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ABSTRACT

Recently, sophisticated deep learning-based approaches have been developed for
generating efficient initial guesses to accelerate the convergence of density func-
tional theory (DFT) calculations. While the actual initial guesses are often density
matrices (DM), quantities that can convert into density matrices also qualify as
alternative forms of initial guesses. Hence, existing works mostly rely on the
prediction of the Hamiltonian matrix for obtaining high-quality initial guesses.
However, the Hamiltonian matrix is both numerically difficult to predict and in-
trinsically non-transferable, hindering the application of such models in real sce-
narios. In light of this, we propose a method that constructs DFT initial guesses by
predicting the electron density in a compact auxiliary basis representation using
E(3)-equivariant neural networks. Trained exclusively on small molecules with up
to 20 atoms, our model achieves an average 33.3% reduction in SCF iterations for
molecules three times larger (up to 60 atoms). This result is particularly significant
given that baseline Hamiltonian-based methods fail to generalize, often increas-
ing the iteration count by over 80% or failing to converge entirely on these larger
systems. Furthermore, we demonstrate that this acceleration is robustly scalable:
the model successfully accelerates calculations for systems with up to 900 atoms
(polymers and polypeptides) without retraining. To the best of our knowledge,
this work represents the first and robust candidate for a universally transferable
DFT acceleration method. We are also releasing the SCFbench dataset and its
accompanying code to facilitate future research in this promising direction.
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Figure 1: Comparison of deep learning-based DFT acceleration methods with different initial guess
targets. The main metric, Relative Iteration Count (RIC), measures the ratio of SCF iterations re-
quired with a deep learning initial guess relative to a baseline. A smaller RIC means fewer SCF
iterations required for convergence and is therefore preferable. While the three models perform sim-
ilarly on in-distribution (ID) systems, on out-of-distribution (OOD) systems, our proposed method
with electron density (ρ) as the target performs significantly better than methods based on Hamilto-
nian (H) or density matrix (D). More crucially, it shows a nearly constant scaling with increasing
system size, which is an ideal property for the task of DFT acceleration.
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1 INTRODUCTION

Density Functional Theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965; Parr & Yang,
1994) is a cornerstone of computational chemistry, offering a powerful framework for predicting
the electronic structure and properties of molecules. The most widely applied algorithm for solving
the DFT problem is the self-consistent field (SCF) method, an iterative process that refines an initial
guess for the density matrix until a converged solution is found. However, the iterative nature of SCF
can be computationally expensive, particularly for large systems, creating a significant bottleneck in
chemical discovery.

Machine learning (ML) offers a promising
path to accelerate these calculations by pro-
viding a high-quality initial guess for the
SCF procedure, as illustrated in Figure 2.
A popular approach is to train models to
predict the Hamiltonian matrix (Yu et al.,
2023; 2024; Li et al., 2025c). However,
this strategy faces critical limitations, partic-
ularly for the large molecules where acceler-
ation is most needed. The poor performance
stems from two distinct reasons. First, even
when trained on datasets containing large
molecules, the approach is hampered by nu-
merical instability: small prediction errors in
individual Hamiltonian matrix elements can
be magnified into large, physically nonsensi-
cal errors for the system as a whole (Li et al.,
2025c). Second, and more critically, the ap-
proach fails to scale to molecules larger than
those seen during training.

Figure 2: Top left: The Hamiltonian (H),
density matrix (D), and electron density (ρ)
are interdependent, so any of them can serve
as an initial guess. Top center: An SCF
loop iteratively finds the ground state from
the given initial guess. Bottom: An ML
model predicts an initial guess from a molec-
ular structure to accelerate the SCF loop.

This lack of transferability is rooted in a fundamental limitation of the theory itself: the core ansatz
of Kohn-Sham DFT is that a real system of interacting electrons can be represented by a fictitious,
non-interacting system that shares the exact same electron density (Kohn & Sham, 1965). This
makes the electron density the fundamental physical observable, rather than the Hamiltonian matrix.
A key consequence is that the electron density associated with a specific chemical environment is
highly transferable. The Hamiltonian matrix, however, does not share this property; it contains
matrix elements for every pair of atoms in a molecule, regardless of the distance separating them,
making its prediction sensitive to the molecule’s entire global structure. This makes the Hamiltonian
a difficult target for extrapolating to larger, more complex chemical environments.

As an alternative, predicting density matrices for generating DFT initial guesses has been pro-
posed (Shao et al., 2023; Hazra et al., 2024; Febrer et al., 2025). However, this strategy is strongly
basis-set dependent. In particular, when diffuse functions are included, density matrix elements span
a much larger numerical range, amplifying numerical uncertainties.

We argue that a more fundamental and transferable target for prediction is the electron density itself.
Previous works have attempted to predict the electron density on real-space grids (Brockherde et al.,
2017). However, such grid-based predictions are not directly suitable for constructing an SCF initial
guess, as most DFT functionals require not only the density but also its gradients, which are not
readily available from grid-based predictions alone. Furthermore, even when similar ideas were
proposed (Grisafi et al., 2019; Fu et al., 2024), a practical method for using the predicted density to
accelerate DFT calculations was never fully realized.

We propose a new paradigm that overcomes these limitations. We train a model to predict the
expansion coefficients of the electron density in a compact auxiliary basis and, crucially, demonstrate
how to use this prediction to construct a transferable initial guess for the SCF process. Our most
significant finding is that the electron density is a highly transferable and scalable property. A model
trained on molecules with only 20 atoms can be applied directly to systems with 60 atoms or even
900 atoms without fine-tuning. On benchmark tests involving all system sizes, our method achieves
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an substantial improvement over the Hamiltonian- and density-matrix-based approaches (illustrated
in Figure 1).

This electron-density-centric approach offers several additional advantages. First, from a practical
standpoint, processing density coefficients is significantly more efficient. The number of coeffi-
cients in an auxiliary basis scales linearly with system size, whereas the Hamiltonian and density
matrices scale quadratically. Second, the electron density can possess lower symmetry (L) than the
Hamiltonian, which is particularly beneficial for equivariant neural networks where the computa-
tional complexity of the tensor product scales as O(L6). Finally, the local nature of electron density
makes our approach highly data-efficient, requiring a smaller training set to achieve high accuracy.

To facilitate further research in this direction, we introduce a new dataset SCFbench containing the
electron densities of molecules composed of up to seven different elements. We provide benchmark
results for two prominent ML architectures, demonstrating how our electron density prediction task
can be seamlessly integrated into existing models to accelerate quantum chemical calculations.

The main contributions of this work can be summarized as follows:

• We propose a new paradigm for DFT acceleration that targets the electron density—a more
fundamental, local, and data-efficient quantity—to provide a high-quality initial guess for
SCF calculations. Specifically, we take the efforts to implement the procedure for convert-
ing the electron density into an initial guess, the absence of which was the direct cause of
the under-development of this principled paradigm.

• We introduce SCFbench, the first public dataset of electron density coefficients specifically
designed for developing and benchmarking DFT acceleration methods.

• We systematically benchmark our electron-density-centric approach for both in-domain
and transferring settings on SCFbench. Results indicate that our approach shows re-
markable transferability not only to larger molecules but also across different exchange-
correlation (XC) functionals and orbital basis sets.

2 BACKGROUND

2.1 KOHN-SHAM DFT AND THE SELF-CONSISTENT FIELD METHOD

Kohn-Sham (KS) DFT provides a systematic framework to construct the energy functional E[ρ(r)]
of a system based on its electron density (Parr & Yang, 1994). The electron density ρ(r) in KS-DFT
is constructed from the density matrix D and a set of basis functions {ϕµ(r)}:

ρ(r) =
∑
µ,ν

Dµνϕµ(r)ϕν(r). (1)

The density matrix is derived from the molecular orbital coefficients C

Dµν =
∑
i

CµiCνi. (2)

Minimization the total energy with respect to the orbital coefficients leads to a generalized eigen-
value equation:

H[ρ]C = SCϵ. (3)

Here, S is the overlap matrix for the non-orthogonal basis functions, and ϵ is the diagonal matrix of
orbital energies. The Kohn-Sham Hamiltonian matrix H is an effective single-particle Hamiltonian.
H is composed of three distinct terms:

H = Hcore + J + Vxc. (4)

The core Hamiltonian (Hcore) is determined solely by the molecular geometry and basis set. The
remaining terms capture the electronic interactions: the Coulomb matrix (J ) for classical electron
repulsion and the XC matrix (Vxc) for quantum mechanical effects.

A significant computational challenge arises from the fact that both J and Vxc depend on the den-
sity matrix D, which in turn is constructed from the orbital coefficients C. This interdependence
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necessitates an iterative procedure known as the SCF method (Szabo & Ostlund, 1996). One com-
mon approach to solving the SCF problem is to begin with an initial guess for the density matrix,
D. From D, an initial Hamiltonian H is constructed. Solving the eigenvalue problem yields new
orbital coefficients C ′, which are used to compute an updated density matrix, D′. This cycle,
D → H → C ′ → D′, is repeated until the density matrix converges and the solution is deemed
self-consistent. A common strategy for this initial guess, such as the default minao method in
PySCF (Sun et al., 2020), is the superposition of atomic densities (SAD) (Lehtola, 2019; Van Lenthe
et al., 2006).

2.2 CONSTRUCTING THE KOHN-SHAM MATRIX FROM PREDICTED DENSITY

The key insight for our work lies in how the electronic terms are constructed from the predicted
electron density.

Using the density fitting (Dunlap, 2000) approximation, the electron density ρ(r) can be expanded
in terms of an auxiliary basis set {χk(r)} with the expansion coefficients ck:

ρ(r) ≈ ρ̃(r) =
∑
k

ckχk(r). (5)

These auxiliary basis functions are atom-centered. Typical auxiliary basis sets include def2-
universal-jfit (Weigend, 2006) and the even-tempered basis (ETB) (Bardo & Ruedenberg, 1974),
parameterized by β. A smaller β yields a larger ETB basis. The size of the auxiliary functions is
typically three to five times that of the atomic orbital basis functions, which is significantly smaller
than the number of orbital pairs in H and D. In our approach, the auxiliary coefficients ck are the
primary quantities predicted using a machine learning model.

With the auxiliary basis expansion, both the electron density and its gradient can be directly eval-
uated. This allows us to efficiently evaluate the XC matrix for generalized gradient approximation
(GGA) functionals. Additionally, the Coulomb matrix J , while formally dependent on the density
matrix D, can be computed efficiently from the coefficients {ck} using the density fitting approxi-
mation.

This feature makes the GGA framework particularly well-suited for our approach, as a machine
learning prediction of the density coefficients {ck} is sufficient to assemble the entire Kohn-Sham
Hamiltonian matrix H . With additional approximations, extensions to more complex functional
types are possible. Explicit formulas for constructing J and Vxc for general XC functionals from
the auxiliary density are provided in Appendix E.

Compared to computing H directly from the full density matrix D, our approach introduces an
approximation to J and Vxc via the fitted density ρ̃(r). However, The error in this approximation
can be systematically reduced by increasing the number of auxiliary basis functions used in the
expansion (see Appendix C for an illustrative example).

2.3 EQUIVARIANT NEURAL NETWORKS

Physical properties of molecular systems are inherently independent of the choice of coordinate
system. Under spatial transformations such as rotations, translations, or reflections, quantities like
energy and electron density should transform accordingly, preserving their physical meaning. E(3)-
equivariant neural networks are specifically designed to respect these symmetries, where E(3) de-
notes the Euclidean group of all such transformations (Kondor & Trivedi, 2018; Geiger & Smidt,
2022).

Formally, an equivariant model Φ satisfies the following property: when the input atomic coor-
dinates {ri} are transformed by an operation g ∈ E(3), the output O transforms according to a
corresponding representation D(g),

Φ(g · {ri}) = D(g)Φ({ri}) (6)

Here, D(g) is the appropriate representation for the output type. For scalar quantities such as total
energy, D(g) is the identity, reflecting invariance under transformation. For tensorial properties,
such as electron density coefficients in a spherical harmonics basis, D(g) corresponds to the Wigner
D-matrix, which encodes the rotation of these higher-order objects. Incorporating such symmetry
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constraints into the network architecture via tensor product operations provides a strong inductive
bias, improving generalization and data efficiency for molecular property prediction.

3 RELATED WORK

3.1 HAMILTONIAN PREDICTION

Recent works have developed neural networks for direct prediction of the Kohn-Sham Hamiltonian.
PhiSNet (Unke et al., 2021) uses SE(3)-equivariant layers to reconstruct molecular wavefunctions
and densities. QHNet (Yu et al., 2023) introduces an efficient SE(3)-equivariant graph network for
Hamiltonian prediction with reduced tensor operations. SPHNet (Luo et al., 2025) incorporates
adaptive sparsity into equivariant networks. QHFlow (Kim et al., 2025) employs high-order equiv-
ariant flow matching to generate Hamiltonians conditioned on molecular geometry. The most scal-
able Hamiltonian model to date is proposed by Li et al. (2025c), which introduces the Wavefunction
Alignment Loss (WALoss) to enable Hamiltonian prediction for large molecules and significantly
improve the derived energy compared to previous Hamiltonian models. However, its accuracy for
energy prediction remains much lower than that of direct energy models.

Other related Hamiltonian prediction works include Li et al. (2022); Zhang et al. (2024); Tang et al.
(2024).

3.2 DENSITY MATRIX PREDICTION

Recent studies have begun to explore direct prediction of the density matrix (Shao et al., 2023; Hazra
et al., 2024; Febrer et al., 2025). The first two works applied kernel-based methods to a small set
of molecules, but not yet leveraging equivariant neural networks. The third used a small numerical
atomic orbitals basis set and focused on small molecules. While these approaches have advanced the
field, density matrix prediction still faces challenges with transferability and scalability: the density
matrix elements are highly sensitive to the choice of basis set, which can limit generalization across
chemical systems.

3.3 ELECTRON DENSITY PREDICTION

ML prediction of electron density has been widely studied (Brockherde et al., 2017; Ellis et al.,
2021; Jørgensen & Bhowmik, 2022; Focassio et al., 2023; Rackers et al., 2023; Lee & Kim, 2024;
Voss, 2024; Elsborg et al., 2025; Li et al., 2025a). Early efforts typically represented the density
on real-space grids, which introduced redundancy and high computational cost. In contrast, rep-
resenting the density with one-center auxiliary functions provides a more efficient representation
while maintaining good accuracy (Grisafi et al., 2019). Fu et al. (2024) introduced an accurate
and efficient model, SCDP, for predicting electron density on real-space grids using even-tempered
Gaussian functions as auxiliary basis sets, augmented with off-center virtual orbitals. However,
due to the common lack of support of using electron density as an initial guess in quantum chem-
istry software, none of these works have explored how the predicted density could be leveraged to
accelerate DFT calculations.

3.4 PUBLIC HAMILTONIAN DATASETS

Several publicly available datasets provide Hamiltonian matrices for molecular systems and are
closely related to this work. MD17 (Schütt et al., 2019) contains Hamiltonians for thousands of
structures of four small molecules, computed with the def2-SVP basis set and PBE functional.
QH9 (Yu et al., 2024) extends the QM9 (Ramakrishnan et al., 2014) dataset with over 130,000
stable geometries and molecular dynamics trajectories, providing precise Hamiltonians and open-
source benchmarks for model development. The nablaDFT (Khrabrov et al., 2022) and its exten-
sion, ∇2DFT (Khrabrov et al., 2024), offer a large collection of drug-like molecules with millions of
conformations and associated quantum chemistry properties, including Hamiltonians and geometry
optimization trajectories. Other related datasets include QCML (Ganscha et al., 2025), which uses
numerical atomic orbitals, and PubChemQH (Li et al., 2025c), which is not yet publicly released.
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Figure 3: Statistical analysis of the SCFbench dataset. (a) Distribution of molecule sizes, (b) Propor-
tion of molecules containing each individual element (H, C, N, O, F, P, S) and element pair present in
the dataset, and (c) decomposition of electron density into irreducible representations (irreps) over
the auxiliary basis sets.

4 THE SCFBENCH DATASET

To support research on scalable and transferable initial guess methods, we introduce the SCFbench
dataset. It was constructed by applying a fragmentation procedure, similar to that of Zheng et al.
(2025), to drug-like molecules within the ChEMBL database (Zdrazil et al., 2024). A subset of
fragments containing 20 atoms or less was selected, covering the elements H, C, N, O, F, P, and S.
SCFbench dataset has several features designed to evaluate transferability and scalability.

In addition to Hamiltonians and density matrices, SCFbench provides electron density expansion
coefficients for three distinct auxiliary basis sets: the computationally efficient def2-universal-
jfit (Weigend, 2006), and two even-tempered basis (ETB) sets built from def2-SVP with β = 2.0
and β = 1.5 (Bardo & Ruedenberg, 1974). The resulting dataset of 43,862 molecules is randomly
split into training, validation, and test sets with a ratio of 8:1:1. The test set is used for evaluating the
in-distribution performance of a model, so it is also called as the in-distribution (ID) test set. This
dataset is well-suited for the electron density prediction task and is designed to be lightweight and
easily extensible.

A key feature of the dataset is its dedicated out-of-distribution (OOD) test set, designed to address
the challenge of system size transferability. This set comprises 1,050 molecules, consisting of 30
molecules for each atom count from 26 to 60, allowing for the evaluation of models on systems
significantly larger than the training data. The OOD set also includes the number of SCF cycles
required for each molecule.

The data was generated using the PBE functional (Perdew et al., 1996), a pure GGA functional.
This choice was made because, as discussed in section 2, the Kohn-Sham Hamiltonian for GGA
functionals can be constructed directly from the electron density coefficients, making it a suitable
framework for developing and testing our proposed method. It is also worth noting that while SCF
convergence is often more challenging for GGA functionals than for hybrids (Mori-Sánchez et al.,
2008; Rabuck & Scuseria, 1999), they remain underrepresented in existing Hamiltonian datasets.

For the DFT calculations, we used the def2-SVP basis set (Weigend & Ahlrichs, 2005), a [99, 590]
atom grid, and an SCF energy convergence tolerance of 1× 10−10.

5 METHODS

5.1 EVALUATION

The primary goal of our evaluation is to assess the practical value of using ML-predicted electron
density to accelerate SCF calculations. We evaluate the models on their ability to accelerate SCF
convergence for molecules both within the training distribution (ID) and for molecules significantly
larger than those seen during training (OOD). This directly tests the crucial property of size trans-
ferability. Furthermore, we assess the robustness of the models by testing their transferability across
different XC functionals and atomic orbital basis sets.
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Our main metric is the Relative Iteration Count (RIC), defined as the number of SCF cycles required
for convergence using the ML-predicted initial guess, normalized by the number of cycles required
using the standard SAD initialization (minao). A lower RIC means greater acceleration.

In addition, we define a calculation as converged if it reaches the required PySCF default tolerance
within 50 iterations. This allows us to report a convergence rate, which is a crucial metric for
practical usability. We use the default PySCF DIIS settings (space size of 8), no level shifting, and
no damping. For the ID vs. OOD comparison, we evaluate on a random subset containing 1% of
the test set and the full OOD test set, respectively. A comprehensive set of additional metrics is
provided in Appendix H.

While the RIC provides a hardware-independent and robust measure of initial guess quality, it might
be interesting to see how much acceleration the models can actually bring to the wall time. To this
end, a detailed wall-time analysis is provided in Appendix G.

5.2 MODEL ARCHITECTURES

Instead of designing a new architecture from the ground up, we adapt two classical mod-
els—NequIP (Batzner et al., 2022) and QHNet (Yu et al., 2023)—by modifying their final prediction
heads.

NequIP NequIP (Batzner et al., 2022) is an E(3)-equivariant graph neural network that repre-
sents atomistic systems as graphs. Its core operation is a symmetry-preserving convolution where
messages, constructed via a tensor product of neighbor features and a filter made of learnable ra-
dial functions and spherical harmonics, are passed between atoms. This process iteratively refines
each atom’s features, which are geometric tensors (irreducible representations) of varying orders
(l). Originally, NequIP’s architecture concluded with a simple head that processed scalar (l = 0)
features to predict atomic energies.

QHNet QHNet (Yu et al., 2023) is an efficient SE(3)-equivariant model designed to predict quan-
tum tensors. Its architecture is distinguished by node-wise interaction layers that use an attention-
like mechanism and a Norm Gate that dynamically rescales higher-order tensor features. QHNet was
originally designed with a large, multi-stage prediction head that used a Tensor Expansion module
to construct the final Hamiltonian matrix from pair-wise atomic features.

Species-dependent Equivariant Prediction Head We replace the original prediction heads of
both models with a single, species-dependent equivariant linear layer. This simple layer directly
maps the final node features from the backbone to a new output feature, hiout, which are the density
coefficients containing irreducible representations from order l = 0 to l = 4. The layer’s weights
are conditioned on the atomic species, allowing the model to learn a distinct final mapping for each
chemical element. For NequIP, this modification has a negligible impact on the total parameter
count. For QHNet, however, replacing its complex original head results in a significant efficiency
gain, with the final model retaining only about one-quarter of the original parameters (see Table 1).

5.3 TRAINING PROCEDURE

All density coefficients models were trained by minimizing a composite loss function, L, calculated
per atom. This loss is the sum of the mean absolute error (MAE) and the root mean square error
(RMSE) of the coefficients, averaged over all atoms in the batch:

L =

(
1

A

A∑
a=1

1

Na

Na∑
i=1

|ĉa,i − ca,i|

)
+

√√√√ 1

A

A∑
a=1

1

Na

Na∑
i=1

(ĉa,i − ca,i)2 (7)

where A is the total number of atoms, Na is the number of coefficients for atom a, and ĉa,i and
ca,i are the predicted and ground-truth coefficients. The ground-truth ca,i are derived from the
final, converged electron density of the DFT calculation. Other training details are described in
Appendix F.
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6 EXPERIMENTS

In this section, we present benchmark results for the SCFbench dataset using the modified NequIP
and QHNet models, focusing on their performance in accelerating SCF calculations. The results are
summarized in Table 1 and illustrated in Figure 1.

6.1 SCF ACCELERATION WITH PREDICTED DENSITY (ID AND OOD)

Table 1: Results on the SCFbench benchmark dataset. The best results for each dataset are high-
lighted in bold and the second bests are underlined. Best settings for each prediction target are
marked in gray . Results for an extended set of metrics are available in Appendix H.

Prediction Target Model # Param. ID Test OOD Test
Convergence ↑ RIC ↓ Convergence ↑ RIC ↓

Hamiltonian Ground Truth - 100% 29.22% 100% 26.96%
QHNet 20.5M 100% 63.20% 97.43% 179.47%

Density Matrix Ground Truth - 100% 27.57% 100% 26.62%
QHNet 20.5M 100% 70.45% 99.71% 91.69%

Density Coefficients
def2-universal-jfit

Ground Truth - 100% 62.80% 100% 60.45%
QHNet 5.9M 100% 66.90% 100% 73.26%
NequIP-S 2.7M 100% 74.90% 100% 89.46%
NequIP-M 36.9M 100% 64.82% 100% 69.10%
NequIP-L 50.0M 100% 63.78% 100% 66.68%

Density Coefficients
ETB, β = 2.0

Ground Truth - 100% 58.96% 100% 55.05%
QHNet 5.9M 100% 68.62% 100% 79.36%
NequIP-S 2.7M 100% 82.20% 100% 93.28%
NequIP-M 36.9M 100% 67.31% 100% 78.39%
NequIP-L 50.0M 100% 62.48% 100% 70.42%

Density Coefficients
ETB, β = 1.5

Ground Truth - 100% 43.26% 100% 39.66%
QHNet 5.9M 100% 78.05% 100% 82.76%
NequIP-S 2.7M 100% 89.80% 99.24% 127.16%
NequIP-M 36.9M 100% 76.82% 99.62% 108.17%
NequIP-L 50.0M 100% 68.85% 99.90% 81.33%

The Hamiltonian prediction model exhibits significant limitations. While it achieves a low RIC on
the in-distribution test set (63.20%), which is comparable to performance reported in other works (Yu
et al., 2024), its performance collapses on the OOD test set. The relative iteration count increases to
179.47%. More alarmingly, the model suffers from a non-convergence problem, failing to converge
for over 2.5% of the OOD molecules. Unlike chemically-grounded methods like SAD, the ML
model can produce unphysical initial guesses, especially for larger molecules, leading to a failure of
the SCF procedure.

Predicting the density matrix offers an improvement over the Hamiltonian but still falls short in
transferability. It achieves a solid RIC of 70.45% relative iteration count on the ID set and maintains
a high convergence rate on the OOD set. However, its performance degrades on larger molecules,
with the RIC increasing to 91.69% for the OOD set. As illustrated in Figure 1, its performance
clearly worsens as system size increases, highlighting that the density matrix remains a challenging
target for size transferability.

In stark contrast, our density-based models demonstrate excellent scalability. On the ID test set,
the best models (NequIP-L) achieve RICs of 62-64%, nearing the theoretical limit imposed by the
ground truth density. Critically, this strong performance is maintained on the OOD test set. For
the def2-universal-jfit basis, the NequIP-L model’s acceleration is remarkably consistent, with an
RIC of 63.78% on the ID set and 66.68% on the OOD set, and it achieves a 100% convergence rate
across all tests. This remarkable consistency proves that electron density is a highly transferable
property, enabling models trained on small molecules to effectively accelerate calculations for much
larger ones. Further emphasizing this point, when we task the QHNet electron density model with
predicting electron density instead of the Hamiltonian matrix, its RIC improves dramatically to
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73.26% on the OOD set, highlighting that the choice of a transferable physical quantity is more
critical than the specific model architecture.

Analyzing the ground truth results reveals the theoretical limits of this approach. The ground truth
Hamiltonian and Density Matrix provide the best possible initial guess, requiring only one SCF
cycle in theory; the remaining 27-29% RICs are attributed to numerical precision differences. For
density coefficients, the potential acceleration depends on the expressiveness of the auxiliary basis,
with larger bases like ETB (β = 1.5) offering greater potential for acceleration (a theoretical limit
of ∼40%) than the compact def2-universal-jfit basis (∼60%). Our ML models come very close to
reaching this RIC limit for the def2-universal-jfit basis, demonstrating the learnability of the task.
The performance gap for the larger ETB basis sets, however, highlights a promising avenue for
future work. Improved model architectures could potentially capture more information from these
expressive bases, pushing the acceleration even closer to the theoretical limit.

6.2 SCALING TO LARGE-SCALE SYSTEMS

Table 2: Scalability test on the QMugs dataset (100–200 atoms). For density coefficients, we
use NequIP-L trained with the def2-universal-jfit basis. Convergence indicates the percentage of
molecules that converged within 50 iterations. The average RIC is reported for converged molecules
only.

# Atoms Density Coefficients Hamiltonian Density Matrix

RIC ↓ Convergence ↑ RIC ↓ Convergence ↑ RIC ↓ Convergence ↑
100 75.36% 100% 224.11% 20% 190.19% 50%
110 78.64% 100% 286.00% 30% 268.75% 10%
120 73.42% 100% 281.62% 10% 233.33% 10%
130 78.10% 100% - 0% 306.67% 10%
140 75.61% 100% - 0% 326.67% 10%
150 77.12% 100% - 0% - 0%
160 79.07% 100% - 0% - 0%
170 80.87% 100% - 0% - 0%
180 76.70% 100% - 0% - 0%
190 81.77% 100% - 0% - 0%
200 77.34% 100% - 0% - 0%

To further evaluate the scalability of our method beyond the SCFbench OOD test set, we conducted
additional experiments on the QMugs dataset (Isert et al., 2022), selecting a total of 110 molecules
ranging from 100 to 200 atoms. As shown in Table 2, our density-based method maintains a con-
sistent RIC between 0.73 and 0.82 with a 100% convergence rate up to 200 atoms. In contrast,
Hamiltonian and density matrix prediction methods exhibit severe degradation, with convergence
rates dropping to near zero for systems larger than 120 atoms due to poor initial guess quality lead-
ing to SCF divergence.

Furthermore, we evaluated two large-scale cases: a Glycine-100 polypeptide (703 atoms) and a
Polypropylene polymer chain (H[CH2(CH3)CH]100CH3, 905 atoms):

• Glycine-100: Converged in 10 iterations (vs. 17 for minao).
• Polypropylene: Converged in 8 iterations (vs. 12 for minao).

Our method successfully accelerated convergence in both cases. However, both Hamiltonian and
density matrix methods failed with out-of-memory errors. This highlights a critical advantage of our
approach: predicting density coefficients is a node-wise task. In contrast, predicting Hamiltonian or
density matrices is an edge-wise task, requiring the construction of large N ×N matrices.

6.3 FUNCTIONAL AND BASIS SET TRANSFERABILITY

A key advantage of targeting electron density is its theoretical independence from the specific XC
functional and orbital basis set used in a calculation (Kohn & Sham, 1965). To test this in practice,
we evaluate the transferability of a single model—the NequIP-L model trained on PBE/def2-SVP

9
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Table 3: Transferability of NequIP-L model across different functionals and basis sets. The model
is trained on PBE/def2-SVP and evaluated on various settings. RICs are reported for both ID and
OOD sets.

Functional (Family: Name) Basis Set RIC (ID Test)↓ RIC (OOD Test)↓

In-distribution setting
GGA: PBE def2-SVP 63.78% 66.68%

Transferring to different XC functionals
GGA: BLYP

def2-SVP

71.38% 71.22%
meta-GGA: SCAN 88.15% 86.45%
Hybrid GGA: B3LYP5 84.63% 83.72%
Hybrid GGA: PBE0 85.99% 85.51%

Transferring to different atomic orbital basis sets

GGA: PBE
def2-TZVP 76.68% 75.24%
def2-TZVPPD 77.07% 75.81%
def2-QZVP 77.81% 75.98%

Transferring to different XC functionals AND basis sets
Hybrid GGA: B3LYP5 def2-TZVP 87.70% 85.47%

with the def2-universal-jfit auxiliary basis—across a range of different functionals and larger orbital
basis sets.

For meta-GGA and hybrid functionals, constructing the initial Fock matrix from the predicted elec-
tron density requires specific approximations for the kinetic energy density (meta-GGA) or the
Hartree-Fock exchange term (hybrid). We detail these treatments in Appendix E. Despite these
necessary approximations, Table 3 shows the practical robustness of the density-based approach.
While performance moderately degrades compared to the original PBE/def2-SVP setting, the model
still provides meaningful acceleration, particularly for the OOD set, showcasing its utility in diverse
computational chemistry workflows.

Notably, our model achieves an RIC of 85.47% (OOD) on B3LYP5/def2-TZVP, where B3LYP5
refers to the B3LYP hybrid functional (Lee, 1988) with the VWN5 correlation component (Vosko
et al., 1980)—matching the setup used in Li et al. (2025c). Despite training on a dataset consisting
of much smaller molecules and with different functional and basis set choices, our density-based ap-
proach delivers comparable acceleration performance for molecules of similar size. This highlights
the strong transferability and data efficiency of electron density prediction, even when evaluated
under conditions aligned with state-of-the-art Hamiltonian-based models.

7 CONCLUSION

By targeting the electron density, this work provides a practical and reliable solution to the long-
standing challenge of creating a scalable initial guess for SCF calculations. We have shown that a
single model, trained on a modest dataset of small molecules, can serve as a “drop-in” accelerator
for a wide range of systems, including those significantly larger than the training data, and across
various functionals and basis sets. The robustness of our method marks a steady step towards a
universally applicable tool for the computational chemistry community.

To facilitate further progress, we have released the SCFbench dataset, a comprehensive benchmark
designed to test these crucial aspects of transferability and scalability. Future work can build on this
foundation in several key directions. While our models approach the theoretical performance limit
for compact auxiliary basis sets, a gap remains for more expressive bases; developing more powerful
neural network architectures could close this gap and unlock even greater acceleration. Furthermore,
extending the SCFbench dataset to include a wider range of the periodic table and periodic systems
will be vital for pushing this promising method towards true universality.
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A THE ROLE OF THE SCF PROCEDURE

While our results demonstrate that machine learning models can predict the electron density with
high accuracy, which are often yielding energies within chemical accuracy (see Appendix J), we
retain the SCF procedure to ensure the physical consistency of the full electronic structure. Direct
prediction models are highly effective for properties like total energy; however, many downstream
tasks in computational chemistry, such as calculating NMR shielding tensors, dipole moments, or
excited states, require the explicit, self-consistent Kohn-Sham orbitals and eigenvalues. By using
the predicted density to initialize and accelerate the SCF loop rather than replace it, we ensure that
the resulting wavefunction obeys the variational principle and provides a unified, ab initio basis for
deriving all ground-state properties, rather than relying on separate regressors for each observable.

B DENSITY CONSTRAINTS AND NORMALIZATION

A theoretical requirement for the electron density is that it integrates to the total number of electrons
(Ne) and remains non-negative. Our model predicts expansion coefficients {ck} in an auxiliary
basis, which are not strictly constrained to satisfy

∫
ρ(r)dr = Ne during the ML inference.

However, explicit normalization of the predicted density is not necessary for minimizing RIC, and
in our experiments, enforcing it explicitly even slightly degraded performance (OOD RIC changes
from 66.68% to 67.81%). This is for two reasons:

1. Standard initial guesses (e.g., SAD/minao) are often constructed from superpositions of
spherical atoms and do not strictly integrate to the correct Ne before the first cycle.

2. The predicted coefficients are used solely to construct the initial Fock matrix. When this
matrix is diagonalized, we select the lowest Ne/2 orbitals (for restricted DFT) to construct
the new density matrix. This eigensolver step inherently enforces the correct number of
electrons for the subsequent iteration.

C ERROR SOURCES IN CONSTRUCTING HAMILTONIAN FROM DENSITY
COEFFICIENTS

Table 4 compares the number of SCF cycles required for convergence for the D-Glucose molecule
(C6H12O6) using different sets of auxiliary basis sets and their corresponding number of basis func-
tions. As shown, increasing the basis set size can reduce the number of SCF cycles to as low as
38.5% of the baseline.

Table 4: Effect of auxiliary basis set size on SCF convergence for D-Glucose (C6H12O6). SCF
iteration ratios are reported as the number of iterations required for convergence, normalized to the
default minao initial guess. With the def2-SVP basis set, D-Glucose has 228 basis functions. All
results are obtained using the ground truth density coefficients as the initial guess.

Auxiliary Basis Set Number of Basis Functions SCF Cycles SCF Iter. Ratio (%)

def2-universal-jfit 720 7 53.8
ETB (β = 2.0) 1740 7 53.8
ETB (β = 1.5) 2898 5 38.5

D COMPUTING THE DENSITY COEFFICIENTS

In our work, the machine learning target is the set of expansion coefficients {ck} that represent the
electron density ρ(r) in a given auxiliary basis set {χk(r)}. There are at least two principled ways
to determine these ground-truth coefficients from a converged DFT calculation.

The first approach is to minimize the squared error of the density itself, which corresponds to an L2
projection of the density onto the auxiliary basis. The objective is to find the coefficients {ck} that
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solve the following minimization problem:

min
{ck}

∫ ∣∣∣∣∣ρ(r)−∑
k

ckχk(r)

∣∣∣∣∣
2

dr. (8)

This leads to a system of linear equations:∑
l

Saux
kl cl =

∫
ρ(r)χk(r)dr, (9)

where Saux
kl =

∫
χk(r)χl(r)dr is the overlap matrix of the auxiliary basis functions.

The second approach, which is the standard method in density fitting, is to minimize the error in the
Coulomb repulsion energy. The objective is to minimize the self-repulsion of the residual density:

min
{ck}

∫∫
(ρ(r)−

∑
k ckχk(r)) (ρ(r

′)−
∑

l clχl(r
′))

|r − r′|
drdr′. (10)

This leads to a different system of linear equations:∑
k

(∫∫
χk(r)χk(r

′)

|r − r′|
drdr′

)
vk =

∫∫
ρ(r)χl(r

′)

|r − r′|
drdr′. (11)

Here, the matrix on the left-hand side is the two-center two-electron Coulomb repulsion integral
matrix for the auxiliary basis (int2c2e in PySCF).

We tested both approaches and found that they yielded comparable performance for accelerating
SCF convergence. For all results presented in this paper, we used the first method to generate the
ground-truth density coefficients for our training data.

E METHODS OF CONSTRUCTING HAMILTONIAN MATRIX FROM PREDICTED
DENSITY

We outline the construction of the initial Fock matrix for various types of functionals based on the
electron density. Specifically, this involves the evaluation of the Coulomb matrix (J ) and exchange-
correlation (XC) matrix (VXC).

The Coulomb matrix is evaluated using three-center electron repulsion integrals:

Jµν =
∑
i

(µν|χi)ci, (12)

where

(µν|χi) =

∫∫
µ(r1)ν(r1)χi(r2)

r12
dr1dr2. (13)

are the three-center two-electron integrals between the atomic orbital pair µ(r)ν(r) and the auxiliary
function χ(r)

For LDA and GGA functionals, the electron density and its gradients over the auxiliary basis
functions can be readily computed. The XC matrix is then obtained by numerical integration over a
set of Becke grids rg and its weights ωg:∑

g

Vxc[ρ,∇ρ]ωgµ(rg)ν(rg). (14)

For meta-GGA functionals, the XC potential also depends on the kinetic energy density τ . The
exact τ is constructed from molecular orbitals, which are not available when our only input is the
total electron density. We therefore approximate τ using the von Weizsäcker kinetic energy density,
which provides an estimate based solely on the density and its gradient:

τ(r) =
1

2

∑
i

∇ψi(r) · ∇ψi(r) ≈
∇ρ · ∇ρ

8ρ
. (15)
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This allows for the evaluation of the meta-GGA XC matrix term:
1

2

∑
g

Vxc[ρ,∇ρ, τ ]ωg∇µ(rg) · ∇ν(rg). (16)

For hybrid and range-separated functionals, the Hartree-Fock (HF) exchange matrix is needed.
The HF exchange term is a function of the density matrix D. For a similar reason as with meta-
GGA functionals—the difficulty of reconstructing D from ρ—we must use an approximate density
matrix. We employ the SAD density matrix (i.e. minao) as a chemically reasonable guess to
construct the HF exchange matrix:

DSAD = ⊕ADA, (17)

F HYPERPARAMETERS AND TRAINING

Hyperparameters for Model Architectures.

Table 5: Hyperparameters for model architectures.

Model Hyperparameter Value

QHNet radius cutoff 15.0
Lmax 4
hidden size 128
bottleneck hidden size 32
number of layers 5
radius embed dim 16

NequIP-S radius cutoff 5.0
lmax 4
number of layers 4
hidden size 32
radial MLP width 64

NequIP-M radius cutoff 5.0
lmax 4
number of layers 7
hidden size 64
radial MLP width 128

NequIP-L radius cutoff 5.0
lmax 4
number of layers 9
hidden size 64
radial MLP width 128

For QHNet models, we adopt the same hyperparameters as those used in Yu et al. (2024). The
hyperparameters for the backbone are kept unchanged for different prediction targets to ensure a fair
comparison.

For Nequip models, three variants of different sizes are trained and evaluated, namely NequIP-S,
NequIP-M and NequIP-L. The sizes of the models are kept the same across different auxiliary basis
set choices.

Hyperparameters for all these four architectures are summarized in Table 5.

Hyperparameters for different prediction targets. Hyperparameters for training models for dif-
ferent prediction targets are summarized in Table 6. All models have converged after the training
finished.
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Table 6: Hyperparameters for training.

Hyperparameter Hamiltonian Density Matrix Density Coefficients

Max Epochs 5000 5000 5000*
Batch Size 1024 1024 1024
Optimizer Adam Adam Adam
Learning Rate Scheduler Polynomial Polynomial Polynomial
Learning Rate 5e-3 5e-3 2e-2
Minimum Learning Rate 1e-7 1e-7 1e-7

*: The NequIP-S and NequIP-M models are trained for 2000 epochs.
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Figure 4: Wall time analysis on the OOD test set. The model we use for acquiring the initial guess is
Nequip-L with the def2-universal-jfit basis. To reduce clutter in the figures, we only plot the results
for molecules having odd numbers of atoms.

G WALL TIME ANALYSIS

While RICs provide a deterministic and hardware-independent measure of initial guess quality, we
also provide a wall-clock time analysis to demonstrate practical speedups. However, it is important
to note that wall time is heavily implementation-dependent and does not always scale linearly with
iteration counts, as different algorithms and molecule sizes shift the computational bottleneck.

We compare the end-to-end wall time required for SCF convergence (inference + initialization +
SCF cycles with GPU4PySCF(Wu et al., 2024; Li et al., 2025b)) using our NequIP-L model against
the standard minao guess on an NVIDIA Tesla V100 GPU. As shown in Figure 4(a), our method
achieves a consistent ∼1.3x speedup across system sizes in the OOD test set.

Figure 4(b) breaks down the initialization cost. The procedure to convert predicted coefficients to
an initial guess (density matrix) involves three main steps with the following scaling with respect to
the number of basis functions N :

1. Coulomb Matrix Construction: Scales as O(N2).
2. XC Grid Evaluation: Scales as O(N2).
3. Eigensolver (First Diagonalization): Scales as O(N3).

Although the eigensolver formally scales as O(N3), for the system sizes tested here, the prefactor
is small enough that it is not the bottleneck.

There is significant room for improvement in this overhead. First, the model used is a vanilla
NequIP; incorporating state-of-the-art techniques such as SO(2) convolution(Passaro & Zitnick,
2023), FlashTP(Lee et al., 2025) or OpenEquivariance(Bharadwaj et al., 2025) could significantly
reduce inference time. Second, the density-to-potential integration is currently implemented in
Python; optimizing these kernels would further reduce the pre-SCF overhead.
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H EXTENDED RESULTS ON SCFBENCH

To provide a more comprehensive view of model performance, we report an extended set of evalua-
tion metrics on SCFbench in Table 7. The definitions of the metrics are detailed below.

MAE(prediction). The mean absolute error of the model predictions. Note that values of this metric
cannot be compared across different prediction targets.

MAE(C). The mean absolute error of the molecular orbital coefficients obtained from the initial
guesses predicted by the model.

C similarity. The cosine similarity between the predicted and the ground-truth molecular orbital
coefficients.

Table 7: Extended results on the SCFbench dataset. MAE(Prediction) is unitless for density coeffi-
cients and density matrix models, but in Hartree for Hamiltonian models. MAE(C) and C similarity
are unitless.

Prediction Target Model ID Test OOD Test
MAE(prediction) ↓ MAE(C) ↓ C Similarity ↑ MAE(prediction) ↓ MAE(C) ↓ C Similarity ↑

Hamiltonian QHNet 4.0e-5 0.1527 0.8459 1.7e-3 0.1586 0.1572

Density Matrix QHNet 5.3e-4 0.1314 0.9656 1.4e-3 0.1464 0.5101

Density Coefficients
def2-universal-jfit

QHNet 1.7e-4 0.0786 0.9814 5.0e-4 0.1085 0.8763
NequIP-S 2.7e-4 0.0995 0.9512 5.7e-4 0.1312 0.6863
NequIP-M 1.1e-4 0.0746 0.9846 4.0e-4 0.0964 0.9136
NequIP-L 8.9e-5 0.0788 0.9865 3.8e-4 0.0928 0.9334

Density Coefficients
ETB, β = 2.0

QHNet 1.8e-4 0.0816 0.9815 7.0e-4 0.1166 0.7981
NequIP-S 3.5e-4 0.1151 0.8989 8.7e-4 0.1486 0.4501
NequIP-M 1.6e-4 0.0832 0.9819 7.2e-4 0.1153 0.8113
NequIP-L 1.0e-4 0.0695 0.9907 5.4e-4 0.0985 0.8990

Density Coefficients
ETB, β = 1.5

QHNet 1.2e-3 0.1096 0.9395 3.8e-3 0.1367 0.6119
NequIP-S 1.7e-3 0.1329 0.8298 4.2e-3 0.1507 0.4167
NequIP-M 1.2e-3 0.1051 0.9429 4.0e-3 0.1375 0.5738
NequIP-L 8.7e-4 0.0887 0.9784 3.7e-3 0.1189 0.7767

Table 8: WALoss results on the SCFbench benchmark dataset.

Model ξ
ID Test OOD Test

Convergence ↑ RIC ↓ Convergence ↑ RIC ↓

QHNet w/o WALoss - 100% 63.20% 97.43% 179.47%

QHNet w/ WALoss

1.0 100% 69.56% 99.57% 173.07%
0.5 100% 67.97% 97.61% 183.31%
0.3 100% 67.08% 98.64% 179.77%
0.1 100% 67.11% 98.40% 170.57%
0.01 100% 62.65% 98.40% 173.08%
0.001 100% 62.66% 97.25% 177.35%

I RESULTS FOR WAVEFUNCTION ALIGNMENT LOSS (WALOSS)

The Wavefunction Alignment Loss (WALoss) is proposed by Li et al. (2025c) for solving the
Scaling-induced MAE-Applicability Divergence (SAD) problem and enhancing the scalability and
applicability of Hamiltonian prediction models. As the WALoss is originally used to train the model
on the PubChemQH dataset consisting of relatively large molecules, it is thus interesting to find out
whether WALoss is able to solve the transferability problem of Hamiltonian prediction. Therefore,
although there is no publicly available code for WALoss, we reimplement it ourselves and test it
with QHNet on our SCFbench dataset.

There are multiple hyperparameters in WALoss, including the λ1, λ2 and λ3 for weighting the
elementwise error losses and WALoss, and the ρ and ξ for weighting the WALoss terms for occupied
and unoccupied orbitals, respectively. The optimal values of λs are thoroughly discussed in the
original paper, but the values of ρ and ξ are unspecified except the description of ρ≫ ξ. Therefore,
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we adopt the optimal values for the λs from the original paper (λ1 = 1.0, λ2 = 1.0, λ3 = 2.5), fix ρ
to be 1.0 and experiment with various values for ξ.

As listed in Table 8, some settings outperform the original QHNet on the ID test set, but when tested
on the OOD test set, none of them show advantage in system size transferability in terms of RIC. We
suspect that WALoss is great for solving the learnability problem of the Hamiltonian prediction task
on large molecules (such as those in the PubChemQH dataset), but still falls short in overcoming the
task’s inherent transferability issues.

J DIRECT-TO-SOLUTION ACCURACY

If the predicted electron density is sufficiently accurate, one might attempt to perform a single diag-
onalization to obtain the energy. We evaluate the error of this direct-to-solution approach in Table 9.

The results highlight the critical robustness of our density-based approach. On the OOD test set,
the Hamiltonian prediction method fails catastrophically, yielding a Mean Absolute Error (MAE)
of over 92 Hartree. This magnitude of error aligns with results reported for Hamiltonian models on
similar datasets (e.g., WANet without WALoss on PubChemQH (Li et al., 2025c)).

In contrast, our density-based model (NequIP-L) maintains a reasonable error profile (7.5 × 10−4

Hartree MAE) even on OOD systems. This error is already within the well-known chemical accu-
racy threshold (1 kcal/mol). While the SCF loop is still required to reach precise convergence, our
method provides a physically grounded starting point, whereas Hamiltonian-based methods produce
unphysical states that require extensive SCF correction.

Table 9: Direct-to-solution results on the SCFbench dataset. All units are Hartree.

Dataset Model MAE(Etot) ↓ MAE(HOMO) ↓ MAE(LUMO) ↑ MAE(HOMO-LUMO Gap) ↓

ID Test
QHNet (H) 1.1e-1 9.0e-4 6.7e-3 6.1e-3
QHNet (D) 3.7e-2 7.8e-3 7.8e-3 2.2e-3
Nequip-L (jfit) 1.3e-4 1.1e-2 1.0e-2 1.1e-3

OOD Test
QHNet (H) 9.2e+1 2.4e-1 3.4e-1 9.5e-2
QHNet (D) 4.0e-1 6.1e-2 6.6e-2 2.9e-2
Nequip-L (jfit) 7.5e-4 8.8e-3 8.5e-3 2.3e-3

K LIMITATIONS

While our method demonstrates strong transferability, we acknowledge the following limitations:

• Chemical Complexity of Large Systems: While we successfully accelerated systems with
up to 900 atoms, our two large-scale cases (polymers and polypeptides) consist of repetitive
units. Generalizing to large systems with high chemical diversity remains to be verified.

• Scope of Systems: Our evaluation is currently restricted to finite molecular systems; ap-
plicability to periodic solids has not yet been validated.

• Direct-to-Solution Precision: As noted in Appendix J, our prediction error is not yet low
enough to bypass the SCF loop entirely for high-precision applications.

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this work, the authors used LLMs to polish writing and refine sentence
structure. The output of LLMs has been reviewed and edited. The authors take full responsibility
for all the content in the paper.
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