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Abstract

Having a profound understanding of the surrounding environment is considered1

one of the crucial tasks for the reliable operation of future self-driving cars. Light2

Detection and Ranging (LiDAR) sensor plays a critical role in achieving such3

understanding due to its capability to perceive the world in 3D. Similar to 2D4

perception tasks, current state-of-the-art methods in 3D perception tasks rely5

on deep neural networks (DNNs). However, the performance of 3D perception6

tasks, specially point-wise semantic segmentation, is not on par with their 2D7

counterparts. One of the main reasons is the lack of publicly available labelled8

3D point cloud datasets (PCDs) from 3D LiDAR sensors. In this work, we are9

introducing the VoxelScape dataset, a large-scale simulated 3D PCD with 100K10

annotated point cloud scans. The annotations in the VoxelScape dataset includes11

both point-wise semantic labels and 3D bounding boxes labels. Additionally, we12

used a number of baseline approaches to validate the transferability of VoxelScape13

to real 3D PCD for two challenging 3D perception tasks. The promising results14

have shown that training DNNs on VoxelScape boosted the performance of the 3D15

perception tasks on the real PCD. The VoxelScape dataset is publicly available at16

https://voxel-scape.github.io/dataset/17

1 Introduction18

Current self-driving cars rely on a number of on-board sensors to have a deep situational awareness19

of its surrounding. One of the key sensors that self-driving cars rely on is the LiDAR sensor. Unlike20

other optical sensors such as visible and IR cameras, LiDAR sensors are not affected by direct21

sunlight and do not need an external illumination source to operate. Therefore, the majority of22

the self-driving cars, tested on the roads nowadays, utilise LiDAR sensors in versatile perception23

tasks such as 3D semantic scene understanding and 3D object detection and tracking Zhang et al.24

[2018, 2020], Sun et al. [2019]. DNNs achieved current state-of-the-art results specially on 2D25

perception tasks, due to the availability of a large amount of labelled datasets, which DNNs exploit26

for training and evaluation Shi et al. [2020], Cortinhal et al. [2020]. However, for 3D perception27

tasks on PCD of LiDAR sensors, the number of publicly available annotated datasets in the context28

of autonomous driving is quite scarce. The reason for that is the difficulty and time-consuming29
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Table 1: Comparison between the publicly available 3D PCDs with annotations. Our VoxelScape
dataset is the largest dataset with both point-wise and 3D bounding box (3D BBox) annotations.
1Number of points is in millions, 2Number of classes of point-wise semantic labels annotations/3D
BBox object class annotations. (-) indicates that no information is provided or not available.

Data Type Dataset No. Scans No. Points1 Annotation No. Classes2 Sequential

Real

Semantic3D Hackel et al. [2017] 30 4009 point-wise 8/- X
Freiburg Behley et al. [2012] 77 1.1 point-wise 11/- X

Sydney Urban De Deuge et al. [2013] 588 - point-wise 14/- X
KITTI Geiger et al. [2012] 14999 1799 3D BBox -/3 X

nuScenes Caesar et al. [2020] 40000 2780 point-wise+3D BBox 16/23 X
Waymo Sun et al. [2020] 230000 40710 3D BBox -/4 X

SemanticKITTI Behley et al. [2019] 43552 4549 point-wise 28/- X
SemanticPOSS Pan et al. [2020] 2988 216 point-wise 14/- X

Synthetic

GTA-LiDAR Yue et al. [2018] 8585 - point-wise 3/- X
SynthCity Hackel et al. [2017] 75000 367.9 point-wise 9/- X

PreSIL Hurl et al. [2019] 50000 - 3D BBox -/12 X
VoxelScape (ours) 100000 13340 point-wise+3D BBox 32/9 X

nature of the annotation process for LiDAR PCD, specially for tasks such as 3D point-wise semantic30

segmentation. For instance, the time required to manually label the 3D points of a tile of 100m by31

100m of an urban traffic environment is on average is 4.5 hours Behley et al. [2019]. Thus, recent32

works started to explore the usage of game engines and 3D computer graphics software in order to33

simulate and render annotated synthetic PCD of urban traffic environments, as shown in Dosovitskiy34

et al. [2017], Griffiths and Boehm [2019], Yue et al. [2018].35

While the synthetic PCD are used for the validation of trained machine learning models on real PCDs,36

they still however suffer from some shortcomings. One of these shortcomings, is the lack of the37

key properties that exists in real PCD coming from physical LiDAR sensors such as the returned38

laser beams’ intensity/reflectivity values Dosovitskiy et al. [2017]. Another shortcoming, is the39

negligence of simulating critical objects and scenarios which are of a great importance to self-driving40

cars such as vulnerable road users (pedestrians, cyclists,... etc.) Griffiths and Boehm [2019] and41

construction sites Yue et al. [2018]. Similarly, the small number of publicly available datasets of42

annotated 3D PCD suffer from the lack of scenario diversity especially for the less frequent scenes43

such as construction sites. In this work, we tackle some of these challenges, which exist in both44

synthetic PCD from simulated traffic environments and real PCDs from physical LiDAR sensors. We45

introduce a large scale and diverse simulated 3D PCD in urban traffic environment, the VoxelScape46

dataset. In VoxelScape, we provide more than 100K sequential LiDAR scans annotated with both 3247

point-wise semantic labels and 3D bounding boxes of 8 unique object classes.48

To the best of our knowledge, this is considered the largest public 3D PCD with point-wise semantic49

annotation across both simulated and real urban traffic environment datasets. Overall, the contribution50

of this work is as follows:51

• A large scale 3D PCD of simulated urban traffic environments with full detailed point-wise52

semantic segmentation labels and 3D bounding boxes (BBox) annotation in 360◦.53

• Realistic simulation of physical LiDAR sensor properties (i.e intensity/reflectivity) and54

diverse simulation of less-frequent scenarios that are missing in real 3D PCDs in urban55

traffic environments56

• We additionally provide an evaluation of the applicability of synthetic PCDs in real scenarios57

captured by physical 3D LiDAR sensors for two 3D perception tasks for self-driving cars.58

The remainder of the paper is structured as follows. In Section 2, a brief overview of related work59

from the literature is presented. The description of the pipeline utilised in generating our diverse60

VoxelScape dataset is outlined in Section 3, along with details of our VoxelScape dataset. The61

evaluation of state-of-the-art methods for point-wise semantic segmentation and 3D object detection62

of 3D PCD on our VoxelScape dataset is described in Section 4 and Section 5. Finally, we conclude63

our paper in Section 6.64
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2 Related Work65

Thanks to the plethora of the publicly available 2D image datasets, there has been a huge leap in the66

performance of 2D computer vision tasks such as image classification and semantic segmentation Lin67

et al. [2014], Krizhevsky et al. [2017]. On the other hand, in the 3D computer vision field, the number68

of available 3D LiDAR datasets is not quite on a par with their 2D counterparts specially in the69

context of self-driving cars and urban traffic environment.70

In Table 1, we listed a number of the relevant 3D LiDAR datasets which were captured in urban traffic71

environments and made publicly available. We categorised the datasets into two main categories72

based on the capturing procedure, whether it was using a real physical sensor (real data) or a simulated73

virtual sensor (synthetic data). In the following, we will discuss some of the datasets under each one74

of the aforementioned categories.75

2.1 Real Datasets76

One of the early 3D LiDAR real datasets was the Freiburg LiDAR dataset Behley et al. [2012], which77

was captured in an urban traffic environment inside the campus of University of Freiburg. The dataset78

contains a total of 77 3D LiDAR scans captured using a SICK LMS LiDAR sensor mounted on a79

pan-tilt module. The dataset was manually annotated with point-wise semantic labels with a total80

number of 11 classes. Another 3D LiDAR dataset with point-wise annotation is the semantic3D81

dataset Hackel et al. [2017]. It was captured using a Terrestrial Laser Scanner (TLS) in an urban82

traffic environment, which is commonly used in surveying applications for its highly dense PCD. The83

dataset contains only 30 scans with point-wise annotation for 8 classes. The majority of class labels84

belong to static objects of an urban city (such as terrain, building vegetation,..etc) and without any85

labels for dynamic objects such as pedestrians and cyclists.86

In 2012, the KITTI benchmark was released which is considered the first benchmark for a number87

of perception tasks focused mainly on self-driving cars. The KITTI contained a 3D LiDAR dataset88

for the task of 3D object detection which consisted of roughly 15K 3D LiDAR scans captured using89

a Velodyne HDL-64E sensor. The dataset had 3D BBox annotation for three classes, namely cars,90

pedestrians and cyclists. Similar to KITTI, both the nuScenes Caesar et al. [2020] and Waymo Sun91

et al. [2020] datasets contained 3D BBox annotations for 3D LiDAR scans. These two datasets were92

the first largest datasets released by two major self-driving car companies (Motional and Waymo93

respectively), with 40K scans in nuScenes and 230K in Waymo.94

Recently, three larger 3D LiDAR datasets were released with point-wise semantic annotations, namely95

SemanticKITTI Behley et al. [2019], SemanticPOSS Pan et al. [2020] and nuScenesCaesar et al.96

[2020]. Both of the SemanticKITTI and nuScenes datasets contained fairly large number of class97

labels with 28 and 16 labels for SemanticKITTI and nuScenes respectively. However, the number98

of labels of vulnerable road users such as pedestrians and cyclists/motor-bikers were quite small in99

comparison to other class labels. For example, in the SemanticKITTI dataset, the total number of100

pedestrians and bicyclists objects are roughly 900 and 350 respectively, whereas the total number of101

cars is roughly 10K Behley et al. [2020]. Moreover, both the SemanticKITTI and the SemanticPOSS102

datasets did not contain any of the critical scenarios that are crucial for safe and reliable situational103

awareness of the self-driving cars in urban traffic environments such as roadwork scenarios or heavily104

cluttered spaces with pedestrians. Furthermore, the nuScenes dataset contains much sparser point105

cloud scans in comparison to the SemanticKITTI as it was captured using a Velodyne LiDAR sensor106

with only 32 vertical channels.107

2.2 Synthetic Datasets108

With recent work on domain adaptation of DNNs models trained on synthetic datasets, it was shown109

that synthetic datasets could help in boosting the performance of DNNs models when tested on real110

datasets Ros et al. [2016], Saleh et al. [2019], Wu et al. [2019]. Ros et al. Ros et al. [2016], introduced111

the SYNTHIA dataset which is a synthetic 2D image dataset for the semantic segmentation task.112

When DNN models were trained on SYNTHIA with parts from a real semantic segmentation dataset,113

the trained model achieved more accurate results when tested on real datasets in comparison to those114

models trained solely on a real dataset. On the other hand, in 3D perception tasks, Saleh et al. Saleh115

et al. [2019] obtained higher average precision scores when training a model on birds eye view images116

from both synthetic 3D PCD and KITTI 3D PCD for the task of 3D car detection. The trained DNN117
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Figure 1: A sample 3D (left) and top views (middle) layout of the procedurally generated urban
city with labelled point cloud accumulated along the vehicle path. The highlighted parts on the
right showcase samples of the label annotation and calculated intensity. Bounding boxes (right) for
vehicles, cyclists and pedestrians as well as roadwork (concrete barriers and metal fences) are filtered
based on the distance from the sensor.

model has shown more promising results when trained on both synthetic and real 3D PCD similar to118

SYNTHIA DNN models. That being said, the number of synthetic 3D LiDAR datasets with annotated119

point-wise and/or 3D BBoxs annotations are still rather limited. Additionally, the publicly available120

synthetic 3D LiDAR datasets are not diverse with their point-wise semantic annotations. For instance,121

the GTA-LiDAR and PreSIL datasets Yue et al. [2018], Hurl et al. [2019], which were obtained122

using a plugin interfaced with the famous Grand Theft Auto (GTA) game to simulate a virtual 3D123

LiDAR sensor based on ray casting, only contains labels for 3 classes, namely cars, pedestrians and124

cyclists. Recently, the SynthCity dataset Hackel et al. [2017] was presented, which include 75K 3D125

point cloud scans with point-wise annotations of 9 class labels of infrastructure objects of urban126

traffic environments excluding vulnerable road users such as pedestrians and cyclists. The dataset127

was generated using a sensor simulation plugin (Blensor) for the open source 3D computer graphics128

software, Blender Gschwandtner et al. [2011].129

3 The VoxelScape Dataset130

Unlike other synthetic 3D LiDAR datasets, our introduced VoxelScape dataset contains a large scale131

3D point cloud scans of more than 100K scans with full-detailed point-wise semantic annotations for132

32 class labels. Additionally, our synthetic 3D PCD was generated using an emulation of a Velodyne133

HDL-64E 3D LiDAR sensor which enabled us to not only obtain (x, y, z) coordinates of the points134

like other synthetic 3D LiDAR datasets but also obtain the intensity values for each returned laser135

beam hitting an object in the scene. It is also worth noting that unlike the SynthCity dataset, the136

rendering for each scan in 360◦ in our dataset takes only roughly 2 seconds rather than the 330137

seconds in SynthCity dataset. Additionally, in contrast to real 3D LiDAR datasets, our VoxelScape138

datasets not only contains a larger number of point-wise semantic labels but it also contains 3D139

BBox annotations for 9 object classes. Furthermore, as described later, our dataset simulates some140

corner scenarios which are missing in the available real 3D LiDAR datasets. Next, we will describe141

the pipeline we utilised for generating our VoxelScape dataset. Then, we will provide a thorough142

discussion of the details of the dataset and the provided annotations.143

3.1 LiDAR Simulation144

In this work, we utilised the equirectangular UV spherical mapping method presented by Hossny et al.145

at Hossny et al. [2020]. Their method unfolds in three stages. Firstly, a 360 degrees equirectangular146

depth map is rendered. Secondly, the rendered depth map is texture mapped on a sphere using147

spherical UV coordinates to produce a spherical point cloud. Finally, the spherical point cloud is148

carved based on the depth values in the rendered depth map.149
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3.1.1 Calculating Point Cloud 3D Coordinates150

There are many topological formations to represent a sphere. Yet the UV-sphere was chosen because of151

its simplicity in mapping between Euclidean and spherical coordinates using trigonometric functions152

as follows;153

(
x
y
z

)
= r

(
sin θ cosφ
sin θ sinφ

cos θ

)
, (1)

where r is the radius of the sphere. In Hossny et al. [2020], they replaced r with depth values obtained154

from the z-buffer of a 360 deg rendering of the scene. This, in return, allowed them to render a155

multi-channel equirectangularly unwrapped image of the scene ID,Pi [u, v] where D,Pi are per-point156

depth and other properties of the scene where u and v serve as both texture and spherical coordinates.157

The depth is used to determine the distance between the sensor and the point on the sphere surface158

while the properties Pi are used to represent the labels, reflectivity, etc for each point. In this work,159

we chose Pi = L,R to represent per-point labels and material reflectivity, respectively. Therefore,160

each rendered pixel at [u, v] produces a labelled 3D point in the rendered point cloud as;161

(
xu,v
yu,v
zu,v

)
= ID[u, v]

(
sin θu cosφv
sin θu sinφv

cos θu

)
(2)

lu,v = IL[u, v], (3)

iu,v = IR[u, v], (4)

where lu,v, iu,v is the label and intensity for all texture coordinates u, v and ID,L,R is the equirectan-162

gular depth, label and material reflectance maps, respectively.163

3.1.2 Calculating Reflectance Intensity IR[u, v]164

We expanded the work in Hossny et al. [2020] to simulate the reflection intensity of different surfaces165

by incorporating the incidence vector from the simulated sensor and the surface. We obtained the166

reflectance parameters of the different surface materials from Kashani et al. [2015] and used a standard167

2D Gaussian distribution to simulate the fine grains of the material. Additionally, we considered168

two sources of intensity fall-off, namely light attenuation and incidence angle of LiDAR beams on169

surfaces. We have included a detailed description and equations about the procedure we followed to170

calculate these two sources of intensity fall-off as part of the supplementary material.171

3.1.3 Assigning Labels IL[u, v]172

During rendering, labels are assigned to each pixel u, v based on the type of the 3D object (e.g.173

vehicle, road, etc) and also the material of different parts of a 3D object (e.g. tyres, car frame, asphalt,174

side-walk, etc). In addition, material is then mapped to the mesh geometry of the 3D asset using local175

texture coordinates. This part is discussed further in the annotation subsection later.176

3.2 Procedural Urban City Generation177

According to Compton [2019], procedural content generation (PCG) has become a common technique178

in computer games. The rationale behind using PCG in computer games also varies across different179

use-cases starting with cost reduction and ending with producing infinite game play experiences.180

There are several schools of thought about PCG but perhaps the most common one is based on181

stacking parameterised building blocks where the values of different parameters are chosen randomly182

according to a statistical distribution Compton [2019]. This approach is particularly useful for183

automation rather than presenting infinite experiences. In this work, we chose this approach to184

generate the urban scenes in three major stages. First, a layout of the city is generated where roads185

and intersections are laid out. Second, the laid out roads are used to generate buildings on both186

sides. Finally, the road segments are populated with agents (e.g. pedestrians, cyclists and vehicles),187

vegetation (e.g. trees and shrubs) and road signs. Figure 1 shows a sample of the procedurally188
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generated urban city with labels and the associated labelled point cloud and the reflectance intensity189

of the LiDAR points when projected on different surfaces.190

3.2.1 Urban Scene Generation191

The city layout was derived using recursive partitioning of a 2D rectangular area with the size of 320192

m2 using quad tree decomposition with random number generator. The number generator decides193

whether to subdivide a sub-rectangle while maintaining a maximum and minimum dimensions of194

each building block. The resulting partitioning map then serves as the blueprint for placing the195

roads and intersections. The buildings were placed alongside the laid roads and they were randomly196

selected from a library of 3D building assets. They were subjected to discrete rotation of 0, 90, 180197

degrees around the z-axis (up) while grass patches and pedestrians were randomly rotated with angles198

in range of [0, 180] degrees. Each 3D building is equipped with areas to spawn trees and street props199

(e.g. mailboxes, trash cans, seats, phone booths). We also included two different special blocks to200

allow for a green area with pedestrians. The green area is another procedurally generated terrain with201

random deformation and grass patches. Pedestrian spawning follows a more articulate procedural202

generation which takes place on two stages allowing to choose the population density and then203

randomly choosing digital manikins from a library of assets. As shown in Figure 1-right, we designed204

two road portions to simulate normal and roadwork scenarios. In normal scenarios, each road portion205

is subdivided into 7 areas for spawning trees, shrubs, pedestrians, cyclists, vehicles, road signs, and206

lamps. For roadwork scenarios, the vehicle and cyclist spawning areas are merged to spawn a road207

work area. The roadwork area itself is subdivided into three areas which spawn different kinds of208

barriers (e.g. concrete, metal fence and cones). The spawning of different 3D assets is done randomly209

according to a selected seed.
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Figure 2: Label distribution of our VoxelScape dataset. The number of labelled points per class is
shown.

210

3.2.2 Seed Selection211

Each generated sequence (city), is uniquely identifiable by an initial seed. We chose 100 different212

32-bits prime numbers with a 50% zeros to ones ratio and maximum 3 consecutive similar digits213

as our sequence seeds. This seed is then used to generate subsequent unique seeds for the random214

number generators controlling the city layout, selected assets and as well as their transformation215

matrix.216

3.2.3 Annotation217

Labels were generated on two levels for each 3D asset in the generated scene. First, an object label is218

assigned to the overall asset which is defined by its bounding box. Second a sub-label is also assigned219

at the mesh level to facilitate more articulation of the different parts of the asset. For example, a cyclist220

or a biker are assigned sub-labels different from the bicycle or the motorcycle. In the implementation,221
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Table 2: Number of 3D BBox annotations for each of the 9 object classes, which exist in our
VoxelScape dataset.

Object Class No. BBox
Pedestrian (Adult) 537850
Pedestrian (Child) 132346
Cyclist 101342
Motorcyclist 28825
Car 88845
Truck 35843
Bus 3774
Construction-Barrier 6361
Construction-Cone 14670
Total 949856

the label was assigned based on the object type characterised by the object name prefix. Sub-labels,222

on the other hand, were assigned using the material identifier of different parts of the mesh. The223

use of materials also allowed us to implement different reflectivity response as described above. For224

example, the body and tyres of a vehicle reports different levels of reflective intensity. Another critical225

example is the ground where road lines are more reflective than the asphalt materials.226

3.3 Dataset Overview227

Given the aforementioned data-generation pipeline, we obtained our VoxelScape dataset, which228

contains a total of 100 sequences (each with 1000 point cloud scans) covering different parts of our229

procedurally generated city. The generated cities include common diverse scenarios in urban traffic230

environments. In total, we have 100K point cloud scans with a total number of 13340 million points.231

Each scan contains four main components, which are the (x, y, z) coordinates of the point and its232

reflection intensity i. Furthermore, each scan is annotated with two different annotations, namely233

point-wise semantic labels and 3D object BBox.234

The number of semantic labels is 32 class labels (shown in Figure 2), which covers a wide range235

of elements found in any typical urban traffic environment. The 3D BBox annotations covers 9236

different class objects, namely cars, adult-pedestrians, child-pedestrians, cyclists, motorcyclists,237

truck, bus, construction-cones and construction-barriers. In Figure 2, the distribution of the 32238

point-wise semantic labels is presented. Similar to real PCDs Behley et al. [2019], Pan et al. [2020],239

the majority of class labels belong to ‘building’, ‘road’ and ‘sidewalk’ classes. The number of 3D240

BBox annotations per class is presented in Table 2. The dataset contains a large number of BBox241

(approximately 950K BBox) with a focus on vulnerable road users (pedestrians, cyclists, ... etc.)242

which is a unique characteristic of our VoxelScape dataset that is missing in other real PCDs Geiger243

et al. [2012], Caesar et al. [2020].244

4 VoxelScape for Point-wise Semantic Segmentation Task245

Since our end goal is to bridge the gap between synthetic and real PCDs, for 3D perception tasks.246

Therefore, in this section, we are going to validate the applicability and the realism of our presented247

VoxelScape dataset for real 3D perception tasks. In order to do so, we chose one of the challenging248

tasks in the 3D perception domain which is the point-wise semantic segmentation of PCD. The249

VoxelScape dataset was used and the results were analysed to calculate the improvement (if any exist)250

in the performance of the methods developed for this task. This strategy is motivated by the promising251

work in Ros et al. [2016]. In their work, the DNN models trained for 2D image segmentation with the252

synthetic RGB images had enhanced the performance when tested on real RGB images. Similarly, in253

our case, we will be relying on baseline DNN models to carry out number of experiments to evaluate254

the performance of these models when trained using our VoxelScape dataset for the point-wise255

semantic segmentation task. In the following, we will first start with presenting the baseline DNN256

models that will be utilised in our experiments. Then, we will discuss the setup for the experiments257

and analyse their results.258
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Table 3: Evaluation of the baseline DNN models trained on our VoxelScape dataset (w/wo using the
intensity (INT) values) when tested on the validation split of the SemanticKITTI Behley et al. [2019].

Approach mAcc mIoU

SqueezeSeqV2(-INT) Wu et al. [2019] 25.4 7.4
SqueezeSeqV2(+INT) Wu et al. [2019] 32.4 9.5
Darknet53(-INT) Milioto et al. [2019] 29.1 7.9
Darknet53(+INT) Milioto et al. [2019] 40.7 10.2

4.1 Baseline DNN Models259

The DNN models using convolutional neural networks (ConvNets), have became the state-of-the art260

for the point-wise semantic segmentation of the PCD Milioto et al. [2019], Wu et al. [2019]. We261

chose two two architectures as baseline: SqueezeSegV2 model Wu et al. [2019] and DarkNet53262

model Milioto et al. [2019]. SqueezeSegV2 Wu et al. [2019] is the first baseline and is one of263

the commonly utilised models for the task of point cloud-based segmentation due to its real-time264

inference and its relative accurate results Zhao et al. [2020], Balado et al. [2019]. The architecture265

of SqueezeSegV2, as the name implies, is build up on the SqueezeSegV1 architecture Wu et al.266

[2018], which takes the point cloud data as a spherically projected 2D image as input. The 2D267

image consists of 5 channels namely: range, x, y, z, and intensity of the input point cloud. The268

model is a modified encoder-decoder fully ConvNet model similar to typical semantic segmentation269

ConvNet models for 2D RGB images. One of the unique components of the SqueezeSegV2 is270

the added Context Aggregation Module (CAM), that helps in reducing the effect of missing points271

from the input point cloud. The second DNN model is the DarkNet53 model Milioto et al. [2019],272

which was one of the well- performing DNN model for point-wise semantic segmentation over the273

SemanticKITTI dataset Behley et al. [2019]. The underlying architecture of DarkNet53 is a fully274

ConvNet architecture with Yolov3’s backbone architecture DarkNet53 Redmon and Farhadi [2018].275

We utilised the implementation of DarkNet53 that was introduced in Milioto et al. [2019], which276

projects the 360◦ point cloud scan and unwrap it into 2D image with 5 channels that corresponds to277

range, (x, y, z) coordinates and intensity values of each point in the scan similar to the SqueezeSegV2278

model.279

4.2 Experimental Results280

In our validation study, we carried out two experiments in order to validate the utility of our Vox-281

elScape dataset. In our first experiment, our goal is to assess whether our simulated intensity values282

(that are missing from all synthetic LiDAR datasets in the literature) would make a difference in283

the overall performance of the trained DNN models. On the other hand, in our second experiment,284

our goal is to evaluate the generalisation capabilities of the trained baseline DNN models on our285

VoxelScape dataset, when they are both tested directly on real PCD, and when their weights are286

utilised to fine-tune the DNN models on real PCD. Fine-tunning DNN models is considered one form287

of transfer learning, which was shown to be helping in both reducing the time required for DNN288

models to converge and boosting its overall performance as it was shown in Yosinski et al. [2014],289

Ros et al. [2016].290

4.2.1 Intensity Evaluation Experiment291

For our first experiment, we trained the baseline DNN models twice, one while using the full PCD292

values (x, y, z) and intensity values from our VoxelScape dataset. The other model, it was trained293

only with the (x, y, z) values without the intensity values. Then, we evaluate the performance of these294

models on real PCD from physical LiDAR sensors. We used the, recently released, real point cloud295

scans from SemanticKITTI Behley et al. [2019] for our experiments. The justification of this choice296

is that SemanticKITTI is considered (to the best of our knowledge) the second largest PCD with297

point-wise annotations after our proposed VoxelScape dataset. In order to conform with the number298

of labels exist in the SemanticKITTI evaluation benchmark (which are only 19 classes defined in299

Table 4), we only trained our baseline models on their corresponding labels in our VoxelScape dataset.300

The SemanticKITTI consists of 22 sequences divided into three parts (from seq. 00 to 10 except301

seq. 08 is for training; seq. 08 for validation and from seq. 11 to 21 is for testing). In Milioto et al.302
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Table 4: Evaluation of the baseline DNN models on the validation split of the SemanticKITTI Behley
et al. [2019]. Each baseline model has two versions, one is fine-tuned using our VoxelScape (VS-TF)
and another one without the fine-tuning.
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SqueezeSeqV2 Wu et al. [2019] 35.1 89.6 72.7 32.2 0.9 68.8 78.8 15.9 13.1 17.6 18.1 70.6 22.9 67.5 8.1 27.2 0.0 33.5 13.4 16.1
SqueezeSeqV2 (VS-FT) Wu et al. [2019] 36.5 90.1 73.3 35.0 0.5 69.7 79.6 26.0 11.9 21.6 16.6 71.6 26.1 67.6 12.4 30.7 0.0 35.3 14.0 12.2

DarkNet53 Milioto et al. [2019] 36.5 85.1 69.4 14.7 0.0 74.8 80.9 17.9 8.1 4.0 9.6 78.8 28.0 70.9 8.3 33.8 0.0 47.4 32.1 28.9
DarkNet53 (VS-FT) Milioto et al. [2019] 39.8 92.0 76.2 45.2 0.1 72.3 80.6 39.0 13.0 20.8 20.4 75.1 31.2 71.0 13.6 38.8 0.0 30.5 17.6 19.2

[2019], they have a number of variants for both the DarkNet53 and SqueezeSegV2 architectures.303

The difference between these variants are the resolutions of the projected 3D LiDAR point cloud304

into the input 2D image. The resolutions are 2048(W) X 64(H), 1024(W) X 64(H) and 512(W) X305

64(H). For computational purposes, we chose to utilise the 1024(W) X 64(H) resolution for both306

the DarkNet53 and the SqueezeSegV2 models in our experiments. In Table 3, we report the results307

of our first experiment evaluated on the validation split of the SemanticKITTI dataset using two308

different evaluation metrics, namely the mean accuracy (mAcc) and the mean intersection over-union309

(mIoU) metrics Everingham et al. [2015]. As it can be noticed from Table 3, we have two versions of310

the two baseline DNN models (SqueezeSegV2 and Darknet53); one is trained on our VoxelScape311

dataset without intensity values (-INT), and the other one with the intensity values (+INT). From312

the reported results, it can be noticed that the simulated intensity values of our VoxelScape dataset313

helped in improving the performance of the two baseline DNN models when tested on the real PCD314

SemanticKITTI. It is worth noting that the scores for both mAcc and mIoU were calculated across315

each class from the 19 classes of SemanticKITTI.316

4.2.2 Generalisation Evaluation Experiment317

In Table 4, we report the results of our second experiment where we evaluate the performance of318

the fine-tuned baseline DNN models using our VoxelScape dataset on the SemanticKITTI dataset319

(namely SqueezeSegV2 (VS-FT) and DarkNet53 (VS-FT)). Additionally, we also evaluate the same320

baseline DNN models when trained only on the training split of the SemanticKITTI without any321

fine-tuning from the trained DNN models on our VoxelScape dataset. Similar to Behley et al. [2019],322

Qi et al. [2017], Milioto et al. [2019], the evaluation metric we used is mIoU. The results show that323

the Darknet53 (VS-FT) model that was fine-tuned based on the weights of the pre-trained Darknet53324

(+INT) model on our VoxelScape dataset, achieved a total mIoU score of 39.8% and outperformed325

the Darknet53 model with a significant margin which scored only 36.5%. On the other hand, the326

SqueezeSegV2 (VS-FT) model achieved only a total mIoU score of 36.4% and outperformed the327

SqueezeSegV2 which scored only 35.1%. The main deduction from the results in Table 4, is that328

the fine-tuned models using our VoxelScape dataset have achieved higher mIoU scores than their329

counterparts model without the fine-tuning. This can be further demonstrated by the mIoU scores330

on the vulnerable road users (persons, bicyclists,..etc) which we have multiple instances of them in331

our VoxelScape dataset, which in return helped in making the fine-tuned DNN models scored better332

IoU scores when compared with the DNN models without any fine-tuning. More details about the333

experiments setup can be found in the supplementary material.334

5 VoxelScape for 3D Object Detection Task335

In order to further demonstrate the utility of our VoxelScape dataset for real 3D perception tasks. In336

this section, we will be investigating the performance of our VoxelScape dataset when utilised for the337

3D object detection task on real LiDAR point cloud dataset.338

5.1 Baseline DNN Model339

The baseline DNN we will be relying on for the 3D object detection task will be the LiDAR-based340

3D object detection method, PointPillars Lang et al. [2019]. PointPillars is one of the best performing341

and fastest 3D object detectors on real LiDAR PCD datasets such as KITTI Geiger et al. [2012]342
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Table 5: Evaluation of the 3D detection results on the validation split of KITTI Geiger et al. [2012].
1VS-FT denotes that the model was fine-tuned using our VoxelScape dataset.

Method Training Data mAP Car Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars Lang et al. [2019] VoxelScape 14.96 21.01 17.68 17.48 11.61 10.61 10.43 21.29 17.73 16.97
KITTI 45.55 74.67 62.63 57.16 41.83 38.61 36.51 54.64 45.79 42.99
KITTI (VS-FT)1 58.06 80.35 71.73 65.96 60.71 54.53 52.84 70.07 60.76 55.39

and nuScenes Caesar et al. [2020]. More details about the baseline setup can be found in the343

supplementary material.344

5.2 Experimental Results345

Similar to the second experiment from the point-wise semantic segmentation task, we would like to346

evaluate the generalisation capabilities of the trained baseline PointPillars model on our VoxelScape347

dataset, when it is both tested directly on real PCD, and when its weights are used to fine-tune348

the DNN model on real PCD. In this experiment, we will be utilising the real PCD from KITTI349

dataset Geiger et al. [2012] for the 3D object detection task. The reason for choosing the KITTI350

dataset is because it was captured using a Velodyne HD-64E 3D LiDAR which is similar to our351

simulated LiDAR sensor. As we have shown in Table 1, the KITTI dataset has only 3D Bbox352

annotations for three object classes, namely Cars, Pedestrians and Cyclists. In order to conform353

with KITTI, we only trained our baseline model, PointPillars, on the aforementioned class labels in354

our VoxelScape dataset for the 3D object detection task. In total, we have trained three PointPillars355

models with the same architecture configuration (more about it can be found in the supplementary356

material). The first model is using our VoxelScape dataset as its sole input training data. Whereas,357

the two other models are utilising the first 3712 point cloud scans from the training split of the KITTI358

dataset as their input training data. The only difference between the last two models that, one model359

was fine-tuned using the weights from the trained PointPillars on our VoxelScape dataset, while the360

other was not. In Table 5, we evaluate the performance of the trained three baseline PointPillars361

models on the 3769 point cloud scans of the validation subset (which is the rest of the 7481 scans362

from the training split) of the KITTI 3D object detection benchmark. We report the results according363

to the KITTI’s validation criteria which is the average precision (AP) in 3D. Since the KITTI dataset364

has also further annotated each 3D BBox with one of three difficulty levels (easy, moderate, hard), we365

have categorised the AP scores in Table 5 for each class into those three difficulty levels. Additionally,366

we have reported the overall mean value over the AP of all classes for all difficulty levels in the third367

column (mAP). Similar to the 3D semantic segmentation task, we can notice that in the 3D object368

detection task, the last baseline DNN model in Table 5, when was fine-tuned using the weights from369

the trained model on our VoxelScape dataset, the performance was boosted by more than 12% in the370

mAP score.371

6 Conclusion372

In this work we have presented the VoxelScape dataset, a novel large scale simulated PCD of373

diverse urban traffic environment. The dataset is provided with 32 point-wise semantic labels and 3D374

bounding boxes annotations of 9 object classes for 3D perception tasks in the context of self-driving375

vehicles. Our unique efficient 3D LiDAR simulation approach combined with procedural urban city376

generation enabled us to achieve 100K point cloud scans of articulated scenes with a total of 13340377

million annotated points. In our experiments, we validated the realism and utility of the proposed378

dataset for two 3D perception tasks using the 3D point cloud scans. We trained baseline DNNs on our379

VoxelScape dataset and fine-tuned them with real PCD. The results have shown that our simulated380

intensity values helped in improving the accuracy of DNN models by more than 10%. Additionally,381

fined-tuned DNN models using our VoxelScape dataset achieved both higher mean intersection382

over-union and mean average precision scores over the DNN models that were not utilising it. In383

our future work, we will focus on synthesising more corner-case scenarios in highway traffic scenes384

(such as crossing wild animals). Furthermore, we will explore more domain-adaptation techniques to385

further decrease the gap between synthetic and real PCDs for other 3D perception tasks.386
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