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ABSTRACT

Synthetic data has become a common strategy to address data scarcity in Human
Activity Recognition (HAR). However, models trained on synthetic samples often
overfit to spurious features, leading to a substantial domain gap when transferred
to real-world data. To address this challenge, we propose Regularization via In-
variant Patterns (RIP), a novel data-centric method that extends the idea of do-
main randomization to the temporal domain. RIP augments time-series windows
by ”framing” them with invariant (constant-valued) patterns, compelling models
to focus on informative signals rather than irrelevant temporal context. Evalu-
ated across five HAR datasets, four classifiers, and more than 2,000 experiments,
RIP consistently improves F1 scores, achieving gains of up to +53 percentage
points (over +160% relative improvement) compared to synthetic baselines — of-
ten matching or surpassing real-data baselines. Beyond synthetic scenarios, RIP
also boosts performance in real-only training settings, highlighting its broad ap-
plicability. Both theoretical analysis and empirical results show that RIP stabilizes
weight updates and enhances calibration, all without modifying model architec-
tures.

1 INTRODUCTION

Human Activity Recognition (HAR) increasingly uses synthetic samples to mitigate data scarcity,
privacy constraints, and inter-subject variability, especially with wearable time-series data. How-
ever, models trained on synthetic data often break onto generator-specific cues, creating a sizeable
synthetic-to-real gap at inference time Seib et al. (2020); Sankaranarayanan et al. (2018). Prior work
indicates that the use of synthetic samples is most effective when combined with principled, data-
centric regularization rather than used as a mere data augmentation strategy Souza et al. (2023);
Lupión et al. (2024).

Background and Related Work. (1) Domain randomization (DR). In computer vision, it im-
proves simulated-to-real transfer by randomizing non-essential factors (e.g., backgrounds) Trem-
blay et al. (2018). A principled temporal analogue for wearable HAR remains underexplored. (2)
Time-series/HAR regularization. Common data-centric approaches include jitter, scaling, time-
warping, permutation/cropping, and temporal masking/cutout (SpecAugment-style), as well as
Mixup/Cutmix and optimization-level methods like SAM/DRO Zhang et al. (2018); Yun et al.
(2019); Foret et al. (2021); Kuhn et al. (2024); Bento et al. (2023). These techniques per-
turb local dynamics or alter the loss, but generally do not enforce invariance to non-informative
temporal context. (3) Domain generalization (DG) and calibration. DG methods operate on
losses/representations rather than inputs and often require architectural or optimization changes Ar-
jovsky et al. (2019).Most existing research has concentrated on specific modalities such as images
and text, while applications to time-series data remain relatively underexplored Deng et al. (2024).

Our idea. We present Regularization via Invariant Patterns (RIP), a simple, architecture-agnostic
temporal DR mechanism: each training window is “framed” by constant-valued segments. RIP
discourages reliance on spurious context and biases learning toward class-relevant dynamics by
inducing class-agnostic invariance in the surrounding temporal context. Unlike zero/edge padding
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or random masking, RIP uses structured invariant patterns drawn from a small set of γ values,
explicitly operationalizing DR in time.

Contributions. (i) We introduce RIP, a data-centric regularizer that, to our knowledge, brings do-
main randomization to the temporal axis for HAR without modifying architectures or losses. (ii)
Across five datasets, four classifiers, and more than 2,000 runs, RIP consistently improves S→R
transfer (average macro-F1 gains ≈+53 pp up to ≈+81 pp) and also boosts TRTR, with tighter con-
fidence intervals. (iii) We analyze why RIP stabilizes learning—reduced hidden-state variance and
better probability calibration. (iv) We position RIP against time-series augmentations and DG base-
lines, and provide ablations on duplication factor i and constant design γ. Extended related work
appears in Appendix A.

2 REGULARIZATION VIA INVARIANT PATTERNS (RIP)

Regularization via Invariant Patterns (RIP) introduces a new form of data-centric regularization
inspired by the principle of domain randomization Tremblay et al. (2018). In their work, Tremblay
et al. (2018) demonstrated that training on synthetic images with randomized backgrounds forces
a model to become invariant to non-essential features, thus bridging the sim-to-real domain gap.
We translate this core idea from the spatial domain of images to the temporal domain of HAR
data. For a time-series window, we treat the surrounding temporal context as the ”background.”
RIP implements this concept of temporal domain randomization by strategically ”framing” the core
signal with constant-valued windows. These invariant patterns, defined by a scalar γ, compel the
model to focus on the dynamic, informative part of the signal, much like a picture frame draws
attention to the image it contains. This process encourages learning more robust and generalizable
representations from synthetic data.

Figure 1: Sensor vs. constant windows: (a) Varying signals over time. (b) Fixed values across
time and attributes are used for regularization. Each window has ω timestamps and 3 attributes.

Preliminary Concepts. Let D be a dataset of time-series samples, where each sample is a temporal
window x ∈ Rω×3. Here, ω ∈ N is the window length, and the second dimension corresponds
to the three sensor axes. We define two types of windows: a sensor window, containing dynamic
sensor readings, and a constant window, where all values are fixed to a scalar γ ∈ Z. This invariant
pattern serves as the non-informative ”temporal background” used to regularize the learning process.
Figure 1 illustrates the structural difference between these two window types. The value of γ is a
hyperparameter subject to tuning.

RIP Formalization. Given a dataset D = {(x1, y1), . . . , (xn, yn)}, the RIP method produces an
augmented dataset D′. For each sensor window xi, we generate a new sample x′

i by creating a
sequence of information where constant windows frame the original window. This operation is
controlled by two hyperparameters: the constant value γ and a duplication factor i ∈ N. The
number of constant windows prepended and appended to form the sequence is defined as 2i. The
final augmented sample x′

i is a tensor of shape (4i+1, ω, 3), where ω is the original window length.
The corresponding label y′i is a sequence of the original label repeated 4i + 1 times. The whole
procedure is formally described in Algorithm 1.

By explicitly introducing invariant information into the training data, RIP compels the model to
learn from the contrast between constant and dynamic temporal patterns. This strategy reinforces
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Algorithm 1 Creating the RIP-Augmented Dataset D′

1: Input: Dataset D = {(x1, y1), . . . , (xn, yn)}, constant value γ, duplication factor i ∈ N
2: Output: Augmented dataset D′ where each sample is a sequence of windows.
3: Let D′ ← ∅
4: for each sample (xm, ym) ∈ D do
5: Let k ← 2i {Calculate the number of constant windows for each side}
6: Let ω be the length of the window xm

7: Let C ∈ Rω×3 be a constant window filled with the value γ
8: Let Sprefix ← Repeat(C, k) {Create a sequence of k constant windows}
9: Let Ssuffix ← Repeat(C, k) {Create another sequence of k constant windows}

10: Let S ← Sprefix + [xm] + Ssuffix {Combine to form the final sequence of windows}
11: x′

m ← Stack(S) {Convert sequence to tensor of shape (2k + 1, ω, 3)}
12: y′m ← Repeat(ym, 2k + 1) {Create corresponding label sequence}
13: D′ ← D′ ∪ {(x′

m, y′m)}
14: end for
15: return D′

Table 1: Performance comparison of RIP against the baseline under the Train on Synthetic, Test
on Real (TSTR) protocol. We report the baseline for each dataset against the best-performing RIP
configuration. The best result for each metric is shown in bold.

Model Dataset RIP Config. Accuracy (%) F1-score (%)
(γ, i) Baseline RIP Baseline RIP

DClassifier
MHEALTH (0, 5) 55.79±2.44 97.75±0.37 52.56±2.33 97.92±0.34
MHAD1 (0, 16) 33.86±1.46 86.03±0.59 32.85±1.66 86.03±0.58
MHAD2 (0, 16) 46.97±3.70 81.66±0.63 43.52±3.78 81.10±0.73
WHARF (-1, 16) 15.46±3.04 89.99±0.87 6.14±1.78 87.26±1.26
WISDM (1, 5) 53.03±3.04 99.79±0.05 44.94±2.51 99.66±0.08

TS-Classifier

MHEALTH (0, 1) 61.00±4.09 58.83±2.34 57.42±4.38 53.99±2.72
MHAD1 (-1, 16) 35.62±1.98 29.92±1.02 32.58±2.39 25.99±1.12
MHAD2 (-1, 16) 48.31±3.62 51.44±2.85 41.97±4.12 41.50±3.32
WHARF (-1, 1) 20.94±3.16 44.90±4.10 11.41±2.47 26.61±2.07
WISDM (1, 5) 50.07±3.78 93.14±1.50 47.38±2.49 92.42±1.76

TSBF

MHEALTH (1, 1) 31.44±2.30 31.50±2.38 26.63±2.36 26.79±2.10
MHAD1 (1, 5) 19.94±0.98 20.32±0.71 18.80±0.97 18.80±0.70
MHAD2 (-1, 5) 37.46±2.03 38.00±1.64 33.19±2.27 33.96±1.89
WHARF (-1, 5) 15.47±3.77 15.31±3.61 5.53±1.76 5.43±1.52
WISDM (0, 16) 39.10±6.34 39.39±6.54 29.22±2.46 30.58±2.88

TSRF

MHEALTH (-1, 5) 29.72±1.68 29.91±2.42 25.98±1.07 26.52±1.75
MHAD1 (-1, 1) 21.51±0.84 21.75±0.82 19.59±0.97 19.85±0.96
MHAD2 (-1, 5) 34.65±2.95 36.15±2.43 31.13±3.08 32.77±2.65
WHARF (0, 16) 12.60±3.39 12.82±3.37 4.05±1.09 4.41±1.22
WISDM (-1, 16) 29.58±6.75 30.20±7.01 24.14±4.21 24.60±4.69

the focus on meaningful signal patterns, reducing variance in the learned weights and enhancing the
model’s ability to generalize across both synthetic and real data distributions1

1The source code for the proposed method is publicly available at after review process.
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Table 2: Performance comparison of RIP against the baseline on real-world data. The best result for
each metric per dataset is shown in bold. The RIP results represent the best-performing hyperpa-
rameter configuration.

Model Dataset RIP Config. Accuracy (%) F1-score (%)
(γ, i) Baseline RIP Baseline RIP

DClassifier

MHEALTH (0, 16) 91.21±1.61 97.84±0.21 90.46±2.84 98.01±0.20
MHAD1 (0, 16) 58.25±2.06 86.12±0.55 67.13±1.14 86.13±0.53
MHAD2 (0, 16) 68.32±1.05 82.12±0.72 67.58±1.31 81.68±0.74
WHARF (1, 16) 83.11±1.85 90.25±1.19 78.62±2.08 87.48±1.70
WISDM (0,5) 99.47±0.09 99.77 ± 0.03 99.20±0.15 99.46 ± 0.05

TS-Classifier

MHEALTH (1,1) 32.37±2.40 59.98±2.03 24.08±2.59 55.54±2.42
MHAD1 (-1,5) 20.45±1.15 31.67±0.73 15.67±1.41 26.08±0.70
MHAD2 (1,16) 31.25±1.64 52.49±3.16 24.46±1.72 43.22±3.91
WHARF (1,1) 19.19±6.71 46.06±4.34 10.28±3.63 28.63±2.24
WISDM (-1,5) 90.32±1.63 93.12±1.21 87.19±2.62 92.30±1.46

3 EXPERIMENTAL SETUP

To evaluate the effectiveness of our proposed RIP method, we conducted extensive experiments on
both real and synthetically generated datasets. Our setup is designed to isolate the impact of RIP on
synthetic data quality and assess its broader applicability.

Data and Models We used the Time-LogCosh-GAN (TLCGAN) Souza et al. (2023) to generate
synthetic tri-axial accelerometer data for five publicly available HAR datasets: MHAD1 Chen et al.
(2015), MHAD2 Chen et al. (2015), MHEALTH Banos et al. (2014), WISDM Weiss, and WHARF
Bruno et al. (2013). For classification, we employed a diverse set of four models: Deep ConvLSTM
(DClassifier) Singh et al. (2020), TS-Classifier hfawaz (2020), Time Series Random Forest (TSRF)
for, and Time Series Bag-of-Features (TSBF) fea. Full details on datasets, preprocessing steps, and
model implementations are provided in Appendix B.

Evaluation Protocol Our evaluation focuses on the Train on Synthetic, Test on Real (TSTR) pro-
tocol, which is particularly suited to assess whether synthetic data, when enhanced by RIP, effec-
tively contributes to model generalization. As a baseline for real-world application, we also em-
ployed the conventional Train on Real, Test on Real (TRTR) protocol. Given the inherent class
imbalance in HAR datasets, we report several metrics, primarily focusing on the F1 score due to
its robustness. Performance improvements are consistently reported in percentage points over the
respective baselines. For example, a baseline F1 score of 10% with an improvement of 4 percentage
points results in a new score of 14% (details are provided in Appendix C).

Hyperparameters Our method introduces two hyperparameters: the constant value γ and the
duplication factor i. In the synthetic data experiments, we evaluated γ ∈ {−1, 0, 1, 5} and i ∈
{1, 5, 16}. The same configurations were tested on real datasets to assess RIP’s general applicability.
Values of γ within [−1, 1] were chosen to match the data distribution, while γ = 5 was included as
an out-of-range control to test robustness beyond the natural interval. A complete description of all
hyperparameter settings and configurations is provided in Appendix B.

4 RESULTS AND DISCUSSION

Results on TSTR. Table 1 summarizes the best-performing RIP configurations, demonstrating sig-
nificant performance gains across multiple models and datasets. Our analysis, detailed in the Ap-
pendix C, reveals four key findings: (1) RIP disproportionately benefits deep learning models that
rely on representation learning (DClassifier and TS-Classifier); (2) it enhances model fairness and
robustness, not just predictive accuracy; (3) its effectiveness is highly dependent on the dataset char-
acteristics; and (4) it can help bridge the synthetic-to-real performance gap.

4
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Figure 2: Layer-wise KS
statistics for DClassifier
weights trained on real and
synthetic MHAD2 data, tested
against a uniform distribution.
Each color denotes a model;
x-axis: layers, y-axis: KS
value.

Overall findings. A clear pattern emerges across all experiments:
RIP provides substantially stronger improvements for deep archi-
tectures (DClassifier and TS-Classifier) than their statistical coun-
terparts (TSBF and TSRF). In some cases, RIP led to dramatic
gains, such as over +53 percentage points in F1 (corresponding to
more than +160% relative improvement) and even extreme cases
of more than +1300% relative improvement. This strong correla-
tion suggests that RIP’s regularization mechanism is particularly
beneficial for models engaged in representation learning, possibly
by preventing overfitting to spurious features in the synthetic data.

Per-dataset variations. The datasets respond differently to RIP. For
example, MHAD2 shows higher instability, with gains depending
on the adopted configuration. In contrast, WHARF consistently
benefits, reaching some of the most significant relative improve-
ments observed. Regarding the hyperparameter i, the distribu-
tion of its optimal value (40% for i=16, 40% for i=5, and 20%
for i=1) underscores that there is no single best setting. Instead,
the required amount of regularization is a function of the dataset’s
complexity and the model’s capacity, highlighting the necessity of
treating i as a crucial hyperparameter to be tuned for each specific
context.

Fairness and robustness. By consistently reducing the gap be-
tween Accuracy and macro F1-score, RIP mitigates bias against
under-represented classes, leading to more balanced predictions.

Furthermore, models trained with RIP exhibit significantly narrower confidence intervals across
runs compared to the baseline (see Tab. 1), indicating increased training stability and more reliable
performance.

Results on TRTR. Table 2 highlights the impact of RIP on real-world data, particularly for deep
learning models. The results show consistent performance gains, alongside improvements in robust-
ness and fairness.

Performance gains by model. RIP significantly improved both models, though in distinct ways.
For DClassifier, which already had strong baselines, RIP consistently improved results to higher
levels—for example, on MHAD1, Accuracy increased by +27.9 percentage points (pp) and F1
by +19.0 pp. On MHEALTH, F1 rose from 90.5% to 98.0%, setting a new performance bound.
Despite weaker baselines, TS-Classifier achieved the most significant relative improvements: on
MHEALTH, the F1 increased by +31.5 pp (a relative gain of 131%), and on WHARF by +18.4 pp
( 179%). These findings suggest that RIP is particularly effective at regularizing models that struggle
to generalize.

Hyperparameter effects. Analysis of the optimal configurations shows that the duplication factor i
is a dominant parameter: i = 16 was optimal in half of the cases, while i = 5 and i = 1 were
also effective depending on dataset complexity. No single value of γ consistently prevailed, with
γ = 0 and γ = 1 each appearing in 40% of the best cases, indicating sensitivity to the model–dataset
interaction.

Robustness and fairness. Beyond accuracy, RIP narrowed the gap between Accuracy and F1, indicat-
ing better treatment of underrepresented classes. For instance, TS-Classifier on MHEALTH reduced
the gap from 8 pp at baseline to 4 pp under RIP. Moreover, RIP consistently decreased standard
deviations, yielding more stable and trustworthy performance. With DClassifier on MHEALTH, the
Accuracy standard deviation dropped from±1.61 to±0.21, showing that RIP leads to more reliable
training outcomes.

Additional observations. Tree-based models (TSRF and TSBF), reported in the Appendix, already
achieved near-perfect performance (> 99% F1) under TSTR. RIP maintained or slightly improved
these results, demonstrating that it does not degrade performance even in scenarios with little room
for improvement. Overall, RIP emerges as a safe and effective regularizer that improves weaker
models, stabilizes stronger ones, and contributes to fairer and more robust performance across
datasets.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: KS statistics be-
tween model output logits
(real vs. synthetic MHAD2)
and a uniform distribution.
Lower values indicate outputs
closer to uniform. Each bar
shows a different model.

Computational Cost. Applying RIP is primarily influenced by the
dataset size and the duplication factor i. As an illustrative example,
applying RIP with i = 16 to the WISDM dataset on a CPU-based
model increased runtime from 2 hours to 4 hours and memory usage
from 4 GB to 10 GB. In contrast, using a GPU for DL models re-
duced the training time for the same configuration to approximately
30 minutes, with a comparable memory usage. More details in Ap-
pendix C.

Regularization Effect. To analyze RIP’s effect as a regularizer, we
conducted a layer-wise study of DClassifier weight distributions,
measuring their divergence from a uniform reference using Kol-
mogorov–Smirnov (KS) and Wasserstein distances (see Appendix
D for setup). Results (Figs. 2, 3) show that RIP, particularly with
γ = 1, consistently drives weights toward greater uniformity, es-
pecially in contextual layers such as SelfAttention and LSTM. This
mechanism is analogous in purpose but distinct in effect from tra-
ditional ℓ1 and ℓ2 regularization. While ℓ1 and ℓ2 penalize large
weights to induce sparsity (ℓ1) or a narrow, zero-centered distribu-
tion (ℓ2), RIP promotes a uniform distribution. This encourages the
model to evenly utilize a wide range of weight values rather than
concentrating them around zero. This uniformity is associated with
reduced overfitting and improved calibration of output confidence.
In contrast, γ = 5 produces stronger but less stable perturbations,
while γ = 0 shows a reasonable regularization effect. These find-
ings reveal a key trade-off: RIP improves local weight uniformity but may distort global structure
if γ is set too high. Overall, γ = 1 offers the most robust balance, yielding models that are more
decisive and reliable across datasets. A more detailed analysis of layer-wise dynamics is presented
in Appendix D.

Table 3: Performance analysis of the proposed RIP method versus a baseline approach and the ℓ1
and ℓ2 regularization methods. Experiments were conducted on five public, real-world datasets. For
each metric, the highest-performing result is highlighted in bold. The reported performance for RIP
is based on its best-found hyperparameter configuration.

Model Dataset Method Accuracy (%) F1-score (%)

TS-Classifier

MHEALTH

Baseline 32.37±2.40 24.08±2.59
RIP (γ = 1, i = 1) 59.98±2.03 55.54±2.42
ℓ1 (ϵ = 1.0) 57.71±2.60 51.67±3.56
ℓ2 (ϵ = 0.1) 58.25±3.37 51.61±4.45

MHAD1

Baseline 20.45±1.15 15.67±1.41
RIP (γ = −1, i = 5) 31.67±0.73 26.08±0.70
ℓ1 (ϵ = 0.001) 31.49±1.95 27.62±2.00
ℓ2 (ϵ = 0.001) 33.42±1.95 29.70±2.29

MHAD2

Baseline 31.25±1.64 24.46±1.72
RIP (γ = 1, i = 16) 52.49±3.16 43.22±3.91
ℓ1 (ϵ = 0.001) 47.13±6.13 40.94±6.24
ℓ2 (ϵ = 0.001) 44.65±6.04 37.84±6.03

WHARF

Baseline 19.19±6.71 10.28±3.63
RIP (γ = 1, i = 1) 46.06±4.34 28.63±2.24
ℓ1 (ϵ = 0.001) 19.51±2.09 10.92±1.98
ℓ2 (ϵ = 0.001) 20.04±3.16 10.90±2.73

WISDM

Baseline 90.32±1.63 87.19±2.62
RIP (γ = −1, i = 5) 93.12±1.21 92.30±1.46
ℓ1 (ϵ = 0.001) 43.68±5.46 43.94±4.06
ℓ2 (ϵ = 0.001) 47.88±6.81 46.12±3.21
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5 ADDITIONAL EXPERIMENTS

RIP vs. Traditional Regularization. To assess the value of RIP as a general-purpose regular-
ization method for HAR, we compared it against standard ℓ1 and ℓ2 techniques across both real
and synthetic datasets, using two architectures (TS-Classifier and DClassifier). Table 3 consistently
showed that RIP either matched or outperformed traditional methods, particularly in challenging or
high-baseline scenarios. RIP was more robust across datasets with varying complexity, preserving
or improving performance even where ℓ1 and ℓ2 caused degradation—up to 50 percentage points in
some cases. It also proved more versatile, delivering consistent gains across a wide range of γ and
i configurations, without requiring extensive tuning. RIP demonstrated generalization across archi-
tectures, showing both models’ effectiveness, while traditional regularizers offered only marginal or
inconsistent improvements. RIP provides a stable and straightforward alternative in scenarios where
regularization is needed but domain-specific tuning is impractical. Due to space limitations, we have
exclusively presented the results for the TS-Classifier within the main body of this paper, as they
most accurately reflect the overall behavior observed in our experiments. Comprehensive results,
methodological justifications, and all corresponding tables are available in Appendix F.

RIP vs. HAR approaches. Our literature review revealed a scarcity of research addressing regular-
ization and domain generalization specifically for HAR. The most relevant prior work, Bento et al.
(2023), explored Mixup and Distributionally Robust Optimization (DRO) for accelerometer-based
HAR, partially aligning with our objectives. To ensure a fair comparison, we benchmarked RIP
against these approaches, along with Cutmix Yun et al. (2019), DRO and Mixup Zhang et al. (2018)
using the MHAD2 dataset. For brevity, only the best-performing configuration of each competing
method is reported in Tab. 4. A complete set of results, parameter sweeps, and detailed commentary
is provided in the Appendix F.

Superior Performance and Reliability. Across all metrics, RIP consistently outperforms the base-
line and competing regularizers. Beyond delivering higher Accuracy and F1-scores, RIP exhibits
enhanced reliability, as evidenced by its significantly narrower confidence intervals (see Table 4).
This reduced variance indicates more stable training dynamics and more trustworthy predictions,
highlighting RIP as more accurate and dependable.

Fairness and the Synthetic-to-Real Gap Competing methods on synthetic data often display a wide
disparity between Accuracy and F1, indicating bias against minority classes. RIP maintains a close
alignment between these metrics, yielding more equitable predictions. This disparity is less pro-
nounced on real datasets, but RIP remains competitive with the best-performing methods, reinforc-
ing its ability to promote fairer outcomes. While methods like Cutmix achieve moderate perfor-
mance on synthetic data, they degrade substantially when transferred to real data, exacerbating the
domain gap. In contrast, RIP consistently delivers state-of-the-art results in both domains, demon-
strating unique strength in bridging this critical divide.

RIP in Other Domains. We conducted preliminary experiments on general time-series and tabular
datasets to explore RIP’s applicability beyond wearable sensor data. Results suggest that RIP’s most
substantial benefits arise in structured, repetitive sensor settings, while improvements in other do-
mains are modest or inconsistent. Significantly, performance rarely degrades substantially, indicat-
ing that RIP is a safe-to-try regularizer even outside its primary target. These findings reinforce RIP’s
specialization for HAR while also pointing toward future research opportunities, such as adapting
the invariant framing principle to multimodal or irregular time-series domains. For completeness,
we report and discuss detailed per-domain results in the Appendix F. Due to space constraints, here
we present only a summarized overview.

6 THEORETICAL ANALYSIS

Previous analyses suggested that context-based architectures are more susceptible to the effects of
RIP. This observation is particularly evident in our experiments for classifiers with recurrent designs.
To provide a theoretical perspective, we therefore consider the case of a Recurrent Neural Network
(RNN) with bias b ∈ Rh and identity activation φ(x) = x. At time step t, the input is xt ∈ Rd with
target yt ∈ Rq . The hidden state and output are given by ht = Wxt + Uht−1 + b, ot = V ht + C,
ŷt = softmax(ot), where W ∈ Rd×h, U ∈ Rh×h, V ∈ Rh×q and C ∈ Rq . We simulate a sequence
of 5 steps, with h0 = 0, where constant samples γ are injected at t = 1, 2, 4, 5 (see Appendix E).

7
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As derived in the Appendix, the hidden state at t = 5 under RIP is

h
(RIP)
5 = (U4 + U3 + U + I)Wγ + U2Wx3 +

4∑
i=0

U ib, (1)

where x1 = x2 = x4 = x5 = γ. In contrast, without RIP, we have

h
(noRIP)
5 =

4∑
i=0

(
U iWx5−i + U ib

)
. (2)

Equations 4–2 show that RIP constrains h5, since most dynamics arise from powers of U acting
on the fixed term Wγ. Assuming i.i.d. inputs with mean µ and covariance Σ, the expectations and
variances are

E[h(noRIP)
5 ] =

4∑
i=0

U iWµ+

4∑
i=0

U ib, Var(h(noRIP)
5 ) =

4∑
i=0

U iWΣW⊤(U i)⊤,

E[h(RIP)
5 ] = (U4 + U3 + U + I)Wγ + U2Wµ+

4∑
i=0

U ib, Var(h(RIP)
5 ) = U2WΣW⊤(U2)⊤.

Thus, while Var(h(noRIP)
5 ) aggregates variability from five independent sources, Var(h(RIP)

5 ) depends
only on x3. RIP therefore reduces temporal diversity and constrains the hidden representation to
a lower-variance subspace. This implicit regularization yields smoother gradients and more stable
weight updates: Ω ← Ω − α ∂ℓ

∂Ω , Ω ∈ {W,U, V, b}, where ∂ℓ
∂Ω inherits the reduced variability

of h5. While this promotes generalization, excessive repetition (large duplication factor i) can over-
constrain the model and limit representational capacity.

Table 4: Performance comparison demonstrating the superiority of our method over the baseline and
other standard techniques. The best results per protocol are shown in bold.

Method Accuracy (%) F1-Score (%) Epsilon Protocol
Baseline 46.97±3.70 43.52±3.78 -
Cutmix 45.38±2.83 41.80±4.05 0.1 TSTR
DRO 32.70±4.71 26.88±4.99 0.3
Mixup 39.88±6.14 32.33±9.63 0.1
RIP (γ=0, i=16) 81.66 ±0.63 81.10 ±0.73 -

Baseline 68.32±1.05 67.58±1.31 -
Cutmix 63.10±1.18 62.03±1.47 0.1 TRTR
DRO 45.75±2.08 38.91±2.76 0.3
Mixup 39.98±12.17 30.89±16.12 0.1
RIP (γ =0, i=16) 82.12 ± 0.72 81.68 ± 0.74 -

7 ABLATIONS

To better understand the core mechanisms behind our proposed RIP method, we conducted a se-
ries of ablation studies addressing three key questions. While we report high-level findings here,
complete experimental setups and extended results are detailed in Appendix G.

Can naive data duplication achieve similar effects to invariant patterns? Not entirely. Dupli-
cating input windows (e.g., i = 5) provides marginal improvements over the TSTR baseline, but
these gains are not statistically significant and vanish for larger i. This indicates that naive repetition
may induce overfitting, limiting generalization—especially for time-series, where subtle variations
are critical.

Is i as a duplication factor necessary? Yes. When using a minimal RIP structure with only one
central window (i.e., ĩ = 1

2 i), performance drops below the synthetic baseline. Full duplication

8
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patterns (e.g., i = 5) result in substantial gains—up to 4 percentage points in F1 score—confirming
that structural repetition enhances the contextual framing effect and model focus.

Can random distributions replace constants? No. Replacing γ with non-stationary random values
(e.g., rand(0, 1) or rand()) consistently degrades performance. Even the best randomized setup
merely matches the baseline. These results suggest that randomness introduces spurious patterns,
confusing the model rather than improving robustness.

Does structure and γ-design matter? Absolutely. Experiments with unordered or non-integer γ
(e.g., γ = Avg(features)) led to performance degradation. This confirms that the contextual frame’s
order and fixed design are essential for RIP’s effectiveness. These findings highlight that the benefits
of RIP arise not from trivial data augmentation or randomness, but from the careful design of its
structure and components. Additional experiment details, tables, and visualizations are provided in
Appendix G.

8 CONCLUSION

We introduced RIP, a data-centric regularization strategy for tri-axial wearable sensor data. By aug-
menting training datasets with invariant patterns, RIP improves generalization without modifying
model architectures or loss functions. Our extensive experiments show that RIP enhances the per-
formance and calibration of deep learning models, particularly in human activity recognition (HAR)
tasks, offering both synthetic and real data improvements. RIP effectively addresses challenges in
wearable data, such as scarcity, variability, and noise. It reduces weight variance and overconfi-
dence, leading to more uniform weight distributions and better-calibrated predictions—especially
in deep models. Mathematically, RIP modifies the optimization landscape by shifting update dy-
namics at the batch level. We demonstrated that its effects cannot be reproduced by naively holding
most batch samples constant. The whole structure of RIP is necessary for its regularization effect.
Among its hyperparameters, the duplication factor i proved most influential, with i = 16 yielding
consistently strong results. While RIP shows limited effectiveness outside its target domain—failing
to generalize to generic time-series or tabular data—it remains a lightweight, architecture-agnostic
technique with high practical value. It requires no architectural changes, making it accessible to
practitioners seeking to improve model robustness on sensor-based datasets. RIP extends the do-
main randomization applicability and holds promise for domains where reliable human activity data
is essential, such as healthcare monitoring, sports analytics, and eldercare systems. Its simplicity,
empirical effectiveness, and interpretability make it a valuable addition to the HAR modeling tool-
box. Future work may explore its role in multimodal sensor setups, where data complexity further
amplifies the need for effective regularization.

REPRODUCIBILITY STATEMENT

The source code associated with this work will be released on GitHub upon completion of the
review process. Our implementation is developed on top of the TensorFlow framework, and we
explicitly reference any external code utilized, including the classifiers incorporated, which were
not reimplemented from scratch. A comprehensive description of all hyperparameters is provided in
the Appendix, and the corresponding configuration files are included in the source code repository
to facilitate reproducibility.
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