
Locally orderless networks

Jon Sporring∗1,2, Peidi Xu1, Jiahao Lu1, François Lauze1,2, and Sune Darkner1

1Department of Computer Science, University of Copenhagen, Denmark
2Center for Quantification of Imaging Data from MAX IV (QIM), Denmark
{sporring, peidi, lu, francois, darkner}@di.ku.dk

Abstract

We present Locally Orderless Networks (LON) and
the theoretical foundation that links them to Con-
volutional Neural Networks (CNN), Scale-space his-
tograms, and measure theory. The key elements are
a regular sampling of the bias and the derivative of
the activation function. We compare LON, CNN,
and Scale-space histograms on prototypical single-
layer networks. We show how LON and CNN can
emulate each other, and how LON expands the set
of functions computable to non-linear functions such
as squaring. We demonstrate simple networks that
illustrate the improved performance of LON over
CNN on simple tasks for estimating the gradient
magnitude squared, for regressing shape area and
perimeter lengths, and for explainability of individ-
ual pixels’ influence on the result.

1 Introduction

We introduce the locally orderless network (LON)
which locally transforms the input signal into a set
of local histograms. We propose a small modifica-
tion of a standard convolutional neural network such
that the internal representations becomes local his-
tograms, as they have been studied in the classical
scale-space literature [1]. This novel representa-
tion includes learnable operators which expands the
representation space to a wide group of non-linear
functions.

In [1], the authors presents the Locally Orderless
Image (LOI) which identifies the 3 essential scale
parameters of any gray-valued image: the resolu-
tion of the image, the size of the region of analysis,
and intensity resolution. The authors show how
these concepts are unified into a single scale-space
paradigm, and at its heart resides local histograms
which are the smooth and well-posed. With the
strong foundation of classic scale space and measure
theory [2, 3], in this article we illustrate how ba-
sic theoretical perspectives can be used to analyze
these types of networks including classic concepts of
invariance and density estimates. We focus on un-
derstanding the fundamental capacities of the LON
and comparing it to Convolutional Neural Networks
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(CNN) [4]. Thus we describe the LON from a the-
oretical perspective and compare it with a similar
CNN on simple binary examples to illustrate some
of their properties.

To the best of our knowledge, there is little prior
work that is closely related to the LON. Histograms
have been used in networks previously, where [5]
introduced the histogram layer for more compact
representation and realized that this is induced by
the activation function. In [6] a global version was in-
troduced, and [7] showed how such a representation
can be used to estimate quantiles and subsequently
distance. Density estimation deep learning network
components exist, but most of that relates to den-
sity for loss functions such as cross-entropy. Pooling
operation which can be interpreted as a histogram
operation, and the learning of pooling operations
was suggested by [8] where the pooling operation
was learned during training. As an alternative one
could consider Bayesian Neural Networks [9] that
work with parameter uncertainty or distributions. In
contrast, LON works with data distribution. There
are however some works before the breakthrough of
neural networks. In [10, 11], local histograms were
used for texture classification with success. Further-
more, many of the classical image descriptors such
as histogram of Gaussians (HoG), Daisy [12], and
SIFT [13] are all based on histograms of features in
some way.

2 Locally orderless histograms
as convolutional networks

Consider an image and two kernels I,K,W : Rd →
Γ, with support in Ω ⊆ Rd, and Γ ⊆ R, a function
f : R → R, and scalars b ∈ R, and the function
h : Ω× R → R,

h(x, b) =

∫
Rd

f

(
b−

∫
Rd

I(β − α)K(α)dα

)
W (x−β) dβ,

(1)
written as h(x, b) = (W ∗ f(b− (I ∗K)))(x). When
W is a smoothing kernel, and

∫ s

−∞ f(t)dt is a sigmoid
function, then h(x, b) is a local histogram value
of I ∗ K in the neighborhood of position x and
intensity b. In [1], W and K are Gaussian, f is an
unnormalized Gaussian with f(0) = 1, and all 3
functions had independent width parameters.
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We consider a discrete space Ω = {xk}k ⊂ Zd

and introduce a locally orderless network layer for
discrete inputs Ik = I(xk) as a linear combination
of M local histograms hj with individual kernels Kj

and Wj and 2NM kernel-dependent intensities bij
and bell-shaped functions parametrized by σij , as
LON : R|Θ| × Γ|Ω| → RO,

hijk =
(
Wj ∗ fσij (bij −(I ∗Kj))

)
(xk) , (2)

LON ({Ik}) = A vec({hijk}) (3)

where Θ = {Kj , bij , σij ,Wj ,A : i = 1 . . . N, j =
1 . . .M} is the set of parameters, A ∈ RMN |Ω|×O is
a matrix and O is the number of output connections
under suitable boundary conditions for the convolu-
tion operator, and | · | is the cardinality operator.

In the following, we will give an interpretation of
LON by comparing it with a similar convolutional
network.

2.1 Circumference versus areas

LON and convolutional networks (CNN) compare
as the circumference and area of objects. A CNN
similar to (3) is found by replacing the bell-shaped
functions fij with a single sigmoid function gij(v) =∫ v

−∞ fij(w) dw,

CNN({Ik}) (4)
= A vec({(Wj ∗ gij(bij −(I ∗Kj)))(xk)}) .

Consider a family of activity functions in LON which
converges to Kronecker’s delta function fσij

→ δ, as
σij → 0, then correspondingly, the activity functions
in CNN will converge to the Heaviside function,
gij → H. As a consequence,

fij(bij −(I ∗Kj)(x)) →

{
1, bij −(I ∗Kj) (x) = 0

0, otherwise, (5)

gij(bij −(I ∗Kj)(x)) →

{
1, bij −(I ∗Kj) (x) ≥ 0

0, otherwise. (6)

Thus LON focuses on the isophotes of bij −
(I ∗Kj)(x), while CNN performs a threshold of the
same term. When f has a finite width, then LON de-
fines well-posed, soft isophotes. Given a connected,
compact region S ⊂ Ω and an image I = χS + ε,
where χS is the indicator function and ε is i.i.d.
noise, the circumference and area of S is,

Circum(S) ∼
∑
k

(δ ∗ f(0.5−(I ∗K)))(xk) , (7)

Area(S) ∼
∑
k

(δ ∗ g(0.5−(I ∗K)))(xk) , (8)

where K is a smoothing kernel, and A are implied
to be a 1-vector with |Ω| elements.

2.2 LON and nonlinear measures
LON expresses some local operators more naturally
than CNN. For a transformation ξ : Γ → Γ, J(x) =
ξ(I(x)), and for a probability mass function hI , by
the Law of the unconscious statistician (LUS) we
have,

E (J) =
∑
Γ

ξ(i)hI(i). (9)

A local version is obtained by convolution with a
smoothing kernel W ,

(W ∗ J) (x) ≃
∑
i∈Γ

ξ(i)h(x, bi), (10)

since the above is linear in h then it can be written
on the form (3). Further, any linear combinations
of transformations ξm : Γ → Γ,∑

m

(W ∗ Jm) (x) ≃
∑
m

∑
i∈Γ

ξm(i)h(x, bi). (11)

is also linear in h and thus can also be written on
the form (3).

As an example, consider derivative kernels, Kk(x)
where x = (x1, x2, . . . , xd), and such that Ik = I∗Kk

is a smoothed estimate of the directional derivative
in the xk-direction. With ξ(v) = v2, the LON can
approximate the gradient magnitude squared as,

grad2(x) ≃
d∑

k=1

(
W ∗ I2k

)
(x) ≃

d∑
k=1

∑
i∈Γ

i2hk(x, i),

(12)

Note that for linear functions ξ and Gaussian kernels
W and K or its derivatives with standard deviation
γ and σ, then convolution semi-group property of
Gaussian kernels implies that the two kernels can be
replaced with a single Gaussian kernel of standard
deviation

√
γ2 + σ2 with an appropriate sum of

their derivative orders. This does not hold when ξ is
non-linear, but our experience is that the resulting
scale of grad2 is close to

√
γ2 + σ2.

3 Experiments
In this section, we will compare LON (3) with CNN
(5). To focus on the inner parts of the networks,
we set Wj = δ, where δ is the Dirac delta function,
and we investigate their ability to estimate the gra-
dient magnitude squared, to estimate and classify
circumferences and areas of objects, and we perform
a sensitivity analysis.

3.1 The gradient magnitude squared
The gradient magnitude squared is a rotational in-
variant indicator of the apparent edge of object
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Figure 1. Comparing LON with the gradient magni-
tude. The local histogram of the vertical and horizontal
derivative are shown for the point and extend indicated
by the red graphics in (a), and the locally orderless net-
work (12) with A ∼ {i2}.

parts. Using spatial coordinates x = [x, y], a direct
implementation is given by |I(x)|2 = (∂I(x)/∂x)2 +

(∂I(x)/∂y)2. Examples of |I(x)|2 and (12) on a
simple image are shown in Figure 1. For both ex-
periments, K and W were Gaussian kernels with
standard deviation 6 and 2 respectively with infinite
extend. We see that LON produces results that are
visually very similar to the direct implementation
of the gradient magnitude.

To compare the ability of CNN and LON to learn
the gradient magnitude squared, we have calculated
the gradient magnitude squared using |I(x)|2 for
objects from the MNIST database [14]. Our hypoth-
esis is that for a two-kernel system, both CNN and
LON will learn a set of orthogonal derivative kernels,
but in contrast to LON, CNN will not be able to
learn the square nature of the gradient magnitude.
To highlight the difference, the intensities of each
hand-written character are multiplied by a random
scalar sampled from the continuous uniform distri-
bution from 0.5 to 2.0, examples of which are shown
in Figure 2(a) and Figure 2(b). The networks all
consist of a 3× 3 convolution with their respective
activation functions, followed by a 1× 1 convolution.
This results in networks with 21− 35 parameters in
total. All networks are trained for 2000 epochs with
batch size 2048, using Adam with a learning rate
0.005 and pixel-wise mean squared error. All models
converged fast with similar learning curves. Exam-
ples of results for both CNN and LON are shown in
Figure 2 for a varying number of kernels, f , and the
number of regular samples on the bias axis i. For
both the CNN experiments, we see that edges at
certain angles are not modeled correctly, while LON
with 2 kernels successfully captures the edges in all
directions, and LON with 8 kernels also captures
the intensity variation accurately as reflected in the
loss. The CNN with sigmoid activation appears to
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Figure 2. CNN achieves similar behavior as LON, but
while LON succeeds in all directions, CNN does not.

have significant difficulties with intensities and fails
to predict the edges, particularly at certain orien-
tations, (example is indicated by the red arrow in
figure 2)

3.2 Circumference versus area

We hypothesize that the structure of CNN will excel,
when working with areas in K∗I, due to its ReLU ac-
tivation function, while LON will excel for isophotes
in K ∗ I, since it essentially operates on histogram
bins. To test this, we constructed a stochastic source
of objects with varying area and perimeter, by gen-
erating random 512 × 512 images from identically
and independently distributed (iid) normal noise.
A Gaussian filtering was then applied with σ = 10.
The foreground areas are then selected as having in-
tensity values > 75% quantile. With the thresholded
image, we then run connected component decompo-
sition to separate each random shape while ignoring
the incomplete shapes near boundaries as well as
too-small or too-large shapes. We finally place such
a shape into an image of fixed size 128× 128. The
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Figure 3. Process for random shape generation: An
image of iid normal noise smoothed with a Gaussian
kernel (a), its threshold and similar components (b), and
exemplar objects with added iid noise (c).
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Figure 4. The mean square error by the logarithm of
the number of parameters for CNN with 2 kernels and
the ReLU, LON with 2 kernels and 2 bins and 8 bins on
the regression task on the perimeter and area of random
shapes without iid noise (Figure 3). Lower is better.

process is illustrated in Figure 3.
For the regression task, we tested networks with

varying numbers of kernels, and the results are shown
in Figure 4 on noiseless images of random objects.
Note that the number of parameters varies for CNN
and LON by the number of kernels and bins. With
an image with |Ω| pixels, M kernels of |K| pixels,
CNN has M |Ω|+M |K| parameters. On the other
hand, LON further has N bins and thus NM |Ω|+
M |K| parameters. In direct comparison, the number
of parameters is dominated by the |Ω|, and hence,
LON is N times larger than a CNN with the same
number of kernels. However, if the CNN is given
NM kernels to compare with a LON with N bins
and M kernels, then the LON has (N−1)M |K| fewer
parameters. In our experiments, we compared the
network’s performance on a logarithmic scale, where
the subtle difference in the number of parameters
is not highlighted. The models were trained using
Adam optimizer, and we tuned the learning rate of
both 1 · 10−3 and 5 · 10−4 for experiments, and only
the best results are reported.

For the regression task, we see wrt. the perimeter,
the LON outperforms CNN in the 2-bin case in
terms of the number of parameters used, however,
for the 8-bin case it seems that the LON overfits.
Wrt. area, LON with 2 bins has trouble converging,
while CNN outperforms both LON.

For the classification task, we divided the objects
into small, medium, and large wrt. either the area or
perimeter length, and asked the network to correctly
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Figure 5. The accuracy by the logarithm of the number
of parameters for CNN with 2 kernels and the ReLU,
LON with 2 kernels and 2 bins and 8 bins on the re-
gression task on the perimeter and area of random
shapes without noise but trained on many (≈4000) or
few (≈1500) examples (Figure 3). Higher is better.

classify the three classes either by perimeter or area,
while keeping the other constant. We also explored
this problem in terms of a large or small training
set. The results as a function of the number of
parameters are shown in Figure 5. Again it appears
that LON with 2 bins is better at classifying objects
in terms of their perimeter, while CNN is better at
classifying objects wrt. area.

3.3 Explainability by sensitivity
maps

Explainability is an increasingly important property
of machine learning algorithms, and as LON is linked
to the boundary between apparent object parts, we
hypothesize that sensitivity maps for LON will be
more meaningful than those of a CNN. We define
sensitivity maps as∣∣∣∣∂E∂I

∣∣∣∣ = ∣∣∣∣∂E(Y,L(I))

∂I

∣∣∣∣ (13)

where E is the error or loss function, Y is the true
class, L is the network, and I is the input image.
The sensitivity maps express the gradient of each
pixel wrt. to the similarity, thus what change in the
similarity a change in pixel value will cause. These
are often considered the features of interest.

In this experiment, we consider the classification
task on random, noise-free shapes, shown in Fig-
ure 3(c). The resulting sensitivity image is shown
for various combinations of networks, channels, and
the essential number of bins in Figure 6. It shows
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Figure 6. Comparing sensitivity maps for perimeter and area classification on noise-free images (Figure 3).
Shapes are grouped into 3 classes (pred=0, 1, 2, denoting small, medium, large, respectively). All networks use 2
kernels and light pixels have a large influence on the classification accuracy.

that although all the models can make correct pre-
dictions with very high accuracy, as demonstrated
in Figure 5(a) and Figure 5(b), the sensitivity of
the two models focusing on totally different regions.
LON looks into the boundaries of the shape to get
a perimeter estimator, especially with 8 bins where
CNN on the other hand is inferring the perimeter
from both the foreground and the background.

For the case of area classification, the sensitiv-
ity map of CNN is still quite noisy and somewhat
inconsistent in contrast to the LON which begins
to make predictions based on the boundaries but
also takes the inside into account with more kernels
or more bins. It seems that the sensitivity maps
for LON are far more consistent across variations
in parameters than for CNN and far better aligned
with what humans would perceive as important for
the two tasks.

4 Conclusion

In this article, we have explored the relationship
between local histograms and CNNs. At the core,
we have shown that by changing the activation func-
tion from a sigmoid to its derivative, the internal
representation becomes similar to histograms. With
further simple requirements on the kernels, we ar-
rive at the classical scale-space histogram of locally
orderless images. We call networks with such lay-
ers for Locally Orderless Networks (LONs). In this
article, we focus on some theoretical insights to be
gained. We have shown how LONs extend the set of
simply representable functions with non-linear func-
tions as squaring, and how a LON can be designed
to express a CNN and vice-versa. LONs excel in
capturing both rotational invariance and amplitude
in tasks like gradient magnitude estimation. Finally,
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we have presented an initial set of experiments to
study the empirical qualities of LON as compared to
CNN, which suggest that LONs outperform CNNs
in tasks involving boundaries, indicating improved
explainability. Future work will explore combin-
ing LONs with existing networks, particularly for
segmentation tasks.
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