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ABSTRACT

Recent advancements in Model-Based Reinforcement Learning (MBRL) have
made it a powerful tool for visual control tasks. Despite improved data efficiency,
it remains challenging to train MBRL agents with generalizable perception. Train-
ing in the presence of visual distractions is particularly difficult due to the high
variation they introduce to representation learning. Building on DREAMER, a
popular MBRL method, we propose a simple yet effective auxiliary task to facil-
itate representation learning in distracting environments. Under the assumption
that task-relevant components of image observations are straightforward to iden-
tify with prior knowledge in a given task, we use a segmentation mask on image
observations to only reconstruct task-relevant components. In doing so, we greatly
reduce the complexity of representation learning by removing the need to encode
task-irrelevant objects in the latent representation. Our method, Segmentation
Dreamer (SD), can be used either with ground-truth masks easily accessible in
simulation or by leveraging potentially imperfect segmentation foundation mod-
els. The latter is further improved by selectively applying the reconstruction loss
to avoid providing misleading learning signals due to mask prediction errors. In
modified DeepMind Control suite (DMC) and Meta-World tasks with added vi-
sual distractions, SD achieves significantly better sample efficiency and greater
final performance than prior work. We find that SD is especially helpful in sparse
reward tasks otherwise unsolvable by prior work, enabling the training of visually
robust agents without the need for extensive reward engineering.

1 INTRODUCTION

Recently, model-based reinforcement learning (MBRL) (Sutton, 1991; Ha & Schmidhuber, 2018;
Hafner et al., 2019; 2020; Hansen et al., 2022; 2023) has shown great promise in learning control
policies, achieving high sample efficiency. Among recent advances, the DREAMER family (Hafner
et al., 2020; 2021; 2023) is considered a seminal work, showing strong performance in diverse visual
control environments. This is accomplished by a close cooperation between a world model and an
actor–critic agent. The world model learns to emulate the environment’s forward dynamics and
reward function in a latent state space, and the agent is trained by interacting with this world model
in place of the original environment.

Under this framework, accurate reward prediction is all we should sufficiently require for agent
training. However, learning representations solely from reward signals is known to be challenging
due to their lack of expressiveness and high variance (Hafner et al., 2020; Jaderberg et al., 2017). To
address this, DREAMER employs image reconstruction as an auxiliary task in world model training
to facilitate representation learning. In environments with little distraction, image reconstruction
works effectively by delivering rich feature-learning signals derived from pixels. However, in the
presence of distractions, the image reconstruction task pushes the encoder to retain all image in-
formation, regardless of its task relevance. For instance, moving backgrounds in observations in
Fig. 1 are considered distractions. Including this information in the latent space complicates dynam-
ics modeling and degrades sample efficiency by wasting model capacity and drowning the relevant
signal in noise (Fu et al., 2021).
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Figure 1: Left: Providing mask example(s) and fine-tuning a mask model, or instrumenting a simula-
tor, to obtain masks. Right: An input observation in a distracting Meta-World with three alternative
auxiliary task targets. Moving scenes in the background are considered distractions. (b) Observa-
tions including task-irrelevant information, disturbing world-model training. (c) and (d) Segmenta-
tion of task-relevant components using, respectively, a ground-truth mask and an approximate mask
generated by segmentation models.

Distractions are prevalent in real-world visual control tasks. A robot operating in a cluttered envi-
ronment such as a warehouse may perceive much task-irrelevant information that it needs to ignore.
When training with domain randomization for added policy robustness, task-irrelevant information
is actively added and must be denoised. Prior approaches (Zhang et al., 2021; Nguyen et al., 2021;
Deng et al., 2022; Fu et al., 2021; Bharadhwaj et al., 2022) address the noisy reconstruction prob-
lem by devising reconstruction-free auxiliary tasks, such as contrastive learning (Chen et al., 2020).
However, many of them suffer from sample inefficiency, requiring many trajectories to isolate the
task-relevant information that needs to be encoded. Training with such methods becomes particu-
larly challenging in sparse reward environments, where the signal for task relevance is very weak.
Additionally, working with small objects, which is common in object manipulation tasks, poses
difficulties for these methods because those objects contribute less to loss functions and are easily
overlooked without special attention (Seo et al., 2022).

Inspired by these problems, we address the following question in this paper: How can we help world
models learn task-relevant representations more efficiently? Our proposed solution takes advantage
of the observation that identifying task-relevant components within images is often straightforward
with some domain knowledge. For instance, in a robotic manipulation task, the objects to manip-
ulate and the robot arm are such task-relevant components, as shown in Fig. 1 (Left). Given this
assumption, we introduce a simple yet effective alternative auxiliary task to reconstruct only the
task-related components of image observations. We accomplish this by using segmentation masks
of task-related objects which are easily accessible in simulations. Specifically, we replace Dreamer’s
auxiliary task to reconstruct raw RGB image observations with an alternative task to reconstruct im-
ages with a task-relevance mask applied to them. (Fig. 1c). By doing this, the world model can learn
features from a rich pixel-reconstruction loss signal without being hindered by the noise of visual
distractions.

In contrast to previous work that incorporates segmentation masks in reinforcement learning (RL)
as an input (James et al., 2019; So et al., 2022), we only use masks in an auxiliary task to improve
representation learning. This brings about several advantages. First, we only need segmentation
masks during training. The inputs for our method are still the original (potentially distracting)
images, so masks are not needed at test time, making our method more computationally efficient.
Moreover, the masks we use do not need to be perfect. Since they are used as a target for an auxiliary
task, these masks can contain errors as long as they guide feature learning to be informative for the
downstream task, which leaves room to replace a ground-truth (GT) mask with its approximation.

To this end, we present a way of training with our auxiliary task with segmentation estimates. This
can be useful in many practical cases where no GT mask is available during training. This is made
possible by recent advances in segmentation foundation models (Kirillov et al., 2023; Zhang et al.,
2023; Xie et al., 2021). Specifically, we fine-tune segmentation models with annotated training
data and use them to generate pseudo-labels for the auxiliary task. Fig. 1d shows an example of
an auxiliary target made from segmentation prediction. Although the performance with segmenta-
tion estimates is impressive without further modification, we find that the training can sometimes
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be destabilized by incorrect learning signals induced by segmentation prediction errors. Thus, we
additionally provide a strategy to make training more robust to prediction errors and achieve higher
performance. Specifically, our strategy is to identify pixels where the foundation model mask pre-
diction disagrees with a second mask prediction given by our world model. We ignore the RGB
image reconstruction loss on these pixels to avoid training on potentially incorrect targets.

As previously mentioned, our method assumes that task-relevant parts are easy to identify in im-
age observations with prior knowledge. This is not a strong assumption in many object-centric and
robotic domains, where image observations can often be decomposed into relevant and irrelevant re-
gions. However, there are scenarios beyond our scope, where this assumption may not hold because
prior knowledge is unavailable or difficult to codify, such as Atari (Bellemare et al., 2013).

We evaluate our method on various robotics benchmarks, including DeepMind Control Suite (Tassa
et al., 2018) and Meta-World (Yu et al., 2019), perturbing both with visual distractions. We show
that our method for reconstructing masked RGB targets using the ground-truth masks in the presence
of distractions can reach the same level of performance as training in original environment with no
distractions added. Our method for training with approximate masks also shows impressive perfor-
mance, often matching the performance of the ground-truth mask variant. In both benchmarks, our
approximate-mask method achieves higher sample efficiency and superior test returns compared to
previous approaches. Notably, this is accomplished with very few task-specific mask example data
points (1, 5, or 10 used for fine-tuning), with much of its strength coming from the power of seg-
mentation foundation models. Our method effectively addresses the challenge of training agents in
distracting environments by offloading the identification of task-relevant regions to out-of-the-box
segmentation models, thereby achieving great sample efficiency and generalization ability. Further-
more, our method proves particularly effective in sparse reward environments and those involving
small objects, where prior approaches often struggle.

2 RELATED WORK

Model-Based RL for Distracting Visual Environments. Recent advances in MBRL have facil-
itated the learning of agents from image observations (Finn & Levine, 2017; Ha & Schmidhuber,
2018; Hafner et al., 2019; 2020; 2021; 2023; Schrittwieser et al., 2020; Hansen et al., 2022; 2023).
Nevertheless, learning perceptual representations in the presence of distractions remains challeng-
ing in these models (Zhu et al., 2023). For effective representation learning, some works apply
non-reconstructive representation learning methods (Nguyen et al., 2021; Deng et al., 2022), such as
contrastive learning (Chen et al., 2020) and prototypical representation learning (Caron et al., 2020).
However, features learned with these methods do not necessarily involve task-related content since
they do not explicitly consider task-relevance in feature learning. Some other works design auxil-
iary objectives to explicitly use downstream task information (Zhang et al., 2021; Fu et al., 2021).
For example, DBC (Zhang et al., 2021) uses a bisimulation metric (Ferns et al., 2011) to encourage
two trajectories of similar behaviors to become closer in a latent space. Perhaps most relevant to
our method is TIA (Fu et al., 2021) which explicitly separates task-relevant and irrelevant branches
to distinguish reward-correlated visual features from distractions. Features from each branch are
combined later to reconstruct the original, distracting observation. Recently, a few approaches pro-
posed to leverage inductive biases such as predictability (Zhu et al., 2023) and controllability (Wang
et al., 2022; Bharadhwaj et al., 2022) to learn useful features for visual control tasks. These methods
have shown to be more effective than using the reward signal alone, but many of them suffer from
sample inefficiency, requiring many samples to implicitly identify what is task-relevant from data.
In contrast, our work proposes to leverage domain knowledge in the form of image masks to pro-
vide an explicit signal for identifying task-relevant information. Notably, training in sparse reward
environments with distraction has remained unsolved in the literature. Several methods for robust
representation learning have also been proposed for model-free RL (Laskin et al., 2020; Kostrikov
et al., 2021; Yarats et al., 2021; Hansen et al., 2021; Hansen & Wang, 2021; Nair et al., 2022; Zhang
et al., 2019). However, the results suggest that MBRL is more powerful and sample efficient for
visual control tasks, thus we focus on comparison with methods in the MBRL framework.

Segmentation for RL. Segmentation models (He et al., 2017; Redmon et al., 2016) have been
used in many downstream tasks, including RL, to assist in pre-processing inputs (Kirillov et al.,
2023; Anantharaman et al., 2018; Yuan et al., 2018; James et al., 2019; So et al., 2022). Recently,
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using segmentation masks in new domains has been made easier by the introduction of one/few-
shot masks foundation models (Zhang et al., 2023; Xie et al., 2021) which can quickly adapt to
new use-cases. In the context of RL, the prevalent way to use segmentation models is to turn the
input modality from RGB images to segmentation masks (James et al., 2019; So et al., 2022). By
converting RGB images into semantic masks, agents can effectively handle complicated scenes and
thus also be trained with domain randomization. However, processing the input observation requires
additional computation at execution time, and an agent trained with predicted segmentation masks
can easily break when the segmentation model malfunctions. Our approach, on the other hand,
leverages segmentation masks for an auxiliary task, removing the need for the segmentation model
after deployment while also achieving higher test-time performance. FOCUS (Ferraro et al., 2023) is
another method that uses masked input as an auxiliary target. However, this is primarily devised for
disentangled representation, not for handling distractions. Moreover, it only provides preliminary
results with segmentation models and lacks results and analysis on the effects on downstream tasks.

Prior works (Wang et al., 2023; Zhong et al., 2024) integrate segmentation models with RL by pre-
processing input observations to isolate task-relevant components. While effective, these methods
heavily rely on segmentation model quality at test time, making them vulnerable to failures in un-
familiar scenarios that disrupt agent performance. Also, methods such as Zhong et al. (2024); So
et al. (2022) require extensive fine-tuning on large synthetic datasets, resulting in substantial train-
ing overhead, and introduce high computational costs during inference. By leveraging off-the-shelf
segmentation models with as few as 1 to 10 examples, our approach reduces training requirements
while maintaining robustness and runtime efficiency during deployment.

3 PRELIMINARIES

We consider a partially observable Markov decision process (POMDP) formalized as a tuple
(S,Ω,A, T ,O, p0,R, γ), consisting of states s ∈ S, observations o ∈ Ω, actions a ∈ A, state
transition function T : S × A → ∆(S), observation function O : S → Ω, initial state distribution
p0, reward function R : S × A → R, and discount factor γ. At time t, the agent does not have
access to actual world state st, but to the observation ot = O(st), which in this paper we consider
to be a high-dimensional image. Our objective is to learn a policy π(at|o≤t, a<t) that achieves high
expected discounted cumulative rewards E[

∑
t γ

trt], with rt = R(st, at) and the expectation over
the joint stochastic process induced by the environment and the policy.

DREAMER (Hafner et al., 2020; 2021; 2023) is a broadly applicable MBRL method in which a world
model is learned to represent environment dynamics in a latent state space (h, z) ∈ H×Z , consisting
of deterministic and stochastic components respectively, from which rewards, observations, and
future latent states can be decoded. The components of the world model are:

Sequence model: ht = fϕ(ht−1, zt−1, at−1)

Observation encoder: zt ∼ qϕ(zt|ht, ot)

Dynamics predictor: ẑt ∼ pϕ(ẑt|ht) (1)
Reward predictor: r̂t ∼ pϕ(r̂t|ht, zt)

Continuation predictor: ĉt ∼ pϕ(ĉt|ht, zt)

Observation decoder: ôt ∼ pϕ(ôt|ht, zt),

where the encoder maps observations ot into a latent representation, the dynamics model emulates
the transition distribution in latent state space, the reward and continuation models respectively
predict rewards and episode termination, and the observation decoder reconstructs the input. The
concatenation of ht and zt, i.e. xt = [ht; zt], serves as the model state. Given a starting state, an
actor–critic agent is trained inside the world model by rolling out latent-state trajectories. The world
model itself is trained by optimizing a weighted combination of three losses:

L(ϕ) =̇ Eqϕ

[
T∑

t=1

(βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ))

]
(2)

Lpred(ϕ) =̇ − ln pϕ(ot|zt, ht)− ln pϕ(rt|zt, ht)− ln pϕ(ct|zt, ht) (3)
Ldyn(ϕ) =̇ max(1,KL[[[qϕ(zt|ht, ot)]]∥ pϕ(ẑt|ht))]) (4)
Lrep(ϕ) =̇ max(1,KL[qϕ(zt|ht, ot) ∥ [[pϕ(ẑt|ht)]]]), (5)
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where [[·]] denotes where gradients are stopped from backpropagating to the expression in brackets.

Critically, the first component of Lpred for reconstructing observations from world model states is
leveraged as a powerful heuristic to shape the features in the latent space. Under the assumption that
observations primarily contain task-relevant information, this objective is likely to encourage the
latent state to retain information critical for the RL agent. However, the opposite can also be true. If
observations are dominated by task-irrelevant information, the latent dynamics may become more
complex by incorporating features impertinent to decision-making. This can lead to wasted capacity
in the latent state representation (Lambert et al., 2020), drown the supervision signal in noise, and
reduce the sample efficiency.

Problem Setup. We consider environments where the latter case is true and observations con-
tain a large number of spurious variations (Zhu et al., 2023). Concretely, we consider some fea-
tures of states st ∈ S to be irrelevant for the control task. We assume that states st can be
decomposed into task-relevant components s+t ∈ S+ and task-irrelevant components s−t ∈ S−

such that st = (s+t , s
−
t ) ∈ S = S+ × S−. We follow prior work in visual control under dis-

traction and assume that (1) the reward is a function only of the task-relevant component, i.e.
R : S+ × A → R; and (2) the forward dynamics of the task-relevant part only depends on it-
self, s+t+1 ∼ T (s+t+1|s

+
t , at) (Zhu et al., 2023; Fu et al., 2021; Bharadhwaj et al., 2022). Note that

observations ot are a function of both s+t and s−t , thus we have O : S+ × S− → Ω.

Our goal is to learn effective latent representations [ht; zt] for task control. Ideally, this would mean
that the world model will only encode and simulate task-relevant state components s+t in its latent
space without modeling unnecessary information in s−t . To learn features pertaining to s+t , image
reconstruction can provide a rich and direct learning signal, but only when observation information
about s+t is not drowned out by other information from s−t . To overcome this pitfall, we propose
to apply a heuristic filter to reconstruction targets ot with the criteria that it minimizes irrelevant
information pertaining to s−t while keeping task-relevant information about s+t .

4 METHOD

We build on DREAMER-V3 (Hafner et al., 2023) to explicitly model s+t while attempting to avoid
encoding information about s−t . In Section 4.1, we describe how we accomplish this by using do-
main knowledge to apply a task-relevance mask to observation reconstruction targets. In Section 4.2
we describe how we leverage segmentation mask foundation models to provide approximate masks
over task-relevant observation components. Finally, in Section 4.3, we propose a modified decoder
architecture and objective to mitigate noisy learning signals from incorrect mask predictions.

4.1 USING SEGMENTATION MASKS TO FILTER IMAGE TARGETS

We first introduce our main assumption, that the task-relevant components of image observations are
easily identifiable with domain knowledge. In many real scenarios, it is often straightforward for a
practitioner to know what the task-related parts of an image are, e.g. objects necessary for achieving
a goal in object manipulation tasks. With this assumption, we propose a new reconstruction-based
auxiliary task that leverages domain knowledge of task-relevant regions. Instead of reconstruct-
ing the raw image observations (Fig. 1b) which may contain task-irrelevant distractions, we apply
a heuristic task-relevance segmentation mask over the image observation (Fig. 1c) to exclusively
reconstruct components of the image that are pertinent to control.

Since our new masked reconstruction target should contain only image regions that are relevant for
achieving the downstream task, our world model should learn latent representations where a larger
portion of the features are useful to the RL agent. By explicitly avoiding modeling task-irrelevant
observation components, the latent dynamics should also become simpler and more sample-efficient
to learn than the original (more complex, higher variance) dynamics on unfiltered observations. In
simulations, ground-truth masks of relevant observation components are often easily accessible, for
example, in MuJoCo (Todorov et al., 2012), through added calls to the simulator API. We term the
method trained with our proposed replacement auxiliary task as Segmentation Dreamer (SD) and
call the version trained with ground-truth masks SDGT.
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Figure 2: Filtering L2 loss to avoid training on false negatives in RGB labels. Left: Estimated
pixel locations (f) where the RGB target (c) is likely incorrectly masked out by the segmentation
model (e). Right: A world model equipped with two decoders, one for reconstructing task-relevant
masked RGB images and the other for binary masks, the targets for which are generated by a seg-
mentation model. RGB L2 loss is selectively masked by the set difference between (d) and (e).
Latent representations (xt) in the world model are subjected to the training signal only from the
RGB branch. The binary branch is only utilized for selective L2 loss.

4.2 LEVERAGING APPROXIMATE SEGMENTATION MASKS

A simulator capable of providing ground-truth masks for task-relevant regions is not always avail-
able. For such cases where only RGB images are available from the environment, we propose to
fine-tune a segmentation mask foundation model to our domain and integrate its predictions into the
SD training pipeline. Below, we describe our method for training with approximate task-relevance
masks, termed SDapprox..

As an offline process before training the world model, we fine-tune a segmentation model with
a small number of example RGB images and their segmentation masks annotations that indicate
task-relevant image regions. Thanks to recent advances in segmentation foundation models, we can
obtain a new domain-specific mask model with a very small amount of training examples. For our
experiments, we use the Personalized SAM (PerSAM) (Zhang et al., 2023) using one-shot adapta-
tion and SegFormer (Xie et al., 2021) fine-tuned with 5 and 10 examples. For the sake of controlled
and reproducible evaluation, we extract these RGB and mask training pairs from simulators, how-
ever, this number of required samples is small enough that it can be collected with expert human
annotation as well. Also, although we use these specific foundation models, our method should
also be compatible with any semantic masking method. Further details such as how we obtain the
fine-tuning data can be found in Appendix K. Once fine-tuning is complete, we incorporate the
segmentation model into the SD pipeline to create pseudo-labels for our proposed auxiliary task.

4.3 LEARNING IN THE PRESENCE OF MASKING ERRORS

Although foundation segmentation models generalize well to new scenarios (e.g., different poses,
occlusions), prediction errors are inevitable (Fig. 1d). Since each frame is processed independently,
segmentation predictions can flicker along trajectories. False negatives in task relevance are particu-
larly detrimental when using naive L2 loss on image reconstruction. Missing relevant scene elements
in reconstruction targets can lead the encoder to learn incomplete representations, dropping essen-
tial task-related information. This variability disrupts the learning of accurate representations and
dynamics in the world model.

Despite noisy targets, neural networks can self-correct if most labels are accurate (Han et al., 2018).
Additionally, DREAMER’s use of GRUs (Cho et al., 2014) provides temporal consistency even with
flickering targets. However, as illustrated in Fig. 2 (b)&(c), it’s undesirable to propagate gradients
from regions where the original image has been incorrectly masked out. Allowing gradients from
these regions provides misleading signals. If we could identify the incorrect regions in the recon-
struction target, we could nullify the decoder’s L2 loss there—a technique we call selective L2 loss.

Since we cannot directly identify regions where the RGB target is incorrectly masked due to false
negatives, we estimate them. Preliminary experiments show that a binary mask decoder from world
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model states (as an added auxiliary task) can be less prone to transient false negatives, unlike RGB
prediction, which tends to memorize noisy labels. Therefore, we propose training a world model
with two reconstruction tasks (Fig. 2, right): one decoding masked RGB images and the other
predicting task-relevance binary masks. Both use the foundation model’s binary mask, maskFM, to
construct targets. The RGB branch decodes masked RGB images, while the binary branch predicts
maskFM. We denote the binary masks produced by the world model as maskSD, where pixels labeled
true indicate task relevance.

To avoid training on incorrectly masked-out regions, we estimate where maskFM may be falsely
negative by finding disagreements with maskSD. Specifically, we selectively nullify RGB decoder
L2 loss for regions marked false in maskFM but predicted true in maskSD. This prevents training on
potentially falsely masked-out pixels still considered task-relevant by a second predictor. Formally,
the mask for selective L2 loss is the set difference between true pixel locations in maskSD and
maskFM:

pixelMaskOut = pixelSD \ pixelFM (6)

where pixelMaskOut indicates pixels to nullify loss at, and pixelSD and pixelFM are pixels marked
true in maskSD and maskFM, respectively.

Fig. 2 (d–f) shows examples of maskSD, maskFM, and pixelMaskOut. See Appendix L for details
on obtaining maskSD. Our experiments indicate that selective L2 loss effectively overcomes noisy
segmentation labels and improves downstream agent performance.

Lastly, we observe better performance when we prevent gradients from the binary mask decoding
objective from propagating into the world model, so we apply a stop gradient to the inputs of the
mask decoder head (see Appendix G for ablations).

5 EXPERIMENTS

We evaluate our method on a variety of visual robotic control tasks from the DeepMind Control Suite
(DMC) (Tassa et al., 2018) and Meta-World (Yu et al., 2019). Since the standard environments in
these benchmarks have simple backgrounds with minimal distractions, we introduce visual distrac-
tions by replacing the backgrounds with random videos from the ‘driving car’ class in the Kinetics
400 dataset (Kay et al., 2017), following prior work (Zhang et al., 2021; Nguyen et al., 2021; Deng
et al., 2022). Details about the environment setup and task visualizations are provided in Appen-
dices H and B. In evaluation, we roll out policies over 10 episodes and compute the average episode
return. Unless otherwise specified, we report the mean and standard error of the mean (SEM) of
four independent runs with different random seeds. We use default DREAMER-V3 hyperparameters
in all experiments.

5.1 DMC EXPERIMENTS

We evaluate SD on six tasks from DMC featuring different forms of contact dynamics, degrees
of freedom, and reward sparsities. For each task, models are trained for 1M environment steps
generated by 500K policy decision steps with an action repeat of 2.

5.1.1 COMPARISON WITH DREAMER

We compare our methods, SDGT and SDapprox., to the base DREAMER (Hafner et al., 2023) method.
Here, SDapprox. is denoted as SDFM

N , specifying the segmentation model used (FM) and the number
of fine-tuning examples (N ). All methods are trained in distracting environments, except for the
DREAMER* baseline, which is trained in the original environment without visual distractions. In
most cases, we consider DREAMER* as an upper bound for methods trained with distractions. Sim-
ilarly, SDGT serves as an upper bound for SDapprox., with the performance gap expected to decrease
in the future as segmentation quality improves.

As shown in Fig. 3a, DREAMER fails across all tasks due to task-irrelevant information in RGB
reconstruction targets, which wastes latent capacity and complicates dynamics learning. In contrast,
SDGT achieves test returns comparable to DREAMER* by focusing on reconstructing essential fea-
tures and ignoring irrelevant components. Interestingly, SDGT outperforms DREAMER* in Cartpole
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(a) Environment Steps vs. Expected Test Return (b) IoU during Training vs. Expected Test Return

Figure 3: (a) Learning curves on six visual control tasks from DMC. Every method but
DREAMER* is trained on distracting environments. All curves show the mean over 4 seeds with
the standard error of the mean (SEM) shaded. (b) Segmentation quality during training vs. down-
stream task performance. Best viewed in color.

Swingup, possibly because the original environment still contains small distractions (e.g., moving
dots) that DREAMER* has to model.

A limitation of SD is its reliance on acccurate and correct prior knowledge to select task-relevant
components. In Cheetah Run, SDGT underperforms compared to DREAMER*, likely because we
only include the cheetah’s body in the mask, excluding the ground plate, which may be important
for contact dynamics. Visual examples and further experiments are in Appendices B and C.

For SDapprox., we test with two foundation models: PerSAM adapted with one RGB example and
its GT mask, and SegFormer adapted with five such examples. Despite slower convergence due to
noisier targets, both SDPerSAM

1 and SDSegFormer
5 achieve similar final performance to SDGT in most

tasks. A failure case for SDPerSAM
1 is Reacher Easy, where a single data point is insufficient to obtain

a quality segmentation for the small task-relevant objects.

5.1.2 COMPARISON WITH BASELINES

We compare SDapprox. with state-of-the-art methods, including DreamerPro (Deng et al., 2022),
RePo (Zhu et al., 2023), TIA (Fu et al., 2021), and TD-MPC2 (Hansen et al., 2023). DreamerPro
incorporates prototypical representation learning in the DREAMER framework; RePo minimizes
mutual information between observations and latent states while maximizing it between states and
future rewards; TIA learns separate task-relevant and task-irrelevant representations which can be
combined to decode observations; and TD-MPC2 decodes a terminal value function. Among these
baselines, only TIA relies on observation reconstruction. Further details are in Appendix M.

Our results in Fig. 3a show that our method consistently outperforms the baselines in performance
and sample efficiency. TIA underperforms in many tasks, requiring many samples to infer task-
relevant observations from rewards and needing exhaustive hyperparameter tuning. Even with opti-
mal settings, it may lead to degenerate solutions where a single branch captures all information. In
contrast, our method focuses on task-relevant parts without additional tuning by effectively inject-
ing prior knowledge. RePo performs comparably to ours in Cartpole Swingup but underperforms in
other tasks and converges more slowly.

TD-MPC2 struggles significantly in distracting environments. We speculate that spurious corre-
lations from distractions introduce noise to value-function credit assignment that hinders repre-
sentation learning. Our method mitigates this by directly supervising task-relevant features using
segmentation models, leading to more consistent and lower-variance targets.

Among these methods, DreamerPro is the most competitive, demonstrating the effectiveness of
prototypical representation learning for control. However, it often requires more environment inter-
actions and converges to lower performance.

In the Cartpole Swingup with sparse rewards, none of the prior works successfully solved the task,
highlighting the challenge of inferring task relevance from weak signals. Our method achieves near-
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Figure 4: (a)+(b) Qualitative comparison of SD trained with naive and selective L2 loss. Trajec-
tories are taken from each method’s train-time replay buffer, selected to have the same background.
Frames with PerSAM error are highlighted. The model trained with the selective L2 loss overcomes
errors in the target, whereas the one trained with the naive L2 loss memorizes target errors. (c)+(d)
shows the precision and recall of PerSAM and the SD RGB decoder prediction. SD RGB predic-
tions are binarized using a threshold to compute recall and precision w.r.t. the ground-truth mask.
The data points used for plotting are from the same Cheetah Run training experiment as in (a)+(b).
The selective L2 loss significantly improves the recall with only a moderate impact on precision.

oracle performance, being the only one to train an agent with sparse rewards amidst distractions.
This suggests the potential to train agents in real-world, distraction-rich environments without ex-
tensive reward engineering.

5.1.3 ABLATION STUDY

We investigate the effects of the components in SDapprox. by addressing: (1) the benefits of using
segmentation models for targets vs. input preprocessing; (2) the effectiveness of the selective L2 loss
compared to the naive L2 loss; and (3) the impact of the segmentation quality on RL performance. In
these experiments, we fine-tune PerSAM with a single data point for segmentation mask prediction.

Table 1: Final performance of SD variants. Mean
over 4 runs with the standard error of the mean is
reported. The highest means are highlighted.

Task SDPerSAM
1 As Input Naive L2

Cartpole Swingup 730 ± 75 565 ± 108 719 ± 62
Cartpole Swingup Sparse 521 ± 92 457 ± 151 408 ± 114
Cheetah Run 619 ± 35 524 ± 37 486 ± 58
Hopper Stand 846 ± 27 689 ± 39 790 ± 51
Reacher Easy 597 ± 97 642 ± 116 415 ± 50
Walker Run 730 ± 13 589 ± 28 557 ± 51

Using segmentation masks for an auxiliary
task vs. input preprocessing. We create a
variant of SDPerSAM

1 that uses masked obser-
vations for both inputs and targets, denoted in
Tab. 1 by As Input. These results suggest that
SDPerSAM

1 , in addition to not requiring mask
prediction at test-time, also achieves better test
performance and lower variance. Using pre-
dicted masks as input is more prone to segmen-
tation errors, restricting the agent’s perception
when masks are incorrect and making training
more challenging. In contrast, SDapprox. receives intact observations, with task-relevant filtering at
the encoder level, leading to better state abstraction. Further analysis on test-time segmentation
quality’s impact is in Appendix D.

Selective L2 loss vs. naive L2 loss. As shown in Tab. 1, SDPerSAM
1 consistently outperforms the

Naive L2 variant, especially in complex tasks like Cheetah Run and Walker Run. Segmentation
models often miss embodiment components (Fig. 4, third row). With the naive L2 loss, the model
replicates these errors, leading to incomplete latent representations and harming dynamics learn-
ing (Fig. 4a, fourth row). In contrast, SDapprox. self-corrects by skipping the L2 computation where
PerSAM targets are likely wrong (Fig. 4b, fourth row). Fig. 4(c)&(d) show that the naive L2 loss
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follows PerSAM’s trends, while the selective L2 loss recovers from poor recall with only a moderate
precision decrease.

Impact of segmentation quality on RL performance. Fig. 3b plots the training-time segmenta-
tion quality against the RL agent’s test-time performance. Comparing three SD variants with differ-
ent mask qualities (two estimated, one ground truth), we observe that better segmentation tends to
lead to higher RL performance, as accurate targets better highlight task-relevant components. This
suggests that improved segmentation models can enhance agent performance without ground-truth
masks. In Cartpole Swingup, one of two exceptions, the IoU difference between SDPerSAM

1 and
SDSegFormer

5 is small, and the test returns may fall within the margin of error. In Walker Run, the
other exception, all variants show high segmentation quality and reach near-optimal performance.
Here, we hypothesis that a small amount of noise in the target may act as a regularizer, contributing
to marginally better downstream performance.

5.2 META-WORLD EXPERIMENTS

Figure 5: Learning curves on six visual robotic
manipulation tasks from Meta-World. All
curves show the mean over 4 seeds with the stan-
dard error of the mean shaded.

Object manipulation is a natural application
for our method where prior knowledge can be
applied straightforwardly by identifying and
masking task-relevant objects and robot em-
bodiments. We evaluate SD on six tasks from
Meta-World (Yu et al., 2019), a popular bench-
mark for robotic manipulation. Depending on
the difficulty of each task, we conduct exper-
iments for 30K, 100K, and 1M environment
steps, with an action repeat of 2 (details in Ap-
pendix I). Preliminary tests showed that Seg-
Former performs well with few-shot learning
on small objects. We fine-tune SegFormer with
10 data points to estimate masks in these exper-
iments.

Fig. 5 suggests that our approach outperforms the baselines overall, with a more pronounced advan-
tage in tasks involving small objects like Coffee-Button. Our method excels because it focuses on
small, task-relevant objects, avoiding the reconstruction of unnecessary regions that occupy much
of the input. In contrast, the baselines struggle as they often underestimate the significance of these
small yet highly task-relevant objects. Among the baselines, RePo (Zhu et al., 2023) is the most
competitive. However, RePo performs poorly in a sparse reward setup (see Appendix J).

6 CONCLUSION

In this paper, we propose SD, a simple yet effective method for learning task-relevant features in
MBRL frameworks like DREAMER by using segmentation masks informed by domain knowledge.
Using ground-truth masks, SDGT achieves performance comparable with undistracted DREAMER
with high sample efficiency in distracting environments when provided with accurate prior knowl-
edge. Our main method, SDapprox., uses mask estimates from off-the-shelf one-shot or few-shot
segmentation models and employs a selective L2 loss. It learns effective world models that produce
strong agents outperforming baselines.

To the best of our knowledge, our approach appears to be the first model-based approach to success-
fully train an agent in a sparse reward environment under visual distractions, enabling robust agent
training without extensive reward engineering. This work also advances the integration of computer
vision and RL by presenting a novel way to leverage recent advances in segmentation to address
challenges in visual control tasks. The proposed method achieves strong performance on diverse
tasks with distractions and effectively incorporates human input to indicate task relevance. This
enables practitioners to readily train an agent for their own purposes without extensive reward engi-
neering. However, SD has some limitations to consider in future work, which we further explore in
Appendix O.
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A CODE RELEASE

We plan to make the code for Segmentation Dreamer publicly available upon acceptance.

B VISUALIZATION OF TASKS

B.1 DEEPMIND CONTROL SUITE (DMC)

Fig. 6 visualizes the six tasks in DMC (Tassa et al., 2018) used in our experiments. Each row
presents the observation from the standard environment, the corresponding observation with added
distractions, the ground-truth segmentation mask, and the RGB target with the ground-truth mask
applied. Cartpole Swingup Sparse and Cartpole Swingup share the same embodiment and dynam-
ics. Cartpole Swingup Sparse only provides a reward when the pole is upright, whereas Cartpole
Swingup continuously provides dense rewards weighted by the proximity of the pole to the upright
position. Reacher Easy entails two objects marked with different colors in the segmentation mask,
as shown in Fig. 6e 3rd column. Before passing the mask to SD, the mask is converted to a binary
format where both objects are marked as true as task-relevant.

( a)  Car t pol e Swi ngup

( b)  Car t pol e Swi ngup Spar se

( c)  Cheet ah Run

( d)  Hopper  St and

( e)  Reacher  Easy

( f )  Wal ker  Run

Figure 6: DMC tasks. Left to right: (1) standard environment observations, (2) distracting environ-
ment observations, (3) ground-truth segmentation masks, and (4) RGB observations with ground-
truth masks applied. We use (4) as auxiliary reconstruction targets in SDGT.
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B.2 META-WORLD

Fig. 7 shows the six tasks from Meta-World-V2 used in our experiments. Meta-World is a realistic
robotic manipulation benchmark with challenges such as multi-object interactions, small objects,
and occlusions.

( a)  Cof f ee- But t on- V2

( b)  Dr awer - Cl ose- V2

( c)  Handl e- Pr ess- V2

( d)  But t on- Pr ess- Topdown- V2

( e)  Door - Open- V2

( f )  Dr awer - Open- V2

Figure 7: Meta-World tasks. Left to right: (1) standard environment observations, (2) distracting
environment observations, (3) ground-truth segmentation masks, and (4) RGB observations with
ground-truth masks applied. We use (4) as auxiliary reconstruction targets in SDGT. Masks with
multiple classes for different objects are converted to binary masks (all non-background regions are
true and task-relevant) before use with SD.
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C THE IMPACT OF PRIOR KNOWLEDGE

We investigate the impact of accurate prior knowledge of task-relevant objects. Specifically, we
conduct additional experiments on Cheetah Run—the task showing the largest disparity between
DREAMER* and SDGT in Fig. 3a. In our primary experiment, we designated only the cheetah’s
body as the task-relevant object. However, since the cheetah’s dynamics are influenced by ground
contact, the ground plate should have also been considered task-relevant.

Fig. 8 (a–c) illustrates the observation with distractions, the auxiliary target without the ground plate,
and with the ground plate included, respectively. Fig. 8d compares SDGT trained with different
selections of task-relevant objects included in the masked RGB reconstruction targets. We show
that including the ground plate leads to faster learning and performance closer to that of the oracle.
This highlights the significant influence of prior knowledge on downstream tasks, suggesting that
comprehensively including task-relevant objects yields greater benefits.

( b)  Tar get  w/  
Gr ound- Tr ut h w/ o 

Gr ound Pl at e Appl i ed

( a)  Obser vat i on 
I nput

( c)  Tar get  w/  
Gr ound- Tr ut h w/

 Gr ound Pl at e Appl i ed

( d)  Eval uat i on Ret ur n of  SDGT wi t h 
Di f f er ent  Pr i or  Knowl edge 

Figure 8: The impact of prior knowledge on Cheetah Run. (d) The mean over 4 seeds with the
standard error of the mean (SEM) is shaded.
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D THE IMPACT OF TEST-TIME SEGMENTATION QUALITY ON PERFORMANCE

We investigate how test-time segmentation quality affects SDapprox. as well as the As Input variation
that applies mask predictions to RGB inputs in addition to reconstruction targets. For this analysis,
we use PerSAM fine-tuned with a single data point for segmentation prediction. To measure seg-
mentation quality, we compute episodic segmentation quality by averaging over frame-level IoU.
In Fig. 9 we plot episode segmentation quality versus test-time reward on the evaluation episodes
during the last 10% of training time.

Fig. 9 illustrates that SDapprox. exhibits greater robustness to test-time segmentation quality com-
pared to the As Input variation, with the discrepancy increasing as the IoU decreases. This dispar-
ity primarily arises because As Input relies on observations restricted by segmentation predictions,
and thus its performance deteriorates quickly as the segmentation quality decreases. In contrast,
SDapprox. takes the original observation as input and all feature extraction is handled by the obser-
vation encoder, informed by our masked RGB reconstruction objective. Consequently, SDapprox.

maintains resilience to test-time segmentation quality.

An intriguing observation is that a poorly trained agent can lead to poor test-time segmentation
quality. For instance, Cartpole Swingup (Sparse) exhibits different segmentation quality distribu-
tions between SDapprox. and As Input. This discrepancy occurs because the sub-optimal agent often
positions the pole at the cart track edge, causing occlusion and hindering accurate segmentation
prediction by PerSAM.

Figure 9: Test-time episodic reward vs PerSAM episodic IoU for SDPerSAM
1 and As Input (SDPerSAM

1
with masked RGB observations as input). SDPerSAM

1 is more robust to test-time segmentation pre-
diction errors.
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Figure 10: Test-time episodic reward plotted against IoU, precision, recall, IoU variance, and IoU
gradient, respectively.
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E EXPERIMENTS WITH DIFFERENT TYPES OF DISTRACTIONS

In this section, we investigate how our method performs when faced with types of distractions be-
yond background distractions. Specifically, we consider three additional types of distractions: fore-
ground distractions, color changes in foreground objects, and camera angle perturbations. These
experiments are conducted on the DeepMind Control Suite.

E.1 EXPERIMENT SETUP

To ensure robustness against distractions during testing, we introduce domain randomizations during
training. Specifically, both the segmentation models and SD are trained under domain-randomized
environments. And, we evaluate our method on a distribution of perturbations that matches the
variability introduced at training time.

Foreground Distractions. To simulate distractions that occlude or block task-relevant parts of the
scene, we introduce a moving foreground distractor. This is implemented as a blue rectangle ren-
dered near the center of the scene for 4–6 frames every 18–22 frames. These intervals are uniformly
sampled each time the distractor appears, meaning approximately 25% of the frames in an episode
include the distractor. The distractor moves along pixel-space trajectories defined by randomized
∆x and ∆y values within the range of (-3,3), which are sampled each time the distractor appears.
The goal of introducing this type of distractor is to assess whether our method remains robust in the
presence of occlusions that can interfere with task-relevant visual information.

Although this preliminary setup simplifies the distractor’s appearance and trajectory, it can easily
be extended to incorporate more complex objects or movement patterns. Given the capabilities of
visual foundation models (VFMs), we hypothesize that our method will generalize well to a variety
of foreground distractors with different properties.

Figure 11: Examples of foreground distractors in the environment and corresponding predictions
from the segmentation model that remains robust to occlusions in the test set.

Color Changes in Foreground Objects. For color perturbations, we simulate changes in the ap-
pearance of the agent or task-relevant objects. Following the approach of Stone et al. (2021), we
apply a max delta of 0.1 and set step std to 0.0, resulting in a static color throughout the episode.
These changes simulate environmental factors such as lighting variations that may occur during
deployment. This experiment evaluates the ability of the model to adapt to changes in the visual
characteristics of task-critical elements.

Camera Angle Perturbations. To introduce changes in camera perspective, we follow the imple-
mentation of Stone et al. (2021) and apply a scaling factor of 0.1. This results in shifts in the camera
view, which simulate real-world deployment scenarios where the agent’s viewpoint may vary due to
physical movement or environmental adjustments. These perturbations test the model’s capacity to
maintain performance under altered visual perspectives, as illustrated in Fig. 13.
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Figure 12: Examples of color perturbations applied to the agent and corresponding predictions from
the segmentation model that remains robust to color changes in the test set.

Figure 13: Examples of camera view perturbations and corresponding predictions from the seg-
mentation model that remains robust to camera view variations in the test set.

Background Distractions. See Fig. 14 for examples of background perturbations.

Figure 14: Examples of background distractions and predictions from the segmentation model in
the test set.
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Background and Color Perturbation. See Fig. 15 for examples of background and color pertur-
bations.

Figure 15: Examples of background distractions and color perturbations and predictions from the
segmentation model in the test set.
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F SEGMENTATION QUALITY IN META-WORLD

Figure 16: Examples of background perturbations and corresponding predictions from the segmen-
tation model on Drawer-Open-V2 in the test set.

Figure 17: Examples of background perturbations and corresponding predictions from the segmen-
tation model on Coffee-Button-V2 in the test set.
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Figure 18: Examples of background perturbations and corresponding predictions from the segmen-
tation model on Button-Press-Topdown-V2 in the test set.
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G ABLATION WITHOUT STOP GRADIENT

Should the SDapprox. world model be shielded from gradients of the binary mask decoder head?

To estimate potential regions on RGB targets where task-relevant regions are incorrectly masked
out, we train a binary mask prediction head on the world model to help detect false negatives in
masks provided by the foundation model. We see better performance when gradients from this bi-
nary mask decoder objective are not propagated to the rest of the world model. Thus, the default
SDapprox. architecture is trained with the gradients of the binary mask branch stopped at its [ht; zt]
inputs, and the latent representations in the world model are trained only by the task-relevant RGB
branch in addition to the standard DREAMER reward/continue prediction and KL-divergence be-
tween the dynamics prior and observation encoder posterior. Tab. 2 shows that the performance
drops significantly when training without stopping these gradients.

We also examine masks predicted by the binary mask decoder head in Fig. 19. Predictions are
coarser grained than their RGB counterparts, lacking details important for predicting intricate
forward dynamics. Overall, reconstructing RGB observations with task-relevance masks applied
demonstrates itself as a superior inductive bias to learn useful features for downstream tasks com-
pared to binary masks or raw unfiltered RGB observations.

Table 2: Final performance of SD and SD without stop gradient.

Task SDPerSAM
1 No SG

Cartpole Swingup 730 ± 75 439 ± 81
Cartpole Swingup Sparse 521 ± 92 112 ± 40
Cheetah Run 619 ± 35 376 ± 50
Hopper Stand 846 ± 27 587 ± 127
Reacher Easy 597 ± 97 273 ± 74
Walker Run 730 ± 13 407 ± 62

( a)  Car t pol e Swi ngup ( b)  Car t pol e Swi ngup Spar se

( c)  Cheet ah Run ( d)  Hopper  St and

( e)  Reacher  Easy ( f )  Wal ker  Run

Figure 19: From the top row to the bottom row: (1) ground-truth segmentation masks, (2) SDapprox.

binary mask predictions, and (3) SDapprox. RGB predictions.
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H DISTRACTING DMC SETUP

We follow the DBC (Zhang et al., 2021) implementation to replace the background with color
videos. The ground plate is also presented in the distracting environment. We used hold-out videos
as background for testing. We sampled 100 videos for training from the Kinetics 400 training set of
the ’driving car’ class, and test-time videos were sampled from the validation set of the same class.

I DISTRACTING META-WORLD SETUP

We test on six tasks from Meta-World-V2. For all tasks, we use the corner3 camera viewpoint.
The maximum episode length for Meta-World tasks is 500 environment steps, with the action re-
peat of 2 (making 250 policy decision steps). We classify these tasks into easy, medium, and
difficult categories based on the training curve of DREAMER* (DREAMER trained in the stan-
dard environments). Coffee Button, Drawer Close, and Handle Press are classified as easy, and we
train baselines on these for 30K environment steps. Button Press Topdown (medium) is trained for
100K steps, and Door Open and Drawer Open (difficult) are trained for 1M environment steps.

J RESULTS ON META-WORLD WITH SPARSE REWARDS

We also evaluate on sparse reward variations of the distracting Meta-World environments where
a reward of 1 is only provided on timesteps when a success signal is given by the environment
(e.g. objects are at their goal configuration). Rewards are 0 in all other timesteps. The maximum
attainable episode reward is 250.

The sparse reward setting is more challenging because the less informative reward signal makes
credit assignment more difficult for the RL agent. Fig. 20 shows that our method consistently
achieves higher sample efficiency and better performance, showing promise for training agents
robust to visual distractions without extensive reward engineering. In Meta-World experiments,
TIA (Fu et al., 2021) is not included as it requires exhaustive hyperparameter tuning for new do-
mains and is the lowest-performing method in DMC in general.

Figure 20: Learning curves on six visual robotic manipulation tasks from Meta-World with sparse
rewards.
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K FINE-TUNING PERSAM AND SEGFORMER

In this section, we describe how we fine-tune segmentation models and collect RGB and segmenta-
tion mask examples to adapt them.

PerSAM. Personalized SAM (PerSAM) (Zhang et al., 2023) is a segmentation model designed
for personalized object segmentation building upon the Segment Anything Model (SAM) (Kirillov
et al., 2023). This model is particularly a good fit for our SD use case since it can obtain a person-
alized segmentation model without additional training by one-shot adapting to a single in-domain
image. In our experiments, we use the model with ViT-T as a backbone.

SegFormer. We use 5 or 10 pairs of examples to fine-tune SegFormer (Xie et al., 2021) MiT-b0.

To collect a one-shot in-domain RGB image and mask example for DMC and MetaWorld exper-
iments, we sample a state from the initial distribution p0 and render the RGB observation. In a
few-shot scenario, we deploy a random agent in to collect more diverse observations from more
diverse states.

To generate the associated masks for these states, we make additional queries to the simulation
rendering API. We represent the pixel values for background and irrelevant objects as false and
task-relevant objects as true. In multi-object cases, we may perform a separate adaptation operation
for each task-relevant object, resulting in more than 2 mask classes. In such cases, before integrating
masks with SDapprox., we will combine the union of the mask classes for all pertinent objects as a
single true task-relevant class, creating a binary segmentation mask compatible with our method.

In cases where example masks cannot be programmatically extracted, because such a small number
of examples are required (1-10), it should also be very feasible for a human to use software to
manually annotate the needed mask examples from collected RGB images.

L DETAILS ON SELECTIVE L2 LOSS

The binary mask prediction branch in SDapprox. is equipped with the sigmoid layer at its output. In
order to obtain binary maskSD, we binarize the SD binary mask prediction with a threshold of 0.9.

M DETAILS ON BASELINES

It is known that RePo (Zhu et al., 2023) outperforms many earlier works (Fu et al., 2021; Hansen
et al., 2022; Zhang et al., 2021; Wang et al., 2022; Gelada et al., 2019) and that DreamerPro (Deng
et al., 2022) surpasses TPC (Nguyen et al., 2021). However, theses two groups of works have been
using slightly different environment setups and have not been compared with each other despite
addressing the same high-level problem on the same DMC environments. In our experiments, we
evaluate the representatives in each cluster on a common ground (See Appendix H) and compare
them with our method.

In our experiments, we use hyperparameters used in the original papers for all the baselines, ex-
cept RePo (Zhu et al., 2023) in Meta-World. RePo does not have experiments on Meta-World in
which case we use hyperparameters used for Maniskill2 (Gu et al., 2023) which is another robot
manipulation benchmark.

N EXTENDED RELATED WORK

There are several model-based RL approaches which introduce new auxiliary tasks. Dynalang (Lin
et al., 2024) integrates language modeling as a self-supervised learning objective in world-model
training. It shows impressive performance on benchmarks where the dynamics can be effectively
described in natural language. However, it is not trivial to apply this method in low-level control sce-
narios such as locomotion control in DMC. Informed POMDP (Lambrechts et al., 2024) introduces
an information decoder which uses priviledged simulator information to decode a sufficient statistic
for optimal control. This shares an idea of using additional information available at training time
with our method SDGT. Although this can be effective on training in simulation where well-shaped
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proprioceptive states exist, it cannot be applied to cases where such information is hard to obtain. In
goal-conditioned RL, GAP (Nair et al., 2020) proposed to decode the difference between the future
state and the goal state to help learn goal-relevant features in the state space.

O LIMITATIONS

Segmentation Dreamer achieves excellent performance across diverse tasks in the presence of dis-
tractions and provides a human interface to indicate task relevance. This capability enables prac-
titioners to readily train an agent for their specific purposes without suffering from poor learning
performance due to visual distractions. However, there are several limitations to consider.

First, since SDapprox. harnesses a segmentation model, it can become confused when a scene contains
distractor objects that resemble task-relevant objects. This challenge can be mitigated by combining
our method with approaches such as InfoPower (Bharadhwaj et al., 2022), which learns control-
lable representations through empowerment (Mohamed & Jimenez Rezende, 2015). This integra-
tion would help distinguish controllable task-relevant objects from those with similar appearances
but move without agent interaction.

Second, our method does not explicitly address randomization in the visual appearance of task-
relevant objects, such as variations in brightness, illumination, or color. Two observations of the
same internal state but with differently colored task-relevant objects may be guided toward differ-
ent latent representations because our task-relevant ”pixel-value” reconstruction loss forces them to
be differentiated. Ideally, these observations should map to the same state abstraction since they
exhibit similar behaviors in terms of the downstream task. Given that training with pixel-value
perturbations on task-relevant objects is easier compared to dealing with dominating background
distractors (Stone et al., 2021), our method is expected to manage such perturbations effectively
without modifications. However, augmenting our approach with additional auxiliary tasks based on
behavior similarity (Zhang et al., 2021) would further enhance representation learning and directly
address this issue.

Finally, our approximation model faces scalability challenges when task-relevant objects constitute
an open set. For instance, in autonomous driving scenarios, obstacles are task-relevant but cannot
be explicitly specified. While our method serves as an effective solution when task-relevant objects
are easily identifiable, complementary approaches should be considered when this assumption does
not hold true.
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