
4706–4713, 2021.

Zheqing Zhu and Benjamin Van Roy. Scalable neural contextual bandit for recommender systems.
In Proceedings of the 32nd ACM International Conference on Information and Knowledge Man-
agement, pages 3636–3646, 2023.

14

https://proceedings.mlr.press/v206/wan23a.html

	Introduction
	Problem formulation
	Posterior Sampling via Autoregressive Generation
	Key Insights: Connecting Sequence Modelling and Bayesian Inference
	Our Algorithm: Posterior Sampling via Autoregressive Generation
	Interpreting our Pre-Training Procedure as Empirical Bayes

	Regret Bound
	Related Work
	Experiments
	Synthetic Setting: Mixture Beta-Bernoulli
	News Recommendation Setting

	Discussion
	Posterior Sampling via Autoregressive Generation (PS-AR) Algorithm
	Empirical Comparisons of PS-AR Variants

	Extension to the Contextual Setting
	Finite vs Infinite Population Formulations and Thompson Sampling Variants
	Review of Thompson sampling in infinite populations, with mixture models.
	Thompson sampling in finite populations
	The gap between finite and infinite population formulations is small
	Similar Insights in Empirical Results

	Theoretical Results
	The Mean T(a) Approahces (a) for Large T.
	To Minimize Loss p needs to Approximate p*
	Formally Interpreting PS-AR as Thompson (Posterior) Sampling
	Proof of Theorem 1
	Bounding the Deployment Regret in Terms of Regret on a Simulator
	Proof of Proposition 1
	A Useful Definition
	A Helpful Lemma
	Main Proof of Proposition 1


	Experiment Details
	Synthetic Experiments: Mixture Beta-Bernoulli
	Alternative sampling methods given a sequence model
	Recovering the True Prior via Pretraining (Empirical Bayes)
	News Recommendation Experiment Details
	Bandit Algorithms
	Comparison to Decision Pre-Trained Transformers (DPT)

	When is an Autoregressive Sequence Model a Valid Posterior Predictive?

