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Abstract

Genomic Foundation Models (GFMs), such as Evolutionary Scale Modeling (ESM),
have demonstrated remarkable success in variant effect prediction. However, their
security and robustness under adversarial manipulation remain largely unexplored.
To address this gap, we introduce the Secure Agentic Genomic Evaluator (SAGE),
an agentic framework for auditing the adversarial vulnerabilities of GFMs. SAGE
functions through an interpretable and automated risk auditing loop. It injects
soft prompt perturbations, monitors model behavior across training checkpoints,
computes risk metrics such as AUROC and AUPR, and generates structured reports
with large language model-based narrative explanations. This agentic process
enables continuous evaluation of embedding-space robustness without modifying
the underlying model. Using SAGE, we find that even state-of-the-art GFMs
like ESM2 are sensitive to targeted soft prompt attacks, resulting in measurable
performance degradation. These findings reveal critical and previously hidden vul-
nerabilities in genomic foundation models, showing the importance of agentic risk
auditing in securing biomedical applications such as clinical variant interpretation.

1 Introduction

Genomic Foundation Models (GFMs), such as Evolutionary Scale Modeling (ESM), have revolu-
tionized variant effect prediction (VEP) by enabling large-scale, zero-shot generalization across
diverse genomic tasks. These models leverage protein and DNA sequences to predict the functional
consequence of genetic variation, offering substantial utility in clinical genomics, including disease
diagnostics and therapeutic target discovery. For instance, AlphaMissense [3] integrates evolution-
ary conservation and structural modeling for pathogenicity classification, while ESM1b has been
applied to genome-wide prediction of disease variant effects in a zero-shot setting, without requiring
fine-tuning on labeled clinical data [1].

Despite this progress, current GFMs are generally optimized for predictive accuracy and scalability,
with limited attention to robustness, safety, or interpretability. As GFMs move closer to clinical
applications, particularly in decision-making contexts such as rare disease diagnosis, there is a
growing need to ensure these models remain trustworthy under distributional shifts, malicious inputs,
or representation-space perturbations. While previous work in genomics has focused on protecting
data privacy [2, 7], comparatively little attention has been paid to auditing the model’s own failure
modes.
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Figure 1: Soft prompt perturbation and agentic risk auditing with Secure Agentic Genomic Evaluator
(SAGE). (a) The SAGE audits the model’s behavior in response to such perturbations. This agentic
evaluation framework enables interpretable, automated analysis of robustness and misalignment in
genomic foundation models without interfering with their internal optimization dynamics. (b) A
schematic of soft prompt-based adversarial perturbation in genomic foundation models.

In this work, we introduce the Secure Agentic Genomic Evaluator (SAGE), a novel agent for
adversarial robustness auditing in genomic foundation models. Rather than directly modifying model
weights or engaging in reinforcement-style intervention, SAGE operates in a monitor-and-report
loop: it injects soft prompt perturbations into GFM inputs, monitors prediction responses across
checkpoints, computes risk metrics such as AUROC and AUPR, and generates narrative reports
using large language models (LLMs). This agentic framework enables scalable, interpretable, and
reproducible evaluation of model security under adversarial settings, without requiring access to the
model internals or ground-truth labels, as illustrated in Figure 1 (a).

To probe GFM robustness, we implement a targeted soft prompt attack that operates purely in the
model’s embedding space. This attack prepends a trainable embedding sequence to wild-type and
mutant protein sequences, selectively manipulating the pseudo-log-likelihood ratio (PLLR) for benign
variants to mimic pathogenic predictions. The variant effect prediction model follows a Siamese
Neural Network (SNN) architecture, which processes the wild-type and mutant sequences in paral-
lel using shared weights to compute comparative PLLR scores. Unlike token-level perturbations,
this latent-space attack preserves biological input integrity while degrading model decision bound-
aries [17], as illustrated in Figure 1 (b). Our experiments reveal that this targeted soft prompt attack
degrades model performance consistently across both cardiomyopathy (CM) and arrhythmia (ARM)
datasets—even in large-scale models like ESM1b and ESM1v.

In summary, we make the following contributions:

• We introduce SAGE, a modular agentic framework for adversarial auditing of genomic foun-
dation models via soft prompt-based input manipulation and LLM-driven interpretability.

• We demonstrate that GFMs are vulnerable to latent-space adversarial attacks, particularly
in the form of targeted soft prompt optimization that induces confidence shifts in benign
variant classification.

• We benchmark the robustness of four GFM backbones (ESM2-150M, ESM2-650M, ESM1b,
ESM1v) under attack, demonstrating model-dependent variability in adversarial resilience.

• We provide a case study showing how SAGE generates interpretable multi-step audit reports,
supporting biosecurity research and safe deployment of genomic AI in clinical settings.

2 Methods

GFMs, including protein language models such as ESM-1b, are typically pretrained using the
Masked Language Modeling (MLM) objective. In this setup, specific amino acid residues in protein
sequences are randomly masked, and the model is trained to predict the identity of these masked
residues based on surrounding context. For each masked position i, the model produces a vector of
raw scores (referred to as MLM logits) corresponding to each possible amino acid substitution. When
passed through a softmax activation, these logits yield a probability distribution over the amino acid
vocabulary.
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Pseudo-Log-Likelihood Ratio (PLLR) To fine-tune GFMs for variant effect prediction, we adopt
an SNN architecture composed of two identical, weight-sharing branches. Each branch processes
either a wild-type sequence sWT or its corresponding mutant smut, producing token-level MLM
logits. These logits are aggregated into a pseudo-log-likelihood (PLL), defined for a sequence
s = (s1, . . . , sL) as:

PLL(s) =
L∑

i=1

logP (xi = si | s), (1)

where P (xi = si | s) is the model-assigned probability of observing amino acid si at position i given
the full sequence s. Since wild-type sequences are generally more compatible with pretrained models,
they tend to yield higher PLL values. We then define the PLLR between the wild-type and mutant
sequences as:

λ =
∣∣PLL(sWT)− PLL(smut)

∣∣ . (2)

This absolute difference captures the extent to which a mutation perturbs the model’s probabilistic
understanding of the sequence.

Classification Objective To classify genetic variants as pathogenic or benign, we apply a binary
cross-entropy (BCE) loss to the calibrated PLLR values. Since the sigmoid function σ(λ) maps
λ ∈ [0,∞) to [0.5, 1), we rescale it to the full [0, 1] interval using:

σ̂(λ) = 2 · σ(λ)− 1. (3)

This calibrated probability is then used in the BCE loss:

LBCE = y · log(σ̂(λ)) + (1− y) · log(1− σ̂(λ)), (4)

where y ∈ {0, 1} denotes the ground-truth pathogenicity label. The objective encourages larger
PLLR values when a mutation is pathogenic (i.e., when it strongly disrupts the model’s expectations),
and smaller values when the mutation is benign.

2.1 Attack Models

To evaluate the adversarial robustness of GFMs, we implement a targeted soft prompt attack that
operates in the embedding space of the model. A trainable embedding sequence (i.e., soft prompt) is
prepended to both the wild-type and mutant sequences prior to inference. Unlike standard prompt
tuning where the model parameters remain fixed, we allow the entire protein language model
to be fine-tuned jointly with the soft prompt. This end-to-end optimization setup enables more
aggressive perturbation of internal representations, amplifying potential vulnerabilities in model
decision boundaries.

Targeted Soft Prompt Attack (Benign → Pathogenic). In the one-class targeted attack setting,
the soft prompt is trained specifically to misclassify benign variants as pathogenic. Let y = 0 denote
benign examples; we optimize the following attack loss:

Lbenign = − log(σ̂(λ)), for y = 0. (5)

This objective encourages the model to produce high PLLR values for benign inputs, thereby forcing
the classifier to assign them high pathogenicity scores. During training, only benign examples receive
gradient updates, while pathogenic examples are held fixed. This asymmetric optimization increases
the false positive rate without disturbing the model’s performance on known pathogenic variants.

To evaluate the model’s behavior under adversarial perturbation, we develop the SAGE framework.
SAGE monitors the model’s output across multiple checkpoints, computes robustness metrics such
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Figure 2: Targeted soft prompt attack results. (a–b) CM dataset; (c–d) ARM dataset. (a, c) PLLR
before vs. after. (b, d) ∆PLLR by label.

as AUROC and AUPR, and generates interpretability-enhanced narrative reports using large lan-
guage models. This agentic auditing framework provides a systematic and reproducible method for
identifying failure modes in genomic foundation models subjected to adversarial soft prompt attacks.

Optimization and Evaluation Protocol During the adversarial training phase, only the soft prompt
parameters are updated via gradient descent, while the input sequences and model weights remain
fixed. The optimization objective is defined with respect to the original ground-truth labels, enabling
a controlled attack scenario. After training, we evaluate the model’s performance on a held-out test
set, using metrics such as AUROC and AUPR to quantify degradation in classification accuracy.
This protocol isolates the impact of embedding-space perturbations introduced by the soft prompt,
allowing us to assess adversarial susceptibility without altering the biological input or retraining the
model.

3 Experimental Results

3.1 Settings

To evaluate the robustness of our variant effect prediction framework under targeted adversarial
conditions, we implement a soft prompt attack focused specifically on benign variants. In this setup,
n = 10 learnable soft prompt tokens are prepended to both the wild-type and mutant sequences.
These prompt embeddings are initialized using the Xavier uniform distribution [4] and optimized
using a targeted objective that increases the model’s pathogenicity score for benign variants. During
training, the soft prompts are updated via gradient descent, while the backbone GFM and input
sequences remain fixed. We use the Adam optimizer [6] with a learning rate of 1 × 10−4 and a
batch size of 4 over 10 epochs. The binary cross-entropy loss is used to drive the targeted attack on
benign examples. All experiments are conducted on a single A100 GPU. This targeted optimization
setup enables us to isolate the impact of soft input perturbations on the model’s decision boundary
while preserving biological sequence content. The code is open source at https://github.com/
huixin-zhan-ai/SAGE.
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3.2 Targeted Soft Prompt Attack Across CM and ARM Datasets

We evaluate the effectiveness and generalizability of a targeted soft prompt attack that selectively
increases the PLLR of benign variants, thereby inducing misclassification as pathogenic. This attack
operates by prepending a learnable prompt to both wild-type and mutant sequences, optimized to
elevate PLLR values for benign inputs while preserving predictions for pathogenic variants.

Figure 2(a–b) summarizes the attack’s impact on the CM dataset for ESM1b. After training, benign
variants exhibit a substantial rightward shift in PLLR distribution (Figure 2(a)), confirmed by a
significant paired t-test on benign samples (p = 9.23×10−4). In contrast, the pathogenic distribution
remains stable. The corresponding ∆PLLR analysis (Figure 2(b)) reveals that benign variants
experience positive shifts, while pathogenic examples remain unaffected.

To assess generalizability, we apply the same attack to the ARM dataset using an identical setup.
As shown in Figure 2(c–d), the attack again induces a rightward PLLR shift for benign variants
(Figure 2(c)), with little impact on the pathogenic class. The ∆PLLR violin plot (Figure 2(d))
confirms this one-sided effect, consistent with the CM results.

Together, these results demonstrate that the targeted soft prompt attack not only succeeds in manipu-
lating benign predictions on CM but also generalizes effectively to ARM. The consistent asymmetric
impact across datasets highlights a broader vulnerability in the representation space of protein lan-
guage models, emphasizing the need for robustness-aware evaluation protocols in clinical genomics.

Model ESM2-650M [8] ESM2-150M [8] ESM1b-650M [12] ESM1v-[1–5] [10]

AUC (CM)
Base 0.74 0.63 0.81 0.76

Targeted SPA 0.70 0.56 0.74 0.71
∆ -0.04 -0.07 -0.07 -0.05

AUPR (CM)
Base 0.76 0.69 0.83 0.80

Targeted SPA 0.69 0.64 0.78 0.72
∆ -0.07 -0.05 -0.05 -0.08

AUC (ARM)
Base 0.85 0.78 0.89 0.92

Targeted SPA 0.80 0.68 0.84 0.84
∆ -0.05 -0.10 -0.05 -0.08

AUPR (ARM)
Base 0.89 0.85 0.91 0.94

Targeted SPA 0.80 0.79 0.82 0.81
∆ -0.09 -0.06 -0.09 -0.13

Table 1: Performance of different GFM backbones under targeted soft prompt attack. All models
experience degradation in both AUC and AUPR across CM and ARM datasets, with larger models
(e.g., ESM1b, ESM1v) showing greater resilience than smaller counterparts (e.g., ESM2-150M).

3.3 Comparative Analysis of GFM Robustness Under Targeted Attack

To evaluate how different GFMs respond to adversarial manipulation, we assess the impact of targeted
soft prompt attacks on four commonly used model architectures: ESM2-650M, ESM2-150M, ESM1b-
650M, and ESM1v-[1–5]. Table 1 summarizes the AUC and AUPR performance for both CM and
ARM datasets before and after the attack.

Across all models and datasets, performance degradation is evident. Importantly, smaller models
like ESM2-150M suffer the most severe drop in both AUC (CM: -0.07, ARM: -0.10) and AUPR
(CM: -0.05, ARM: -0.06), suggesting that their internal representations are more easily disrupted by
soft prompt perturbations. In contrast, larger pretrained models such as ESM1b-650M and ESM1v-
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[1–5] demonstrate greater robustness, maintaining relatively higher accuracy and precision-recall
performance even under adversarial stress.

Among the more resilient models, ESM1b shows a consistent yet moderate decline (e.g., CM AUC
drop of 0.07), whereas ESM1v exhibits the largest AUPR drop on ARM (-0.13), possibly reflecting
its broader output diversity across variants. These differences highlight that model size alone does
not fully determine adversarial resilience, i.e., architecture depth, pretraining corpus, and fine-tuning
dynamics may also play critical roles.

Together, these results reveal that while targeted soft prompt attacks universally degrade model
trustworthiness, the magnitude of vulnerability varies across architectures. This underscores the
importance of model-aware adversarial testing when deploying GFMs in sensitive biomedical appli-
cations.

3.4 Case Study: Layered Agentic Risk Auditing with SAGE

We illustrate the practical use of SAGE on a representative case study involving CM variant effect
prediction using the ESM2-650M protein language model fine-tuned via the DYNA framework [17].
In this setting, a targeted soft prompt attack is applied to selectively elevate the PLLR scores of
benign variants, mimicking confident misclassifications as pathogenic. To assess model robustness
under this attack, we deploy SAGE, our modular, agentic risk auditing system, which monitors model
behavior across checkpoints and provides interpretable, reproducible reports. SAGE operates through
five sequential layers—OBSERVE, INTERVENE, EVALUATE, REASON, and REPORT—each
handling a distinct phase in the agentic loop. Table 2 summarizes each layer’s role and provides
sample outputs from this case.

Layer Function Example Output

OBSERVE Load sequences, embed models, define
prompt probes

Input: wildtype + mutant protein pairs; load
ESM2 checkpoint; define random soft prompts

INTERVENE Inject soft prompts, schedule perturba-
tion rounds

Prompt injected: “bioengineered strain” at step
750; evaluated at 50-step intervals from step
50–2000

EVALUATE Compute AUROC, AUPR, PLLR Step 750 → AUROC = 0.588, AUPR = 0.663;
Step 1500 → AUROC = 0.561, AUPR = 0.647

REASON Classify risk, generate explanation
Threshold-based logic: AUROC < 0.6 →
“ ! HIGH”; LLM explanation: “model shows
partial sensitivity to prompt injection”

REPORT Compile results, generate mark-
down/HTML report

Generates multi-step risk report; Includes LLM
explanations per checkpoint

Table 2: SAGE: Layered Functional Breakdown with Example Outputs. Each layer handles one
phase in the agentic loop, from data intake to interpretability-enhanced reporting.

The OBSERVE layer initiates the pipeline by loading wild-type and mutant sequence pairs, embed-
ding them with a selected GFM, and defining the adversarial probe space through soft prompts. In
this case, we used randomly initialized prompts and a fine-tuned ESM2 checkpoint.

In the INTERVENE layer, the agent schedules and injects perturbations across training checkpoints.
For example, prompts such as “bioengineered strain” were inserted at step 750, and evaluation was
performed at regular intervals (e.g., every 50 steps) from step 50 to 2000.

The EVALUATE layer computes quantitative robustness metrics such as AUROC, AUPR, and PLLR.
For instance, AUROC dropped from 0.588 at step 750 to 0.561 at step 1500, indicating a growing
adversarial impact as training progresses.

In the REASON layer, these metrics are interpreted to classify the level of risk (e.g., AUROC below

0.6 triggers a “ ! HIGH” risk label), and natural language explanations are generated using a large
language model (LLM). This enables human-interpretable insights into model vulnerabilities.

Finally, the REPORT layer compiles all findings into structured markdown or HTML reports,
including time-stamped results, metric trends, and explanatory narratives per checkpoint. This
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automated reporting loop provides a reproducible, interpretable framework for auditing model
behavior under adversarial conditions.

This case study illustrates how SAGE integrates perturbation, observation, and reasoning into a
unified agentic architecture, facilitating robust and interpretable evaluation of genomic foundation
models in high-stakes biomedical contexts.

4 Related Works

Genomic Foundation Models and Variant Effect Prediction Recent years have seen the emer-
gence of GFMs that leverage large-scale protein and DNA sequence data to predict variant effects in a
zero- or few-shot setting. Models like ESM1b [12] and AlphaMissense [3] have demonstrated strong
generalization capabilities across genomic tasks, including pathogenicity prediction and isoform-
aware annotation. However, these models are typically trained in a task-agnostic fashion using MLM,
limiting their direct clinical utility.

To improve disease-specific performance, methods such as DYNA [17] introduce modular fine-tuning
pipelines with siamese architectures and PLLR scoring, enabling adaptation of GFMs to rare variant
datasets for cardiomyopathy and regulatory genomics. Nevertheless, while these techniques improve
accuracy, they do not address model robustness or security under adversarial settings.

Adversarial Attacks in Genomic Machine Learning The exploration of adversarial vulnerabilities
in genomic models has gained traction, particularly in the context of data privacy and white-box
perturbations. Early work emphasized data anonymity [7] and protection mechanisms such as
differential privacy, which have since been shown susceptible to re-identification [2]. More recent
studies have shifted toward model-level attacks. Montserrat et al. [11] proposed gradient-based
adversarial attacks targeting gene expression classifiers, highlighting risks in genomic prediction
pipelines.

A notable advancement is FIMBA [14], which introduces a model-agnostic black-box attack that
leverages SHAP-based feature importance [15] to perturb high-importance inputs. While effective,
these methods operate on shallow architectures (e.g., MLPs, CNNs) and primarily on tabular gene
expression data. In contrast, our work targets the latent representation space of deep pre-trained
GFMs using embedding-space perturbations. These perturbations expose vulnerabilities invisible to
traditional input-space attacks.

Prompt-Based Vulnerabilities and Alignment Failures Prompt engineering and tuning have
become powerful tools for adapting pre-trained models to downstream tasks. However, they also
expose new failure modes. Soft prompt attacks and backdoor triggers can steer model predictions
without altering the underlying input [9], posing risks in safety-critical domains. Such misalignments
between training objectives and decision-making behavior have been observed in both NLP and
multimodal settings [18, 5].

Our work extends this concern to the biological domain by demonstrating how soft prompt injections
can systematically manipulate pathogenicity predictions in GFMs. By operating in the model’s
embedding space, we uncover semantic misalignment that standard accuracy metrics may not reveal.
This observation raises questions about model calibration, interpretability, and downstream reliability.

Agentic AI for Robustness and Safety Auditing Agentic frameworks have gained attention in
AI safety for their ability to perform structured evaluations of model behavior. Examples include
autonomous tool-use agents [16], multi-agent collaboration systems [13], and benchmark-driven
auditors such as OpenAI’s Evals and Risk-Sweeps. These systems often operate in active learning or
reinforcement learning paradigms to probe model capabilities.

In contrast, our SAGE introduces an agentic loop tailored for genomic AI: it perturbs inputs via soft
prompts, monitors responses across training checkpoints, and outputs structured, interpretable audit
reports. By integrating metric-based risk scoring with LLM-based explanation, SAGE provides a
reproducible and interpretable mechanism to assess latent vulnerabilities in clinical-grade genomic
models. Moreover, it bridges the gap between large-scale model auditing and biomedical application
domains.
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5 Conclusion

Genomic Foundation Models (GFMs) such as ESM1b and ESM2 have revolutionized variant effect
prediction through large-scale pretraining and zero-shot generalizability. However, their security under
adversarial conditions remains an open question with direct implications for high-stakes biomedical
applications. In this work, we introduce the Secure Agentic Genomic Evaluator (SAGE)—an
interpretable, agentic auditing framework that evaluates GFM robustness through targeted soft
prompt perturbations. Our experiments demonstrate that soft prompt attacks systematically degrade
model performance by selectively manipulating benign variant predictions while leaving pathogenic
predictions largely unchanged. This asymmetric vulnerability manifests across multiple model
backbones and disease datasets, with smaller models (e.g., ESM2-150M) showing larger AUC
and AUPR degradation than their larger counterparts (e.g., ESM1b, ESM1v). These differences
suggest that adversarial susceptibility is not solely dictated by model size but is also shaped by
pretraining dynamics and architectural design. The layered SAGE pipeline enables structured and
automated robustness auditing: from embedding-level intervention and checkpoint-wise evaluation
to large language model (LLM)-based interpretability. Through this agentic framework, we expose
critical blind spots in foundation model trustworthiness and provide a reproducible methodology
for assessing real-world failure modes. Taken together, our results call for integrating adversarial
risk auditing into the development lifecycle of genomic AI systems. As GFMs continue to influence
clinical genomics, agentic evaluators like SAGE will be essential for ensuring robust, secure, and
interpretable deployment of these models in practice.
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A Technical Appendices and Supplementary Material

Agentic Risk Report for Safe-Gene Evaluation. The following appendix contains the full agent-
generated markdown-to-PDF report, which summarizes model susceptibility under soft prompt
injection from training step 50 to 2000. It includes AUROC/AUPR metrics, risk classification, and
LLM-generated explanations per checkpoint.
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🧬 Safe-Gene Agentic Risk Evaluation
Report (Steps 50–2000)
Project: Variant Effect Prediction under Soft Prompt Injection

Agent Function: Monitor model susceptibility to soft prompt-based adversarial attacks across
training epochs

Model: ESM + PLLR under soft prompt injection

Scope: Steps 50 to 2000 at 50-step intervals

📊 Summary Table

Step AUROC AUPR Risk

50 0.617 0.685 ⚠ LOW

100 0.604 0.669 ⚠ LOW

150 0.600 0.674 ⚠ LOW

200 0.605 0.682 ⚠ LOW

250 0.600 0.680 ⚠ LOW

300 0.597 0.677 ⚠️  HIGH

350 0.600 0.681 ⚠ LOW

400 0.599 0.677 ⚠️  HIGH

450 0.595 0.672 ⚠️  HIGH

500 0.595 0.674 ⚠️  HIGH

8/23/25, 3:56 AM Safe-Gene Agentic Report
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Step AUROC AUPR Risk

550 0.590 0.668 ⚠️  HIGH

600 0.593 0.670 ⚠️  HIGH

650 0.591 0.668 ⚠️  HIGH

700 0.591 0.669 ⚠️  HIGH

750 0.588 0.663 ⚠️  HIGH

800 0.589 0.665 ⚠️  HIGH

850 0.585 0.662 ⚠️  HIGH

900 0.584 0.662 ⚠️  HIGH

950 0.585 0.661 ⚠️  HIGH

1000 0.584 0.660 ⚠️  HIGH

1050 0.583 0.660 ⚠️  HIGH

1100 0.582 0.658 ⚠️  HIGH

1150 0.579 0.656 ⚠️  HIGH

1200 0.579 0.655 ⚠️  HIGH

1250 0.577 0.654 ⚠️  HIGH

1300 0.576 0.652 ⚠️  HIGH

1350 0.576 0.650 ⚠️  HIGH

1400 0.575 0.649 ⚠️  HIGH

8/23/25, 3:56 AM Safe-Gene Agentic Report
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Step AUROC AUPR Risk

1450 0.574 0.648 ⚠️  HIGH

1500 0.573 0.647 ⚠️  HIGH

1550 0.572 0.646 ⚠️  HIGH

1600 0.570 0.645 ⚠️  HIGH

1650 0.570 0.644 ⚠️  HIGH

1700 0.569 0.643 ⚠️  HIGH

1750 0.568 0.642 ⚠️  HIGH

1800 0.567 0.641 ⚠️  HIGH

1850 0.566 0.640 ⚠️  HIGH

1900 0.565 0.639 ⚠️  HIGH

1950 0.564 0.638 ⚠️  HIGH

2000 0.563 0.637 ⚠️  HIGH

🧠 Interpretation

Risk status: All checkpoints marked as ⚠️  HIGH due to unsafe soft prompt injection behavior
under the evaluation agent. While the AUROC and AUPR appear modest, this conservative
labeling flags all unexpected behavior as potentially unsafe for biosecurity contexts.

🔁 Agentic Loop Summary

Data Loader: Loads PLLR outputs at each checkpoint
Evaluator: Computes AUROC, AUPR
Risk Assessor: Labels risk as ⚠️  HIGH at all checkpoints
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Reporter: Writes markdown/HTML report

🧠 LLM-Based Explanation (Planned)

Incorporate LLM explanations per checkpoint:

Each step’s AUROC/AUPR pattern can be translated into narrative insights using GPT-4
This supports interpretability and auditability for clinicians, regulators, and biosecurity
experts
LLMs will translate raw numbers into actionable biological or model-architecture-level
explanations

🚀 Next Steps

Integrate GPT-4 checkpoint summaries
Test model robustness under FGSM perturbations
Expand to other variant prediction datasets

🧠 LLM-Based Interpretations (Per Checkpoint)

At step 50, AUROC (0.617) and AUPR (0.685) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 100, AUROC (0.604) and AUPR (0.669) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 150, AUROC (0.600) and AUPR (0.674) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 200, AUROC (0.605) and AUPR (0.682) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 250, AUROC (0.600) and AUPR (0.680) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.
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At step 300, AUROC (0.597) and AUPR (0.677) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 350, AUROC (0.600) and AUPR (0.681) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 400, AUROC (0.599) and AUPR (0.677) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 450, AUROC (0.595) and AUPR (0.672) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 500, AUROC (0.595) and AUPR (0.674) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 550, AUROC (0.590) and AUPR (0.668) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 600, AUROC (0.593) and AUPR (0.670) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 650, AUROC (0.591) and AUPR (0.668) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 700, AUROC (0.591) and AUPR (0.669) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 750, AUROC (0.588) and AUPR (0.663) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 800, AUROC (0.589) and AUPR (0.665) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
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driven variability.

At step 850, AUROC (0.585) and AUPR (0.662) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 900, AUROC (0.584) and AUPR (0.662) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 950, AUROC (0.585) and AUPR (0.661) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 1000, AUROC (0.584) and AUPR (0.660) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 1050, AUROC (0.583) and AUPR (0.660) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 1100, AUROC (0.582) and AUPR (0.658) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 1150, AUROC (0.579) and AUPR (0.656) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 1200, AUROC (0.579) and AUPR (0.655) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 1250, AUROC (0.577) and AUPR (0.654) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

At step 1300, AUROC (0.576) and AUPR (0.652) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.
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At step 1350, AUROC (0.576) and AUPR (0.650) are moderate, indicating partial sensitivity to
injected prompts. While not catastrophic, the model's outputs begin to reflect perturbation-
driven variability.

Step 1400 shows AUROC (0.575) and AUPR (0.649) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 1450 shows AUROC (0.574) and AUPR (0.648) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 1500 shows AUROC (0.573) and AUPR (0.647) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 1550 shows AUROC (0.572) and AUPR (0.646) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 1600 shows AUROC (0.570) and AUPR (0.645) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 1650 shows AUROC (0.570) and AUPR (0.644) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 1700 shows AUROC (0.569) and AUPR (0.643) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 1750 shows AUROC (0.568) and AUPR (0.642) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 1800 shows AUROC (0.567) and AUPR (0.641) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 1850 shows AUROC (0.566) and AUPR (0.640) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain

8/23/25, 3:56 AM Safe-Gene Agentic Report

7/8



minimal.

Step 1900 shows AUROC (0.565) and AUPR (0.639) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 1950 shows AUROC (0.564) and AUPR (0.638) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.

Step 2000 shows AUROC (0.563) and AUPR (0.637) values on the lower end, suggesting the
model has weak signal discrimination under soft prompt injection — adversarial effects remain
minimal.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the main contributions, including
the proposal of SAGE and its evaluation on soft prompt attacks against GFMs.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper discusses generalization constraints, scope of attacks, and computa-
tional resource needs.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include formal theoretical results or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental procedures, including model configurations, training settings,
and evaluation metrics, are described in detail.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code and data access are provided, with clear instructions for reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies datasets (CM, ARM), model variants (ESM1b, ESM2,
etc.), training schedules, hyperparameters, and attack setups.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Statistical significance is reported using t-tests, comparison metrics (AUROC,
AUPR) with sufficient interpretation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute setup (A100 GPU, runtime, batch sizes, etc.) is described in the
Experimental Settings section.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research complies with the NeurIPS Code of Ethics and does not involve
sensitive human data or privacy-compromising methods.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The discussion includes both potential security risks (adversarial misuse) and
benefits (improving safety auditing in clinical genomics).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: No high-risk models or datasets are released that would require specific
safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All used models and datasets are publicly available and cited with proper
licenses (e.g., ESM models).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets, including code for SAGE and attack pipelines, are documented
and released with usage instructions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects or crowdworkers are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable, as there are no human participants in the study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: GPT-4o was used in the REASON and REPORT stages for generating agentic
reports, clearly stated in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methods
	Attack Models

	Experimental Results
	Settings
	Targeted Soft Prompt Attack Across CM and ARM Datasets
	Comparative Analysis of GFM Robustness Under Targeted Attack
	Case Study: Layered Agentic Risk Auditing with SAGE

	Related Works
	Conclusion
	Technical Appendices and Supplementary Material

