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Abstract

We propose a normative model for spatial representation in the hippocampal
formation that combines optimality principles, such as maximizing coding range
and spatial information per neuron, with an algebraic framework for computing in
distributed representation. Spatial position is encoded in a residue number system,
with individual residues represented by high-dimensional, complex-valued vectors.
These are composed into a single vector representing position by a similarity-
preserving, conjunctive vector-binding operation. Self-consistency between the
representations of the overall position and of the individual residues is enforced by
a modular attractor network whose modules correspond to the grid cell modules in
entorhinal cortex. The vector binding operation can also associate different contexts
to spatial representations, yielding a model for entorhinal cortex and hippocampus.
We show that the model achieves normative desiderata including superlinear scaling
of patterns with dimension, robust error correction, and hexagonal, carry-free
encoding of spatial position. These properties in turn enable robust path integration
and association with sensory inputs. More generally, the model formalizes how
compositional computations could occur in the hippocampal formation and leads
to testable experimental predictions.1

1 Introduction

The hippocampal formation (HF), consisting of hippocampus (HC) and the medial and lateral
part of the neighboring entorhinal cortex, (MEC) and (LEC), is critical for forming memories
and representing variables such as spatial position [1, 2]. Recent work has provided evidence of
compositional structure in HF representations, enabling complex representations to be composed by
simpler building blocks and their formation rules. Examples include novel recombinations of past
experience occurring in replay [3], or the exponential expressivity of the grid cell code [4, 5]. In
particular, compositional representations afford high expressivity with lower dimensional storage
requirements [6], less complexity in latent state inference, and generalization to novel scenes with
familiar parts.

To gain insight into the possible computational principles and neural mechanisms at play in the HF,
we take a normative modeling approach. That is, we seek to construct a model built from a set of

1Code is available at https://github.com/SoniaMaz8/Hippocampal_enthorinal_circuit
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neural coding principles that effectively achieves the postulated function of the system. With this
approach, we can then explain details about the neuroanatomical and neurophysiological structures in
light of their particular contributions to an information processing objective. The resulting model can
also lead to new predictions about the neural mechanisms that enable this function.

The postulated function of the HF —as a cognitive map and episodic memory— has a core com-
putational requirement, to represent and navigate space. Here, space is either the actual physical
environment or a more abstract conceptual space. We formulate multiple desiderata for an effective
representation of space. We then show that a residue number system, incorporated into a compo-
sitional encoding scheme, fulfills these desiderata. It is achieved by a modular attractor network
that factorizes encoded locations into components of a residue number system. This provides an
algorithmic-level hypothesis of hippocampal-entorhinal interactions. A core mechanism of this
algorithm is binding, which draws inspiration from work in neuroscience, cognitive science, and
artificial intelligence.

2 A normative model for the hippocampal formation

2.1 Principles for representing space

Our first principle is that space is represented by a compositional code that has high spatial-resolution,
is noise-robust, and in which algebraic operations on the components can be updated in parallel. Prior
work [4, 5] has proposed the residue number system (RNS) [7] as a candidate for fulfilling these
requirements. An RNS expresses an integer x in terms of its remainder relative to a set of co-prime
moduli {mi}. For example, relative to moduli {3, 5, 7}, x = 40 is encoded as {1, 0, 5}. The Chinese
Remainder Theorem guarantees that all integers in the range [0,M − 1], where M =

∏
i mi, are

assigned a unique representation. An RNS provides high spatial resolution, carry-free arithmetic
operations, and robust error correction [8]. Experimental observations in entorhinal cortex show a
discrete multi-scale organization of spatial grid cells [9] that is compatible with the assumption of
discrete RNS modules.

The second principle we adopt is that an individual residue value should be encoded by a neural
population in a similarity-preserving fashion. In particular, we require that distinct integer values are
represented with nearly orthogonal vectors. To achieve this principle, we use a method similar to
random Fourier features [10]. Each modulus, with value mi, is assigned a seed phasor vector, gi ∈
CD, whose elements (gi)j are drawn uniformly from the mi-th roots of unity (i.e., (gi)j = e

√
−1ωij ,

with ωij =
2π
mi

kj , and kj chosen randomly from {0, ...,mi − 1}). The representation of a particular
residue value ai ∈ {0, . . . ,mi − 1} is then given by rotating the phases of the seed vector according
to [11]:

gi(ai) = (gi)
ai , (1)

where we abuse notation slightly to also think of gi as a function that takes ai as input and produces
an embedding as described above. The complex-valued vectors can be mapped to interpretable
population vectors via a randomized Fourier transform (Figures 6D and S2).

Our third principle concerns the manner in which a unique representation of a particular point in
space is formed from the individual residue representations. This requires that we somehow combine
the residue vectors for each modulus. Combining via concatenation, though straightforward, is not
effective because codes that coincide in subsets of their residue representation would be similar, even
when the encoded values are very different. Thus, the method of combining residue codes must be
conjunctive. Conjunctive composition is often called binding and is of fundamental importance in
neuroscience [12], cognitive science [13], and machine learning [14]. An early proposal for binding
is the tensor product of vector representations [15], with the tensor order equal to the number of
bound objects.

Here, we implement binding with component-wise vector multiplication, a dimensionality preserving
operation that represents a lossy compression of the full tensor product [16, 17]. The resulting
compositional vector representation of an integer x ∈ Z using an RNS representation with K moduli,
{a1, a2, .., aK}, is:

p(x) =

K⊙
i=1

gi(ai). (2)
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We prove in Appendix A.1 that this coding scheme represents distinct integer states using nearly
orthogonal vectors, and we show that it generalizes in a natural way to support representation of
arbitrary real numbers in a similarity preserving fashion.

Eq. 2 represents individual points along a line. In general, however, a spatial representation involves
points in 2D or 3D spaces. Conveniently, vector binding can be also used to compose representations
of multidimensional lattices from vectors representing individual dimensions. As we will explain,
there is still a choice in this composition that determines the resulting lattice structure. Following
earlier proposals [18–20], our fourth normative principle is to choose the lattice structure so that
spatial information is maximized, as described in Section 3.5.

The final principle we require is that for computations such as path integration, there should be a
simple vector manipulation that results in addition of the encoded variables. Again, vector binding
provides this functionality with our coding strategy, because of the following property:

g(x)⊙ g(y) = g(x+ y). (3)

2.2 Modular attractor network for spatial representation

A standard model of grid cell circuits is the line attractor, in which states that represent a consistent
location lie on a low-energy manifold [4]. When initialized from a noisy location pattern, the circuit
dynamics will generate a denoised location representation. Rather than forming a line attractor model
for the entire representational space (Eq. 2), we propose a modular network architecture, so that the
compositional structure of a residue number representation can scale towards a large range with fewer
memory resources (Section 3.2), in a manner robust to noise (Section 3.3).

A starting point for our attractor network model is the Hopfield network, which acts as an associative
memory by storing memory patterns as fixed-point attractors. The Rademacher-Hopfield network [21]
is a dynamical system whose state is a vector x ∈ {−1,+1}D that obeys the following dynamics:

x(t+ 1) = sign(XXTx(t)) (4)

with X as the matrix of memorized patterns (column vectors of X). The fixed-point attractor dynamics
can be generalized to complex memory patterns z ∈ CD:

z(t+ 1) = σ(ZZ†z(t)), (5)

where σ is a non-linearity normalizing the amplitude of each complex-valued component to one [22],
and Z the corresponding matrix of memorized patterns. The model can also be discretized, such that
each component is often quantized to a r-state phasor [23]. The Rademacher-Hopfield model is the
special case where r = 2 and the phasors happen to be real-valued.

An r-state phasor network of the form of Eq. 5 is well-suited to serve as an attractor network for
each of the residue vectors in an RNS representation of position, with r = mi for modulus i, and the
matrix Z (which we shall denote Gi) storing the gi(ai) for ai ∈ {0, ..,mi − 1}. However, we desire
a method for representing the whole coding range M :=

∏K
i mi without storing all M patterns

in one large associative memory. For this purpose we show that a resonator network, a recently
proposed recurrent network for unbinding conjunctive codes [24–26], lets us represent this range by
storing only n :=

∑K
i mi ≪ M patterns. Given a vector encoding of position, p(x), as formulated

in Eq. (2), a resonator network will factorize it into its constituent RNS components by iteratively
updating each residue vector estimate, ĝi. This update is similar to the attractor dynamics of Eq. (5)
but made to be consistent with p(x) given all other residue estimates ĝj ̸=i:

ĝi(t+ 1) = σ
(
GiG

†
i

(
p

K⊙
j ̸=i

ĝ∗
j (t)

))
∀ i (6)

Let us now assume that the input p(xt) encodes a spatial position xt using Eq. (2). Given a velocity
input qi(vt), estimated from self-motion input, path integration is performed by first running attractor
dynamics, then updating attractor states by velocity.

ĝi(t+ 1) = qi(vt)⊙ σ(GiG
†
ip(xt)

K⊙
i̸=j

ĝ∗
j (t)) (7)
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Figure 1: Schematic of proposed attractor model.
In MEC, the gi are residue representations in grid
modules, and c encodes a context label. Input of
velocity estimate q(v) can produce path integra-
tion in grid modules via binding, denoted by ⊙.
In HC, p represents contextualized place. Binding
serves two roles in the MEC/HC interaction (sym-
bolized by bidirectional arrows): a) factorizing p
into gi’s, and b) generating an update of p from
the gi’s, for example, after path integration. In
LEC, s represents sensory input, interacting with p
through a learned heteroassociative projection.

After velocity updates, one can update the input state p(xt) with the conjunctive representation of
the current factor estimates:

p(xt+1) =

K⊙
i

ĝi(t+ 1). (8)

Further explanation and detail is provided in Appendix B.3.

2.3 Mapping the model to the HF

Although it is not obvious how the components of our normative model should map to the anatomical
architecture of HF, we make one proposal as shown in Figure 1. The memory networks for residue
representations ĝi correspond to grid modules in MEC. Similar to the grid modules, a module for
context can be added to the architecture, such as a tag for the identity of a specific environment, with
the recurrent synapses C storing tags of different environments.

The context neurons could correspond to the non-grid entorhinal cells, which can contain local,
non-spatial information about the environment [27]. The vector p(xt) can be linked to place cells
in hippocampus. Internal HC circuitry can either buffer the input as in Eq. (6) or allow it to be
updated dynamically according to the MEC input (Section 4.1). The mutual interactions between
HC and MEC grid modules require projections between these structures. The binding operations
that these interactions involve according to Eq. (6) are hypothesized to be implemented by nonlinear
interactions between dendritic inputs in HC and MEC neurons.

The model also assumes the ability for sensory cues to provide the initialization signal of the cognitive
map, represented by s in Figure 1. For completeness, we adopt the assumption of previous models
(e.g., [28]) that heteroassociative memories are formed by the brain that link sensory cues to the
hippocampal representations p (Section 4.2). This process would require the system to generate a
new context vector c and initialize the cognitive map to a default location in order to learn about
new environments. We show that through even a simple heteroassociative mechanism, our modular
attractor network can robustly retrieve sensory memories and even protect its compositional structure.

3 Coding properties of the model

3.1 RNS representations have exponential coding range

The compositional RNS vector representation Eq. (2) can encode a coding range of M values using a
total of n component patterns for representing the residue of individual modules. The scaling of the
coding range is exponential in the number of moduli, K, since if each module has O(m) patterns,
and the co-prime condition is satisfied, the scaling of the coding range is O(mK). This recovers the
expressivity argued by [4, 29].

More generally, it is also exponential in the number of component patterns, n. The optimal coding
range is given by the best partition of n into a set of positive {mi}. This optimization is identical to that
of finding the maximum order of an element in the group of permutations Sn, because the maximum
order can be found by finding the longest cycle. The scaling of this value in n is characterized by
Landau’s function f(n), which is known to converge to exp(

√
n ln n) as n → ∞ [30]. Figure 2A
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Figure 2: Residue number systems, combined with a modular attractor network (resonator
network), result in a new kind of attractor neural network with favorable scaling for a large
combinatorial range. A) Number of encoding states, M , grows rapidly in the number of modules,
up to a maximum established by Landau’s function (black dots). B) Coefficient of coding range, M,
scales roughly as O(DαK ), depending on the number of moduli, K, but with αK > 1. C) Estimation
of scaling from slopes of linear regression (fit to log-log scale). Higher values of K require a higher
dimension to achieve a particular coding range; empirical values are close to αK = K

K−1 .

illustrates how Landau’s function is the upper bound to what is achievable for any fixed number of
moduli (K).

Though other kinds of representations can achieve an exponential coding range, the advantage of
the compositional encoding of Eq. (2) comes from the fact that the binding operation implements
carry-free vector addition (our fourth principle). This enables updates of the encoded value without
requiring further transformations such as decoding, facilitating tasks such as path integration (Section
4.1, Appendix C.3). Binary representations, by contrast, have exponential coding range but require
carry-over operations to implement.

3.2 The modular attractor network has superlinear coding range

The exponential scaling of the coding range of the RNS representation is a prerequisite to obtain a large
coding range with the attractor network that has to perform computations on this representation, such
as input denoising, working memory, and path integration. To estimate the scaling of the coding range
in the proposed attractor network (Eq. 6), we study the critical dimension for which the grid modules
converge with high probability. Specifically, we empirically estimate the minimum dimension
required to retrieve an arbitrary RNS representation with high probability, given a maximum number
of iterations (Figure 2B). Remarkably, we find that the number of component patterns n that can be
stored is superlinear in the pattern dimension D; empirically O(Dα) for some α ≥ 1. For 2, 3, and 4
moduli, α ≈ 2.05, 1.45 and 1.23, respectively (Figure 2C).

These empirical scaling laws are consistent with a simple information-theoretic calculation (Ap-
pendix A.2). The minimal amount of bits to be stored for the entire RNS vector encoding scheme is
of order O(M log M), and the number of synapses in the attractor network is O(D K

√
M). If one

makes the cautious assumption of a capacity per synapse of O(1), the leading order for the coding
range M is O(Dα), with α = K

K−1 .

While the coding range increases with the number of moduli (K) for the RNS representation, the
superlinear scaling coefficient αK decreases with K for the modular attractor network, reaching
maximum superlinearity at the smallest value K = 2. This reversal is caused by the fact that
increasing K decreases the number of synapses, i.e., the memory resource in the attractor network.

3.3 Robust error correction

In addition, we evaluate the robustness of our attractor model to noise. Because the RNS represen-
tations are composed of phasors, which are circular variables, we sample noise from a von Mises
distribution with two parameters: mean (µ = 0) and concentration pattern κ (Figure 3A). Higher
κ values imply less noise; the distribution approximates a Gaussian with variance 1/κ for large κ.
Further tests of model robustness to dropout, limited precision, and ablation are provided in Figure S6.
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Figure 3: Recovery of encoded positions is robust to multiple kinds of noise. A) Visualization
of the von Mises weight distribution. Note that the magnitude of the noise is inversely proportional
to κ, and that the variance of the phase perturbation is much larger than the distance between the
discrete states of phasors. B-D) Visualizations of accuracy as a function of coding range and κ for
three separate cases: input noise (B), update noise (C), and codebook noise (D). Cases are shown in
order of increasing difficulty. The resonator network maintains perfect accuracy up to a point, after
which accuracy decays at an earlier point than the noiseless dynamics (black curve).

We consider three cases: noisy input patterns, noise added to each time step, and noisy weights
corruptions of patterns in Gi (Appendix B.2). The empirical accuracy of recall varies depending
on the type of corruption applied (Figure 3A). We find that for a given dimension D (in this case,
1024), increasing noise decreases the maximum coding range that can be decoded with high accuracy
(Figure 3B-D). For a fixed noise level, the high-accuracy coding range is largest for input noise,
followed by update noise and codebook noise. It is perhaps not surprising that codebook noise has the
worst coding range, given that noise added to every stored pattern compounds across the dynamics.
Fortunately, the demonstrated robustness to input noise enables sensory patterns to be denoised via
heteroassociation (Section 4.2).

3.4 Interpolation between patterns enables continuous path integration

In general, there is a sharp difference between point and line attractors. In our attractor model, the
RNS representations of integer values are stored as discrete fixed points. Nevertheless, the attractor
network also converges to states that represent non-integer values that are not explicitly stored. In
other words, the network smoothly interpolates to points on a manifold of states that represent
integer and non-integer values encoded by (2). Figure 4A provides a visualization, showing that
the kernel induced by inner product operations retains graded similarity for sub-integer shifts. This
kernel enables the modular attractor network to settle to fixed points that correspond to interpolations
between integers, and for sub-integer positions to be decoded.

The resolution of decoding is fundamentally limited by the signal to noise ratio. Even so, we find
that, up to a fixed noise level, the accuracy regimes of integer decoding and sub-integer decoding
coincide. This property enables sub-integer position shifts to be encoded within the states of the
network, which, as we will show, results in stable, error-correcting path integration (Section 4.1). We
quantify the gain in precision in terms of the bits of information that can on average be reconstructed
from a vector (Figure 4D, Appendix B.2). Notably, even a moderate noise level of κ = 8 results in
nearly the same information content as in the noiseless case.

3.5 Triangular frames in 2D maximize spatial information

In two-dimensional open field environments, grid cells have firing fields arranged in a hexagonal
lattice [31]. Work in theoretical neuroscience shows the optimality of this lattice for 2D environments
in terms of spatial information [18–20]. However, the presence of hexagonal firing fields raises a
puzzle for residue number systems. Although a crucial property of a RNS is the carry-free property,
most implementations of RNS will not perform carry-free updates within a module in non-Cartesian
coordinate systems. This generally occurs because the updates of different coordinates must interact
due to non-orthogonality.
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Figure 4: Smooth interpolation between integer states enables encoding and decoding of sub-
integer values. A) Visualization of interpolation between two integer states. The position of the
fractional value can be estimated by fitting a periodic sinc function (Appendix A.1) based on the inner
products with integer codebooks (visualized in dots), then finding the location of the peak. B, C)
Sub-integer states can be be decoded, up to a precision set by the noise level. Note that in both cases,
sub-integer decoding can be just as accurate as integer decoding for the same range, even though the
sub-integer decoding problem is strictly harder. Even κ = 4 is sufficient to achieve accuracy within
a precision of ∆x = 0.07, but for higher noise (κ = 2), the precision is worse. D) The best spatial
precision (in bits) that can be decoded for a fixed noise level. Representations with less noise achieve
both a higher coding range and higher information content per vector.

We resolve this issue by showing how to implement a version of vector binding of multiple coordinates
in a triangular ‘Mercedes-Benz’ frame that enables carry-free hexagonal coding. Furthermore, we
provide a combinatoric argument for the optimality of triangular frames for R2. (A frame is a spanning
set for a vector space in which the basis vectors need not be linearly independent.) Our argument
relies on the combinatorics of residue numbers, and so for the first time gives an explanation of why
the coexistence of RNS and hexagonal codes is optimal.

To form a hexagonal tiling of 2D position requires two steps: first, projection into a 3-coordinate
frame, and second, choosing phases such that simultaneous, equal movements along all three frames
cancel out (Appendix A.3). The resulting Voronoi tessellation for different states is pictured in
Figure 5A. This encoding enables higher spatial resolution in terms of the number of discrete states:
3m2 − 3m+ 1 for triangular frames, versus m2 for Cartesian frames. This increased expressivity
results in a higher entropy) code for space (Figure 5B). It also results in both a periodic hexagonal
kernel and the individual grid response fields being arranged in a hexagonal lattice (Figure 6C).

Figure 5: Hexagonal coding improves spatial resolution. A) Voronoi tessellation for m = 5. Each
distinct color corresponds to a unique codeword in CD. Black arrows show the coordinate axes of
the triangular ‘Mercedes-Benz’ frame in 2D. B) Hexagonal lattices have higher entropy than square
lattices, allowing each state to carry higher resolution in its spatial output.

Prior models achieved hexagonal lattices either by pattern formation from circularly symmetric
receptive fields (e.g., [32, 33]) arranged on a periodic rectangular sheet or by distorting a square
lattice into an oblique one (e.g., [28, 34]). Importantly, oblique lattices have the combinatorial
complexity as the square grid and, unlike the construction described above, they do not achieve the
same level of spatial resolution (Figure 5B).
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4 Testing functionalities of the model

4.1 Robust path integration

Figure 6: Attractor dynamics facilitate robust path integration. A) Example of path integration
of a 2D trajectory in the case of intrinsic input noise on the place cell representation. The grid cell
modules correct the noise that would otherwise induce drift after a short period of time. B) Path
integration results averaged over multiple trajectories in the case of intrinsic input noise on the place
cell representation. Grid cell modules limit noise accumulation along the trajectory. Solid lines
report the median error over 100 trials, with shaded intervals reporting 25th and 75th percentile. C)
Simulated trajectory, along which colors represent the similarity between the gi of three different
modules and vectors representing each position in the environment. We see hexagonal response fields,
similar to those obtained from single unit recordings of MEC. D) Sensory patterns (symbolized by
red dots), representing visual cues, are associated to positions in the environment. Presentation of
visual cues helps correct drifted positions due to extrinsic noise.

Given the ability of the attractor model to update its representation of position from velocity inputs,
along with its ability to represent continuous space, we evaluate its ability to perform path integration
in the presence of noise. We simulate trajectories based on a statistical model for generating plausible
rodent movements in an arena [35, 36], and we update grid cell and place cell state vectors according
to Equations 7 and 8, respectively.

To evaluate the robustness of the model to error (Appendix B.3), we consider both sources of extrinsic
noise (e.g., mis-representations of velocity information), and intrinsic noise (e.g., due to noise in
weight updates). The robustness of our model to intrinsic noise is tested by comparing our results
to the estimated trajectories obtained without the correction by the MEC modules (Figure 6A and
B). We find that our model strongly limits noise accumulation along the trajectory and allows highly
accurate integration for a longer period of time (Figure 6A). Consistent with our previous experiments
on noise robustness (Figure 3), we find that the model has strong robustness to intrinsic noise, with
extrinsic noise resulting in a drift of the estimated position.

We visualize the response fields in different modules and find hexagonal lattices with a module
dependent scaling (Figure 6C, Appendix 4.1). In addition, we show that tethering to external cues
(e.g., visual inputs), can significantly increase the accuracy of the attractor network. To study this,
we associate visual cues to corresponding patches see Section 4.2) and observe that integration of
information from sensory visual inputs succeeds in correcting drift due to extrinsic noise (Figure 6D).

4.2 Denoising sensory states via a heteroassociative memory

Finally, we describe a simple extension to our model, in which sensory patterns are fed from the
lateral entorhinal cortex (LEC) to update the hippocampal state. This is consistent with theories of
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Figure 7: Heteroassociation enables recovery of sensory patterns under corruption and superpo-
sition. A) Accuracy for denoising 60 different random binary patterns for different vector dimension
D. The dotted line is the average similarity between the decoded and ground truth patterns. B) Same
experiment as in panel A, but with 210 different possible binary patterns. The accuracy is lower on
average. C) Accuracy for denoising multiple patterns from a single input. This task is especially
challenging, because sums of patterns combined in this way interfere with each other in retrieval
(a phenomenon known as cross-talk noise). However, the compositional structure of our modular
attractor network enables multiple patterns to be decoded with high probability.

memory suggesting that LEC provides the content of experiences to hippocampus [37], as well as
with neuroanatomical evidence [38]. Although the structure of the representations of those sensory
patterns is unknown, it is theorized that HF is critical to sensory pattern completion [39].

Consistent with this function, recent work [28, 40] has proposed that a heteroassociative scaffold
connects sensory patterns to hippocampal activity, allowing robust denoising of sensory states.
Though the main focus of our normative model is not sensory denoising, we show that a simple
extension to our model (Appendix B.4) robustly retrieves noisy pattern even under high levels of
corruption (Figures 7A and B). In Appendix C.3, we also discuss how this capacity for generalization
can serve as a model for sequence retrieval and show some preliminary experiments.

In addition to robust denoising of single patterns, our model is also well-equipped to deal with
compositions of sensory patterns. Two situations are worth emphasizing: first, we can often unmix
multiple sensory states corresponding to a sum of patterns, because the compositional structure
of binding between grid modules protects the items in summation (Figure 7C). This differentiates
our model from other heteroassociative memories, in which sums of patterns would have multiple
equally valid yet incompatible decodings. Second, the context vector module can separate the sensory
information corresponding to different environments (Figure S3).

5 Discussion

There are by now numerous theories of the entorhinal cortex and hippocampus, including those that
draw upon attractor dynamics and residue number systems. What this paper contributes to the existing
body of work is a concrete set of design principles that can be brought together to build a functioning
neural system capable of representing space and performing path integration, making the most use
of limited neural resources and precision. In particular, a core design principle of this model is a
compositional representation of space that achieves a superlinear coding range, which is achieved by
a compact, multi-module attractor network. The compositional representation, in turn, is achieved via
a vector binding operation, which enables binding multiple scales (moduli) and spatial dimensions,
context, and spatial shifts for path integration. This binding mechanism builds on prior work in the
field of hyperdimensional computing and vector symbolic architectures [11, 17, 26, 41–43] — and
goes beyond it to develop a specific algorithmic hypothesis about structured operations in HF. Our
analyses and experiments confirm that the model can achieve important functions of the hippocampal
formation and they explain experimental observations, such as hexagonal grid cells, place cells, and
remapping phenomena. The model thus contributes to, and greatly benefits from, existing work in
theoretical neuroscience on residue number systems [4, 5], continuous attractor network models
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of grid cells [4, 32, 44], models of compositionality in the hippocampal formation [45], and the
optimality of hexagonal representations in 2D [18, 29].

That biology organized grid cells into multiple discrete modules, rather than pooling all resources
into a single module attractor network, has posed a long-standing puzzle to theoreticians: What
advantages are conferred by this organization? Our answer is that it provides exponential scaling
in dynamic range by combining modules with limited dynamic range multiplicatively. Other recent
work has focused on the problem of coordinating representations across multiple modules [28, 34,
46–48], and large scale recordings of the hippocampal formation [49] may provide new opportunities
to evaluate their resulting predictions.

Our approach starts from principles of space encoding, in particular, the requirement of composition-
ality. This strategy is complementary to investigations of the emergence of place and grid cells in
artificial neural networks (e.g., [36, 50–57]). These approaches can show the optimality of biological
response features under the model assumptions, such as ANN properties, network architecture, train-
ing objective and protocol. Here, we emphasize the role of multiplicative binding, a computational
primitive that is typically difficult to have emerge in an ANN setting. Early suggestions for realizing
conjunctive binding already ventured outside the framework of ANNs [11, 15]. A simple extension of
ANNs are sigma-pi neurons [58, 59] that can implement vector binding [60]. Recent work amplifies
the view that full conjunctive binding would be a useful inductive bias to augment deep learning
architectures [61], and various augmentations of ANNs with dedicated binding mechanisms have
been proposed [14, 62, 63].

Our model has clear limitations. The attractor neural network for the cognitive map is still a high-level
abstraction of spiking neural circuits in the hippocampal formation. In particular, the phasor states
in the model are one linear transform removed from vectors that describe neural population activity.
Thus, the mapping between model and neurobiological mechanisms requires an additional step. This
disadvantage can be directly addressed by switching to other encoding schemes, such as sparse
real- or complex-valued vectors, e.g., [64], for which conjunctive binding operations have been
proposed [65, 66]. Although the model is more comprehensive than typical normative models, which
usually focus on a single computation, it is far from covering the many other functional cell types
observed in the hippocampal formation or contextual modulations observed during remapping. In
addition, the current model includes learning only in the heteroassociative projection to LEC. Most
observations regarding plasticity in HF are not captured, i.e., signals from reward, or eligibility traces.
Finally, our assumptions about inputs to HF from the sensory pathway are simplifying and primarily
intended as a proof of concept.

The purpose of the model, to express the fundamental principles of a compositional cognitive map,
also leads to testable predictions: First, at the biophysical level, the model predicts multiplicative
interactions between dendritic inputs providing the conjunctive binding operation. There are several
biophysically realistic ways in which neurons can multiply their inputs [67, 68]. Contextual gating in
dendritic branches of hippocampal neurons is consistent with our theory, hippocampal remapping, and
neurophysiology of hippocampal dendrites [27]. Our attractor model predicts direct multiplicative
interactions between MEC modules, which remains to be tested. Second, the model predicts relatively
fixed attractor weights between place and grid cells, with a higher degree of plasticity for the weights
between sensory encodings and hippocampal states. Third, we predict that causal perturbations of
one grid module can affect the states of other grid modules without involvement of the hippocampus,
in a direction that is self-consistent with the update of the attractor state.

Finally, we believe that the proposed modeling approach and the specific attractor model presented
have broader applications in neuroscience. For example, the problem of factorization is critical
to forming compositional representations of visual scenes, and a closely related attractor neural
network can find efficient solutions to such problems [69]. In addition, there are promising ways
to map complex-valued attractor neural networks to spiking neural networks [70, 71], which could
connect the principles derived here to a concrete implementation on neuromorphic hardware. Such a
neuromorphic implementation could yield further quantitative predictions for neuroscience and is an
exciting direction for future work.
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Supplemental material

A Mathematical derivations

A.1 Similarity-preserving properties of embeddings

In the following section, we examine the similarity-preserving properties of our coding scheme.
Recall from Section 2.1 that our crucial desiderata are that: (1) distinct residue values are represented
using vectors which are nearly orthogonal, and that (2) the inner product between representations
of sub-integer values are reflective of a reasonable notion of similarity between the encoded values.
There is a robust literature on this topic both within the Vector Symbolic Architectures community
[72–75] and the broader ML community [10], who often study these techniques under the name
“random features.” The methods pursued here fall under these traditions.

To briefly recapitulate the construction of Equation 1: fix some positive integer m, and let P (k)
denote the uniform distribution over {0, ...,m − 1}. Define an embedding g : R → CD using the
following procedure: draw k1, ..., kD independently from P (k), and set:

g(a)j = exp (iωkj)
a
/
√
D, j = 1, ..., D,

where ω = 2π/m, and i =
√
−1. To simplify analysis, we here assume that m is odd, in which case

the above is equivalent to shifting the support of P (k) to {−(m− 1)/2, ..., (m− 1)/2}, and defining
the embedding g : R → CD component-wise via:

g(a)j = exp (iωkja) /
√
D, j = 1, ..., D.

The case that m is even is slightly different, but can be handled using similar techniques and the
discrepancy does not affect any of our modeling goals.

Our basic claim is that in expectation with respect to randomness in the draw of k1, ..., kD, inner-
products between the embeddings of two numbers a, a′ recover the periodic sinc-function [76] of
their difference. That is:

E[g(a)⊤g(a′)∗] =
sin(π(a− a′))

m sin(π(a− a′)/m)
:= psinc(a− a′),

This accomplishes goal (1) because, for t an integer which is not an integer multiple of m, psinc(t) = 0.
Therefore, distinct integers are represented using vectors which are, in expectation, orthogonal. It also
accomplishes goal (2), because psinc(t) ≈ 1 for 0 < |t| ≪ 1. The following theorem demonstrates
this property more formally, and provides an approximation guarantee for a specific instantiation of
k1, ..., kD.

Theorem 1. Fix any D > 0 and δ ∈ (0, 1). For any pair a, a′ ∈ R such that a− a′ is not an integer
multiple of m, with probability at least 1− δ over randomness in the draw of k1, ..., kD:

∣∣∣∣g(a)⊤g(a′)∗ − sin(π(a− a))

m sin(π(a− a′)/m)

∣∣∣∣ ≤
√

2

D
ln

2

δ
.

Proof. Fix any pair a, a′ ∈ R, and denote for concision t = a − a′. Taking an expectation with
respect to randomness in k1, ..., kD and using a well-known calculation from the signal processing
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literature [76]:

Ek1,...,kd

[
g(a)⊤g(a′)∗

]
= DEk1

[g(a)1g(a
′)∗1]

=
1

m

m−1
2∑

k1=−m−1
2

exp (iωk1(a− a′))

=
1

m

exp
(
− iωt(m−1)

2

)
− exp

(
iωt(m+1)

2

)
1− exp(iωt)


=

exp(iωt/2)

m exp(iωt/2)

(
exp(−πit)− exp(πit)

exp(−πit/m)− exp(πit/m)

)
=

sin(−πt)

m sin(−πt/m)

=
sin(π(a− a′))

m sin(π(a− a′)/m)
,

The third equality follows from the second by noting that the latter is a sum of a geometric series
with common ratio r = exp(ωt). The fifth line follows from the fourth by recalling the identity
sin(x) = (eix − e−ix)/2i. In the limit of t → 0, the expression evaluates to 1, consistent with the
normalized inner product of a vector with itself.

To show concentration around this value, consider:

g(a)⊤g(a′)∗ =
1

D

D∑
j=1

exp(iωkj(a− a′)),

and note that since the complex part of the sum vanishes in expectation, we may consider, without loss
of generality, the average of the real-valued quantities: (cos(ωkj(a− a′)))

D
j=1, which are bounded

in the range ±1. Therefore, by Hoeffding’s inequality:

Pr
(∣∣g(a)⊤g(a′)∗ − E[g(a)⊤g(a′)∗]

∣∣ ≥ ϵ
)
≤ 2 exp

(
−Dϵ2

2

)
,

whereupon we conclude that, with probability at least 1−δ over randomness in the draw of k1, ..., kD:

ϵ ≤
√

2

D
ln

2

δ
,

as claimed.

This result can be readily extended to the binding of multiple residue number values. Let g(a) =⊙K
i=1 gi(a), where each gi(a) is instantiated independently. Then, by independence, we observe

that:

E
[
g(a)⊤g(a′)∗

]
= E

[
K∏
i=1

gi(a)
⊤gi(a

′)∗

]

=

K∏
i=1

E
[
gi(a)

⊤gi(a
′)∗

]
The implication is that E[g(a)⊤g(a′)∗] = 1 if and only if all residue values agree, and zero otherwise.
To show concentration around this value, we can again use Hoeffding’s inequality, which recovers
the same bound on the sufficient dimension.

A.2 Information-theoretic estimate of required pattern dimension

In this section, we describe an information-theoretic estimate on the dimension D necessary to
retrieve n patterns within K modules. The main result we aim to show is that D = O(n(K−1)/K);
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equivalently, the scaling of n for a given D is O(DK/(K−1)). This scaling roughly predicts our
empirical results of finding the dimension required to achieve high accuracy, suggesting that the
attractor network described here performs close to the theoretical bound.

The minimal total amount of information a network needs to store for denoising an RNS repre-
sentation with coding range M is O(M log(M)). This results from the requirement of content
addressability, i.e., for serving as a unique pointer to one of n patterns, each pattern must at least
carry information of the order of O(log(M)). For simplicity, we now assume that each module is
of size O(M1/K). The total capacity of the network is bounded by the number of synapses, which
is O(D ∗K ∗M1/K) = O(D ∗M1/K) (assuming K is constant), times the capacity per synapse.
Under the conservative assumption that the capacity per synapse is O(1), the dimension is of order
O(e

K−1
K log (M)+log (log (M))). Thus, the leading order of how D depends on n is O(M (K−1)/K). If

the capacity per synapse is assumed to be larger, O(log (M)) bits, only the non-leading term cancels
and the resulting order of D is still the same.

A.3 Construction of triangular frames

In order to convert a 2D coordinate x into a 3D frame y, we first multiply it by a matrix, Ψ whose
rows are the elements of a 3D equiangular frame:

y =

−1/
√
3 −1/3

1/
√
3 −1/3

0 2/3

x (S1)

(This particular frame is commonly referred to as a ‘Mercedes Benz’ frame due to its resemblance
to the iconic symbol.) A consequence of working with an overcomplete frame is that there may
exist multiple values of y that correspond to the same x. For this frame, the null space of Ψ+ is
the subspace spanned by [1, 1, 1]⊺ – grounding the intuition that equal movement in all equiangular
directions “cancels out.” It therefore might seem that triangular frames require extra operations to
determine if two coordinates are equal, but here we show how to avoid this consequence.

The core strategy is to choose seed vectors gi,1,gi,2,gi,3 for each modulus mi that implement this
self-cancellation. For a modulus mi, we draw the phasors of seed vectors from the m-th roots of
unity. However, we further require that, for each vector component, the three selected phases sum to
0 (mod 2π). We then form a hexagonal coordinate vector by binding the three seed vectors:

gi = gi,1 ⊙ gi,2 ⊙ gi,3 (S2)

By enforcing that the phases sum to 0 (mod 2π), we ensure that positions that have an equivalent
x coordinate are mapped to the same gi. Observe that Hadamard product binding of phasors is
equivalent to summing their phases, and that binding e0i corresponds to adding nothing. Hence, a
pair of three-dimensional coordinates whose differences are a multiple of [1, 1, 1] will be mapped
to equivalent vector representations. Finally, we then form the residue number representation for
different moduli by binding, as in Eq. 2. The presence of multiple modules and self-cancellation
properties complement prior work on the efficiency of hexagonal kernels for spatial navigation
tasks [77, 78].

The equivalence of certain 3D coordinates also helps us count the number of states. Clearly, the
redundancy means that we have less than m3 states, but it also shows us that every position in
the hexagonal grid can be represented by a 3D coordinate which contains at least one coordinate
equivalent to 0. There is one state where all coordinates are 0, 3(m− 1) states where exactly two
coordinates are 0, and 3(m − 1)2 states where exactly one coordinate is zero. Thus, there are
3m2 − 3m+ 1 states for the hexagonal lattice, compared to the m2 states for the square lattice.

In the case of square lattices in 2D, all states occupy an equal proportion of space; however, this is
not the case for the hexagonal lattice (see Figure 5A). This is because states with more zero-valued
coordinates occur slightly more frequently. To estimate the effect of unequal proportions on the
entropy, we directly calculate the Shannon entropy of hexagonal lattices for finite size spatial grids of
increasing radius l, as an approximation to the infinite lattice. We find that even for l = 1000,m > 7
the hexagonal code has 99 percent of the entropy of a system that divided all possibilities equally,
and that this gap decreases as m grows larger. Thus asymptotically, as m → ∞, the ratio of entropy
for hexagonal vs. square grids tends towards log2(3).
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B Experimental details

All experiments were implemented in Python involving standard packages for scientific computing
(including NumPy, SciPy, Matplotlib). We describe here the parameters and training setup of our
experiments in further detail.

B.1 Scaling in dimension

For each number of moduli, K, we seek to find the smallest dimension D for which our attractor
model factorizes its input, p, into the correct grid states in a fixed time (50 iterations) with high
probability (at least 99 percent empirically). In instances where the network states remain similar
over time (at least 0.95 cosine similarity), we consider that it converged to a fixed point. If such
convergence did not occur, we evaluate the accuracy at the last time step.

To evaluate scaling, we first choose our base moduli to be a set of K consecutive primes. We randomly
select one of M random numbers to serve as the input and set the grid states to be random. We then
evaluate a candidate dimension on the factorization task for a set number of trials (200) and check
accuracy. We compare accuracy by considering whether the amplitude of the complex-valued inner
products are highest for the true factor. If the accuracy is above our threshold, we then evaluate
performance of a slightly higher dimension (dimensions evaluated are spaced apart on a logarithmic
scale). Once a sufficiently high dimension achieves the accuracy threshold, we assume that the scaling
is non-decreasing and use the last successful dimension as the first try.

Finally, we fit linear regression to all data points on a log-log scale to estimate the scaling between
dimension and problem size. We report the slopes to estimate the scaling coefficients.

B.2 Error correction

General experimental setup. We fix in advance the vector dimension, noise level (determined by 1/κ),
and number of moduli. Given these parameters, we estimate the empirical accuracy of factorization
on an arbitrary input known to correspond to one of the patterns. We use the same method for
checking convergence as above, though we increase the maximum number of iterations to 100. For
all experiments in this section, we average over 1,000 trials.

In the case of input noise, the vector p is multiplied by a noise vector. In the case of update noise,
after every time step, each module of the attractor network is corrupted by a von Mises noise update.
In the case of codebook noise, all codebooks are corrupted before the start of any iterations.

Decoding values between integers. In order to test the ability of the modular attractor network to
decode at sub-integer resolution, we fix a spatial resolution ∆x to decode from. In our experiments,
we test ∆x = {1/3, 1/7, 1/15, 1/31}, and we also report ∆x = 1 (integer decoding) as a control.
Then, using as input a random integer and random multiple of ∆x, we let the modules of the attractor
network settle until convergence (as in other experiments). To evaluate accuracy, we test if the
resulting output of the attractor network, ⊙iĝ

K
i=1(t), is closer to the ground truth RNS representation

than to any other value. We test this with a “coarse-to-fine” approach: first checking if it is within an
integer, and then checking all fractional values within one of that integer. We regard the output as
correct if both the integer and fraction match, and incorrect otherwise.

Estimation of information content from a vector. To measure the total resolution of our coding scheme
in bits, we factor in both the number of states distinguished (τ = M

∆x and the empirical accuracy (ρ).
To quantitatively estimate this, we report the information decoded in bits according to the following
equation [79, 80]:

I(τ, ρ) =a log2(τρ) + (1− ρ) log2

(
τ

τ − 1
(1− ρ)

)
. (S3)

A consequence of this equation is that the information decoded is 0 when the empirical accuracy is at
chance (1/τ ).

B.3 Path integration

General experimental setup. We generate paths using a statistical model simulating rodent two-
dimensional trajectories in a 50 cm2 closed square environment [35, 36], with ∆t = 100 ms. The
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path integration method starts from the ground truth first position (x0, y0) which is converted to
hexagonal coordinates (a0, b0, c0) (see Section A.3) and encoded as an RNS representation p(0) of
dimension D = 3,000 following the method in Section 2.1, for moduli {3, 5, 7}. We then factorize
p(0) into {ĝi(0)}Ki=1 to produce the estimated representation p̂(0) =

⊙K
i=1 ĝi(0).

At each time step t ≥ 0, we estimate the position (xt+1, yt+1). We give the modular attractor network
as input the previous position vector estimate p̂(t). It is factorized into the residue components
{ĝj(t)}Kj=1 that are then shifted according to the velocity (dat, dbt, dct) between (at, bt, ct) and
(at+1, bt+1, ct+1). Namely, for each residue module, we build a velocity vector qj(t) = gj,1(da(t))⊙
gj,2(db(t)) ⊙ gj,3(dc(t)) that is binded to each residue component ĝj(t). The estimated position
vector is then the binding of the shifted estimated residue components: p̂(t+1) =

⊙K
j=1 ĝj(t)⊙qj(t).

The estimated position (x̂t+1, ŷt+1) is chosen to be the position (x, y) in a grid of 30× 30 positions
mapping the entire environment, corresponding to the highest similarity between p(x, y) and p̂(t+1).

We show the robustness of the path integration dynamics to two different sources of noise. In the
case of extrinsic noise (Figure 6D), the hexagonal velocity is corrupted by additive Gaussian noise of
variance 0.1. In the case of intrinsic noise (Figures 6A and B), the position vector p̃t is corrupted by
binding with a vector sampled from a von Mises distribution with concentration parameter κ = 2.

Response field visualization. Given a moduli mi and a vector gi, we visualize its response field
by computing the similarity of the modular attractor output ĝi(t) and gi along a trajectory. The
periodicity in the distribution of random weights and the hexagonal coordinates produce periodic
hexagonal receptive fields whose scale depends on mi. Since the inner product between vector states
induces a translation-invariant kernel, the response fields for a given moduli are translations of each
other.

Connection to sensory cues. Sensory cues are random binary vectors of size Ns = D that are
associated with positions along the trajectory. When the true trajectory reaches a sensory cue, the
hippocampal state p̂t is updated using the heteroassociation method described in Appendix B.4

B.4 Heteroassociation

General experimental setup. We evaluate our model’s performance for pattern denoising using
a heteroassociative learning rule [28, 40]. We consider random binary patterns of size Ns = D.
We corrupt the patterns by randomly flipping bits with probability pflip ∈ [0, 0.5] and associate
them to place cell representations using heteroassociation with a pseudo-inverse learning rule. Let
S ∈ RNs×M be the matrix of M patterns to hook to the scaffold and H ∈ CM×D the matrix
of M position vectors on which to hook the patterns. We associate a pattern s to a place cell
representation p = HS+s, where S+ is the pseudo-inverse of S. The model returns a denoised place
cell representation p̂ from which we can estimate a denoised pattern by inverting the heteroassociation
projection ŝ = sgn (SH+p̂). Examples of corrupted inputs and reconstructed patterns are shown in
Figure S3.

Scaling with dimension. We evaluate the impact that the dimension D has on the denoising per-
formance in Figure 7, for a number of stored patterns M = 60 (in this case, 3 × 4 × 5) and
210 (in this case, 5×6×7). For each dimension D ∈ {256, 512, 1024, 2048}, we show the evolution
of accuracy for different levels of corruption. For a given dimension D and noise level pflip, we
denoise a pattern and consider that the denoising is correct if the denoised pattern is closest to the
ground truth pattern (in terms of cosine similarity). We repeat over 500 trials and report the accuracy
as well as the average similarity (normalized inner product) between the denoised pattern and its
noiseless version.

Superposition of patterns. We show that our model can denoise a superposition of np patterns one
at a time, for np ∈ {1, 2, 3, 4, 5, 10}. We fix the dimension D to 2,000 and for different values
of bit flip probability pflip ∈ [0, ..., 0.5], we run the model on a superposition s of random binary
patterns {s1, ..., snp} of size Ns = 2,000: s = s1 + .... + snp . We run the model np times and
between each run the denoised pattern is explained away from the superposition [69]. Namely,
for run r ∈ {1, ..., np − 1} we denote ŝ(r) the denoised pattern. The input to run r + 1 is then
s(r+1) = s(r)− ŝ(r). We find that the more patterns are superposed, the lower the overall denoising
accuracy is. This is due to the fact that when a pattern is incorrectly denoised, explaining away
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adds noise or spurious patterns to the representation of the superposition which makes the following
denoising steps more difficult.

Comparison to structured patterns. We evaluate our model’s ability to denoise structured patterns.
We consider the FashionMNIST dataset, from which we select 105 images of size 28× 28 that we
binarize by setting pixel values to be −1 if below 127, and 1 elsewhere. We compare the denoising
performance to the performance on random binary patterns of size 28×28 = 784 for fair comparison
(Figure S4).

C Additional results

C.1 Further visualizations of grid cell modules

We further visualize the response fields for path integration by showing response fields from different
units taken from the same grid module. We simulate a trajectory that traverses the entire environment
and represent the activation of different position vectors along the trajectory. For each modulus
mi ∈ {3, 5, 7}, we show the similarity between 4 different vectors gi from module mi and the
position vectors along the trajectory. We show in Figure S1 that the different receptive fields of a
given module are translations of one another.

Figure S1: Response field visualization of 4 different gi in 3 different modules mi = 3, 5 and 7.
For a fixed module, the response fields appear as translated versions of one another.

C.2 Remapping via modulation of context

We demonstrate that the context vector can serve as a model of global remapping in hippocampal
place fields, which occurs when different environments are encoded with different populations
of cells [27]. The simplest instance of this is when a place field occurs in context A but not
context B, consistent with the observed sparsity of hippocampal activity [82]. To model this kind
of remapping phenomenon, we consider an instance where there is a gradation of contexts with
some phase transition between them; such an instance was studied experimentally [81]. Towards
this end, we model linear combinations of these contexts, where the weights each context is given
are sigmoid(x), 1− sigmoid(x), with x varying from −5 to 5 in 8 equally spaced increments, and
with sigmoid(x) = 1/(1+ exp(−x)). To model hippocampal units, we generate units that prefer one
of the two contexts and have a random place field location, using its weight vector, or address, as
c
⊙K

i=1 gi, and compare its output to that of the context/grid system at each location and context. It
is worth noting that the original experiment of [81] also exhibited instances of rate remapping for
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Figure S2: Remapping of place cells depending on context. The global remapping observed in
the model response fields is similar to the findings of an experimental study of attractor network
dynamics in hippocampus [81].

some units, and so there is certainly additional complexity underlying remapping that is not captured
by our simple model.

C.3 Storing and retracing sequences

We demonstrate that our model can recover sequences by heteroassociation of patterns to positions
and path integration in a conceptual space (Figure S5A). This is consistent with the postulated role of
the hippocampal formation in performing navigation in conceptual spaces [83, 84], and the role of
entorhinal cortex in generating sequences of neural firing in hippocampus [85, 86]. To evaluate our
attractor model’s fidelity at sequence memorization and retrieval, we simulate trajectories to form
sequences of random binary patterns and recall the sequence using the path integration mechanism
following the method in Section 4.1, for D = 10,000 and moduli {3, 5}. We add extrinsic noise
to the velocity input, which accumulates along the trajectory and induces a drift. This implies that
patterns at the end of sequences are less well recovered than ones at the beginning (Figures S5B and
C).

C.4 Further tests of model robustness

We find that the proposed modular attractor network is also robust to other sources of noise. In
particular, we evaluate robustness to synaptic noise, or dropout, decaying synaptic precision, and
weight lesions (Figures S6A-C, respectively).

D Broader impacts

The results presented here are primarily addressing fundamental research questions, suggesting
computational mechanisms in the brain. These results could lead to experimental design that
improves our understanding of circuits in the hippocampal formation, or to artificial intelligence
models capable of incorporating compositional structure in navigation tasks. Such impacts are
typical of computational neuroscience research. On the other hand, we point out that the explicit
compositionality of our modeling approach provides transparency into its operations, which would
reduce the risk of unforeseen consequences.
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Figure S3: Examples of sensory denoising with a heteroassociative memory on a binarized ver-
sion of the MNIST Dataset. Here, different contexts are used to index particular digit patterns. The
degree of corruption (shown as “Input”) influences the success of denoising (shown as “Recovered.”

Figure S4: A performance comparison for the heteroassociative memory on random patterns
versus a binarized version of the FashionMNIST dataset. For different levels of corruption, we
denoise flattened binarized FashionMNIST images as well and random binary vectors of the same
size. The overall denoising accuracy is lower for FashionMNIST, reflecting the difficulty in storing
correlated patterns.
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Figure S5: Flexible sequence retrieval via path integration in a conceptual space. A) An example
of a hexagonal lattice with sensory observations associated with different states. Having knowledge
of the underlying graph enables generalization to new trajectories in the space [6, 56]. B) Accuracy
of random binary pattern retrieval as a function of position in the sequence for a fixed error rate and
one context tag. The noiseless case achieves perfect accuracy, but errors accumulate after incorrect
sequence predictions. C) Same as B), but with the additional task of inferring the context tag.

Figure S6: Robustness of attractor network to additional sources of noise. A) Robustness of the
modular attractor network to synaptic failure (dropout). At each time step in the dynamics, each
entry (weight value) in the matrices G and G† has an independent probability, p, of being set to 0. In
spite of this synaptic noise, the model empirically converges to the correct solution up to a slightly
smaller coding range. B) Robustness of the modular attractor network to limited precision. We use
stochastic quantization, a technique studied in random feature models in machine learning [87], to
round our model down to b bits of precision. We find empirically that 5 bits of precision (in this
regime) performed nearly identically to the full precision vectors, indicating diminishing returns
for higher precision. On the other hand, increasing vector dimension, which also requires more
memory, results in increased capacity without facing the same diminishing returns. C) The effects of
lesions (setting weights to 0) on network performance. The curves and data points reflect averages
over 1000 trials. The network uses vectors of dimension D = 1024, and it has a dynamic range of
M = 65231 (= 37× 41× 43). The gray curve shows the effect of lesioning random weights, each
with independent probability p. Accuracy remains high up to a small percentage of lesioned weights
(less than 10 percent). The teal square shows performance after lesioning one random column of
one column of a random module’s weights Gi; the green hexagon shows effects of lesioning one
random column for all three modules, and the purple star shows lesions to all codebooks in one
module representing a non-zero residue. In each case, the performance is worse than random lesions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the abstract and introduction stay within the bounds of what we introduce
in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed explicitly in the Discussion (Section 5), as well as
implicitly throughout the rest of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The three technical sections, provided in Appendix A.1, Appendix A.2 and Ap-
pendix A.3, respectively, provide full proofs or calculations and cite any required background
lemmas.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explicitly wrote Appendix B to disclose any extra pieces of information
required to reproduce experimental results. We have also provided implementations in code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Open access to the data and code is available at https://github.com/
SoniaMaz8/Hippocampal_enthorinal_circuit.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, these details are presented in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by error bars and confidence intervals when
appropriate for our figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were performed on CPU with local resources. We do not
have precise estimates of the amount of compute operations required, but each individual
simulation took less than 3 days of total compute time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm that it
conforms to all standards outlined.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix D.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The model does not involve any of the examples listed, and does not require
additional safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets are owned and created by the authors unless explicitly stated
otherwise.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper involves neither crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper involves neither crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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