
LLM Meets Scene Graph: Can Large Language Models Understand and
Generate Scene Graphs? A Benchmark and Empirical Study

Anonymous ACL submission

Abstract

The remarkable reasoning and generalization001
capabilities of Large Language Models (LLMs)002
have paved the way for their expanding appli-003
cations in embodied AI, robotics, and other004
real-world tasks. To effectively support these005
applications, grounding in spatial and tempo-006
ral understanding in multimodal environments007
is essential. To this end, recent works have008
leveraged scene graphs, a structured represen-009
tation that encodes entities, attributes, and their010
relationships in a scene. However, a compre-011
hensive evaluation of LLMs’ ability to utilize012
scene graphs remains limited. In this work, we013
introduce Text-Scene Graph (TSG) Bench, a014
benchmark designed to systematically assess015
LLMs’ ability to (1) understand scene graphs016
and (2) generate them from textual narratives.017
With TSG Bench, we evaluate 11 prominent018
LLMs and reveal that, while models perform019
well on scene graph understanding, they strug-020
gle with scene graph generation, particularly021
for complex narratives. Our analysis indicates022
that these models fail to effectively decom-023
pose discrete scenes from a complex narrative,024
leading to a bottleneck when generating scene025
graphs. These findings underscore the need for026
improved methodologies in scene graph gener-027
ation and provide valuable insights for future028
research. The demonstration of our benchmark029
is available at https://tsg-bench.netlify.app.1030

1 Introduction031

Large language models (LLMs) have demonstrated032

impressive progress in various text-based tasks,033

such as question-answering and content genera-034

tion, showcasing strong reasoning and generation035

capabilities (Brown et al., 2020; Touvron et al.,036

2023). Nevertheless, extending these abilities to037

multimodal environments is challenging, particu-038

larly when spatial and temporal reasoning about039

1Our code and evaluation data are publicly available at
https://anonymous.4open.science/r/TSG-Bench.

Figure 1: An illustration showing how a scene graph
can represent the objects and their relationships in a
scene. The illustration was created with the assistance
of DALLE-3.2

object relationships and physical interactions is re- 040

quired (Yan et al., 2023). 041

To address this issue, researchers have explored 042

leveraging scene graphs for LLMs (Chang et al., 043

2021). Scene graphs are structured representations 044

that have been utilized in computer vision and em- 045

bodied AI to capture key elements (e.g., objects, 046

their attributes, and relationships) in complex multi- 047

modal environments (Ji et al., 2020). As illustrated 048

in Figure 1, by converting visual data into an inter- 049

pretable representation, scene graphs enable LLMs 050

to effectively understand spatial and semantic infor- 051

mation, thereby allowing them to leverage their ro- 052

bust reasoning and generative capabilities in multi- 053

modal contexts. This integration paves the way for 054

diverse applications ranging from dynamic scene 055

interpretation to 3D environment modeling (Gao 056

et al., 2023; Cong et al., 2023; Strader et al., 2024; 057

Zhang et al., 2024). 058

2https://openai.com/index/dall-e-3/

1

https://tsg-bench.netlify.app/
https://anonymous.4open.science/r/TSG-Bench
https://openai.com/index/dall-e-3/

Despite these advancements, a comprehensive059

evaluation of LLMs’ ability to interpret and gen-060

erate scene graphs remains limited—leaving open061

questions such as whether these models genuinely062

comprehend the underlying spatial and semantic063

structures. Bridging this gap is essential for devel-064

oping systems that can perform reliable and struc-065

tured reasoning across diverse domains. For exam-066

ple, LLMs often struggle to identify critical nodes067

or edges (Huang et al., 2024) and might misinter-068

pret the triplets in complex situations, particularly069

when handling long contexts (Kim et al., 2024).070

We introduce Text-Scene Graph Bench (TSG071

Bench), a benchmark designed to rigorously evalu-072

ate LLMs’ ability in scene graph understanding and073

generation. TSG Bench comprises long-text narra-074

tives that describe real-world scenarios alongside075

corresponding sequences of scene graphs represent-076

ing an actor’s interactions with objects. In every077

task, contextual grounding is ensured via a pre-078

ceding scenario—delivered either in text or graph079

format—to mirror practical applications. For un-080

derstanding tasks, we assess the models’ ability to081

interpret and reason over scene graphs. For gener-082

ation tasks, we assess how accurately models can083

generate structured scene graphs given descriptive084

narratives and preceding contexts of varying com-085

plexity.086

Through extensive experiments on eleven promi-087

nent LLMs using TSG Bench, we make three key088

observations. (1) LLMs exhibit strong performance089

on scene graph understanding tasks. However, they090

significantly underperform on generation tasks, es-091

pecially when faced with narratives that should be092

implicitly decomposed into multiple actions (e.g.,093

implicit and repeated actions). (2) Advanced tech-094

niques, such as in-context learning and chain-of-095

thought (CoT) prompting, can facilitate the ability096

of highly capable LLMs to represent and reason097

over scene graphs. (3) LLMs can effectively refine098

errors in scene graphs when guided with error types.099

These findings highlight the need for improved100

methodologies in scene graph generation and pro-101

vide critical insights for applications of LLMs in102

multimodal environments in future research.103

2 Related Work104

Scene graph representation. Scene graphs,105

which encode semantic information and relation-106

ships between objects in a scene, are widely used107

in multimodal tasks such as image captioning, 3D108

reconstruction, and robotics (Johnson et al., 2015; 109

Yao et al., 2018; Chatterjee et al., 2021; Armeni 110

et al., 2019; Rosinol et al., 2020). Previous research 111

has leveraged scene graphs as an inductive bias to 112

facilitate explicit reasoning in visual question an- 113

swering tasks (Teney et al., 2017; Hildebrandt et al., 114

2020) or to provide explanations based on such 115

knowledge (Shi et al., 2018). Scene graphs can 116

also serve as semantic maps of real-world environ- 117

ments for robots, enabling higher-level reasoning 118

for tasks like planning and navigation (Rana et al., 119

2023; Dai et al., 2023; Yin et al., 2024). 120

Scene graph datasets. Such works have been fa- 121

cilitated by several benchmarks and datasets, most 122

of which is built on image-scene graph pairs (Kr- 123

ishna et al., 2016; Ji et al., 2020). While FAC- 124

TUAL (Li et al., 2023) suggests a text-based bench- 125

mark for scene graph parsing, the dataset is focused 126

on static scenes which restricts their applicabil- 127

ity to dynamic, real-world scenarios. In contrast, 128

our work extends to dynamic scenarios, where spa- 129

tial, temporal relationship between scenes are ac- 130

tively involved. Ego-centric Action Scene Graphs 131

(EASG) dataset (Rodin et al., 2024) explores the re- 132

lationship between time-evolving actions and scene 133

graphs in video contexts. In contrast, our bench- 134

mark, TSG Bench, is designed to evaluate the two 135

distinct ability of LLMs – reasoning and genera- 136

tion – to link textual narratives and dynamic scene 137

graphs to reflect richer context. 138

LLMs for scene graphs. Large Language Mod- 139

els, with their powerful reasoning and generation 140

capabilities, have been employed for both under- 141

standing and generating scene graphs across vari- 142

ous tasks. Recent works on robotics utilized LLMs 143

to reason over scene graphs or formulate high- 144

level plans for navigation within complex environ- 145

ments. (Yin et al., 2024; Rana et al., 2023). Be- 146

yond understanding, LLMs have also been applied 147

to generate scene graphs by representing multiple 148

objects and relations in a complex text and incor- 149

porating commonsense reasoning for 3D content 150

generation tasks (Gao et al., 2023; Wei et al., 2024). 151

While previous efforts have explored the use of 152

LLMs for processing scene graphs, TSG Bench 153

is the first benchmark to provide a unified evalua- 154

tion framework for assessing LLMs’ capabilities in 155

understanding and generating scene graphs. 156

2

Figure 2: Overview of TSG Bench. Scene graph question answering aims to answer a question by reasoning over
scene graphs. Scene graph description selection is a multiple-choice task of selecting the correct description of a
given scene graph. Single action scene graph generation focuses on generating a scene graph based on a description
representing a single action. Multiple action scene graph generation aims to generate multiple discrete scene graphs
of all actions represented in the description.

3 TSG Bench157

In this section, we introduce TSG Bench, a bench-158

mark to evaluate LLMs’ abilities to understand and159

generate scene graphs based on narratives. We be-160

gin by introducing the preliminaries of data repre-161

sentations, which form the basis of the benchmark.162

Next, we detail the scene graph understanding and163

generation tasks, followed by an explanation of164

benchmark construction process. Finally, we pro-165

vide the statistics of TSG Bench.166

3.1 Preliminaries: Text and Scene Graph167

Representations168

We first construct a database of narratives and169

scene graphs representing sequential scenes of real-170

world scenarios, and configure understanding and171

generation tasks from it. The narrative is com-172

posed of multiple coherent natural language de-173

scriptions, denoted as D = (d1, . . . , dn) where n174

represents the number of descriptions in each sce-175

nario. For each description di, a set of scene graphs176

Gi = (Gi1, . . . , Gik) is aligned, where each scene177

graph represents an action, following the action-178

centric scene graph representation proposed in a179

previous work (Rodin et al., 2024). In the case of180

our database, the number of scene graphs k for a181

description range from 1 to 8, depending on the182

complexity of di. For example, when a description183

of shaking an object is given, k=2 because it can be 184

decomposed into holding and rapidly moving the 185

object. For each j such that 1 ≤ j ≤ k, the indi- 186

vidual scene graph is denoted as Gij = (Vij , Eij), 187

where Vij and Eij represent the nodes and edges 188

of the scene graph, respectively. More specifically, 189

the relationships between nodes and edges are ex- 190

pressed as a set of triplets in the form of (source 191

node, edge, target node). 192

Nodes and edges. A node belongs to one of 193

four categories {person, action, object, hand}, 194

where person represents an actor, action denotes 195

the actor’s action in the scene, object refers to an 196

item or a location, and hand corresponds to either 197

hand1 or hand2 of the actor. Similar to previous 198

works (Rodin et al., 2024; Grauman et al., 2022), 199

we use hand nodes to track activities involving one 200

or both hands. Specifically, once an item is held, 201

it occupies hand1; if a second item is acquired, 202

hand2 is assigned. Releasing all items resets the 203

next grasp to hand1. An edge belongs to one 204

of three categories {verb, dobj, preposition}, 205

where verb connects a person node to an action 206

node, dobj links an action node to an object 207

node only if it is the direct object of the action, and 208

preposition connects any pair for representing 209

the spatial relationship or other contextual depen- 210

dencies between them. To ensure consistency and 211

3

standardize elements (i.e., nodes and edges) in the212

graph, we define L as a predefined collection of213

valid node and edge values for each scenario. Con-214

sequently, any additional modifiers or redundant215

expressions in descriptions D are omitted to main-216

tain a concise representation.217

3.2 Scene Graph Understanding218

219

Scene graph question answering (SGQA). This220

task involves reasoning over scene graphs to an-221

swer a given question. Formally, given a question222

and scene graphs G = (V,E), the model must pre-223

dict an answer, which corresponds to an element in224

V . As shown in Figure 2, questions in our bench-225

mark require logically or temporally connecting a226

sequence of actions or object state changes, which227

can be solved by hopping across multiple triplets.228

Scene graph description selection (SGDS). The229

goal of this task is to accurately interpret a scene230

graph within a given context and identify the cor-231

rect description among distractors. We formu-232

late SGDS as a multiple-choice question prob-233

lem, consisting of the graph-based context Cg
i =234

(G1, . . . , Gi−1), a scene graph Gi, and five candi-235

date descriptions, with one correct answer included.236

The model should be able to track nodes and edges237

from Cg
i and ensure that all elements in Gi are238

accurately represented. For SGDS, we use scene239

graphs representing a single action.240

3.3 Scene Graph Generation241

Scene graph generation tasks aim to generate242

triplets of scene graphs corresponding to a given243

description within a context. All valid elements244

are predefined as L for each scenario, and the tasks245

require models to identify and parse semantically246

similar elements from the given description to con-247

struct triplets. Each task is illustrated in Figure 2.248

Single action scene graph generation (SA-SGG).249

SA-SGG is a task of generating a scene graph for a250

description that involves a single action, within a251

scenario. Formally, the task is to generate triplets252

of Gi = (Vi, Ei), given the description context253

Cd
i = (d1, . . . , di−1), a description di, and valid254

nodes and edges of the scenario, denoted as V and255

E, respectively.256

Multiple action scene graph generation (MA-257

SGG). MA-SGG aims to generate scene graphs258

by decomposing actions when given complex de- 259

scriptions that involve multiple actions. The task 260

formulation is identical to that of SA-SGG, except 261

that an additional clue indicating the number of 262

actions is provided, and the complexity of di is 263

greater than 1. This makes MA-SGG more chal- 264

lenging than SA-SGG because the amount of infor- 265

mation to process, especially to generate, is larger, 266

and target actions may be implicit in the descrip- 267

tion. Also, although the number of actions is given, 268

the task still requires the ability to accurately de- 269

compose, identify, and order valid actions from the 270

description. 271

3.4 Dataset Construction 272

We derive TSG Bench from the Ego-centric Ac- 273

tion Scene Graphs (EASG) dataset (Rodin et al., 274

2024), which represents temporally evolving ac- 275

tions in video contexts as scene graphs. We use the 276

original scene graphs to build our own narratives 277

and corresponding scene graphs through multiple 278

rounds of a human-in-the-loop process involving 279

three trained annotators. First, we prompt an LLM 280

to generate a sentence from each scene graph from 281

the EASG dataset and remove redundant sentences 282

based on context. After human workers review 283

the logical flow and naturalness, we prompt the 284

LLM again to generate a scene graph for each sen- 285

tence. As they often fail to generate complete scene 286

graphs, human workers meticulously inspect and 287

refine the graph elements one by one. Then, we 288

prompt the model to paraphrase sentences to in- 289

crease lexical diversity and to combine coherent 290

sentences, enhancing overall complexity. As a re- 291

sult, we collect 120 scenarios of 2,041 descriptions 292

and 4,289 scene graphs. 293

Task-related data. We additionally construct 294

data for our understanding tasks through a simi- 295

lar collaboration process. For SGQA, we provide 296

the LLM with the entire scenario narrative and 297

prompt it to generate five questions about identify- 298

ing a node that had undergone spatial and temporal 299

transitions. Human workers then verify the validity 300

of these questions. For SGDS, we control the dif- 301

ficulty of the distractors by perturbing the answer 302

description in two ways. We put random distractors 303

from unrelated scenarios for the half, and put dis- 304

tractors with LLM-perturbed nodes and edges from 305

the answer for the other half of the problems. More 306

detailed descriptions of our dataset construction 307

process are in Appendix A. 308

4

Statistics Counts

Benchmark Statistics
of Domains 18
of Scenarios 120
of Descriptions 2,041
of Scene graphs 4,289

– avg. # nodes 4.81
– avg. # edges 3.45

of Nodes 14,905
of Edges 11,820

Task Statistics
data for SGQA 500
data for SGDS 250
data for SA-SGG 1,188
data for MA-SGG 853

– avg. # scene graphs 3.64

Table 1: Statistics of TSG Bench and each task.

Figure 3: Domain distribution across scenarios.

3.5 Benchmark Statistics309

Table 1 summarizes the statistics of TSG Bench310

and each task. Our benchmark provides 120 real-311

world scenarios, covering a wide range of domains,312

including maintenance, cooking, and gardening, as313

illustrated in Figure 3. TSG Bench contains 2,041314

descriptions and 4,298 scene graphs, and 14,905315

and 11,820 different nodes and edges, respectively,316

covering a wide semantic space. As we focus on317

action-centric scenarios, common action nodes in-318

clude pick-up, place, hold, and release, and the319

most common preposition edge is with, involving320

hand movements.321

For understanding tasks, we construct 500 dat-322

apoints for SGQA, and 250 for SGDS. For gener-323

ation tasks, there are 1,188 data samples for SA-324

SGG and 853 for MA-SGG. For MA-SGG, the325

average number of scene graphs to generate, or the326

complexity k, is approximately 3.64.327

4 Experiments 328

4.1 Setup 329

We conduct our experiments on eleven highly 330

capable LLMs to provide a comprehensive as- 331

sessment of current LLMs. (1) For proprietary 332

models, we choose GPT-4o, GPT-4o-mini (Ope- 333

nAI, 2024), Claude-3.5-Sonnet, and Claude-3.5- 334

Haiku (2024, 2024); (2) For open-source models, 335

we select LLaMA-3.3-70B (AI, 2024a), Qwen- 336

2.5-72B, Qwen-2.5-7B (Team, 2024), DeepSeek- 337

V3 (DeepSeek-AI, 2024), Mixtral-8x22B (AI, 338

2024c), Mistral-large, and Mistral-7B (AI, 2024b). 339

Additionally, we also provide human performance 340

on a subset of 30 examples to facilitate the inter- 341

pretation of the results. Experiment details are in 342

Appendix B. 343

4.2 Evaluation Protocols 344

We evaluate LLMs on their capabilities in scene 345

graph understanding and generation by prompting 346

them in a zero-shot fashion, using prompts listed 347

in Appendix D.1. We use different metrics for each 348

task. We assess SGQA using Exact Match (EM), 349

which requires the model’s generation to match the 350

reference element exactly. For SGQA, we instruct 351

LLMs to generate a single letter representing the 352

predicted candidate and evaluate it using accuracy. 353

Scene graph generation tasks are assessed with 354

precision, recall, and macro F1 score. For MA- 355

SGG, where one description yields multiple scene 356

graphs, evaluation is conducted separately for each 357

generated graph. 358

4.3 Main Results 359

We compare the scene graph understanding (SGDS, 360

SGQA) and generation (SA-SGG, MA-SGG) per- 361

formance of different models on TSG Bench in 362

Table 2. 363

Scene graph understanding. Most models ex- 364

hibit strong performance in scene graph understand- 365

ing tasks, particularly in the SGDS task. Among 366

the models, Claude-3.5-Sonnet shows relatively 367

strong performance—98.40 in SGDS and 90.60 368

in QA. Even though open source models such as 369

LLaMA-3.3-70B achieve competitive performance 370

(97.60 in SGDS, 84.60 in SGQA), no model consis- 371

tently outperforms strong proprietary models such 372

as Claude-3.5-Sonnet and GPT-4o. For the rela- 373

tively smaller open-source models (Qwen-2.5B-7B, 374

Mistral-7B), while the models demonstrate compet- 375

itive performance in SGDS task (93.60 and 90.14 376

5

Model SGDS SGQA SA-SGG MA-SGG

Accuracy EM Precision Recall F1 Precision Recall F1

Human 98.33 88.00 85.22 81.00 82.50 78.80 72.90 75.60

Proprietary models

GPT-4o 96.40 84.80 65.84 55.04 59.23 48.88 40.84 43.99
GPT-4o-mini 96.80 76.60 20.00 21.50 19.90 23.06 18.32 20.07
Claude-3.5-Sonnet 98.40 90.60 69.75 69.33 68.43 60.77 57.91 58.80
Claude-3.5-Haiku 97.20 82.00 38.31 36.82 36.77 27.00 23.97 24.95

Open source models

LLaMA-3.3-70B 97.60 84.60 31.52 38.90 33.37 32.43 26.58 28.92
Qwen-2.5-72B 96.80 81.40 57.96 53.22 54.42 42.64 33.29 36.78
DeepSeek-V3 96.40 79.60 55.79 55.11 54.45 43.67 36.66 39.34
Mixtral-8x22B 96.00 73.00 31.03 32.79 30.84 21.05 19.54 19.75
Mistral-large 96.40 82.40 63.18 55.37 58.15 40.17 32.12 35.13
Qwen-2.5-7B 93.60 73.40 9.58 9.95 9.39 6.61 6.77 6.34
Mistral-7B 90.14 58.20 13.60 14.64 13.14 13.86 10.57 11.67

Table 2: Main results for scene graph understanding tasks (SGDS, SGQA) and scene graph generation tasks
(SA-SGG, MA-SGG). The full prompts are listed in Appendix D.1.

respectively), the performance still falls short in the377

SGQA task compared to other models with a larger378

number of parameters—73.40 for Qwen-2.5-7B379

and 58.20 for Mistral-7B in EM.380

Scene graph generation. In contrast to scene381

graph understanding tasks, scene graph generation382

remains challenging for LLMs. Similar to the trend383

in understanding tasks, Claude-3.5-Sonnet achieves384

the highest scores among the models – F1 of 68.43385

(SA-SGG) and 58.80 (MA-SGG). However, a no-386

table difference is that Claude-3.5-Sonnet is no387

longer as good as a human in the scene graph gen-388

eration task, scoring lower compared to human389

performance (82.50, 68.43). The performance gap390

between LLMs and humans is evident in generat-391

ing multiple coherent scene graphs (MA-SGG). For392

example, the performance of Claude-3.5-Haiku,393

which is one of the most competitive models in394

SGQA, decreases by 58.8% in MA-SGG. Many395

models also show higher precision than recall in396

this setting (e.g., Mistral-large: 40.17 vs. 32.12),397

indicating incomplete coverage of sub-scenes. This398

shortfall arises from the need to split a single de-399

scription into multiple scenes and construct sepa-400

rate graphs for each, increasing structural complex-401

ity and reducing recall. We provide deeper analysis402

on generation task by disentangling the task into403

three distinct subtasks in Section 5.1. Open-source404

models perform worse, with Qwen-2.5-72B (66.15,405

43.73) and Mistral-large (69.76, 37.76) being the406

strongest but still far behind proprietary models. 407

Smaller models like Qwen-2.5-7B and Mistral-7B 408

fail severely in MA-SGG (< 12 in F1). 409

5 Analysis 410

To provide further insight on leveraging LLM for 411

scene graph tasks, we explore the following four 412

research questions. 413

5.1 Which Challenges Arise When LLMs 414

Generate Scene Graphs? 415

The main results in Table 2 indicate that language 416

models struggle in generation tasks compared to 417

understanding tasks. Hence, we aim to discover 418

the underlying challenges by configuring three sub- 419

tasks of scene graph generation: node generation, 420

edge generation, and action decomposition. For a 421

clearer analysis, we exclude action nodes in the ref- 422

erence for node generation subtask. Note that, both 423

single and multiple action scene graph generation 424

tasks, node and edge generation abilities are essen- 425

tial, and in multiple action scene graph generation 426

task, action decomposition ability is additionally 427

required. 428

Since a scene graph is represented with triplets 429

of nodes and edges, we ablate the effect of each 430

by conditioning on the other to generate either 431

one. Following the notations described in Sec- 432

tion 3, node generation task is formulated as 433

(Cd
i , di, L,Ei) → Vi − {action}. The edge gen- 434

eration task is formulated as (Cd
i , di, L, Vi) → Gi, 435

6

Figure 4: F1-score results on decomposed scene graph generation tasks, distinguishing between single-action and
multiple-action settings. ES (Edge Single) and NS (Node Single) evaluate edge and node generation performance in
SA-SGG, respectively. EM (Edge Multiple) and NM (Node Multiple) assess edge and node generation in MA-SGG.
ACT (Action) measures the model’s performance in action decomposition in MA-SGG.

Figure 5: The results of the comparative evaluation un-
der four conditions—Explicit, Implicit, Repetition, and
All. The “All” condition comprises the entire dataset,
while the other three focus on subsets featuring explicit
actions, implicit actions, or repeated actions.

as edges are designed to represent the relationships436

between two nodes. Lastly, action decomposition437

aims to generate all actions in a correct sequence,438

given Cd
i , di, and L.439

According to Figure 4, we find that large models440

tend to generate edges better than nodes. On the441

other hand, small language models perform poorly442

on edge generation. Furthermore, in the MA-SGG,443

most models lack in decomposing actions correctly444

in complex descriptions.445

5.2 Which Action Do LLMs Struggle to446

Generate?447

We hypothesize that LLMs may struggle to repre-448

sent structured graphs when descriptions contain449

implicit actions. To examine this, we curated a sub-450

set of descriptions in which referenced actions are451

not explicitly stated in any variant form. We then452

conducted MA-SGG experiment using GPT-4o and453

Claude-3.5-Sonnet. As shown in Figure 5, both454

[Context]
... The timber was carefully dehydrated to ensure it was
ready for the next stage of the woodworking project.

[Description]
The timber was cleaned using a fabric.

[Nodes in the Reference Graph]
V1: person, pick-up, cloth, ...
V2: person, wipe, wood, ...

[Nodes in the Generated Graph]
V1: person, wipe, cloth, ...
V2: person, hold, wood, ...

Table 3: A failure case of action decomposition, which
involves two consecutive actions: picking up a cloth and
wiping the wood with it. Vj indicates the list of nodes
in the j-th graph of the description.

models perform worse when implicit actions are 455

present, while they perform better when generating 456

explicit actions. 457

Through manual analysis on failure cases, we 458

discovered another challenging type of actions, 459

repetitive actions (e.g., sweep three times). We 460

curated another subset of descriptions containing 461

repetitive actions by filtering for words such as 462

times, repeat, and repeated. As shown in Fig- 463

ure 5, the models struggle with generating the same 464

action multiple times. Consistent with previous 465

studies (Brown et al., 2020), our results suggest 466

that LLMs lack a strong numerical sense, which 467

humans find trivial. Examples are shown in Ap- 468

pendix C.5. 469

5.3 Do Advanced Prompting Methods Elicit 470

Better Performance? 471

We further investigate whether advanced prompt- 472

ing methods for improving LLM capabilities can 473

7

Method SGDS QA SA-SGG MA-SGG

GPT-4o 96.40 84.80 59.23 43.99
+ CoT 96.80 90.00 67.13 44.79
+ 10-shot 99.20 84.40 65.78 57.40

Claude-3.5-Sonnet 98.40 90.60 68.43 58.80
+ CoT 98.00 94.00 69.57 64.36
+ 10-shot 98.80 92.00 75.29 71.75

Qwen-2.5-72B 96.80 81.40 54.42 36.78
+ CoT 97.60 88.00 53.43 31.33
+ 10-shot 97.60 84.60 67.87 53.47

Mistral-large 96.40 82.40 58.15 35.13
+ CoT 95.20 96.00 62.45 32.39
+ 10-shot 98.80 85.40 66.99 48.10

Qwen-2.5-7B 93.60 73.40 9.39 6.34
+ CoT 94.00 72.00 11.56 3.88
+ 10-shot 95.60 73.20 39.96 37.25

Mistral-7B 90.14 58.20 13.14 11.67
+ CoT 94.00 68.00 10.97 6.32
+ 10-shot 94.80 66.20 37.97 33.74

Table 4: The results of each method are evaluated using
the same setup as the main results. Rows listing only
the model name correspond to the vanilla (zero-shot)
setting. The detailed prompts for both CoT and few-shot
approaches are provided in the Appendix D.2 and D.3.

benefit the models in Table 4. To assess the ef-474

fectiveness of popular LLM prompting techniques,475

we conduct experiments with Chain-of-Thought476

(CoT) prompting and 10-shot in-context learning477

(ICL). The results indicate that 10-shot ICL gen-478

erally improved performance across tasks, particu-479

larly for SGDS, SA-SGG, and MA-SGG. These480

tasks require a deeper understanding and struc-481

tured representation of scene graphs, making ICL482

an effective approach. In contrast, CoT prompt-483

ing proved beneficial for reasoning-intensive tasks484

such as SGQA. However, the performance gains485

varied across models. For instance, Qwen-2.5-7B,486

which already exhibited relatively high initial per-487

formance, showed minimal improvement with CoT,488

potentially due to longer prompts introducing con-489

fusion. On the other hand, Mistral-7B, which ini-490

tially demonstrated lower performance, benefited491

significantly from CoT, suggesting that reasoning492

augmentation can compensate for weaker baseline493

capabilities.494

5.4 Can LLMs Refine Errors in Scene495

Graphs?496

We assess whether LLMs have the ability to re-497

fine an incorrect scene graph. To conduct a con-498

trolled analysis, we curated 5,940 data samples499

with different types of errors in the scene graph:500

Redundant (extra triplet), Missing (omitted triplet),501

Mismatched (perturbed element), and Reversed (in-502

Error Type w/o Error Type w/ Error Type

GPT-4o Claude GPT-4o Claude

Overall 40.04 60.03 64.80 88.28
Redundant 64.38 70.02 73.29 93.06
Missing 46.67 82.25 58.42 80.89
Mismatched 10.81 38.29 58.92 81.94
Reversed 44.24 49.55 68.55 97.22

Table 5: Refinement results with and without error-
type awareness, evaluated with the F1-score. “w/o Error
Type” denotes refinement without error type, and “w/ Er-
ror Type” denotes refinement with error type. “Claude”
refers to the Claude-3.5-Sonnet model.

verted directions). Given the context, the descrip- 503

tion, and the erroneous graph, we prompt GPT-4o 504

and Claude-3.5-Sonnet to refine the graph to align 505

with the meaning of d. As shown in Table 5, while 506

both models generally underperform, it stands out 507

for the Mismatched type. These findings highlight 508

the importance of precise interpretation and correc- 509

tion of subtle errors within scene graphs. 510

We further investigate whether the models’ re- 511

finement challenges arise from insufficiently de- 512

tecting error types or from difficulties in correcting 513

errors they have already identified. To address this, 514

we evaluate whether providing the models with 515

ground-truth error-type labels can improve refine- 516

ment. Our results show that with this additional 517

guidance, both models exhibit improved perfor- 518

mance across all types, particularly in Mismatched. 519

These findings indicate that clarity regarding error 520

types facilitates more effective LLM-based scene 521

graph refinement. 522

6 Conclusion 523

We present TSG Bench, a benchmark for assess- 524

ing large language models in scene graph under- 525

standing and generation. TSG Bench comprises 526

textual narratives and corresponding scene graphs 527

to evaluate interpretation, reasoning, and structured 528

representation derivation. Our experiments with 11 529

LLMs revealed moderate success in understanding 530

tasks yet difficulties in generation tasks, with ac- 531

tion decomposition posing the largest obstacle. We 532

believe this study bridges the gap between LLMs 533

and structured scene representations, establishing 534

a foundation for more effective multimodal under- 535

standing and generation. 536

8

Limitations537

In the current study, both SGG tasks of TSG Bench538

involve generating action-centric scene graphs539

from textual narratives. However, the current tex-540

tual narratives do not include object attributes (e.g.,541

color, size), nor does TSG Bench incorporate at-542

tributes in the scene graph generation process. As543

TSG Bench centers on a single actor, tasks do544

not involve additional individuals. Constructing545

a benchmark with more intricate scene graphs, in-546

cluding attributes and multiple actors, could pro-547

vide more comprehensive insights. The primary ob-548

jective of this study is to benchmark widely adopted549

LLMs for scene graph-related tasks, leveraging550

their knowledge and reasoning. Future directions551

may integrate multi-modal approaches, such as uti-552

lizing Vision-Language Models (VLMs) to derive553

textual narratives from images or videos.554

References555

Anthropic. 2024. 2024. The claude 3 model family:556
Opus, sonnet, haiku. Claude-3 Model Card, 1.557

Meta AI. 2024a. Llama 3.3: A multilingual large lan-558
guage model. Accessed: 2025-02-04.559

Mistral AI. 2024b. Mistral large: A cutting-edge text560
generation model. Accessed: 2025-02-04.561

Mistral AI. 2024c. Mixtral 8x22b: A sparse mixture-of-562
experts language model. Accessed: 2025-02-04.563

Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir Zamir,564
Martin Fischer, Jitendra Malik, and Silvio Savarese.565
2019. 3d scene graph: A structure for unified seman-566
tics, 3d space, and camera. 2019 IEEE/CVF Interna-567
tional Conference on Computer Vision (ICCV), pages568
5663–5672.569

Tom Brown, Benjamin Mann, Nick Ryder, Melanie570
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind571
Neelakantan, Pranav Shyam, Girish Sastry, Amanda572
Askell, et al. 2020. Language models are few-shot573
learners. Advances in neural information processing574
systems, 33:1877–1901.575

Xiaojun Chang, Pengzhen Ren, Pengfei Xu, Zhihui Li,576
Xiaojiang Chen, and Alex Hauptmann. 2021. A com-577
prehensive survey of scene graphs: Generation and578
application. IEEE Transactions on Pattern Analysis579
and Machine Intelligence, 45(1):1–26.580

Moitreya Chatterjee, Jonathan Le Roux, Naren-581
dra Ahuja, and Anoop Cherian. 2021. Visual582
scene graphs for audio source separation. 2021583
IEEE/CVF International Conference on Computer584
Vision (ICCV), pages 1184–1193.585

Yuren Cong, Jinhui Yi, Bodo Rosenhahn, and 586
Michael Ying Yang. 2023. Ssgvs: Semantic scene 587
graph-to-video synthesis. In Proceedings of the 588
IEEE/CVF Conference on Computer Vision and Pat- 589
tern Recognition, pages 2555–2565. 590

Zhirui Dai, Arash Asgharivaskasi, Thai P. Duong, 591
Shusen Lin, Maria-Elizabeth Tzes, George J. Pap- 592
pas, and Nikolay Atanasov. 2023. Optimal scene 593
graph planning with large language model guidance. 594
2024 IEEE International Conference on Robotics and 595
Automation (ICRA), pages 14062–14069. 596

DeepSeek-AI. 2024. Deepseek-v3: Advancements in 597
mixture-of-experts language modeling. Accessed: 598
2025-02-04. 599

Gege Gao, Weiyang Liu, Anpei Chen, Andreas Geiger, 600
and Bernhard Schölkopf. 2023. Graphdreamer: Com- 601
positional 3d scene synthesis from scene graphs. 602
2024 IEEE/CVF Conference on Computer Vision and 603
Pattern Recognition (CVPR), pages 21295–21304. 604

Kristen Grauman, Andrew Westbury, Eugene Byrne, 605
Zachary Chavis, Antonino Furnari, Rohit Girdhar, 606
Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu 607
Liu, et al. 2022. Ego4d: Around the world in 3,000 608
hours of egocentric video. In Proceedings of the 609
IEEE/CVF Conference on Computer Vision and Pat- 610
tern Recognition, pages 18995–19012. 611

Marcel Hildebrandt, Hang Li, Rajat Koner, Volker 612
Tresp, and Stephan Günnemann. 2020. Scene graph 613
reasoning for visual question answering. ArXiv, 614
abs/2007.01072. 615

Haoyu Huang, Chong Chen, Conghui He, Yang Li, Ji- 616
awei Jiang, and Wentao Zhang. 2024. Can llms be 617
good graph judger for knowledge graph construction? 618
arXiv preprint arXiv:2411.17388. 619

Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos 620
Niebles. 2020. Action genome: Actions as com- 621
positions of spatio-temporal scene graphs. In Pro- 622
ceedings of the IEEE/CVF Conference on Computer 623
Vision and Pattern Recognition, pages 10236–10247. 624

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia 625
Li, David A. Shamma, Michael S. Bernstein, and 626
Li Fei-Fei. 2015. Image retrieval using scene graphs. 627
2015 IEEE Conference on Computer Vision and Pat- 628
tern Recognition (CVPR), pages 3668–3678. 629

Kibum Kim, Kanghoon Yoon, Jaehyeong Jeon, Yeonjun 630
In, Jinyoung Moon, Donghyun Kim, and Chanyoung 631
Park. 2024. Llm4sgg: Large language models for 632
weakly supervised scene graph generation. In Pro- 633
ceedings of the IEEE/CVF Conference on Computer 634
Vision and Pattern Recognition, pages 28306–28316. 635

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John- 636
son, Kenji Hata, Joshua Kravitz, Stephanie Chen, 637
Yannis Kalantidis, Li-Jia Li, David A. Shamma, 638
Michael S. Bernstein, and Li Fei-Fei. 2016. Vi- 639
sual genome: Connecting language and vision us- 640
ing crowdsourced dense image annotations. Interna- 641
tional Journal of Computer Vision, 123:32 – 73. 642

9

https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md
https://mistral.ai/news/mistral-large/
https://mistral.ai/news/mistral-large/
https://mistral.ai/news/mistral-large/
https://mistral.ai/news/mixtral-8x22b/
https://mistral.ai/news/mixtral-8x22b/
https://mistral.ai/news/mixtral-8x22b/
https://api.semanticscholar.org/CorpusID:203837042
https://api.semanticscholar.org/CorpusID:203837042
https://api.semanticscholar.org/CorpusID:203837042
https://api.semanticscholar.org/CorpusID:237350869
https://api.semanticscholar.org/CorpusID:237350869
https://api.semanticscholar.org/CorpusID:237350869
https://api.semanticscholar.org/CorpusID:262045061
https://api.semanticscholar.org/CorpusID:262045061
https://api.semanticscholar.org/CorpusID:262045061
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf
https://api.semanticscholar.org/CorpusID:265551966
https://api.semanticscholar.org/CorpusID:265551966
https://api.semanticscholar.org/CorpusID:265551966
https://api.semanticscholar.org/CorpusID:220301738
https://api.semanticscholar.org/CorpusID:220301738
https://api.semanticscholar.org/CorpusID:220301738
https://api.semanticscholar.org/CorpusID:16414666
https://api.semanticscholar.org/CorpusID:4492210
https://api.semanticscholar.org/CorpusID:4492210
https://api.semanticscholar.org/CorpusID:4492210
https://api.semanticscholar.org/CorpusID:4492210
https://api.semanticscholar.org/CorpusID:4492210

Zhuang Li, Yuyang Chai, Terry Yue Zhuo, Lizhen643
Qu, Gholamreza Haffari, Fei Li, Donghong Ji, and644
Quan Hung Tran. 2023. Factual: A benchmark for645
faithful and consistent textual scene graph parsing. In646
Annual Meeting of the Association for Computational647
Linguistics.648

OpenAI. 2024. Gpt-4o system card. https://649
cdn.openai.com/gpt-4o-system-card.pdf. Ac-650
cessed: 2024-09-26.651

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-652
Chakra, Ian D Reid, and Niko Suenderhauf. 2023.653
Sayplan: Grounding large language models using 3d654
scene graphs for scalable task planning. CoRR.655

Ivan Rodin, Antonino Furnari, Kyle Min, Subarna Tri-656
pathi, and Giovanni Maria Farinella. 2024. Action657
scene graphs for long-form understanding of egocen-658
tric videos. In Proceedings of the IEEE/CVF Confer-659
ence on Computer Vision and Pattern Recognition,660
pages 18622–18632.661

Antoni Rosinol, Arjun Gupta, Marcus Abate, J. Shi,662
and Luca Carlone. 2020. 3d dynamic scene graphs:663
Actionable spatial perception with places, objects,664
and humans. ArXiv, abs/2002.06289.665

Jiaxin Shi, Hanwang Zhang, and Juan-Zi Li. 2018. Ex-666
plainable and explicit visual reasoning over scene667
graphs. 2019 IEEE/CVF Conference on Computer668
Vision and Pattern Recognition (CVPR), pages 8368–669
8376.670

Jared Strader, Nathan Hughes, William Chen, Alberto671
Speranzon, and Luca Carlone. 2024. Indoor and out-672
door 3d scene graph generation via language-enabled673
spatial ontologies. IEEE Robotics and Automation674
Letters.675

Qwen Team. 2024. Qwen2.5: A party of foundation676
models! Accessed: 2024-02-04.677

Damien Teney, Lingqiao Liu, and Anton van Den Hen-678
gel. 2017. Graph-structured representations for vi-679
sual question answering. In Proceedings of the IEEE680
conference on computer vision and pattern recogni-681
tion, pages 1–9.682

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier683
Martinet, Marie-Anne Lachaux, Timothée Lacroix,684
Baptiste Rozière, Naman Goyal, Eric Hambro,685
Faisal Azhar, et al. 2023. Llama: Open and effi-686
cient foundation language models. arXiv preprint687
arXiv:2302.13971.688

Yao Wei, Martin Renqiang Min, George Vosselman,689
Li Erran Li, and Michael Ying Yang. 2024. Plan-690
ner3d: Llm-enhanced graph prior meets 3d indoor691
scene explicit regularization.692

He Yan, Xinyao Hu, Xiangpeng Wan, Chengyu Huang,693
Kai Zou, and Shiqi Xu. 2023. Inherent limitations694
of llms regarding spatial information. arXiv preprint695
arXiv:2312.03042.696

Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. 2018. 697
Exploring visual relationship for image captioning. 698
In European Conference on Computer Vision. 699

Hang Yin, Xiuwei Xu, Zhenyu Wu, Jie Zhou, and Jiwen 700
Lu. 2024. Sg-nav: Online 3d scene graph prompt- 701
ing for llm-based zero-shot object navigation. arXiv 702
preprint arXiv:2410.08189. 703

Hang Zhang, Zhuoling Li, and Jun Liu. 2024. Scenellm: 704
Implicit language reasoning in llm for dynamic scene 705
graph generation. 706

Appendix 707

A Dataset Construction Details 708

We build upon the Ego-centric Action Scene 709

Graphs (EASG) dataset (Rodin et al., 2024) to cre- 710

ate a benchmark of our database and all four tasks. 711

EASG provides spatio-temporal scene graphs de- 712

rived from first-person video, where each graph 713

encodes actions and objects from the perspective 714

of the camera wearer. Although EASG dataset 715

contains text annotations, they are simple verbal- 716

izations of the graph, without any contextual inter- 717

action between texts in a scenario. We instead aim 718

to construct a database of human-like sentences, 719

ensuring logical flow, contextuality, and complex- 720

ity. For data construction, we perform three main 721

steps, each serving a distinct purpose. All steps are 722

done by a collaboration with an LLM and human 723

annotators. Three annotators worked on human 724

annotation, and they are paid on the hourly rate ex- 725

ceeding $18, based on the estimated time required 726

to complete the tasks. The screenshot of the anno- 727

tation page is shown in Figure 6. 728

Step 1: Narrative annotation. We utilize the 729

scene graphs in EASG dataset, which cover diverse 730

real world scenarios, to generate the initial natu- 731

ral language descriptions by prompting GPT-4o- 732

mini. Then, human annotators remove redundant 733

sentences, add missing necessary sentences, and 734

fix unrealistic sentences (e.g., a single hand from 735

holding multiple objects) considering the context. 736

Step 2: Scene graph annotation. Then, we gen- 737

erate scene graphs with GPT-4o based on each nar- 738

rative resulted from Step 1. Here, we let the model 739

generate elements from the predefined set of the 740

EASG dataset. As the model often fails to generate 741

complete graphs, human workers check each in- 742

stance one by one, whether any mismatch between 743

the description and scene graph exists, including 744

missing elements. During this process, we add 745

10

https://api.semanticscholar.org/CorpusID:258959468
https://api.semanticscholar.org/CorpusID:258959468
https://api.semanticscholar.org/CorpusID:258959468
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf
https://api.semanticscholar.org/CorpusID:211132891
https://api.semanticscholar.org/CorpusID:211132891
https://api.semanticscholar.org/CorpusID:211132891
https://api.semanticscholar.org/CorpusID:211132891
https://api.semanticscholar.org/CorpusID:211132891
https://api.semanticscholar.org/CorpusID:54458106
https://api.semanticscholar.org/CorpusID:54458106
https://api.semanticscholar.org/CorpusID:54458106
https://api.semanticscholar.org/CorpusID:54458106
https://api.semanticscholar.org/CorpusID:54458106
https://huggingface.co/Qwen
https://huggingface.co/Qwen
https://huggingface.co/Qwen
https://api.semanticscholar.org/CorpusID:52304560
https://api.semanticscholar.org/CorpusID:274776384
https://api.semanticscholar.org/CorpusID:274776384
https://api.semanticscholar.org/CorpusID:274776384
https://api.semanticscholar.org/CorpusID:274776384
https://api.semanticscholar.org/CorpusID:274776384

some frequently appearing elements and obtain the746

set of valid nodes and edges for each scenario.747

Step 3: Text quality improvement. Although748

we have annotations for description and scene749

graph pairs, we additionally work on improving750

the quality of the text narratives, in terms of lexical751

diversity, coherency, and complexity. We prompt752

GPT-4o to paraphrase each sentence, given the753

preceding context, and also identify which word754

changes it has made. As this process may pro-755

duce a description containing a similar element in756

the predefined set, which may yield a misleading757

annotation with the reference graph, we skip the758

instance. After paraphrasing, we prompt the model759

again to increase fluency regarding the context (e.g.,760

adding a conjunction or modifier).761

Data construction for understanding tasks.762

For generating questions for SGQA, we provide763

GPT-4o with the entire context in graph form to764

make multi-hop questions. We prompt it to make765

questions about common elements across multiple766

triplets (e.g., first object that had been grabbed), the767

state of nodes under specific conditions (e.g., be-768

fore or after an action happened), etc.. For SGDS,769

we also prompt GPT-4o to perturb the candidates770

to generate sentences with similar words but that771

have different meanings with the reference. To fi-772

nalize, human reviewers inspect and correct these773

questions and answers to ensure accuracy.774

B Experiment Details775

We used OpenRouter (https://openrouter.776

ai/) for LLM prompting experiments. The temper-777

ature for models is set to 0.1 after a pilot study,778

and the scores in the experiment tables are re-779

sults of running the inference only once. We also780

used NLTK(https://www.nltk.org/) for data781

processing, like lemmatization. The human per-782

former is proficient in English and was instructed783

with task guidelines.784

C Additional Analysis785

C.1 Actions that struggle with scene786

segmentation787

We first explore which actions most frequently lead788

to segmentation errors and find that release, put-789

down, hold, place, and pick-up account for the790

majority of failures. These actions are often not791

explicitly mentioned in text, making it challenging792

for LLMs to infer implicit states when textual de- 793

tails are minimal. For instance, models overlook 794

the moment an object is released or fail to recog- 795

nize that an entity is already engaged in an action, 796

causing them to generate incoherent action bound- 797

aries. This tendency arises because the text does 798

not always specify when an action is completed or 799

whether an entity is available for another action, 800

thereby demanding implicit reasoning that LLMs 801

have difficulty performing reliably. 802

C.2 Impact of Repeated Scenes 803

We found that scene graph generation performance 804

suffers notably when repeated actions occur. To in- 805

vestigate whether poor segmentation drives this de- 806

cline, we examined two main patterns of repetition: 807

(1) a single action repeated multiple times (e.g., 808

“knead, knead, knead”), and (2) alternating actions 809

that recur (e.g., “roll, stretch, roll, stretch”). In 810

both patterns, the model often maintains relatively 811

high recall but exhibits a marked drop in precision, 812

which lowers overall performance. Interestingly, 813

when the number of repetitions is small, perfor- 814

mance decreases even further, suggesting that the 815

model can neither clearly merge nor distinctly sep- 816

arate these scenes. Nevertheless, once actions are 817

segmented correctly, generating the corresponding 818

scene graphs becomes less problematic. These find- 819

ings highlight the critical role of reliable segmenta- 820

tion in handling repetitive sequences, emphasizing 821

that errors in early segmentation steps can nega- 822

tively affect downstream tasks. 823

C.3 Navigating Edge Formation Under Varied 824

Information Levels 825

We examined how sentence length and edge density 826

influence generation quality. In lengthy sentences 827

with few relations, LLMs can often filter out irrele- 828

vant details while maintaining precision. However, 829

short sentences with numerous implied relation- 830

ships (e.g., hand usages, repeated actions) provide 831

limited explicit cues, requiring the model to infer 832

missing links. While LLMs manage noisy sen- 833

tences reasonably well, their performance weakens 834

when extensive inference is needed with minimal 835

textual guidance. 836

C.4 Hallucination in Scene Graph Generation 837

It is widely recognized that LLMs exhibit a hallu- 838

cination issue, and in this study, we investigated 839

whether the same problem arises in both our scene 840

graph generation and understanding tasks. Each 841

11

https://openrouter.ai/
https://openrouter.ai/
https://openrouter.ai/
https://www.nltk.org/

Figure 6: Example interface of the TSG Editor, designed to facilitate the creation of scene graph datasets from
multiple scenarios. The left panel shows the list of scenarios with their completion statuses, while the right panel
allows for specifying details such as action goals, hands used, objects, and relationship triplets.

Figure 7: The distribution of the top 5 actions where
segmentation difficulties occur most frequently in scene
graph generation.

task maintains its own predefined collection L,842

and the total number of predefined elements used843

in both the understanding and generation tasks is844

26,725. If a word not included in these collections845

appears, we consider it a hallucination, and based846

on this criterion, we measured the hallucination847

occurrence rate in scene graph-related tasks.848

Model Total Desc. New.
Claude-3.5-Sonnet 17 14 3
GPT-4o 215 156 59
Mistral-7B 616 235 381
Qwen-2.5-7B 395 192 203

Table 6: Hallucination counts for each model, showing
the total number, those semantically similar to the words
in the description, and those entirely unrelated. “Desc.”
indicates “Description Elements.” and “New.” indicates
“New Elements.”

Our experimental results revealed that halluci-849

Figure 8: Comparison of aggregated ChatGPT+Claude
(C&C) results under different repetition conditions: (1)
All repeated scenes, (2) Multiple repetitions (≥ 2 Reps),
and (3) Single-repetition (Single Rep) scenarios.

nations do occur; however, when considering the 850

total number of predefined elements, the absolute 851

count of such occurrences was relatively low. To 852

analyze these hallucinations more precisely, we cat- 853

egorized them into two groups: (1) those caused by 854

generating words semantically similar to elements 855

mentioned in the description, and (2) those arising 856

from producing entirely new words. 857

As shown in Table 1, while larger models mostly 858

exhibit hallucinations by producing words that are 859

semantically similar to those in the description, 860

smaller models not only demonstrate a higher over- 861

all hallucination rate but also tend to generate en- 862

tirely new words, highlighting their increased sus- 863

ceptibility to hallucination. 864

We hypothesize that increasing the temperature 865

in LLMs may lead to a higher incidence of hallu- 866

12

Figure 9: The results show F1 performance between
multiple action scene graph(M) and single action scene
graph(S) approaches across description-to-edge ratio
ranges. The histogram represents sample frequencies in
each ratio range.

cinations, as the model gains more freedom in its867

responses. Our prior experiments employed a tem-868

perature setting of 0.1. For the new experiments,869

we set the temperature to 1.0. Under otherwise870

identical conditions, we observed a slight increase871

in hallucinations.872

Model Temp. Total Desc. New.

Claude-3.5-Sonnet
0.1 17 14 3
1.0 21 13 8

GPT-4o
0.1 215 156 59
1.0 233 156 77

Table 7: Comparison of experimental results under two
temperature settings (0.1 vs. 1.0), showing changes
with all other conditions held constant.“Temp.” indi-
cates “Temperature,”, “Desc.” indicates “Description
Elements.” and “New.” indicates “New Elements.”

In addition to observing an increased rate of873

hallucinations in both nodes and edges, we inves-874

tigated whether performance deteriorates in the875

multiple-action scene graph generation task as well.876

Our experimental results show that GPT-4o’s per-877

formance dropped from 43.99 to 39.72, while Son-878

net’s performance fell from 58.8 to 56.8, con-879

firming a noticeable decline. In summary, these880

findings suggest that the increased temperature of881

LLMs can occasionally undermine performance882

when generating structured representations.883

C.5 Case Study for Descriptions with 884

Repetitive Action 885

The failure cases are shown in Table 8. 886

Case 1

[Context]
... The wood was then positioned on the cardboard, ready
for the next steps. The process began by picking up the
stick. The stick was then put into the paint can and used to
stir the paint thoroughly.

[Description]
This stirring step was repeated two more times to ensure
the paint was well-mixed.

[Nodes in the Reference Graph]
V1: person, stir, stick, ...
V2: person, stir, stick, ...

[Nodes in the Generated Graph]
V1: person, stir, stick, ...
V2: person, paint, stick, ...

Case 2

[Context]
The painting process began by preparing the paintbrush,
dipping it into the paint, and applying it to the railing.

[Description]
The railing was painted with the paintbrush, ensuring even
coverage. This step was repeated three times to achieve a
consistent finish.

[Nodes in the Reference Graph]
V1: person, paint, paintbrush, ...
V2: person, paint, paintbrush, ...
V3: person, paint, paintbrush, ...

[Nodes in the Generated Graph]
V1: person, pick-up, paintbrush, ...
V2: person, dip, paintbrush, ...
V3: person, paint, paintbrush, ...

Table 8: Failure cases in generating scene graphs for
sequences of repetitive actions. Vj represents the set of
nodes in the j-th graph corresponding to the description.

C.6 Details for Performance 887

This subsection provides supplemental information 888

for two aspects. First, we evaluate the model’s abil- 889

ity to detect edges and nodes when explicit action is 890

omitted (Edge and Node w/o Action Performance). 891

Second, we present Action Segmentation Results 892

using the Longest Common Subsequence (LCS) 893

approach, reported in terms of Precision, Recall, 894

and Action F1. The complete findings for these 895

metrics can be found in Table 10 and Table 9. 896

C.7 Details for Data Distribution 897

The distribution of scene graph objects, relation- 898

ships and verbs in the dataset is visually summa- 899

rized in Figure 11, 10 and 12. 900

13

Model Precision Recall F1 Score

Human 95.38 93.84 94.60

GPT-4o 67.45 85.24 73.15
GPT-4o-mini 56.43 73.35 61.22
Claude-3.5-Sonnet 74.58 85.12 77.85
Claude-3.5-Haiku 60.85 74.72 61.62

LLaMA-3.3-70B 63.33 76.45 66.37
Qwen-2.5-72B 68.02 75.45 68.67
DeepSeek-V3 57.11 78.28 62.93
Mixtral-8x22B 52.27 76.36 58.67
Mistral-large 60.37 73.76 63.48
Qwen-2.5-7B 66.56 72.37 67.57
Mistral-7B 19.47 64.04 27.42

Table 9: Action segmentation results using LCS for
Precision, Recall, and Action F1.

D Prompts901

D.1 Zero-shot Prompts902

This section provides full prompt. Each prompt is903

formulated to clearly specify input formats, rules904

for processing these inputs, and the exact manner905

in which the output should be generated.906

• SGDS Task: Figure 13907

• SGQA Task: Figure 14908

• SA-SGG Task: Figure 15909

• MA-SGG Task: Figure 16910

D.2 Chain of Thought Prompts911

In addition to the base prompt, we incorporated a912

minimal form of Chain-of-Thought (CoT) prompt-913

ing to guide the reasoning process.914

• SGDS Task: Figure 17915

• SGQA Task: Figure 18916

• SA-SGG Task: Figure 19917

• MA-SGG Task: Figure 20918

D.3 Few-shot Prompts919

We employed a few-shot prompt with ten examples920

(10-shot), allowing the model to observe multiple921

instances of input-output pairs.922

• SGDS Task: Figure 21923

• SGQA Task: Figure 22924

• SA-SGG Task: Figure 23925

• MA-SGG Task: Figure 24926

14

Figure 10: The distribution of relationships in the scene graph dataset, with “with” appearing most frequently,
followed by “on” and “from.”

Figure 11: The frequency distribution of scene graph objects on a logarithmic scale, with “hand1” and “others”
standing out as the most frequently occurring categories

15

Models
Edge Node

Single Multiple Single Multiple

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

GPT-4o 86.88 82.90 84.42 81.31 79.25 79.80 83.15 80.76 81.70 76.44 74.92 75.29
GPT-4o-mini 53.44 52.72 52.88 48.11 51.85 49.53 78.53 77.28 77.53 69.14 71.89 69.87
Claude-3.5-Sonnet 93.46 93.92 93.64 87.56 92.59 89.65 87.65 88.71 87.87 85.15 86.86 85.59
Claude-3.5-Haiku 78.97 76.52 77.47 73.04 75.06 73.72 75.96 72.23 73.53 67.78 70.54 68.61
LLaMA-3.3-70B 64.05 73.68 67.84 63.62 73.28 67.42 81.47 81.70 81.27 75.65 80.61 77.11
Qwen-2.5-72B 82.98 81.92 82.32 84.53 82.19 79.74 80.39 81.56 71.18 74.74 74.75 70.68
DeepSeek-V3 81.73 81.64 81.60 85.95 77.26 82.28 82.63 83.77 74.47 77.77 77.77 72.93
Mixtral-8x22B 62.26 64.22 62.87 79.67 64.36 72.43 68.11 75.13 54.43 59.38 59.38 58.67
mistral-large-2411 84.85 83.67 84.07 83.70 83.90 84.57 74.91 83.74 72.91 73.16 73.16 69.87
Qwen-2.5-7b 19.59 18.17 18.58 14.37 16.52 14.99 77.80 72.74 74.29 56.56 69.33 60.74
Mistral-7b 37.21 35.97 36.09 24.69 30.02 26.30 52.94 50.85 50.10 37.10 49.34 40.12

Table 10: Edge and Node w/o Action Performance (%)

Figure 12: The frequency distribution of verbs in the scene graph, with “others” as the dominant category, followed
by “pick up,” “place,” and “put down” among the most frequent specific actions.

16

Prompts

You are an AI that analyzes a Scene Graph based on the context and select the best text description of it among the
given candidates.

1. Input:
- Context: A list of scene graphs representing the preceding context.
- Each graph is composed of a set of triplets ‘[node1, edge, node2]‘. ‘node1‘ and ‘node2‘ are one of person, action,
object and hand. ‘edge‘ represents the relationship between them (e.g., ‘verb‘, ‘dobj‘, ‘from‘, ‘with‘).
- Target Scene Graph: A set of triplets that should be described into text correctly.
- Description Candidates: Candidates of sentence descriptions of the Target Scene Graph based on the Context.

2. Task:
- Determine which description best matches the Target Scene Graph.

3. Output:
- Be sure to choose only one letter of the matching description.
- Do not output any additional text or explanation. Only the letter in [] (e.g., [A]).

Key rules of edges in a triplet:
- ‘verb‘ describes the action performed by ‘person‘.
- ‘dobj‘ links the action to its direct object (‘node2‘).
- Other edges like ‘from‘ and ‘with‘ describe spatial relationships between nodes.

Input:
- Context: {context}
- Target Scene Graph: {triplet}
- Description Candidates:
{sentences}

Figure 13: The zero-shot prompt for scene graph description selection tasks.

Prompts

You are a highly advanced language model specialized in answering questions based on a given scene graph and
question. Your task is to analyze the scene graph and provide the correct answer in a single word. Your output must
strictly follow the format [answer], and nothing else should be printed. Ensure that your answer is concise, accurate,
and matches the format exactly.

Scene Graph: {scene_graph}
Question: {question}

Figure 14: The zero-shot prompt for scene graph question answering tasks.

17

Prompts

You are an AI model tasked with generating a scene graph based on a given sentence, adhering to specific rules for the
graph, nodes, and edges, while considering the provided context, available nodes, and available edges.

Rules for Scene Graph Representation:
1. A graph is composed of one or more triplets of nodes and edges.
2. A triplet starts with a node and another node is connected by an edge. (Format: node -> edge -> node)
3. Each triplet is split with a new line.
4. There must be a triplet that starts with a person node.
5. All nodes and edges must be one of "Available nodes" or "Available edges" provided.

Rules for Node:
1. A node can be person, any action, any object, or any hand.
2. A node may appear explicitly or be hidden implicitly in the given sentence. Consider the context to identify the node.
3. Map synonyms or semantically similar words to nodes in the "Available nodes" list.
4. Use default tools or body parts for actions that imply them (e.g., hands for grasping).
5. Include "person" as the starting node in the graph.

Special Rules for Hand Node:
1. If both hands are empty and a node is grasped, represent it as "hand1."
2. If one hand holds a node and another node is grasped, represent it as "hand2."
3. If all hands release their objects, reset the next grasping hand to "hand1."
4. Ensure "hand1" and "hand2" are used contextually to avoid overlap or ambiguity.
5. If the sentence implies using both hands (e.g., lifting a large object), represent both hands explicitly (e.g., hand1,
hand2).

Rules for Edge:
1. An edge can be verb, dobj, or any preposition.
2. Map synonyms or semantically similar words to edges in the "Available edges" list.
1. verb: can only connect person and an action node. (e.g., person -> verb -> add)
2. dobj: connects an action and an object node, only when it is the direct object of the action (e.g., add -> dobj -> flour)
3. preposition: connects one of the four types of node pairs: action & object / action & hand / object & object / hand &
object (e.g., take -> from -> table)

Output Format: The output must consist of triplets (one per line) in the format below. node -> edge -> node
node -> edge -> node ...

Use only the "Available nodes" and "Available edges" provided. No additional text, explanations, or format-
ting should be included.

Inputs:
Context: {context}
Target sentence: {target_sentence}
Available nodes: {available_nodes}
Available edges: {available_edges}

Figure 15: The zero-shot prompt for single action scene graph generation tasks.

18

Prompts

You are an AI model tasked with generating scene graphs based on a given sentence. Your goal is to create exactly the
specified number of scene graphs by extracting meaningful relationships between entities, actions, and objects while
ensuring that the scene graphs represent actions that would visually appear in a scene.

Rules for Generating Multiple Scene Graphs:
1. Generate precisely {num_scene_graphs} scene graphs—no more, no less.
2. Each scene graph must depict an action that would be explicitly visible in a scene.
3. If the sentence contains multiple implicit actions, distribute them among the scene graphs while ensuring the total
count matches {num_scene_graphs}.
4. If there are fewer visible actions than {num_scene_graphs}, **additional relevant actions may be inferred** to reach
the required count.
5. However, use only the "Available Nodes" and "Available Edges" provided. **If a necessary node is missing, use the
closest semantically matching node from the available list**.
6. Ensure each graph maintains logical coherence while including essential contextual elements.

Rules for A Scene Graph Representation:
1. A graph is composed of one or more triplets of nodes and edges.
2. A triplet starts with a node and another node is connected by an edge. (Format: node -> edge -> node)
3. Each triplet is split with a new line.
4. There must be exactly one triplet that starts with a person node in a graph.
5. All nodes and edges must be one of "Available nodes" or "Available edges" provided.

Rules for Node:
1. A node can be person, any action, any object, or any hand.
2. A node may appear explicitly or be hidden implicitly in the given sentence. Consider the context to identify the node
from the "Available nodes" list, but do not create a new one.
3. Map synonyms or semantically similar words to nodes in the "Available nodes" list.
4. Use default tools or body parts for actions that imply them (e.g., hands for grasping).
5. Treat each action as a node.
6. Include "person" as the starting node in the graph.

Special Rules for Hand Node:
1. If both hands are empty and a node is grasped, represent it as "hand1."
2. If one hand holds a node and another node is grasped, represent it as "hand2."
3. If all hands release their objects, reset the next grasping hand to "hand1."
4. Ensure "hand1" and "hand2" are used contextually to avoid overlap or ambiguity.
5. If the sentence implies using both hands (e.g., lifting a large object), represent both hands explicitly (e.g., hand1,
hand2).

Rules for Edge:
1. An edge can be verb, dobj, or any preposition.
2. Use only the edges listed under "Available edges."
3. Here are the explanations for each edge.
- verb: can only connect person and an action node. (e.g., person -> verb -> add) - dobj: connects an action and an
object node, only when it is the direct object of the action (e.g., add -> dobj -> flour) - preposition: connects one of
the four types of node pairs: action & object / action & hand / object & object / hand & object (e.g., take -> from -> table)

Output Format:
The output must consist of exactly {num_scene_graphs} scene graphs, each separated with a blank line. For a graph,
output one triplet per line. Follow the format below (an example of three scene graphs of multiple triplets):
node -> edge -> node
node -> edge -> node
...

node -> edge -> node
node -> edge -> node
...

node -> edge -> node
node -> edge -> node
...

Use only the "Available Nodes" and "Available Edges" provided. No additional text, explanations, or format-
ting should be included.

Inputs:
- Context: {context}
- Target sentence: {target_sentence}
- Available nodes: {available_nodes}
- Available edges: {available_edges}
- Number of Scene Graphs: {num_scene_graphs}

Figure 16: The zero-shot prompt for multiple action scene graph generation tasks.

19

Prompts

You are an AI that analyzes a Scene Graph based on the context and select the best text description of it among the
given candidates.

1. Input:
- Context: A list of scene graphs representing the preceding context.
- Each graph is composed of a set of triplets [node1, edge, node2]. ‘node1‘ and ‘node2‘ are one of person, action, object
and hand. ‘edge‘ represents the relationship between them (e.g., ‘verb‘, ‘dobj‘, ‘from‘, ‘with‘).
- Target Scene Graph: A set of triplets that should be described into text correctly.
- Description Candidates: Candidates of sentence descriptions of the Target Scene Graph based on the Context.

2. Task:
- Think step-by-step and determine which description best matches the Target Scene Graph.

3. Output:
- Output your rationale under "Think:"
- Then, output your final answer under "Final Answer:"
- For the final answer, be sure to choose only one letter of the matching description and write it in the format of (e.g.,
[X]), where "X" represents a single alphabet letter.

Key rules of edges in a triplet:
- ‘verb‘ describes the action performed by ‘person‘.
- ‘dobj‘ links the action to its direct object (‘node2‘).
- Other edges like ‘from‘ and ‘with‘ describe spatial relationships between nodes.

Input:
- Context: {context}
- Target Scene Graph: {triplet}
- Description Candidates:
{sentences}

Now, think step-by-step and output the final answer.
Think:

Figure 17: CoT prompt for scene graph description selection tasks.

Prompts

You are a highly advanced language model specialized in answering questions based on a given scene graph and a
question. Your task is to analyze the scene graphs and provide the correct answer in a single word. Think step-by-step
under "Think:", and generate the final answer under "Final Answer:". Ensure that your final answer is a single word in
the triplet, and do not generate additional explanations after it.

Scene Graph: {scene_graph}
Question: {question}

Think:

Figure 18: CoT prompt for scene graph question answering tasks.

20

Prompts

You are an AI model tasked with generating a scene graph based on a given sentence, adhering to specific rules for
the graph, nodes, and edges, while considering the provided context, available nodes, and available edges. Think
step-by-step and generate the graph in triplets. (Stick only to the target sentence and avoid over-predicting the next scene.)

Rules for Scene Graph Representation:
1. A graph is composed of one or more triplets of nodes and edges.
2. A triplet starts with a node and another node is connected by an edge. (Format: node -> edge -> node)
3. Each triplet is split with a new line.
4. There must be a triplet that starts with a person node.
5. All nodes and edges must be one of "Available nodes" or "Available edges" provided.

Rules for Node:
1. A node can be person, any action, any object, or any hand.
2. A node may appear explicitly or be hidden implicitly in the given sentence. Consider the context to identify the node.
3. Map synonyms or semantically similar words to nodes in the "Available nodes" list.
4. Use default tools or body parts for actions that imply them (e.g., hands for grasping).
5. Include "person" as the starting node in the graph.

Special Rules for Hand Node:
1. If both hands are empty and a node is grasped, represent it as "hand1."
2. If one hand holds a node and another node is grasped, represent it as "hand2."
3. If all hands release their objects, reset the next grasping hand to "hand1."
4. Ensure "hand1" and "hand2" are used contextually to avoid overlap or ambiguity.
5. If the sentence implies using both hands (e.g., lifting a large object), represent both hands explicitly (e.g., hand1,
hand2).

Rules for Edge:
1. An edge can be verb, dobj, or any preposition.
2. Use only the edges listed under "Available edges."
3. Here are the explanations for each edge.
- verb: can only connect person and an action node. (e.g., person -> verb -> add)
- dobj: connects an action and an object node, only when it is the direct object of the action (e.g., add -> dobj -> flour)
- preposition: connects one of the four types of node pairs: action & object / action & hand / object & object / hand &
object (e.g., take -> from -> table)

Output Format:
The output must consist of your rationale and triplets (one per line) in the format below.
Think:
(Write your rationale here, but do not predict the next scene)

Scene Graph:
node -> edge -> node
node -> edge -> node
...

Use only the "Available nodes" and "Available edges" provided, and follow the format correctly. After generating the
scene graph, no additional text or explanations should be included.

Inputs:
Context: {context}
Target sentence: {target_sentence}
Available nodes: {available_nodes}
Available edges: {available_edges}

Think:

Figure 19: CoT prompt for single action scene graph generation tasks.

21

Prompts

You are an AI model tasked with generating scene graphs based on a given sentence. Your goal is to create exactly the
specified number of scene graphs by extracting meaningful relationships between entities, actions, and objects while
ensuring that the scene graphs represent actions that would visually appear in a scene. Read the rules below and think
step-by-step to generate correct scene graphs that represent the target sentence.

Rules for Generating Multiple Scene Graphs:
1. Generate precisely {num_scene_graphs} scene graphs—no more, no less.
2. Each scene graph must depict an action that would be explicitly visible in a scene.
3. If the sentence contains multiple implicit actions, distribute them among the scene graphs while ensuring the total
count matches {num_scene_graphs}.
4. If there are fewer visible actions than {num_scene_graphs}, additional relevant actions may be inferred to reach the
required count.
5. However, use only the "Available Nodes" and "Available Edges" provided. If a necessary node is missing, use the
closest semantically matching node from the available list.
6. Ensure each graph maintains logical coherence while including essential contextual elements.

Rules for A Scene Graph Representation:
1. A graph is composed of one or more triplets of nodes and edges.
2. A triplet starts with a node and another node is connected by an edge. (Format: node -> edge -> node)
3. Each triplet is split with a new line.
4. There must be exactly one triplet that starts with a person node in a graph.
5. All nodes and edges must be one of "Available nodes" or "Available edges" provided.

Rules for Node:
1. A node can be person, any action, any object, or any hand.
2. A node may appear explicitly or be hidden implicitly in the given sentence. Consider the context to identify the node
from the "Available nodes" list, but do not create a new one.
3. Map synonyms or semantically similar words to nodes in the "Available nodes" list.
4. Use default tools or body parts for actions that imply them (e.g., hands for grasping).
5. Treat each action as a node.
6. Include "person" as the starting node in the graph.

Special Rules for Hand Node:
1. If both hands are empty and a node is grasped, represent it as "hand1."
2. If one hand holds a node and another node is grasped, represent it as "hand2."
3. If all hands release their objects, reset the next grasping hand to "hand1."
4. Ensure "hand1" and "hand2" are used contextually to avoid overlap or ambiguity.
5. If the sentence implies using both hands (e.g., lifting a large object), represent both hands explicitly (e.g., hand1,
hand2).

Rules for Edge:
1. An edge can be verb, dobj, or any preposition.
2. Use only the edges listed under "Available edges."
3. Here are the explanations for each edge.
- verb: can only connect person and an action node. (e.g., person -> verb -> add)
- dobj: connects an action and an object node, only when it is the direct object of the action (e.g., add -> dobj -> flour)
- preposition: connects one of the four types of node pairs: action & object / action & hand / object & object / hand &
object (e.g., take -> from -> table)

Output Format:
The output must consist of your rationale and exactly {num_scene_graphs} scene graphs, each separated with a blank
line. For a graph, output one triplet per line. Follow the format below (an example of three scene graphs of multiple
triplets):
Think:
(Write your rationale here)

node -> edge -> node
node -> edge -> node
...

node -> edge -> node
node -> edge -> node
...

node -> edge -> node
node -> edge -> node
...

Use only the "Available Nodes" and "Available Edges" provided. After generating the scene graphs, no additional text
or explanations should be included.

Inputs:
- Context: {context}
- Target sentence: {target_sentence}
- Available nodes: {available_nodes}
- Available edges: {available_edges}
- Number of Scene Graphs: {num_scene_graphs}
Think:

Figure 20: CoT prompt for multiple action scene graph generation tasks.

22

Prompts

You are an AI that analyzes a Scene Graph based on the context and select the best text description of it among the
given candidates.

1. Input:
- Context: A list of scene graphs representing the preceding context.
- Each graph is composed of a set of triplets [node1, edge, node2]. ‘node1‘ and ‘node2‘ are one of person, action, object
and hand. ‘edge‘ represents the relationship between them (e.g., ‘verb‘, ‘dobj‘, ‘from‘, ‘with‘).
- Target Scene Graph: A set of triplets that should be described into text correctly.
- Description Candidates: Candidates of sentence descriptions of the Target Scene Graph based on the Context.

2. Task:
- Determine which description best matches the Target Scene Graph.

3. Output:
- Be sure to choose only one letter of the matching description.
- Do not output any additional text or explanation. Only the letter in [] (e.g., [A]).

Key rules of edges in a triplet:
- ‘verb‘ describes the action performed by ‘person‘.
- ‘dobj‘ links the action to its direct object (‘node2‘).
- Other edges like ‘from‘ and ‘with‘ describe spatial relationships between nodes.

Example Input 1:
- Context: [[[’arrange’, ’with’, ’hand1’], [’arrange’, ’with’, ’hand2’], [’arrange’, ’dobj’, ’book’], [’person’, ’verb’,
’arrange’]], [[’put’, ’dobj’, ’book’], [’put’, ’on’, ’floor’], [’put’, ’with’, ’hand1’], [’put’, ’with’, ’hand2’], [’person’,
’verb’, ’put’]], [[’put’, ’dobj’, ’book’], [’put’, ’on’, ’bookshelf’], [’put’, ’with’, ’hand1’], [’put’, ’with’, ’hand2’],
[’person’, ’verb’, ’put’]]]
- Target Scene Graph: [[’align’, ’with’, ’hand1’], [’align’, ’with’, ’hand2’], [’align’, ’dobj’, ’book’], [’align’, ’on’,
’bookshelf’], [’person’, ’verb’, ’align’]]
- Description Candidates:
A: Finally, the flask was set down.
B: It was then aligned neatly on the shelf using both hands.
C: After achieving the desired consistency, the stick was removed from the paint can.
D: The cord was then sliced using the cord cutter.
E: Once the massaging was complete, the batter was positioned back on the counter with both hands.

Example Output 1:
[B]

...

Example Input 10:
- Context: [[[’pick-up’, ’with’, ’hand1’], [’pick-up’, ’with’, ’hand2’], [’pick-up’, ’dobj’, ’rope’], [’person’, ’verb’,
’pick-up’]], [[’tie’, ’with’, ’hand1’], [’tie’, ’with’, ’hand2’], [’tie’, ’dobj’, ’rope’], [’tie’, ’around’, ’plant’], [’person’,
’verb’, ’tie’]]]
- Target Scene Graph: [[’pull’, ’with’, ’hand1’], [’pull’, ’with’, ’hand2’], [’pull’, ’dobj’, ’rope’], [’person’, ’verb’, ’pull’],
[’pull’, ’to’, ’tighten’]]
- Description Candidates:
A: The rope was then pushed loose with both hands to ensure a relaxed hold.
B: The rope was then pulled slack with one hand to ensure a loose grip.
C: The rope was then pulled tight with both hands to ensure a firm grip.
D: The rope was then dropped with both hands to ensure it stayed untightened.
E: The rope was then pulled apart with no hands to ensure it remained loose.

Example Output 10:
[C]

Input:
- Context: {context}
- Target Scene Graph: {triplet}
- Description Candidates:
{sentences}

Output:

Figure 21: Few-shot prompt for scene graph description selection tasks.

23

Prompts

You are a highly advanced language model specialized in answering questions based on a given scene graph and
question. Your task is to analyze the scene graph and provide the correct answer in a single word. Your output must
strictly follow the format [answer], and nothing else should be printed. Ensure that your answer is concise, accurate,
and matches the format exactly.

Example Input 1:
Scene Graph: [[["person", "verb", "pick-up"], ["pick-up", "dobj", "screw"], ["pick-up", "from", "bowl"], ["pick-up",
"with", "hand2"]], [["person", "verb", "position"], ["position", "dobj", "screw"], ["position", "on", "furniture-piece"],
["position", "with", "hand2"]]]
Question: What object was positioned immediately after being picked up from the bowl?

Example Output 1:
[screw]

...

Example Input 10:
Scene Graph: [[["person", "verb", "pick-up"], ["pick-up", "with", "hand1"], ["pick-up", "dobj", "mop-stick"]],
[["person", "verb", "sweep"], ["sweep", "with", "hand1"], ["sweep", "with", "hand2"], ["sweep", "with", "mop-stick"],
["sweep", "dobj", "floor"], ["sweep", "in", "car"]], [["person", "verb", "close"], ["close", "with", "hand1"], ["close",
"dobj", "door"]], [["person", "verb", "place"], ["place", "with", "hand2"], ["place", "dobj", "mop-stick"], ["place", "on",
"floor"]], [["person", "verb", "open"], ["open", "dobj", "door"], ["open", "with", "hand2"]], [["person", "verb", "put"],
["put", "dobj", "cloth"], ["put", "inside", "car"], ["put", "with", "hand1"]], [["person", "verb", "move"], ["move", "to",
"cabinet"]], [["person", "verb", "open"], ["open", "dobj", "cabinet"], ["open", "with", "hand1"]], [["person", "verb",
"pick-up"], ["pick-up", "with", "hand1"], ["pick-up", "dobj", "cloth"]], [["person", "verb", "move"], ["move", "to",
"wall"], ["hand1", "in", "cloth"], ["move", "with", "hand1"]], [["person", "verb", "pick"], ["pick", "with", "hand2"],
["pick", "from", "wall"], ["pick", "dobj", "mop-stick"]]]
Question: What object was picked up before sweeping the floor?

Example Output 10:
[mop-stick]

Input:
Scene Graph: {scene_graph}
Question: {question}

Output:

Figure 22: Few-shot prompt for scene graph qusetion answering tasks.

24

Prompts

You are an AI that analyzes a Scene Graph based on the context and select the best text description of it among the
given candidates.

1. Input:
- Context: A list of scene graphs representing the preceding context.
- Each graph is composed of a set of triplets [node1, edge, node2]. ‘node1‘ and ‘node2‘ are one of person, action, object
and hand. ‘edge‘ represents the relationship between them (e.g., ‘verb‘, ‘dobj‘, ‘from‘, ‘with‘).
- Target Scene Graph: A set of triplets that should be described into text correctly.
- Description Candidates: Candidates of sentence descriptions of the Target Scene Graph based on the Context.

2. Task:
- Determine which description best matches the Target Scene Graph.

3. Output:
- Be sure to choose only one letter of the matching description.
- Do not output any additional text or explanation. Only the letter in [] (e.g., [A]).

Key rules of edges in a triplet:
- ‘verb‘ describes the action performed by ‘person‘.
- ‘dobj‘ links the action to its direct object (‘node2‘).
- Other edges like ‘from‘ and ‘with‘ describe spatial relationships between nodes.

Example Input 1:
- Context: [[[’arrange’, ’with’, ’hand1’], [’arrange’, ’with’, ’hand2’], [’arrange’, ’dobj’, ’book’], [’person’, ’verb’,
’arrange’]], [[’put’, ’dobj’, ’book’], [’put’, ’on’, ’floor’], [’put’, ’with’, ’hand1’], [’put’, ’with’, ’hand2’], [’person’,
’verb’, ’put’]], [[’put’, ’dobj’, ’book’], [’put’, ’on’, ’bookshelf’], [’put’, ’with’, ’hand1’], [’put’, ’with’, ’hand2’],
[’person’, ’verb’, ’put’]]]
- Target Scene Graph: [[’align’, ’with’, ’hand1’], [’align’, ’with’, ’hand2’], [’align’, ’dobj’, ’book’], [’align’, ’on’,
’bookshelf’], [’person’, ’verb’, ’align’]]
- Description Candidates:
A: Finally, the flask was set down.
B: It was then aligned neatly on the shelf using both hands.
C: After achieving the desired consistency, the stick was removed from the paint can.
D: The cord was then sliced using the cord cutter.
E: Once the massaging was complete, the batter was positioned back on the counter with both hands.

Example Output 1:
[B]

...

Example Input 10:
- Context: [[[’pick-up’, ’with’, ’hand1’], [’pick-up’, ’with’, ’hand2’], [’pick-up’, ’dobj’, ’rope’], [’person’, ’verb’,
’pick-up’]], [[’tie’, ’with’, ’hand1’], [’tie’, ’with’, ’hand2’], [’tie’, ’dobj’, ’rope’], [’tie’, ’around’, ’plant’], [’person’,
’verb’, ’tie’]]]
- Target Scene Graph: [[’pull’, ’with’, ’hand1’], [’pull’, ’with’, ’hand2’], [’pull’, ’dobj’, ’rope’], [’person’, ’verb’, ’pull’],
[’pull’, ’to’, ’tighten’]]
- Description Candidates:
A: The rope was then pushed loose with both hands to ensure a relaxed hold.
B: The rope was then pulled slack with one hand to ensure a loose grip.
C: The rope was then pulled tight with both hands to ensure a firm grip.
D: The rope was then dropped with both hands to ensure it stayed untightened.
E: The rope was then pulled apart with no hands to ensure it remained loose.

Example Output 10:
[C]

Input:
- Context: {context}
- Target Scene Graph: {triplet}
- Description Candidates:
{sentences}

Output:

Figure 23: Few-shot prompt for single action scene graph generation tasks.

25

Prompts

You are an AI model tasked with generating scene graphs based on a given sentence. Your goal is to create exactly the
specified number of scene graphs by extracting meaningful relationships between entities, actions, and objects while
ensuring that the scene graphs represent actions that would visually appear in a scene.

Rules for Generating Multiple Scene Graphs:
1. Generate precisely {num_scene_graphs} scene graphs—no more, no less.
2. Each scene graph must depict an action that would be explicitly visible in a scene.
3. If the sentence contains multiple implicit actions, distribute them among the scene graphs while ensuring the total
count matches {num_scene_graphs}.
4. If there are fewer visible actions than {num_scene_graphs}, additional relevant actions may be inferred to reach the
required count.
5. However, use only the "Available Nodes" and "Available Edges" provided. If a necessary node is missing, use the
closest semantically matching node from the available list.
6. Ensure each graph maintains logical coherence while including essential contextual elements.

Rules for A Scene Graph Representation:
1. A graph is composed of one or more triplets of nodes and edges.
2. A triplet starts with a node and another node is connected by an edge. (Format: node -> edge -> node)
3. Each triplet is split with a new line.
4. There must be exactly one triplet that starts with a person node in a graph.
5. All nodes and edges must be one of "Available nodes" or "Available edges" provided.

Rules for Node:
1. A node can be person, any action, any object, or any hand.
2. A node may appear explicitly or be hidden implicitly in the given sentence. Consider the context to identify the node
from the "Available nodes" list, but do not create a new one.
3. Map synonyms or semantically similar words to nodes in the "Available nodes" list.
4. Use default tools or body parts for actions that imply them (e.g., hands for grasping).
5. Treat each action as a node.
6. Include "person" as the starting node in the graph.

Special Rules for Hand Node:
1. If both hands are empty and a node is grasped, represent it as "hand1."
2. If one hand holds a node and another node is grasped, represent it as "hand2."
3. If all hands release their objects, reset the next grasping hand to "hand1."
4. Ensure "hand1" and "hand2" are used contextually to avoid overlap or ambiguity.
5. If the sentence implies using both hands (e.g., lifting a large object), represent both hands explicitly (e.g., hand1,
hand2).

Rules for Edge:
1. An edge can be verb, dobj, or any preposition.
2. Use only the edges listed under "Available edges."
3. Here are the explanations for each edge.
- verb: can only connect person and an action node. (e.g., person -> verb -> add)
- dobj: connects an action and an object node, only when it is the direct object of the action (e.g., add -> dobj -> flour)
- preposition: connects one of the four types of node pairs: action & object / action & hand / object & object / hand &
object (e.g., take -> from -> table)

Output Format:
The output must consist of exactly {num_scene_graphs} scene graphs, each separated with a blank line. For a graph,
output one triplet per line. Follow the format below (an example of three scene graphs of multiple triplets):
node -> edge -> node
node -> edge -> node
...

node -> edge -> node
node -> edge -> node
...

node -> edge -> node
node -> edge -> node
...

Use only the "Available Nodes" and "Available Edges" provided. No additional text, explanations, or formatting should
be included.

Example Input 1:
...

Example Input 10:
- Context: The hole was carefully aligned to ensure a secure fit. A screwdriver was selected from the toolbox and
positioned against the screw head.
- Target sentence: With a steady hand, the screwdriver was twisted, driving the screw into place while the piece was
firmly held.
- Available nodes: person, screw, wood, hand1, hand2, hole, screwdriver, toolbox, align, select, position, hold, twist
- Available edges: verb, dobj, into, with, from, against
- Number of Scene Graphs: 2

Example Output 10:
person -> verb -> twist
twist -> dobj -> screwdriver
twist -> with -> hand2

Input:
- Context: {context}
- Target sentence: {target_sentence}
- Available nodes: {available_nodes}
- Available edges: {available_edges}
- Number of Scene Graphs: {num_scene_graphs}

Output:

Figure 24: Few-shot prompt for multiple action scene graph generation tasks.

26

	Introduction
	Related Work
	TSG Bench
	Preliminaries: Text and Scene Graph Representations
	Scene Graph Understanding
	Scene Graph Generation
	Dataset Construction
	Benchmark Statistics

	Experiments
	Setup
	Evaluation Protocols
	Main Results

	Analysis
	Which Challenges Arise When LLMs Generate Scene Graphs?
	Which Action Do LLMs Struggle to Generate?
	Do Advanced Prompting Methods Elicit Better Performance?
	Can LLMs Refine Errors in Scene Graphs?

	Conclusion
	Dataset Construction Details
	Experiment Details
	Additional Analysis
	Actions that struggle with scene segmentation
	Impact of Repeated Scenes
	Navigating Edge Formation Under Varied Information Levels
	Hallucination in Scene Graph Generation
	Case Study for Descriptions with Repetitive Action
	Details for Performance
	Details for Data Distribution

	Prompts
	Zero-shot Prompts
	Chain of Thought Prompts
	Few-shot Prompts

