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Abstract
Policy optimization from batch data, i.e., of-
fline reinforcement learning (RL) is important
when collecting data from a current policy is not
possible. This setting incurs distribution mis-
match between batch training data and trajecto-
ries from the current policy. Pessimistic offsets
estimate mismatch using concentration bounds,
which possess strong theoretical guarantees and
simplicity of implementation. Mismatch may be
conservative in sparse data regions and less so
otherwise, which can result in under-performing
their no-penalty variants in practice. We derive
a new pessimistic penalty as the distance be-
tween the data and the true distribution using an
evaluable one-sample test known as Stein Dis-
crepancy that requires minimal smoothness con-
ditions, and noticeably, allows a mixture fam-
ily representation of distribution over next states.
This entity forms a quantifier of information in
offline data, which justifies calling this approach
information-directed pessimism (IDP) for offline
RL. We further establish that this new penalty
based on discrete Stein discrepancy yields prac-
tical gains in performance while generalizing the
regret of prior art to multimodal distributions.

1. Introduction
Reinforcement learning (RL), mathematically encapsu-
lated by a Markov Decision Process (MDP) (Puterman,
2014), is a framework in which an autonomous agent
moves through a state space, selects actions according to
a policy, and incrementally receives rewards from the envi-
ronment. Solution techniques for different challenges RL
broadly consist of those in the ‘policy’ space and those in
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Figure 1: Visualization of distribution mismatch. Concen-
tration bounds (Azuma-Hoeffding) implicitly require uni-
modality to be valid forms of pessimism. Notions intro-
duced here enable offline RL algorithms to achieve sublin-
ear regret when transition belongs to a mixture family.

the ‘value’ space (Sutton et al., 2017; Bhatt et al., 2021;
2022). Sampling trajectories from the model conditioned
on current policy may not always be possible, as in fi-
nance (Tamar et al., 2014), field robotics (Gregory et al.,
2016) or games (Bhatt & Başar, 2020), which gives rise
to the requirement of building a simulator (Todorov et al.,
2012; Ardon et al., 2023) or using historical data to eval-
uate policies. In offline RL, data is collected by a behav-
ioral policy distinct from the one whose parameters are be-
ing trained, which results in distribution mismatch. Efforts
to correct this mismatch include importance weighting and
pessimistic regularization. The former, which re-weights
updates based on an estimate of the behavioral policy’s in-
duced occupancy measure, exhibits exponential variance
dependence on the horizon (Gelada & Bellemare, 2019;
Nachum et al., 2019; Rashidinejad et al., 2022). This is-
sue can be stabilized through control variates (Jiang & Li,
2016; Dong et al., 2023) which can be difficult to tune in
practice. Whether importance weighting achieves optimal
sample complexity remains unknown. Alternatively, pes-
simistic penalization of model-free RL methods have been
vetted experimentally (Kumar et al., 2020) in continuous
domains, and can achieve near-optimal sample complex-
ity in theory for value iteration (Rashidinejad et al., 2021)
and Q learning (Shi et al., 2022) when combined with co-
variance information (Li et al., 2022; Yan et al., 2023) in
discrete domains.
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The aforementioned analyses all identify that the mismatch
is bottlenecked by the difference in the value function of
the current policy as compared to the optimal policy (Jin
et al., 2021) that depends on the distributional distance be-
tween the transition model conditioned on the current pol-
icy and the optimal policy. This quantity is not computable
in practice, which makes theory based upon it disconnected
from algorithm implementation. Efforts to reduce it to
tractable statistics, especially an absolute upper-bound on
the likelihood ratio in the induced occupancy measures as-
sociated with the behavioral policy and the optimal pol-
icy called the concentrability coefficient (CC) (Xie et al.,
2022), undergird the understanding of the sample complex-
ity of offline RL. More specifically, probabilistic approxi-
mations (Shi et al., 2022; Uehara et al., 2023) to the CC,
bootstraps (Nguyen-Tang & Arora, 2023; Sun et al., 2023),
and model-based regularizers (Levine et al., 2020; Yu et al.,
2020; Kidambi et al., 2020; Rigter et al., 2022; Karabag &
Topcu, 2023) have been proposed to address mismatch, but
their rates depend on information-theoretic constants that
are not tractable in practice, and implicitly require empiri-
cal transition matrix to be unimodal for using concentration
bounds. This context has led to a lack of understanding of
the role of information in an offline data set in practice.
Thus, we focus on the following:

Can we measure the information in a batch data in a way
that is theoretically justified and practically computable?
Can we generalize mismatch conditions underlying pre-
existing sample complexity guarantees for offline RL?

We identify that “spurious correlation” (Jin et al.,
2021)[Def. 4.1] is proportional to the integral probability
metric (IPM) difference between the transition model con-
ditioned on the behavioral versus optimal policy, which in
general demands a two-sample test to be estimated (Gret-
ton et al., 2012). Doing so is intractable in the offline set-
ting where one cannot sample from the “true” MDP. Impor-
tantly, however, under an assumption that the value func-
tion of the true MDP belongs to the Stein class1 associ-
ated with a base kernel, i.e., belongs to a mixture fam-
ily associated with a certain reproducing kernel Hilbert
space (RKHS) (Berlinet & Thomas-Agnan, 2011) such that
the IPM may be estimated according to a one-sample test
called the Kernelized Stein Discrepancy (KSD) (Gorham
& Mackey, 2015). KSD arises from Bayesian inference
(Chen et al., 2018; 2019a; Dwivedi & Mackey, 2022;
Shetty et al., 2022), where it has sharpened the convergence
of Monte Carlo samplers. Our motivation to employ KSD
in this way both comes from the fundamental role of IPMs
in defining pessimism, as well as recent work that defines
KSD as the “Stein information” in lieu of mutual informa-

1We develop algorithms that alleviate this condition via “opti-
mistic” transition estimates (Auer et al., 2008) in Sec. 3.2 follow-
ing Prop. 3.1.

tion (Russo & Van Roy, 2016) in online model-based ban-
dits/RL (MBRL) (Chakraborty et al., 2023b;a) as an explo-
ration incentive. That Stein information achieves compa-
rable regret to information-directed sampling (IDS) while
outperforming it experimentally due to its simple imple-
mentation, motivates us to use it as a way to compute mis-
match in offline RL. Thus, this work puts forward a family
of methods called information-directed pessimism (IDP),
whose associated contributions are to:

• derive the technical machinery to make KSD operable
in discrete offline RL settings (Sec. 3);

• derive new penalties for information-directed value it-
eration (IDP-VI) and information-directed Q-learning
(IDP-Q) (pseudo-code in Appendix C);

• establish that IDP-VI (Theorem 4.3) and IDP-Q (The-
orem 4.4) exhibit sublinear regret comparable to prior
works, but under general multimodal transitions;

• demonstrate the practical merits of the proposed meth-
ods relative to benchmarks, especially when the be-
havioral policy is exploratory (“hard” settings (Kumar
et al., 2019; 2020)) or MDP transitions exhibit multi-
modality 2.

An overview of related rate analyses for offline RL in terms
of model-free/ model-based, infinite-horizon/episodic, and
tabular/parameterized settings, the relative dependence on
data coverage conditions and defined notions of pessimistic
penalties may be found in Table 3 (Appendix A).

2. Problem Formulation
We consider state and action spaces, respectively, S and A
as finite discrete sets, i.e., |S| = S and |A| = A. Starting
from a state s ∈ S , an action a ∈ A causes a transition to
the next state s′ according to conditional distribution P(s′ |
s, a) : S×A → ∆(S) that depends on the current state and
action. Here ∆(·) denotes the probability simplex over the
set in its argument, i.e., the set of vectors with non-negative
weights that sum to unit. This transition probability in the
tabular setting can be succinctly represented as a matrix in
RSA×S , with Ps,a = P(· | s, a) ∈ R1×S as a distribution
over next states s′. Further denote individual entries of this
matrix as Ps,a,s′ := P(s′ | s, a).

At each time t, the agent executes an action at ∈ A given
the current state st ∈ S, following a possibly stochastic
policy π : S → ∆(A), i.e., at ∼ π(· | st). Then, given
the state-action pair (st, at), the agent observes a reward
rt = R(st, at). The goal is for the agent to accumulate the

2Code is available here:
https://github.com/jeappen/idp-offline-rl

2

https://github.com/jeappen/idp-offline-rl


Information-Directed Pessimism

Figure 2: Empirical cumulative return of optimal policy over initial state, which is an inner-product between (empirical)
occupancy measure and vectorized reward. Thus, it drives the structure of mismatch, which in PriorMDP (Markou &
Rasmussen, 2019) and Portfolio environments (Suttle et al., 2022) are slow-decaying without central tendency. Frozen
Lake (Brockman et al., 2016) and DeepSea (Osband & Van Roy, 2017a) exhibit unimodality.

most reward in the long term on average, a quantity called
value. Thus, under any policy π that maps states to actions,
one can define the value function Vπ : S → R as

Vπ(s) = Eat∼π(·|st),st+1∼P(·|st,at)

( ∞∑
t=0

γtrt

∣∣∣∣ s0 = s

)
,

(2.1)
which quantifies the long-term expected accumulation of
rewards discounted by γ ∈ (0, 1). The goal is to find the
policy π that maximizes the long-term return Vπ(s0 = s),
i.e., to solve the following optimization problem

max
π∈Π

Vπ(s), (2.2)

when the model, i.e., the transition probability P and re-
ward function R, are unknown to the agent. Subsequently
denote as π⋆ the maximizer of (2.2).

Subsequently, denote the distribution µπ(s) = (1 −
γ)
∑∞

t=0 γ
tP(st = s | s0, π) as the discounted state-

occupancy measure, which is a valid probability measure
over the state space S – see (Sutton et al., 2000). For no-
tational convenience, we let µπ(s, a) = µπ(s) · π(a | s),
which denotes the discounted state-action occupancy mea-
sure. Further define µπ⋆(s, a) as the state-action occupancy
measure of the optimal policy. Define the action-value, or
Q-function, as Qπ(s, a) = E

(∑∞
t=0 γ

trt
∣∣ s0 = s, a0 =

a, at ∼ π(st)
)

as the value Vπ : S × A → R conditioned
on an initial action, when following policy π thereafter.

We further hypothesize that initial state s0 is sampled from
initial state distribution and define a scalarized performance
objective for policy π as its expected accumulated value:

J(π) := Es∼ρ

[
Vπ(s)

]
. (2.3)

2.1. Offline Reinforcement Learning

Consider a fixed data batch D={su−1, au−1, ru−1, su}Tu=1

sampled from distribution µb (Xie et al., 2021a):

µb(s, a)=
1

1−γ

∞∑
t=0

γtP(st=s, at=a |s0, at∼πb(st)) (2.4)

is the state-action occupancy measure, i.e., distribution of
the Markov chain induced by the product between the long-
run probability of being in a state when following behav-
ioral policy πb. Denote as τ = (s0, a0, s1, a1 · · · , sH , aH)
a collection of state-action tuples of length H from D,
and let pπ(τ) = ρ(s0)

∏H
j=0 π(at|st)Pst,π(st) denote

the distribution over the collection. Given H episodes
{si, ai, R(si, ai), s′i}Hi=1 in the dataset D, with N(s, a) =∑H

i=1 1((si, ai) = (s, a)), define empirical reward and
transition matrix elements:

R̂(s, a) =
1

N(s, a)

H∑
i=1

R(si, ai)1((si, ai) = (s, a))

P̂s,a,s′ =

{∑H
i=1

1((si,ai,s
′
i)=(s,a,s′))

N(s,a) , if N(s, a) > 0
1
S , else.

The goal of offline RL is to use the offline dataset D to
compute a policy π̂ that is close to the optimal π⋆, i.e., to
ensure the sub-optimality w.r.t optimal policy π⋆:

J(π⋆)− J(π̂) ≤ O(T−k) (2.5)

for some k > 0, and the left-hand side is either in expecta-
tion or with high probability w.r.t to batch data [cf. (2.4)].

2.2. Pessimism in Offline RL

Observe that one cannot evaluate the objective [cf. (2.5)]
under an arbitrary policy, and in particular the one asso-
ciated with optimal trajectories pπ⋆(τ), since π⋆ may re-
quire visitation to states that are not contained in the offline
dataset. This issue leads to distribution mismatch, as ex-
pectation or probability with respect to (2.4) is with respect
to the behavioral policy of the prior dataset. If unaddressed,
mismatch leads to overestimating the value function during
training, resulting in possibly spurious action choices (Ku-
mar et al., 2019).

To address this gap, pessimistic (Kumar et al., 2020;
Rashidinejad et al., 2021) offsets may improve the cumula-
tive return on test trajectories, when training from offline
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data by subtracting a penalty associated with the proba-
bility that the estimated return deviates from the true re-
turn of the current state-action pair. Under an implicit
unimodal hypothesis, this probability is well-encapsulated
by concentration bounds used to define lower confidence-
bound (LCB)-offsets to RL algorithms of various types
(Rashidinejad et al., 2021; Jin et al., 2021; Xie et al., 2021a;
Shi et al., 2022; Yan et al., 2023; Li et al., 2022). However,
experimentally (see Fig 2), we find that cumulative returns
possess this attribute only for highly structured environ-
ments; for MDPs whose transition models possess higher
volatility, unimodality appears invalid. Thus, LCB-based
penalties are simple to compute and well-capture the worst-
case deviation of the value function computed from offline
data w.r.t. true value function, although they may be overly
conservative in sparse data regions, and the insufficiently
so for densely sampled data.

We propose a new penalty that is inspired by information
directed sampling (IDS) in bandits and MDPs literature
(Russo & Van Roy, 2018; Lu et al., 2023), but redefines
the notion of information to instead be based on distribu-
tional distance. Doing so allows us to define a penalty that
is distinct for each state-action pair, and that measures the
discrepancy of the next state transitions between the data
and the true model, under some specific structural hypoth-
esis on the class of value functions (which we are able to
relax – see Sec 3.2).

3. Information-Directed Pessimism
In (Yan et al., 2023)[Lemma 2] and (Shi et al.,
2022)[Lemma A.1], among others (Kumar et al., 2020; Jin
et al., 2021), pessimism is designed to annihilate a “spuri-
ous correlation,” which appears as a gap between the value
function under the true MDP transition model and its em-
pirical estimate constructed via offline data:

|(Ps,a − P̂s,a)V |. (3.1)

This bias in the value estimate is then aggregated across the
entire state space w.r.t. s′ ∈ S and offline data set to quan-
tify the expected difference in the value function under the
empirical offline and true transition dynamics in prior re-
gret analyses, especially (Yan et al., 2023; Shi et al., 2022).
The form of (3.1), combined with the fact that regret anal-
ysis tends to aggregate over states and samples in D, sug-
gests employing distributional distance such as an integral
probability metric (IPM).

On LCB, IPM, KSD, and IDS. Before shifting focus to
defining the way this machinery may be employed to de-
fine a new pessimistic penalty, we expand upon their con-
nection to IDS (Russo & Van Roy, 2018), IPMs (Gretton
et al., 2012), and concentration bounds (Hoeffding, 1994;
Bernstein, 1924). From equation 3.1, it is clear that integral

probability metrics (IPMs) are the appropriate mathemati-
cal machinery to quantify distribution mismatch; however,
their intractability in general has led prior works (Yan et al.,
2023; Rashidinejad et al., 2021; Li et al., 2022) to approx-
imate the probability of deviation instead using concentra-
tion bounds making unimodal assumptions. However these
are frequently violated in practice, meaning that the mis-
match may not have central tendency across the state and
action spaces (Moerland et al.). This motivates exploring
discrepancy measures for pessimism.

On the other hand, using Kernelized Stein Discrepancy
(KSD) to evaluate mismatch between a nominal and tar-
get measure has seen recent success as an exploration in-
centive in model-based RL (MBRL) (Chakraborty et al.,
2023a), where KSD is defined as the “Stein information”
in lieu of mutual information (Lu et al., 2021; Russo &
Van Roy, 2018). Mutual information appears in the lower-
bound on the achievable regret in Bayesian bandits (Russo
& Van Roy, 2016) and MBRL (Lu et al., 2021). How-
ever, algorithms that achieve this lower-bound by introduc-
ing intrinsic curiosity in the form of mutual information
between the current and optimal policy to augment poste-
rior sampling by uncertainty about the optimal policy, i.e.,
IDS and its variants (Russo & Van Roy, 2018; Hao & Latti-
more, 2022), require estimating mutual information which
is not efficient in practice. “Stein information,” as coined
by (Chakraborty et al., 2023a), provides an alternate ex-
ploration incentives in practice that matches the regret of
IDS. Stein information also turns out to be a suitable quan-
tifier of mismatch in offline RL, and hence methods in-
troduced next are referred to as information-directed pes-
simism (IDP).

3.1. Discrete Stein Discrepancy (DSD)

Computation of DSD hinges upon evaluating the score
function of the target distribution, which is analogous to the
gradient of the log-likelihood in continuous settings (Liu
et al., 2016; Chen et al., 2018). We begin with a method to
construct the discrete score function of the true MDP tran-
sition model, and then develop a way to operate with only
“optimistic” estimates of it from offline data. Proceed then
by defining permutation and inverse permutation, which are
required to formalize the notion of a discrete score function
(Yang et al., 2018). Specifically, we augment definitions
from (Yang et al., 2018) to address conditional distributions
in the form of P(· | s, a) associated with the row vectorPs,a

defined in Sec. 2.

Let ∨ denote the cyclic permutation3 for set S, such that

3Cyclic Permutation (Yang et al., 2018): For a finite discrete
set X , a cyclic permutation ∨ : X 7→ X is a bijective function
s.t. for some ordering x[1], · · · , x[|X|], ∨x[i] = x[(i+1)mod|X|], for
all i ≤ |X |.
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for s′ ∈ S, ∨is′ is the vector that undergoes a cyclic permu-
tation at its i-th component.4 Let the inverse permutation
operator ∧ be such that ∨(∧(s′)) = ∧(∨(s′)) = s′. The
partial difference operator w.r.t any function f : S → R for
i = 1, . . . , |S| is defined as

△s′i
f(s′) := f(s′)− f(∨is′) for s′ ∈ S, (3.2)

and we denote the difference operator associated with the
inverse permutation as

△∗
s′i
f(s′) := f(s′)− f(∧is′) for s′ ∈ S. (3.3)

Let the conditional discrete score function of the distri-
bution Ps,a be defined as in (Yang et al., 2018), for i =
1, 2, · · · , |S|,

SPs,a
(s′)i =

△s′i
Ps,a,s′

Ps,a,s′
= 1− Ps,a,∨is′

Ps,a,s′
(3.4)

but now for conditional distributions. Here Ps,a,s′ denotes
the true transition matrix. Denote as APs,a

the difference
Stein operator of Ps,a:

APs,af(s
′) := SPs,a(s

′)f(s′)−∆∗f(s′), (3.5)

for any function f . The discrete Stein discrepancy (DSD)
between data D(s,a) = {(s, a, s′)|s′ ∈ D} and the proba-
bility of s′ identified by the (s, a)th row of the true transi-
tion matrix P is defined as

DSD(D(s,a), Ps,a) := sup
f∈F

Es′∼D(s,a) [APs,a
f(s′)].

The discrepancy in this form is not evaluable, but restric-
tion of the function class to RKHS leads to a closed-form
evaluation (Yang et al., 2018). For s′ ∈ S, let l denote
the positive definite (exponential) Hamming kernel, i.e.,
l(s′, š) = exp{− 1

d

∑d
i=1 I{si′ ̸= ši}}, where d is the

dimension of the state representation. Let H denote the
RKHS associated with the kernel l. With F as the unit ball
in the RKHSH, the (kernelized) DSD is:

DSD(D(s,a), Ps,a) := sup
f∈H, ∥f∥H≤1

Es′∼D(s,a) [APs,a
f(s′)].

The discrepancy may be computed in closed-form as a con-
ditional plug-in variant of (Yang et al., 2018)[Theorem 7]:

DSD(D(s,a), Ps,a) :=

√
Es′,š∼D(s,a)

[
κPs,a(s

′, š)
]
, (3.6)

where the discrete Stein kernel w.r.t Ps,a is given as

κPs,a
(s′,š)=SPs,a

(s′)Tl(s′, š)SPs,a
(̌s)−SPs,a

(s′)T△∗
šl(s

′,š)

−△∗
s′ l(s

′,š)TSPs,a
(š)+trace(△∗

s′,šl(s
′, š)). (3.7)

Here s′ and š are distinct next-states associated with condi-
tional distribution P(· | s, a) sampled from dataset D(s,a).

4Regarding the subscript i, we note the state s ∈ S may be
represented as a vector of length |S|, e.g., s may be represented
through its one-hot encoding, each of which is a vector in R|S|

with 1 in the position of i and 0 elsewhere.

3.2. Info-directed pessimistic algorithms

Before we derive the penalty for the two flavors of offline
RL algorithms, we bound on the spurious correlation us-
ing the DSD, which represents the discrepancy between the
data set D and true MDP transition model P . Intuitively,
the penalty should be larger for state-action regions where
there is more mismatch due to insufficient samples in the
batch data set. That this is so is formalized next.

Proposition 3.1. Suppose the rewards are bounded r ∈
[0, 1] implying 0 ≤ V (s) ≤ 1

1−γ for all s. For all (s, a) ∈
S ×A, we have

|(Ps,a − P̂s,a)V | ≤
1

1− γ

√
Es′,š∼D(s,a)

[
κPs,a

(s′, š)
]
,

with probability 1, where P̂s,a is computed from D(s,a).

The deviation (proof in Appendix D.1) derived using
Proposition 3.1 provides a deterministic upper bound for
the deviation of the empirical model from the data, un-
like high-probability bounds derived using concentration
inequalities in (Rashidinejad et al., 2021; Li et al., 2022;
Shi et al., 2022).

Suppose that we have access to sampled values of the score
function SPs,a

[cf. Eq. 3.4] of the generating process un-
derlying the MDP, meaning P(· | st, at) belongs to a fam-
ily of mixture models associated with the discrete Stein
class. We may evaluate the discrepancy between samples
(s, a, s′) ∼ D from the offline dataset and the true transi-
tion distribution P(· | s, a) through the DSD [cf. Eq. 3.6].
The knowledge of the ‘true’ score function is feasible in
certain financial applications (Limmer & Horvath, 2023),
where access to a generative model is provided by a physics
or market simulation engine.

Alleviating Score Function Access. Knowledge of the
score function may not be viable in all offline RL prob-
lems. Thus, we propose a method to ‘estimate’ the
score function from the offline dataset to be used in
DSD computation [cf. Eq. 3.6] based upon classical
transition estimation techniques (Strehl & Littman, 2005;
Jaksch et al., 2010). We briefly describe the method,
with further details in Appendix C.1. Consider an or-
dering of states S := {s′1, s′2, · · · , s′S} based on values
as Vt−1(s

′
1) ≥ Vt−1(s

′
2) ≥ · · · ≥ Vt−1(s

′
n). The ‘esti-

mated’ model is computed as

P̃s,a := argmax
p̃∈P(s,a)

∑
s′∈S

p̃(s′)Vt−1(s
′), (3.10)

where, for nt(s, a) := |{τ : τ ≤ t, sτ = s, aτ = a}|

P(s, a) :=

{
p̃ : ∥p̃− P̂ t

s,a∥1 ≤

√
14S log(2At/δ)

max{1, nt(s, a)}

}
,
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Table 1: Penalties for Value Iteration bv(·, ·) and Q-learning bq(·, ·)

bvt (s, a) :=


α ·
√

1
n2(s,a)

∑
s′,š∈D(s,a) κP̃s,a

(s′, š), if (s, a) ∈ D(s,a)

max(s,a)

{
α ·
√

1
n2(s,a)

∑
s′,š∈D(s,a) κP̃s,a

(s′, š)

}
, otherwise.

(3.8)

bqt (s, a) := max

{√
nt(s, a)− 1

nt(s, a)
bqt−1(s, a), α ·

√√√√ 1

n2t (s, a)

∑
s′,š∈D(s,a)

t

κP̃s,a
(s′, š)

}
. (3.9)

with P̂ t
s,a denoting the empirical transition matrix at t,

which is simply P̂ with nt(s, a) in place ofN(s, a). More-
over, Vt−1(·) is any estimate of the value function t − 1.
The optimization in Eq. 3.10 is such that the estimated tran-
sition probabilities have larger weight allocated to states
with maximum values at the expense of those states with
smaller values. Considering that these values already5 in-
corporate a penalty (Eq. 3.11 and Eq. 3.12), we have a new
transition function in the convex polytope P(s, a) that best
represents the offline data. This estimated distribution P̃s,a

is used in score function computation [cf. Eq. 3.4].

The penalty based on DSD can be substituted into the
notion of pessimistic penalty in any algorithm in princi-
ple to potentially improve empirical performance and re-
lax the unimodal assumptions implicit in how mismatch
is quantified. Next, we develop pessimistic value iter-
ation (Rashidinejad et al., 2021) and pessimistic asyn-
chronous Q-learning (Yan et al., 2023), with specific vari-
ants of the DSD [cf. (3.7)] determined by the regret analy-
sis given in Table 1.

• Information-Directed Pessimistic Value Iteration.
The algorithm first estimates the (possibly optimistic)
transition matrix to enable score function evaluation.
Then, we set an initial value function estimate V0 and
action-value function estimate Q0, and we calculate
the penalty term bvt (s, a) as in Eq. 3.8 ∀(s, a) ∈ D
using the ‘true’ model estimate P̃s,a in Eq. 3.10. Fi-
nally, we update the value estimates Qt and Vt for all
(s, a) ∈ S ×A using a fixed-point iteration:

Qt(s, a)← R̂t(s, a)− bvt (s, a) + γP̂ t
s,a · Vt,

Vt(s)← max
a

Qt(s, a), ∀ s. (3.11)

See Alg. 2 in the appendix for details. The penalty bvt
is derived by seeking a decrement on the value error,
via Prop. 3.1, which is defined via equation D.7.

• Information-Directed Pessimistic Q-Learning.
With an initial action-value function estimate Q0,

5In offline RL, not incorporating pessimism results in value
overestimation in regions without sufficient data (Kumar et al.,
2020).

we sample a transition (s, a, r, s′) from D following
which we calculate the penalty term bqt (s, a) using
Eq. 3.9. Here nt(s, a) denotes the number of oc-
currences of (s, a) within the initial t samples of the
dataset. For asynchronousQ learning, one samples tu-
ples {st−1, at−1, rt−1, st} ∈ D from the offline data
and updates the values as follows:

Qt(st−1, at−1) = (1− η)Qt−1(st−1, at−1) (3.12)

+ η
[
R̂(st−1, at−1)+γmax

a′
Q(st, a

′)−bqt (st−1, at−1)
]
,

and Qt(s, a) = Qt−1(s, a) for (s, a) ̸= (st−1, at−1).
Here η represents the learning rate and we need a cer-
tain degree of monotonicity for the penalty since we
need to use the t-th offset to bound the estimated value
error for the first t − 1 iterations. penalty bqt is simi-
larly derived from Prop. 3.1 via seeking a decrement
condition on the accumulated value error equation F.6
up to iteration t − 1 in terms of the offset at step t :√
ibqi ≤

√
nbqn. See Alg. 3 in the appendix for details.

Computational Effort. Evaluating equation 3.8 and equa-
tion 3.9 requires estimating the transition matrix at compu-
tational cost of O(TS2A) for score function computation,
where T is total sample size. To calculate penalty for N
total training steps for batch size b, each step of comput-
ing equation 3.8 takes O(b3) computation steps for evalu-
ation of Stein kernel, and similarly for equation 3.9. With
Nb = T , one pass over the dataset at the end of N training
epochs incurs O(Nb3) = O(Tb2), which is improvable by
summing over data “coresets” (Chen et al., 2019b;a).

4. Convergence
In this section, we analyze the rate at which the value func-
tion sub-optimality [cf. Eq. 2.5] decays with the size T
of the dataset, the cardinality of the state and action spaces,
respectively |S| and |A|, and other problem-dependent con-
stants. We impose the technical conditions that are standard
(Jin et al., 2021; Yan et al., 2023).

Assumption 4.1. (Single-Policy Concentrability) With
µ⋆(s, a) as the occupancy measure associated with the op-
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timal policy π⋆ [cf. Eq. 2.2], we suppose there exists some
constant C⋆ ≥ 1 such that

µπ⋆(s, a)/µb(s, a) ≤ C⋆ for all s ∈ S, a ∈ A. (4.1)

Assumption 4.2. (Uniform Ergodicity) The behavioral
policy πb is stationary, and the transition distribution P(· |
s, πb(s)) under policy πb mixes to its induced occupancy
πb(s, a) measure at exponential rate:

dTV (P(· | s, πb(s)), µb(st, at)) ≤Mβt for all t. (4.2)

Single-policy concentrability holds whenever the behav-
ioral policy πb is highly exploratory, or otherwise is an ex-
pert policy close-to-optimal π⋆. In the case of an ergodic
Markov chain (Assumption 4.2), one can define the mixing
time tmix(ζ) for any ζ ∈ (0, 1) as

tmix(ζ) :=min

{
max

s0∈S,a0∈A
dTV
(
Pt(· |s0, a0), µb

)
≤ζ
}
, (4.3)

where Pt(· | s0, a0) denotes the transition distribution of
st, at when starting from the pair (s0, a0). Assumption 4.2
is a sufficient condition for a Markov process to have finite
mixing time, which is required for any RL method to con-
verge. To our knowledge, all prior analyses of offline RL
require finite mixing time, which implicitly requires As-
sumption 4.2, which may be estimated in practice accord-
ing to the spectral gap of the transition matrix (Hsu et al.,
2019; Dorfman & Levy, 2022).

In subsequent results, <
∼

subsumes constant and poly-

logarithmic factors. For the next theorem, we impose As-
sumption 4.1 only for C⋆ ≥ 1, let α = 1

1−γ in (3.8) and
(3.9), and suppose the reward is bounded r ∈ [0, 1].
Theorem 4.3. The policy π̂ returned by Alg. 2 satisfies,
under Assumption 4.1:

ED

[
J(π∗)− J(π̂)

]
<
∼

SC⋆

(1− γ)4T
+

√
SC⋆

(1− γ)4T
. (4.4)

Here ED is w.r.t. batch data D [cf. (2.4)]

See Appendix D for proof. Though the algorithm the of-
fline value iteration is similar to (Rashidinejad et al., 2021),
the information-directed penalty results in the following
differences: (i) the bound on spurious correlation holds
with probability 1 and the penalty of DSD is computed as
a V-statistic, which requires a slightly different analysis;
(ii) the KSD penalty improves the regret of LCB penaliza-
tion (Yan et al., 2023) by a factor of 1/(1− γ); it achieves
this sharper regret when transition is in a mixture family,
rather than unimodal.
Theorem 4.4. Let tmix := tmix(1/4) [cf. Eq. 4.3]. Policy
π̂ returned by Alg. 3, under Assumptions 4.1-4.2, satisfies:

J(π∗)−J(π̂) ≲

√
C⋆Sι2

T (1− γ)5
+
C⋆Stmixι

T (1− γ)2
+
C⋆tmixι

2

T (1− γ)3
.

Figure 3: Test cumulative return from offline training for
Portfolio Environment under ‘Hard’ sampling. For fixed
batch size T , IDP performance is competitive with optimal
benchmarks, and improves with transition model access.

with probability at least 1 − δ, with ι = log(ST/δ), when
run with learning rate ηt = (H + 1)/(H + t)

See Appendix F for proof. Algorithm 3 is similar to (Yan
et al., 2023)[Alg. 1]. The primary distinction lies in using
(3.9) in lieu of LCB, which requires modifying the analysis
to incorporate the V-statistic of the DSD penalty. This re-
sult allows the transitions to be in a mixture family, which
is strictly more general than unimodal conditions in prior
art, which may explain experimental upsides in volatile en-
vironments (Fig. 2). Asymptotic convergence of Algs. 2-3
is implied by dividing the regret by T and sending T →∞
under attenuating step-size ηT → 0.

5. Experiments
Offline RL requires a dataset of sampled transitions, which
under single-policy concentrability (Rashidinejad et al.,
2021), mandates the data contains sufficient trajectories
from optimal policy (separately estimated via value iter-
ation (Sutton & Barto, 1998)). We then create a dataset
by sampling three policies for Nep episodes each and con-
catenating their trajectories: (i) the optimal policy, (ii) a
random policy, and an (iii) ϵ-greedy policy (with ϵ = 0.3).
Following (Kumar et al., 2020), our experiments span three
dataset sampling ratios: ‘Easy’ (1:1:1), ‘Hard’ (0:1:0.1)
and ‘Random’ (0:1:0). We spotlight some representative
sampling ratios here, with alternates in appendices. We
experiment with a Portfolio Optimization task (Neuneier,
1997; Moody & Saffell, 2001), Frozen Lake (Brockman
et al., 2016), DeepSea (Osband & Van Roy, 2017a), Prior-
MDP (Markou & Rasmussen, 2019) – see Appendix G for
detailed descriptions, and Appendix G.2.5 for additional
experiments with a random walk MDP. To our knowl-
edge, there is little prior experimental analysis of LCB ap-
proaches, which motivated us to implement theoretically
specified parameters as well as fine-tuned via grid search
(see Appendix G.)
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Env-
Data Nep

T
(×103) VI VI-LCB

(P)
VI-LCB

(Td.)
IDP-VI
(Ours)

VI
Vanilla CQL QL IDP-Q

(Ours)
Q

LCB
FL-H 1000 8.8 0.73 0.01 0.17 0.52 0.33 0.09 0.69 0.73 0.53
PF-H 316 69.0 62.16 14.22 15.69 59.74 58.44 35.93 56.13 56.29 34.54
D-R 3162 420.0 2.14 0.00 2.27 2.40 2.13 0.32 0.03 0.09 0.08
P-R 3162 320.0 29.61 -3.27 12.93 23.14 12.90 3.41 15.81 15.50 7.41
R-R 3162 316.4 37.03 1.44 31.04 35.80 31.83 4.04 23.03 26.65 2.41

Table 2: Results across tasks for fixed batch size & sampling regime. Env-Data: Environment (FL: FrozenLake, PF:
Portfolio, D: DeepSea, P: Prior MDP, R: Random MDP) - Dataset used (H: ‘Hard’, R: ‘Random’), Nep: Number of
episodes used to create the dataset, T: Total dataset size i.e. number of (s, a, r, s) tuples, VI : Value Iteration (Sutton
& Barto, 1998) with oracle access to true MDP, VI-LCB (P): VI-LCB (Rashidinejad et al., 2021) w/ paper reported
constants, VI-LCB (Td.): VI-LCB (Rashidinejad et al., 2021) w/ tuned constants, IDP-VI (Ours): Our IDP-VI algorithm,
VI Vanilla: VI-Vanilla with no pessimism penalty term, CQL: Conservative Q-learning after 30 epochs (Kumar et al.,
2020), QL: Q-learning (Watkins & Dayan, 1992), IDP-Q (Ours): Our IDP-Q algorithm, Q-LCB: Q-learning with LCB
(Shi et al., 2022). Experiments with other data sampling are in Table 6, 7, 8, 9 and 10.

Figure 4: Test performance over training epoch on Frozen
Lake (Brockman et al., 2016) a given data set size T with
‘Hard’ sampling. Returns using DSD penalty are compet-
itive with optimal benchmarks, is not true of LCB.

5.1. Algorithm 2 (IDP-VI) Performance

Performance comparison is between (i) Value iteration with
oracle access to true MDP transitions model and serves
as the upper bound on the average return. (ii) VI-LCB,
the pessimistic value iteration algorithm with a lower con-
fidence bound based penalty from (Rashidinejad et al.,
2021). This algorithm is shown to achieve state-of-the-art
performance in terms of theoretical complexity (iii) IDP-
VI, our algorithm proposed in this paper (Algorithm 2) and
(iv)VI-Vanilla, the Offline Value Iteration algorithm with-
out a penalty term (zero penalty). For VI-LCB we report
results using specified constants in the reference as well as
a tuned versionLc. We further run a grid search over differ-
ent values of α in [0.1, 1, 10]. Parameter selection details
are in Table 4. Results across different environments are
in Figure 3, 4, 5, and 6 on the right-hand side, with final
reported values in Table 2. Ablation studies with respect
to batch size are in Table 6, 7, 8, 9, and 10, respectively.
Observe that IDP exhibits advantages in the portfolio envi-
ronment but is comparable to prior art for DeepSea, corrob-
orating our hypothesis regarding the structural importance

Figure 5: Test performance on PriorMDP (Markou &
Rasmussen, 2019) with 64 States and 64 Actions for the
‘Random’ dataset. This data set has a large concentrability
coefficient [cf. (4.1)], meaning training data is less infor-
mative of optimal actions. Vertical lines denote fractions
of sample size T during training. For this volatile envi-
ronment, IDP outperforms LCB and tends toward optimal
benchmarks.

of mismatch.

5.2. Algorithm 3 (IDP-Q) Performance

We compare (i) Asynchronous Q-learning; (ii) Q-learning
with LCB pessimism (Yan et al., 2023), (iii) IDP-Q
(Alg. 3), (iv) CQL (Kumar et al., 2020) which is fundamen-
tally a batch method, and hence report performance after 30
training epochs. We present two variants of IDP-Q: where
the transition matrix P is known (denoted as ‘Known P’)
and one where it is estimated. For all approaches we run
a grid search over a range of learning rates while also for
Q Learning with LCB we search over a range of Cb values
and α values for our method IDP-Q. See Table 5 for pa-
rameter selections details. Q-learning results are visualized
for Portfolio Optimization, Frozen Lake, PriorMDP, and
DeepSea, respectively in Figure 3, 4, 5, and 6 on the left-
hand side – see also Tables 6, 8, 9, 7, and 2, respectively.
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Figure 6: Test performance obtained from training on
DeepSea (Osband & Van Roy, 2017a) with 128 States for
the ‘Random’ dataset. This data set has a large concen-
trability coefficient [cf. (4.1)], meaning batch data is less
informative regarding optimal actions. Vertical lines de-
note fractions of total sample size T used during training.
IDP is comparable to alternatives here.

Experimental upsides of including DSD-based penalty are
more pronounced in problem instances with smaller batch
data sets (Frozen Lake), and in the presence of multimodal-
ity (portfolio optimization, PriorMDP, and random MDP) –
see Fig. 2. In Frozen Lake and DeepSea, larger step-sizes
were required to obtain competitive performance, which re-
sults in more volatile learning than portfolio and PriorMDP.

6. Conclusions
The theory and practice gap in offline tabular RL with pes-
simism motivated us to adopt an information-theoretic lens
to capture mismatch between offline data and the true dis-
tribution through DSD. Algorithms based upon it can effec-
tively operate with multimodal distributions both in theory
and practice, suggesting that Stein discrepancy may have a
broader role to play in offline RL.
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Type Horizon Policy Mismatch Concept Penalty Experiments Rate Computational Complexity Ref
M

od
el

-B
as

ed

Fi
ni

te Tabular DD, CC AH-LCB No O
(√

H5SC⋆

T

)
T +HSA2 (Xie et al., 2021b)

DD, CC B-LCB Yes O
(√

H4SC⋆

T

)
T +HSA2 (Xie et al., 2021b; Li et al., 2022)

Parameterized DD, CC BS O
(

H3/2d̃√
T

)
(Nguyen-Tang & Arora, 2023)

DD, CC DD No O
(

H2d̃√
T

)
(Jin et al., 2021; Xu et al., 2022)

In
fin

ite

Tabular DD, OO HT-RM Yes O
(

1+µπ∗,D√
T (1−γ)2

)
TAS2 (Kidambi et al., 2020)

DD HUE Yes None TAS2 (Yu et al., 2020)

DD, CC AH-LCB No O
(√

SC⋆

(1−γ)5T

)
(T + S2A) log(T )/(1− γ) (Rashidinejad et al., 2021)

DD, CC B-LCB Yes O
(√

SC⋆ log(T )
(1−γ)3T

)
(T + S2A) log(T )/(1− γ) (Li et al., 2022)

DD,CC KSD Yes O
(√

SC⋆ log(T )
(1−γ)4T

)
(T 3SA+ S2A) log(T )/(1− γ) This Work

Parameterized ✗

M
od

el
-F

re
e

Fi
ni

te

Tabular DD, CC AH-LCB No O
(√

H4SC⋆

T

)
THA (Shi et al., 2022)

Parameterized MCC L No O( 8

√
BQBLA

T )6 (Cheng et al., 2022; Uehara et al., 2023)

In
fin

ite
bl

a

Tabular DD, CC AH-LCB No O(
√

SC⋆

(1−γ)3T ) TA (Yan et al., 2023)

DD KSD Yes O(
√

SC⋆ log(T )
(1−γ)5T ) T 4+TA This Work

Parameterized DD Model-based Yes No Rate (Kumar et al., 2019; 2020; Matsushima et al., 2020; Yu et al., 2021; Kostrikov et al., 2021)

DD,CC AH-LCB No O(
√

d3H4 log(HTd)
T ) (Jin et al., 2021)7

BC BE No O
(

1
1−γ

√
log(|F||Π|)

T

)
(Xie et al., 2021a)

Table 3: A comparison of recent offline RL methods according to whether they are model-based or model-free, the hori-
zon, policy mapping, definition of distribution mismatch (Mismatch Concept), and algorithmic mechanism for correct-
ing for it in the form of a pessimistic penalty (Penalty). Distribution Mismatch Concepts: Distributional Distance (dd),
Occupancy Overlap (OO) µπ∗,D, Concentrability Coefficient (CC) C⋆, Bellman Consistency (BC), Sequential Extrapo-
lation Coefficient (SEC), Model-free concentrability coefficient (MCC). Pessimistic Penalties: Azuma-Hoeffding-based
and Bernstein-based Lower Confidence-Bound (AH-LCB) and B-LCB), Hitting-Time Reward Max (HTRM), Heuristic
Uncertainty Estimate (HUE), Lagrangian-based (L), Bootstrap (BS), Bellman Error (BE), Model-Based, Kernelized Stein
Discrepancy (KSD). Horizon Length: Finite H or Infinite. All non-highlighted entries that contain rate analyses require
unimodal transitions, which is contrast to this work. Our work may be seen in the spirit of model-based augmentation of
model-free methods, e.g., (Gu et al., 2016; Yu et al., 2021).

A. Expanded Literature Review
The major takeaway is that the rates established in this work improve upon previous results for tabular settings in the
infinite-horizon case, for both model-based (value iteration) and model-free (Q-learning) approaches in key ways, specifi-
cally by: (i) alleviating any implicit requirement of unimodality; and (ii) refining the value iteration regret in (Rashidinejad
et al., 2021) by a factor of 1/(1 − γ). To enable these results, we introduce a novel concept of pessimistic penalty, KSD,
which is inspired by information-directed sampling (Russo & Van Roy, 2018).

The gap between our rates and the best available (Li et al., 2022)-(Yan et al., 2023) exists as those approaches present
algorithms that require multiple time-sales and employ Bernstein concentration bounds/variance reduction, which hinge
upon a different error decomposition than that which is studied here. The improved properties of Stein discrepancies
relative to Azuma-Hoeffding concentration bounds were relatively simpler to understand and yield simpler algorithms
to implement, and thus a better template upon which to introduce DSD. It is possible to employ DSD together with
Bernstein/variance reduction to close the gap with (Li et al., 2022)-(Yan et al., 2023) by introducing multiple time-scales,
but that is deferred to future work. Moreover, even these sharper rates represent the mismatch as unimodal, whereas we
allow it to belong to a mixture family.

On top of these conceptual aspects, this work contributes one of the first analyses that contrasts theoretical with experi-
mental performance in the tabular setting. While there has been extensive numerical evaluation of offline RL methods and
possible perception is that it is a mature field, at least experimentally setting, such studies are mostly disconnected from
the RL foundations perspective.

B. Technical Preliminaries
B.1. Markov Decision Processes

In this subsection, we expand upon some of the background required for Sec. 2. Value iteration and Q learning operate
upon the fact that the value equation 2.1 (respectively, action-value) starting from one state may be decomposed into the
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one step reward plus the value (action-value) starting from another, stated as:

V π(s) = r(s, π(s)) + γ
∑
s′∈S

V π(s′)P (s′ | s, π(s)) (B.1)

for all s ∈ S, or respectively (s, a) ∈ S × A. These expressions are known as Bellman’s equations. The right-hand side
of equation B.1 defines a Bellman evaluation operator Bπ : S → S over functions that map state space S to the reals, i.e.,
V : S → R:

(BπV )(s) = r(s, π(s)) + γ
∑
s′∈S

V π(s′)Ps′,s,π(s). (B.2)

Further define the Bellman optimality operator over the space of Q functions as:

(B⋆Q)(s, a) := r(s, a) + γ
∑
s′∈S

max
a′

Q(s′, a′)Ps′,s,a′ . (B.3)

Value iteration may be defined by iteratively applying equation B.1 and computing the maximum over a ∈ A

Vt(s) = max
a∈A

Es′∼P(·|s,a) [r(s, a) + Vt−1(s
′)] (B.4)

Alternatively, classical asynchronous Q learning (Jaakkola et al., 1993; Tsitsiklis, 1994) operates by sequentially ap-
plying stochastic approximation to estimate the Bellman optimality operator equation B.3 based on trajectory data
{su−1, au−1, ru−1, su}∞u=1:

Qt(st−1, at−1) = (1− η)Qt−1(st−1, at−1) + η[r(st−1, at−1) + γmax
a′

Q(st, a
′)] , (B.5)

Qt(s, a) = Qt−1(s, a) for all (s, a) ̸= (st−1, at−1) . (B.6)

Here η is a step-size (learning rate) possibly diminishing in terms of the number of visits n to state-action pair st−1, at−1

prior to time t (in which case we which case we write ηt).

B.2. Kernelized Stein Discrepancy

IPM tracks the deviation between a baseline distribution q and an unknown target p: dF (q, p) = supf∈F |Eq[f(X)] −
Ep[f(X)]|, where the supremum is over a class of real-valued test functions f ∈ F , i.e., f : X → R for some Euclidean
space X ⊂ Rd. By adjusting the function class F (Sriperumbudur et al., 2010), one recovers Total variation, Wasserstein,
among others. However, the impediment to evaluating an IPM is its integration under the true distribution p, which is
intractable in offline RL.

Stein’s method alleviates this issue by restricting the class of distributionsF to functions such that Ep[f(X)] = 0. Building
upon this idea, (Liu et al., 2016) develops a tractable way to evaluate the IPM by restricting distributions to the Stein class,
associated with a reproducing kernel Hilbert space (RKHS) over Stein kernels (Berlinet & Thomas-Agnan, 2011). In
this case, the IPM may be evaluated in expectation with respect to the Stein kernel, which is called the Kernelized Stein
Discrepancy (KSD) (Gorham & Mackey, 2015). Stein’s method relies on the fact that two smooth densities p(x) and q(x)
in function class F are identical if and only if they satisfy the Stein’s identity:

max
f∈F

(
Ep[Sq(x)f(x) +∇xf(x)]

)2
= 0, (B.7)

where Sq(x) denotes the score function of q(x) given by Sq(x) = ∇x log q(x). As an example, Stein’s identity in equa-
tion B.7 holds for smooth functions f lying in the Stein class of p, i.e., it is smooth and satisfies

∫
x
∇x(f(x)p(x))dx = 0.

Hence, for any function f in the Stein class of p, we define a Stein operator Ap of p, for which Ep[Apf(x)] = 0. Based
upon this notion, define the Stein discrepancy between p and q (Liu et al., 2016):

KSD2(p, q) = max
f∈F

(
Ep[Sq(x)f(x) +∇xf(x)]

)2
, (B.8)

However, this definition requires solving a variational optimization. This issue may be alleviated through a tractable
modification introduced in (Liu et al., 2016):

KSD2(p, q) = Ex,x′∼p

[
uq(x, x

′)
]
, (B.9)
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where uq(x, x′) is the Stein kernel defined as

uq(x, x
′) :=Sq(x)⊤κ(x, x′)Sq(x′)+Sq(x)⊤∇x′κ(x, x′)+∇xκ(x, x

′)⊤Sq(x′)+trace(∇x,x′κ(x, x′)), (B.10)

In equation B.10, κ(x, x′) is the base kernel such as a Gaussian or polynomial, meaning that this approximation imposes
smoothness on the target distribution q in that it hypothesizes it belongs to a RKHS associated with base kernel κ and we
can evaluate its score function Sq , which holds when the target measure belongs to a mixture family. Moreover, trace
denotes the trace of a square matrix (the sum of the elements on its main diagonal), in the case, the Jacobian of the kernel
with respect to its inputs. In continuous space, it would be natural to select p = P(· | s, πb(s)) (transition dynamics
corresponding to the empirical measure defined by offline sampled data set D generated by behavioral policy πb) and
q = P (transition dynamics corresponding to the true MDP). In this case, then, KSD would empower us to evaluate the
distance KSD(P(· | s, πb(s)),P(· | s, a)) under the hypothesis we had access to the score function of P(· | s, a), denoted
as SP(·|s,a), which is abbreviated as SP.

We developed machinery in discrete space in Sec. 3.1 which is based upon methods that were originally developed for
continuous space and are included here for completeness as well as intuition-building. In this case, the score function is
defined terms of the probability mass function associated with the (s, a)-th row of the transition matrix Ps,a rather than
transition kernel P, and kernels must be defined in terms of discrete input sequences, rather than those that appear in classic
(continuous-valued) nonparametric statistics (Berlinet & Thomas-Agnan, 2011).
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C. Details of Algorithm Execution
In this section, we expand upon the technical motivations, derivations, and execution of information-directed pessimism
for value iteration [cf. equation 3.11] and Q-learning [cf. equation 3.12]. In particular, we expand upon the practical
evaluation of the pessimistic penalty bt(s, a) in these expressions, as well as present their pseudo-code.

C.1. Score function implementation using ‘estimated’ True model

Since DSD is a one-sample test, to evaluate the discrepancy of a dataset with respect to the unknown true transition model,
we need to make an implicit assumption that the score function of the true model is known. This may be an overly restrictive
departure from the standard offine RL setting, where no assumptions on the model is made. To relax this requirement in
our setting, we consider an approach to estimating the true model from data, and using this estimate to compute the score
function. Doing so allows us to employ DSD machinery using empirical rather than true score functions. We detail this
approach next.

In offline RL, the values at states having low data representation (in the dataset) are typically overestimated. This necessi-
tates adding a penalty that reduces the estimated values. Consider an ordering of the states S := {s′1, s′2, · · · , s′n} based on
values as Vt−1(s

′
1) ≥ Vt−1(s

′
2) ≥ · · · ≥ Vt−1(s

′
n). We see in Algorithm 1 (minor modification of the algorithm in (Jaksch

et al., 2010)) that for a given estimate of the value function at time t, the output is

P̃ t
s,a(s

′ | s, a) := argmax
p̃(·)∈P(s,a)

∑
s′∈S

p̃(s′)Vt−1(s
′).

This implies that the estimated transition probabilities are such that, more weight is allocated to states with maximum values
at the expense of transition probabilities of states with smaller values. Considering that these values already incorporate
a penalty, we have a new transition function in the convex polytope P(s, a) ⊂ ∆(S × A) that best represents the offline
data.

Lemma C.1 ((Jaksch et al., 2010)). Let nt(s, a) := |{τ : τ ≤ t, sτ = s, aτ = a}| denote the number of given state-action
occurrences for a given trajectory {s, a}τ≤t of length t. For a given empirical distribution P̂ t(· | s, a), letMt denote the
set of MDPs which are a specified total-variation distance away from the empirical distribution:

∥P̃ t(· | s, a)− P̂ t(· | s, a)∥1 ≤

√
14S log(2At/δ)

max{1, nt(s, a)}
. (C.1)

i.e., MDPs in setMt have transition functions P̃ t(· | s, a) at most
√

14S log(2At/δ)
max{1,nt(s,a)} away in total-variation distance. Then

the following holds true:

P{M /∈Mt} <
δ

15t6
.

C.2. Information-Directed Offline Value Iteration.

The idea of the value iteration algorithm is to begin with the basic procedure of value iteration with a pessimistic penalty.
Initially, the value and Q function estimates are null for all states or state-action pairs. We estimate the transition matrix
of the dataset. Then, we slice D along each state-action pair for evaluation of the conditional DSD [cf. equation 3.8].
This penalty is then subtracted from a value-iteration style update [cf. equation B.4] and the action-value function at the
next iteration is updated according to the resultant fixed point equation. The value function estimates and policies are
then evaluated as the respective maximum and maximizing argument of the Q-function. This procedure is summarized as
Algorithm 2.

C.3. Information-Directed Offline Q-Learning

Q-learning proceeds by repeatedly executing stochastic approximations of the Bellman operator equation B.3. For the
offline setting, we incorporate the penalty equation 3.9 into the pessimistic update given in equation 3.12. We repeatedly
execute this update, with the penalty calibrated to the number of visits to state-action pair (s, a) prior to iteration t. This
procedure is summarized in pseudo-code as Algorithm 3.
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Algorithm 1 Estimating True Transition Model

Input: Estimates P̂ t(· | s, a), distance d(s, a) :=
√

14S log(2Ak/δ)
max{1,Nt(s,a)} with k = Nt

T+1 and Nt(s, a) =
∑t

i=1mi(s, a), and
states S := {s′1, s′2, · · · , s′n} sorted as Vt−1(s

′
1) ≥ Vt−1(s

′
2) ≥ · · · ≥ Vt−1(s

′
n).

Output: P̃ t(s′ | s, a) := argmaxp̃(·)∈P(s,a)

∑
s′S p̃(s

′)Vt−1(s
′), which is over the set of transition probabilities satis-

fying condition equation C.1.
Set

P̃ t(s′1) := min

{
1, P̂ t(s′1 | s, a) +

d(s, a)

2

}
, and

P̂ t(s′j) := P̂ t(s′j | s, a) for all states s′j with j > 1.

Set l := n
while

∑
s′j∈S P̃

t(s′j) > 1 do

Reset P̃ t(s′l) := max
{
0, 1−

∑
s′j ̸=s′l

P̃ t(s′j)
}

Set l := l − 1

Algorithm 2 IDP-VI Information-Directed Pessimistic Value Iteration

Input: Pessimism coefficient α, offline data set D, discount factor γ
K := log T

1−γ .
Initialize V0(s) = 0, Q0(s, a) = 0 and π0(s) = argmaxam0(s, a)
for all k = 1, · · · ,K do
m(s, a) :=

∑T
i=1 1((si, ai) = (s, a)) based on dataset D

Estimate the empirical transition P̂s,a and obtain rewards r̂(s, a) elements using the dataset D
Estimate the true model P̃s,a using Algorithm 1
Compute the penalty using D(s,a) as

bv(s, a) :=


α ·
√

1
m2(s,a)

∑
s′,š∼D(s,a) κP̃s,a

(s′, š), if (s, a) ∈ D(s,a)

max(s,a)

{
α ·
√

1
m2(s,a)

∑
s′,š∼D(s,a) κP̃s,a

(s′, š)

}
, otherwise.

Update pessimistic Q-function estimate as follows:
for all (s, a) ∈ (S ×A) do

Qk(s, a) = r̂(s, a)− bv(s, a) + γP̂s,a · Vk−1,

end for
end for
return Value function estimate VK(s) and associated policy πK(s) = argmaxaQK(s, a)
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Algorithm 3 IDP-Q Information-Directed Pessimistic Asynchronous Q Learning

Input: Pessimism coefficient α, offline data set D, initial state s0, initial value V (s0) = 0.
Initialize: Q0(s, a) = 0, V0(s) = 0, bq0(s, a) = 0 for all (s, a) ∈ S ×A, H =

⌈
4

1−γ log ST
δ

⌉
.

for all t = 1, · · · , T do
Sample (st−1, at−1, rt−1, st) from offline data set D.
Estimate the true model P̃ t

st−1,at−1
using Algorithm 1

Update the pessimistic offset:

bqt (st−1, at−1) = max

{√
nt(st−1, at−1)− 1

nt(st−1, at−1)
bqt−1(st−1, at−1), α

√
Es′,š∼Dst−1,at−1

[
κP̃ t

s,a
(s′, š)

]}
,

where nt(st−1, at−1) is the number of times (st−1, at−1) has been visited prior to iteration t. For all (s, a) ̸=
(st−1, at−1), set Qt(s, a) = Qt−1(s, a).
Update pessimistic Q-function estimate according to equation 3.12:

Qt(st−1, at−1) = (1− ηt)Qt−1(st−1, at−1) + ηt[r(st−1, at−1) + γmax
a′

Q(st, a
′)− bqt (st−1, at−1)] ,

where ηt = H+1
H+nt(s,a)

.
Update value function:

Vt (st−1) = max

{
max
a∈A

Qt (st−1, a) , Vt−1 (st−1)

}
,

and Vt(s) = Vt−1(s) for all s ̸= st−1.
end for
return policy π̂(s) = argmaxaQT (s, a).

D. Technical Lemmas, Propositions, and Their Proofs
D.1. Proof of Proposition 3.1

Recall that for any function f : S → R and distribution P (· | s, a), abbreviated as P , the discrete Stein operator is defined
as (Yang et al., 2018):

APs,af(s
′) = SPs,a(s

′)f(s′)−∆∗f(s′).

We have Es′∼P (·|s,a)

[
APs,a

f(s′)
]
= 0 using difference Stein’s Identity. Let V be the space of real-valued functions on the

state space S . For each V ∈ V , there exists fV (s′) ∈ FP that satisfies the Stein’s equation:

V (s′)− Es′∼P (·|s,a)

[
V (s′)

]
= APs,a

fV (s
′), (D.1)

where FP is the set of real-valued functions that satisfy Stein’s identity w.r.t distribution P (· | s, a). Consider bound-
ing |(P(· | s, a)− P(· | s, πb(s)) · V |, the mean deviation of the value function under the empirical and true model (where
we subsequently abbreviate P(· | s, πb(s)) by its associated element of the empirical transition matrix as P̂s,a, and similarly
for Ps,a with respect to P(· | s, a)) as in Sec. 3. Then we may write:

|(Ps,a − P̂s,a) · V | ≤ sup
V ∈V

∣∣∣Es′∼P̂s,a
[V (s′)]− Eš∼Ps,a [V (š)]

∣∣∣. (D.2)
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Substituting equation D.1, after taking expectation w.r.t to the collection of empirical measures P̂ associated with state-
action pairs (s, πb(s)) in the offline data set D, in the above inequality

sup
V ∈V

∣∣∣Es′∼P̂ [V (s′)]− Eš∼P [V (š)]
∣∣∣ = sup

V ∈V

∣∣∣Es′∼P̂s,a
[APs,afV (s

′)]
∣∣∣ (D.3)

= sup
f∈H, ∥f∥H≤ 1

1−γ

∣∣∣Es′∼P̂s,a
[APs,af(x)]

∣∣∣ (D.4)

=
1

1− γ

√
Es′,š∼D(s,a)

[
κPs,a

(s′, š)
]
, (D.5)

which follows using the definition of kernelized discrete Stein discrepancy.

D.2. Auxiliary Lemmas for Value Iteration Result

With this result in hand, we introduce a technical lemma required for the analysis of Algorithm 2. To do so, we introduce
a transient variant of the discounted state-action occupancy measure defined in Sec. 2. More specifically, let the initial
distribution induced by policy π be denoted as ρπ ∈ R|S||A|, where (s, a) element is equal ρ(s)π(a|s). Similarly, let
the transition matrix induced by the policy π be given as Pπ ∈ R|S||A|×|S||A|, whose (s, a) × (s′, a′) element is equal
to P (s′|s, a)π(a′|s′). In this section, without loss of generality, assume that the penalty at iteration t is given as

bvk(s, a) = α ·

√√√√ 1

m2(s, a)

∑
s′,š∼D(s,a)

κP̃s,a
(s′, š). (D.6)

Note that this still satisfies the bound on DSD in Proposition 3.1.

Lemma D.1. Suppose Proposition 3.1 holds. For an arbitrary policy π, we have for all t > 0:

J(π)− J(πt) ≤
γt

1− γ
+ 2

k∑
i=1

Eνπ
k−i

[bvi (s, a)],

where νπk := γkρπ(Pπ)k for k ≥ 0 and J(π) := Es∼ρ[Vπ(s)].

Proof. First, note that the penalty holds on an event that occurs with probability 1. By design of the algorithm, Vt−1 ≤
Vt ≤ V πt ≤ V ∗ (cf. equation D.6). The result follows using the arguments in (Rashidinejad et al., 2021)(Lemma 2).

Lemma D.2. (Jiao et al., 2018) Let n ∼ Binomial(N, p). For any k ≥ 0, there exists a constant ck depending only on k
such that

E
[ 1

(n ∨ 1)k

]
≤ ck

(Np)k
,

where ck = 1 + k2k+1 + kk+1 + k( 16(k+1)
r )k+1.

Let MMDκq
(p, q) := E[κq(x, x′) + κq(y, y

′) − 2κq(x, y
′)] denotes the MMD between p and q evaluated using the Stein

kernel κq , with x, x′ and y, y′ drawn i.i.d from p and q.

Lemma D.3. Let |D| = T and δ ∈ (0, 1). For the penalty with probability 1− δ

bvt (s, π(s)) := α

√√√√ 1

m2(s, a)

∑
s′,š∼D(s,a)

κP̃T
s,a

(s′, š) ≤ α
√

log(1/δ)

T
.

Proof. Convergence rate was established for Maximum Mean Discrepancy (MMD) in (Gretton et al., 2012)(Theorem 8).
DSD can be treated as a MMD with a special function class associated with the test functions such that Stein’s identity
holds, i.e., MMD may be evaluated with the Stein kernel (κ) to obtain DSD. Let P̂t and P̃t denote the empirical transition
matrix and the estimated true transition matrix. Note the limiting matrices of both P̂t and P̃t are the same, and equal to P
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from Lemma C.1. Using similar arguments as in (Gretton et al., 2012)(Theorem 8), we have that with probability 1 − δ,
using the V-statistic of DSD,

bvt (s, π(s)) := α ·MMDκPt
(P̂t, P̃t) = α|MMDκP̃t

(P̂t, P̃t)−MMDκP̃s,a
(P, P )|

<
∼
α

√
log(1/δ)

t
(:= EDSD) (D.7)

E. Proof of Theorem 4.3
Proof. Consider the following decomposition for any expert policy π using equation D.7:

ED

[∑
s

ρ(s)
[
Vπ(s)− VπK

(s)
]]

= ED

[∑
s

ρ(s)
[
Vπ(s)− VπK

(s)
]
1
{
m(s, π(s)) = 0

}]
=: T1

+ ED

[∑
s

ρ(s)
[
Vπ(s)− VπK

(s)
]
1
{
m(s, π(s)) ≥ 1

}
1{EDSD}

]
=: T2

+ ED

[∑
s

ρ(s)
[
Vπ(s)− VπK

(s)
]
1
{
m(s, π(s)) ≥ 1

}
1{EcDSD}

]
=: T3

where ρ(s) is any prior distribution over states s ∈ S . (i) T3 can be trivially upper bounded by δ
1−γ using the bounded

reward assumption and T1 can be bounded by 4C
⋆
S(K+1)2

9(1−γ)2T using the same arguments as in (Rashidinejad et al., 2021).
(ii) We now proceed to bound T2. Using Lemma D.1,

T2 ≤
γK

1− γ
+ 2

K∑
k=1

ED,νπ
K−k

[
bk(s, π(s))1

{
m(s, π(s)) ≥ 1

}]
.

By definition,
∑∞

k=0 ν
π
k = µπ

1−γ . Using Lemma D.3 and Lemma 14 of (Rashidinejad et al., 2021),

ED,νπ
K−k

[
bvk(s, π(s))1

{
m(s, π(s)) ≥ 1

}]
≤ ED,νπ

K−k

[ α log(1/δ)√
m(s, π(s))

1
{
m(s, π(s)) ≥ 1

}]
≤ Eνπ

K−k

[
16α log(1/δ)

√
1

Tµ(s, π(s))

]
.

Using Lemma D.2, we have

K∑
k=1

Eνπ
K−k

[
1√

µ(s, π(s))

]
=

K∑
k=1

∑
s

νπK−k(s, π(s))
1√

µ(s, π(s))

=
∑
s

[ K∑
k=1

νπK−k(s, π(s))
] 1√

µ(s, π(s))

By definition,
∑∞

k=0 ν
π
k = µπ

1−γ . Therefore, we have

K∑
k=1

Eνπ
K−k

[
1√

µ(s, π(s))

]
≤
∑
s

µπ(s, π(s))

1− γ
1√

µ(s, π(s))
.

Using the concealability assumption (Assumption 4.1), µπ(s,π(s))
µ(s,π(s)) ≤ C

⋆

, we have that

∑
s

µπ(s, π(s))

1− γ
1√

µ(s, π(s))
≤
√
C⋆

1− γ
∑
s

√
µπ(s, π(s))
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Using Cauchy-Schwarz inequality, we have
√
C⋆

1− γ
∑
s

√
µπ(s, π(s)) ≤

√
C⋆S

1− γ

√∑
s

µπ(s, π(s)) =

√
SC⋆

1− γ
.

Therefore,

2
K∑

k=1

Eνπ
K−k

[
16α log(1/δ)

√
1

Tµ(s, π(s))

]
≤ 32α log(1/δ)

1− γ

√
SC⋆

T
.

F. Proof of Theorem 4.4
The proof of Theorem 4.4 is similar to the proof of Theorem 1 in (Yan et al., 2023). The main difference is we use the
DSD as the bonus to replace the Azuma-Hoeffding-type offset.

Now we introduce some notations used in our proof: For all (s, a) ∈ S ×A, we define the transition kernel of (s, a) as

For all t ∈ [T ], (s, a, s′) ∈ S ×A× S, we define

Gt(s
′ | s, a) =

{
1 if (s, a, s′) = (st−1, at−1, st)

0 if otherwise.

For any deterministic policy π, we introduce Gπ : S → ∆(S) and Gπ : S ×A → ∆(S ×A) as

Gπ(s
′ | s) = P(s′ | s, π(s)),

Gπ(s′, a′ | s, a) =

{
P(s′ | s, a) if a′ = π(s′)

0 if otherwise.

We define the marginal distribution over optimal actions as:

ρπ
⋆

(s, a) =

{
ρ(s) if a = π⋆(s),

0 if otherwise.
(F.1)

Then we introduce two technical lemmas that are used for the analysis of Theorem 4.4.
Lemma F.1 (Lemma 8, (Li et al., 2021b)). Consider the Markov chain {s0, s1, · · · } and a stationary distribution µ. For
any 0 < δ < 1, if t ≥ 443tmix

µmin
log 4S

δ , then

∀s ∈ S : P

(
∃s ∈ S :

∣∣∣∣∣
t∑

i=1

1 {si = s} − tµ(s)

∣∣∣∣∣ ≥ 1

2
tµ(s) | s1 = s

)
≤ δ,

where µmin is defined as µmin = mins∈S, a∈A µb(s, a).

Lemma F.2 ((Yan et al., 2023) Lemma 4). For any vector with V ∈ Rd
+, we have

∞∑
j=0

[
γ

(
1 +

1

H

)3
]j 〈

ρ (Gπ⋆)
j
, V
〉
≲

1

1− γ
⟨µπ⋆ , V ⟩+ δ

ST 4(1− γ)
∥V ∥∞.

We proceed by defining the following events:

I :=

{
(s, π⋆(s)) | s ∈ S, µb (s, π

⋆(s)) ≥ δ

ST

}
,

Ic :=
{
(s, π⋆(s)) | s ∈ S, µb (s, π

⋆(s)) <
δ

ST

}
.
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Then we define some quantities related to the learning rates η that are used in our proof:

ηj = (H + 1)/(H + j) , ηt0 =
t∏

j=1

(1− ηj) , ηti =


ηi
∏t

j=i+1(1− ηj) , if t > i

ηi , if t = i

0 , if t < i.

(F.2)

Next, we state a key lemma regarding the step-size which is established in prior work ((Jin et al., 2018) Lemma 4.1), ((Yan
et al., 2023), Lemma 1) and ((Li et al., 2021a), Lemma 1).
Lemma F.3. [(Yan et al., 2023) Lemma 1, (Jin et al., 2018) Lemma 4.1 and (Li et al., 2021a), Lemma 1] The learning
rates in equation F.2 satisfy the following properties for any t ≥ 1 and scalar 1/2 ≤ a ≤ 1:

(i)
∑t

i=1 η
t
i = 1 and ηt0 = 0

(ii) 1
ta ≤

∑t
i=1

1
ia η

t
i ≤ 2

ta

(iii) maxi∈[t] η
t
i ≤ 2H

t and
∑t

i=1(η
t
i)

2 ≤ 2H
t .

Next, we underscore that for each iteration index t ≤ T , nt indicates the number of times (s, a) has been visited prior to
iteration t. An instantiation of this quantity that appears frequently in the analysis is nt(s, π⋆(s)), the number of times a
state-action pair is visited by the optimal policy π⋆. We further define the deterministic policy πt : S → A as:

πt(s) :=

{
argmaxa∈AQt(st−1, a) , if s = st−1 and Vt(s) > Vt−1(s),

πt−1(s) , otherwise .
(F.3)

If there are multiple maxima of Qt(st−1, a), then we set πt(s) as an element of the set of maximizers, i.e., πt(s) ∈
argmaxa∈AQt(st−1, a). Next we state a key lemma regarding the role pessimism plays in limiting the probability the
value function associated with offline data is far from the true optimal value function.

Then we introduce some quantities that we used in (Yan et al., 2023) and our proof.

αj :=

[
γ

(
1 +

1

H

)3
]j T∑

t=1

〈
ρ (Gπ⋆)

j
, V ⋆ − Vt

〉
,

θj :=

[
γ

(
1 +

1

H

)3
]j T∑

t=1

∑
s∈S

[
ρ (Gπ⋆)

j
]
(s, π⋆(s))min

{
bqnt(s,π⋆(s)) (s, π

⋆(s)) ,
1

1− γ

}
,

ξj :=

[
γ

(
1 +

1

H

)3
]j nmix (δ)∑

t=1

〈
ρ (Gπ⋆)

j
, V ⋆ − Vt

〉
+

[
γ

(
1 +

1

H

)3
]j+1 〈

ρ (Gπ⋆)
j+1

, V ⋆ − V0
〉
,

ψj :=

[
γ

(
1 +

1

H

)3
]j T∑

t=nmix (δ)

 ∑
s∈S,a∈A

[
ρπ

⋆
(
Gπ⋆

)j]
(s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,a

(
V ⋆ − Vki(s,a)

)

−
(
1 +

1

H

) [ρπ⋆ (
Gπ⋆)j]

(st, at)

µb (st, at)

nt(st,at)∑
i=1

η
nt(st,at)
i Pst,at

(
V ⋆ − V ki(st,at))]

]
,

ϕj := γj+1

(
1 +

1

H

)3j+2 T∑
t=0

1(st,at)∈I


[
ρπ

⋆ (
Gπ⋆)j]

(st, at)

µb (st, at)
Pst,at

(V ⋆ − Vt)

−
(
1 +

1

H

) ∑
s∈S,a∈A

[
ρπ

⋆
(
Gπ⋆

)j]
(s, a)Ps,a (V

⋆ − Vt)

 .
Now we present an error decomposition lemma used in continuing our proof.
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Lemma F.4 (Regret Decomposition, (Yan et al., 2023)). The error can be bounded as

J(π⋆)− J(π̂) ≤ 1

T
α0 ≤

1

T
( lim
j→+∞

αj +
∞∑
j=0

ξj +
∞∑
j=0

θj +
∞∑
j=0

ψj +
∞∑
j=0

ϕj).

Then we can employ the same proof in (Yan et al., 2023) to have

lim
j→+∞

αj ≤ 0,

∞∑
j=0

ξj ≲
tmix

(1− γ)2
log

1

δ
+

tmix

T 4(1− γ)2
log

1

δ

∞∑
j=0

ψj ≲
C⋆tmix ι

(1− γ)3
log2

(
T

δ

)
+
C⋆Stmix

(1− γ)2
log

(
T

δ

)
,

∞∑
j=0

ϕj ≲
C⋆tmixι

(1− γ)3
log2

(
T

δ

)
+
C⋆Stmix

(1− γ)2
log

(
T

δ

)
.

We note that the reason we can utilize the same analysis as in (Yan et al., 2023) to bound α, ξ, ψ and ϕ is that the only
property utilized in determining these bounds is that Vt is constrained by 1/(1− γ).

Now we bound
∑∞

j=0 θj . We have

∞∑
j=0

θj =
∞∑
j=0

[
γ

(
1 +

1

H

)3
]j T∑

t=1

∑
s∈S

[
ρ (Gπ⋆)

j
]
(s)min

{
bqnt(s,π⋆(s)),

1

1− γ

}

≲
1

1− γ

T∑
t=1

∑
s∈S

µπ⋆(s)min

{
bqnt(s,π⋆(s)),

1

1− γ

}
+

1

ST 3(1− γ)2

≲
∑
s∈S

t̄(s)∑
t=1

µπ⋆(s)

(1− γ)2
+
∑
s∈S

T∑
t=t̄(s)+1

µπ⋆(s)

√
Hι

nt (s, π⋆(s)) (1− γ)4
+

1

T 3(1− γ)2
, (F.4)

where the first inequality is by Lemma F.2 and in the second inequality t̄ is defined as O(tmix /µb (s, π
⋆(s)) log (ST/δ))

together with Lemma D.3.

By Lemma F.1 we know equation F.4 can be bounded as

∑
s∈S

µπ⋆(s)

µb (s, π⋆(s))

tmix ι

(1− γ)2
+
∑
s∈S

T∑
t=t̄(s)+1

µπ⋆(s)

√
Hι

tµb (s, π⋆(s)) (1− γ)4
+

1

T 3(1− γ)2

≲
C⋆Stmixι

(1− γ)2
+
∑
s∈S

µπ⋆ (s, π⋆(s))

√
HTι

µb (s, π⋆(s)) (1− γ)4
+

1

T 3(1− γ)2

≲
C⋆Stmix ι

(1− γ)2
+

√
C⋆HTι

(1− γ)4
∑
s∈S

√
µπ⋆ (s, π⋆(s))

≲
C⋆Stmix

(1− γ)2
+

√
C⋆STι2

(1− γ)5
,

where the first inequality follows from the fact that
∑T

t=1 1/
√
t ≤ 2

√
T , the second inequality uses Assumption 4.1 and

the last inequality is by the Cauchy-Schwarz inequality.

Combine the bound for α, θ, ψ and ϕ, we have

J(π⋆)− J(π̂) ≲

√
C⋆Sι2

T (1− γ)5
+
C⋆Stmixι

T (1− γ)2
+

C⋆tmixι
2

T (1− γ)3
,
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which concludes the proof of Theorem 4.4.

Now we present the important lemma to show the monotonicity and pessimism of the estimated q-function.

Lemma F.5. For all s ∈ S, we have Vt(s) ≤ V πt(s) ≤ V ∗(s) for all s ∈ S and

Q⋆ (s, π⋆(s))−Qt (s, π
⋆(s)) ≤ γ

n∑
i=1

ηni Ps,π⋆(s) (V
⋆ − Vki

) + bqn (s, π
⋆(s)) ,

where n here denote nt(s, π⋆(s)).

Proof of F.5. For any (s, a) ∈ S ×A, we denote k = nt(s, a). We set k0 = 1, and for each 1 ≤ i ≤ N we define

ki := min {{0 ≤ k < T : k > ki−1, (sk, ak) = (s, a)} , T} .

Then we turn to the update rule of the Q-function, we have

(Q⋆ −Qt) (s, a) = r(s, a) + γPs,aV
⋆ −

n∑
i=1

ηni {r(s, a) + γVki
(ski+1)− bqi (s, a)}

=
n∑

i=1

ηni γPs,a (V
⋆ − Vki

) +
n∑

i=1

ηni γ ((P −Gki
)Vki

) (s, a) +
n∑

i=1

ηni b
q
i (s, a), (F.5)

where the second equation is by Lemma F.3 and we use P (s, a) to denote Ps,a.

Now we focus on the case when a = π∗(s). By using Cauchy-Schwarz inequality, we have

|
n∑

i=1

ηni γ ((P −Gki)Vki) (s, a)| ≤
1

1− γ

√√√√(
n∑

i=1

(ηni )
2)× (

n∑
i=1

((P −Gki
)Vki

)
2
(s, π∗(s)))

≤ 1

1− γ

√
H

n

√√√√ n∑
i=1

((P −Gki)Vki)
2
(s, π∗(s))

≤ 1

1− γ

√
H log n

n
bqn(s, π

∗(s)), (F.6)

where the second inequality is by Lemma F.3 and the last inequality is by Theorem 3.1 combined with the definition of the
bonus in the Algorithm 3 (

√
ibqi ≤

√
nbqn).

Combining Lemma F.3, equation F.5 and equation F.6, we have

(Q⋆ −Qt) (s, π
⋆(s)) ≤ γ

n∑
i=1

ηni Ps,π⋆(s) (V
⋆ − Vki

) + bqn (s, π
⋆(s))

for all s ∈ S and t ∈ [T ].

Now we turn to prove that V πt ≥ Vt, first we prove

(Qπt −Qj) (s, πt(s)) ≥ γPs,πt(s) (V
πt − Vj)1 {nt (s, πt(s)) ≥ 1} (F.7)

holds for all s ∈ S, and t ∈ [T ].
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Similar to the decomposition in equation F.5, we have

(Qπt −Qj) (s, πt(s))

= (r + γPV πt) (s, πt(s))−
nj(s,πt(s))∑

i=1

η
nj(s,πt(s))
i {r (s, πt(s)) + γVki

(ski+1)− bqi (s, πt(s))}

=

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i γ

{
Ps,πt(s) (V

πt − Vki
) + ((P −Gki

)Vki
) (s, πt(s))

}
+

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i bqi (s, πt(s))

≥

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i

 γ min
1≤i≤n

Ps,πt(s) (V
πt − Vki) +

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i γ ((P −Gki)Vki) (s, πt(s))

+

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i bqi (s, πt(s))

≥ γPs,πt(s) (V
πt − Vt) +

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i γ ((P −Gki

)Vki
) (s, πt(s)) +

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i bqi (s, πt(s)) ,

(F.8)

where the last inequality is by the fact that Vt is non-decreasing in t.

By Theorem 3.1 and the definition of the bonus in the Algorithm 3, we have

γ ((P −Gki)Vki) (s, πt(s)) ≲ bqi (s, πt(s)), (F.9)

holds for all s ∈ S and i ∈ [T ], then we could combine equation F.9 and equation F.8 to conclude equation F.7.

Now we continue with equation F.7. By the update rule of Algorithm 3, there exists j(t) ≤ t such that Vt(s) = Vj(t)(s) =

Qj(t)

(
s, πj(t)(s)

)
and πt(s) = πj(t)(s). Hence we have

(V πt − Vt) (s) = Qπt (s, πt(s))−Qj(t)

(
s, πj(t)(s)

)
≥ min

{
γPs,πt(s)

(
V πt − Vj(t)

)
, 0
}

≥ min
{
γPs,πj(t)(s) (V

πt − Vt) , 0
}
,

where the second inequality is by equation F.7 and the last inequality is by the monotonicity of V t. Now we set smin =
argmins∈S (V πt − Vt) (s), then for all s ∈ S we have

(V πt − Vt) (s) ≥ (V πt − Vt) (smin) ≥ min
{
γPsmin,πj(t)

(smin) (V
πt − Vt) , 0

}
≥ min {γ (V πt − Vt) (smin) , 0} ,

where the second inequality uses that smin = argmins∈S (V πt − Vt) (s). Then we have (V πt − Vt) (smin) ≥ 0. Hence,
we conclude the proof.
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Figure 7: The DeepSea MDP

G. Additional Experiments and Details
In this section, we expand upon the details required for the experiments presented in Sec. 5 as well as provide an expanded
set of experiments for the purpose of rounding out the validation. All datasets included one sampled optimal trajectory
to satisfy our assumption of Single-Policy Concentrability (Assumption 4.1). We further clipped the minimum transition
probability in all environments except Frozen Lake to a small number (10−6 for Prior, DeepSea and 10−2 for Random,
Portfolio) to ensure calculated DSD values were more stable. All experiments were run on an AWS c5.2xlarge instance
except for the Random MDP experiments which used a cluster with an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz and
252 GB of RAM. First, we discuss the different environments.

Portfolio Optimization. We consider portfolio optimization (Neuneier, 1997; Moody & Saffell, 2001), where the goal is
to select a series of asset allocations, given a series of prices and instantaneous returns. For details refer Appendix G.2.1.
The ordering of states is by the asset index (1, .., k) from lowest to highest asset value. For example, if we consider the states
of 3 assets priced between [50, 55] with five discretized values sa = (50, 51, 50), sb = (50, 51, 52) and sc = (51, 50, 50),
then sa < sb < sc in our ordering. In this example, a negative cyclic permutation would be as follows ∨sa = (50, 50, 55),
∨sb = (50, 51, 51) and ∨sc = (50, 55, 55). This ordering permits calculating DSD.

Experimentally, we consider 3 assets, and each is constrained to lie in the interval [50, 100] which is discretized into
five equally-spaced distinct values yielding a total of 53 = 125 states. The action space is discretized into five possible
values along each asset allocation in [0, 1] with valid actions being vectors whose values sum to one yielding a total of 15
distinct actions. The transition probabilities were chosen from a uniform distribution on [0, 1] and normalized. Returns are
calculated over 200 steps.

Frozen Lake. Frozen Lake is a discrete state-action environment with 16 states and 4 actions (up/down/left/right). An agent
starts on the top left of a 4x4 grid and must reach the bottom right while avoiding frozen states. An additional randomness
is present due to a “slip” factor that causes perpendicular movement to a chosen direction with uniform probability. We
order the states based on the row and column, with default indexing provided by Gym (Brockman et al., 2016). Episodes
were terminated based on reaching the goal or a hazard.

DeepSea MDP. The DeepSea MDP (Osband & Van Roy, 2017a) is a sparse reward environment that follows a chain-like
structure as shown in Fig. 7. The agent starts from the left (s1) and is allowed to swim either left or right. All states have
a zero reward except the final transition from state sN−1 to sN . Upon taking the ‘swim right’ action, the agent is allowed
to transition to the adjacent states given a certain probability as shown. The agent is allowed to move left deterministically
upon taking the ‘swim left’ action. Thus without a sampled optimal trajectory, it is difficult for the agent to explore and
reach the final state. States were ordered from left to right in the chain. To make the offline data sufficiently challenging,
episode lengths were 4 steps longer than the total number of states, i.e. 68 steps long for the 64 state MDP and 132 steps
long for the 128 state MDP.

Prior MDP. Unlike the structured environments discussed, we also consider a more general MDP from (Markou & Ras-
mussen, 2019) inspired by (Osband & Van Roy, 2017b). Here the state transitions from s to s′ given action a are sampled
from a Categorical variable where the probabilities are from a Dirichlet prior with κ = 1. The reward values for a given
(s, a, s′) is set by sampling a Normal distribution whose mean and precision are set from a Normal-Gamma prior with
parameters (µ0, λ, α, β) = (0.00, 1.00, 4.00, 4.00). The final rewards are clipped to lie between [−1, 1] since our penalties
assume |r| < 1. DSD values were calculated using the given state indexing. Each episode was sampled for 100 time steps.

Random MDP. We experimented on another sparser Random MDP variant (pym, 2015) with 64 states and 64 actions. Here
the transition probabilities are sampled from a uniform distribution between [0, 1]. Next a mask is calculated by sampling
the same uniform distribution |S|2|A| times, fixing a threshold sampled from the uniform distribution, and setting the mask
values below the threshold to zero. Finally the transition probabilities are normalized for each (s, a) pair. The rewards for
each transition are sampled uniformly between [−1, 1]. We order the states using the given state indexing to calculate the
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DSD values. Episodes were sampled with a 100 step horizon.

G.1. Hyperparameter Selection and Implementation Details

For hyperparameter selection we permit all algorithms one final ‘learned policy’ evaluation on the environment. Much prior
work (Agarwal et al., 2020) has worked with this same assumption and we provide this advantage to all tested algorithms
fairly. An alternative would be to choose an Offline Policy Evaluation (OPE) approach (Zhang & Jiang, 2021) to select
hyperparameters.

In this section, we detail the hyperparameter selection of the pessimistic penalty coefficient α in equation 3.8-equation 3.9,
the coefficients used in the penalty in (Rashidinejad et al., 2021) which are Vmax, an upper-bound on the value function,
and L, which is a sample size and state-cardinality, dependent constant. In the paper, L = Lc[log (2(T + 1)SA/δ] where
Lc = 2000 but we find experimentally to hand-tune this quantity according to a grid-search to be more effective. In Table
4 we present the range of values used, as well as the actually selected value for each experimental instance over all seeds.
Further note that value iteration is a learning rate-free method, so there is no valid concept of learning rate η here.

Similarly, Table 5 requires specifying a learning rate, a penalty coefficient α for DSD, or otherwise a multiplicative constant
Cb that determines the scale of the penalty in (Yan et al., 2023). In this reference, minimal guidance is given on how to select
Cb for suitable performance in practice, so we performed a grid-search. We report the used value for each environment.

Task Hyperparameter Definition Value Range Selection

R
an

do
m α equation 3.8 [0.01, 0.1, 1, 10] 0.1

Lc (Rashidinejad et al., 2021) LCB Coef. [10−3, ..., 103] 0.03
Vmax (Rashidinejad et al., 2021) Value Upper-Bound [1, 50, 100] 1

Po
rt

fo
lio α equation 3.8 [0.01, 0.1, 1, 10] 0.1

Lc (Rashidinejad et al., 2021) LCB Coef. [10−3, ..., 103] 1000
Vmax (Rashidinejad et al., 2021) Value Upper-Bound [1, 50, 100] 50

Pr
io

r α equation 3.8 [0.01, 0.1, 1, 10] 0.1
Lc (Rashidinejad et al., 2021) LCB Coef. [10−3, ..., 103] 0.3
Vmax (Rashidinejad et al., 2021) Value Upper-Bound [1, 50, 100] 2

D
ee

pS
ea α equation 3.8 [0.01, 0.1, 1, 10] 0.1

Lc (Rashidinejad et al., 2021) LCB Coef. [10−3, ..., 103] 10−3

Vmax (Rashidinejad et al., 2021) Value Upper-Bound [1, 50, 100] 1

Fr
oz

en
L

ak
e α equation 3.8 [0.01, 0.1, 1, 10] 0.01

Lc (Rashidinejad et al., 2021) LCB Coef. [10−3, ..., 103] 316
Vmax (Rashidinejad et al., 2021) Value Upper-Bound [1, 50, 100] 1

Table 4: Hyperparameters for the Value Iteration experiments. A grid search was carried over these parameter ranges for
each seed of a random number generator, which determines the initialization. Then, the reported value (by a majority
selection over the seeds) is under the “Selection” column. Notes: 13 log. spaced values, Lc = 2000 in (Rashidinejad et al.,
2021) in each row.

G.2. Additional Experiments

In this section, we provide more details of the tasks specified in Sec. 5. Recall that these contain a portfolio optimization
task, Frozen Lake within OpenAI gym, and Random MDP with 64 States and Actions for a general setting.

G.2.1. PORTFOLIO OPTIMIZATION

To bring out the value addition using this new information-directed approach captured by IPM, we consider a simple
financial setting of offline portfolio optimization where the historical datasets lack information in all regions of the asset-
action space. When one wants to learn a safe policy from historical data that performs well under previously unobserved
asset values, the new pessimism introduces an information-theoretic regularization using information available only in
the dataset. While this is best one could hope to achieve with no active data collection, the Stein information-directed
pessimism comes closer to the true average return values than just using probabilistic bounds based ones as in (Rashidinejad
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Task Hyperparameter Definition Value Range Selection

R
an

do
m η Learning Rate [10−1, 10−0.5, 0.5, 1] 0.1

α equation 3.9 [0.01, 0.1, 1, 10] 0.1
Cb(Yan et al., 2023) LCB Coef. [10−2, ..., 104] 100.0

Po
rt

fo
lio η Learning Rate [10−1, 10−0.5, 0.5, 1] 0.1

α equation 3.9 [0.01, 0.1, 1, 10] 0.1
Cb(Yan et al., 2023) LCB Coef. [10−2, ..., 104] 0.01

Pr
io

r η Learning Rate [10−1, 10−0.5, 0.5, 1] 0.1
α equation 3.9 [0.01, 0.1, 1, 10] 0.1

Cb(Yan et al., 2023) LCB Coef. [10−2, ..., 104] 0.01

D
ee

pS
ea η Learning Rate [10−1, 10−0.5, 0.5, 1] 0.5

α equation 3.9 [0.01, 0.1, 1, 10] 0.1
Cb(Yan et al., 2023) LCB Coef. [10−2, ..., 104] 10.0

Fr
oz

en
L

ak
e η Learning Rate [10−2, 10−1, 10−0.5, 0.5, 1] 0.01

α equation 3.9 [0.01, 0.1, 1, 10] 0.01
Cb (Yan et al., 2023) LCB Coef. [10−2, ..., 104] 0.01

Table 5: Hyperparameters for the Q-learning experiments. A grid search was carried over these parameter ranges for each
seed of a random number generator, which determines the initialization. Then, the reported value (by a majority selection
over the seeds) is under the “Selection” column.

et al., 2021; Uehara et al., 2023).

Here we consider the formulation of the portfolio optimization problem in the framework of MDP. Portfolio optimization
is one of the most fundamental and important applications in finance, with the goal of finding an allocation of the invest-
ments in line with the preferences of clients. We consider a simple version that focuses on just the first moment, unlike
the traditional setup that uses higher moments like variance, skewness etc, to illustrate the performance of the proposed
algorithm. Let ν1, ν2, · · · , νk denote the k available assets in a portfolio. Assume that each asset νi can take positive
discrete values inside some set Si ⊂ R+. Let S = S1 × S2 × · · ·Sk denotes the set of all possible combinations of values
that the assets can take. Let a finite set A ⊂ {a ∈ Rk|

∑k
i=1 ai = 1, ai ≥ 0}, which is the k−dimensional probability

simplex. Here each a = (a1, a2, · · · , ak) ∈ A is an allocation of the principal to each of the assets ν1, ν2, · · · , νk: where
the proportion ai is allocated to asset νi for each i ∈ [k]. Let the transition kernel P(s′ | s, a) : S × A → ∆(S) represent
the market dynamics. The expected return of choosing an allocation a in state s is given by

(r̂t :=)R̂(st, at) =
∑
j

aj(ν
st+1

j − νstj )/νstj .

where νsj denotes the value of asset νj in state s. Our ordering of states is by our asset index (1, .., k) from lowest to
highest asset value. For example, if we consider the states of 3 assets priced between [50, 55] with five discretized values
sa = (50, 51, 50), sb = (50, 51, 52) and sc = (51, 50, 50), then sa < sb < sc in our ordering. Using this defined ordering
we calculate the discrete Stein discrepancy.

Table 6 expands upon the results given in Sec. 5 to include all data sampling scenarios, and studies the role of the size
of the offline data set (which may be also found in Fig. 8, and 15). We further include results with a smaller asset price
range ([50, 55]) to showcase the effects of the reward range on the algorithm performance. This causes the absolute reward
|ri| at time step i to be |ri| < 5/55 vs |ri| < 50/55 for the asset price range [50, 100], i.e. effectively reducing reward
variance given the same transition matrix. Of note is that prior pessimism-based offline RL algorithms (VI-LCB) require
further modifications to work well in practice. A penalty free variant (VI-Vanilla) performs significantly better albeit with
no guarantees on optimal behaviour, so any good performance is just an artifact of the specific dataset. Our approach with
a DSD-based penalty is shown to improve upon this, highlighting the benefits of the approach to offline RL problems in
the financial domain.

We note how the reward range affects the gains observed by adding a pessimism term into our update. We posit this gap in
performance is due to the higher reward variance causing a larger gap from the true expected return for a given policy.
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AR Data Nep
T

(×103) VI VI-LCB
(P)

VI-LCB
(Td.)

IDP-VI
(Ours)

VI
Vanilla CQL QL IDP-Q

(Ours)
Q

LCB
IDP-Q-KP

(Ours)
[5
0,
10
0]

‘H
ar

d’
31 7.0 62.13 13.05 16.71 48.31 44.65 21.76 52.05 53.02 24.39 51.93
100 22.0 62.19 12.37 16.42 54.20 51.96 32.24 55.41 57.54 33.42 55.67
316 70.0 62.16 14.22 15.69 59.74 58.44 35.93 56.13 54.42 34.54 56.29

‘R
an

do
m

’

31 6.6 62.11 12.79 17.07 47.16 45.10 12.81 50.45 52.59 21.85 51.10
100 20.0 62.16 11.27 15.97 56.57 54.81 27.16 50.27 52.64 22.58 52.83
316 64.0 62.11 11.04 16.28 60.00 59.84 31.62 51.48 53.20 21.21 54.09

[5
0,
55
]

‘H
ar

d’

31 7.0 6.38 0.25 0.83 4.45 4.43 2.53 5.34 5.33 1.87 5.19
100 22.0 6.39 0.36 0.74 5.13 5.10 2.20 5.70 5.54 3.27 5.52
316 70.0 6.38 0.76 0.60 5.89 5.87 2.06 6.02 5.44 3.90 5.41

1000 220.0 6.39 0.24 0.84 6.35 6.31 2.50 6.04 5.54 4.64 5.43

Table 6: Mean Return in the Portfolio Optimization environment for varying dataset sizes and asset price ranges over 5
differently seeded training runs. AR: Asset Price Range ([50, 55] or [50, 100]), Data: Dataset used (‘Easy’, ‘Hard’,
‘Random’), Nep: Number of episodes used to create the dataset, T: Total dataset size i.e. number of (s, a, r, s) tuples, VI
: Value Iteration (Sutton & Barto, 1998) with oracle access to true MDP, VI-LCB (P): VI-LCB (Rashidinejad et al., 2021)
w/ paper reported constants, VI-LCB (Td.): VI-LCB (Rashidinejad et al., 2021) w/ tuned constants, IDP-VI (Ours):
Our IDP-VI algorithm, VI Vanilla: VI-Vanilla with no pessimism penalty term, CQL: Conservative Q-learning after 30
epochs (Kumar et al., 2020), QL: Q-learning (Watkins & Dayan, 1992), IDP-Q (Ours): Our IDP-Q algorithm, Q-LCB:
Q-learning with LCB (Shi et al., 2022), IDP-Q-KP (Ours): Our IDP-Q algorithm with Known Transition Probabilities to
calculate DSD Penalty.

G.2.2. FROZEN LAKE

Here we report alternate data sampling and offline data set size ablation studies for Frozen Lake. The results of these com-
parisons are given in Table 7. While model-free techniques (QL, IDP-Q) exhibit greater performance than the model-based
(or value iteration based) variants, we note our pessimistic update (IDP-Q) is useful to get closer to optimal performance.
This gap between the two sets of techniques may be due to the sparse transition matrix causing DSD values to be harder to
compute in a stable manner. See also Fig. 16, 18, and 17 for visualizations.

Data Nep
T

(×103) VI VI-LCB
(P)

VI-LCB
(Td.)

IDP-VI
(Ours)

VI
Vanilla CQL QL IDP-Q

(Ours)
Q

LCB
IDP-Q-KP

(Ours)

‘E
as

y’

100 6.0 0.73 0.01 0.08 0.48 0.49 0.35 0.51 0.54 0.60 0.46
316 18.0 0.73 0.05 0.12 0.62 0.64 0.43 0.71 0.65 0.76 0.54

1000 59.0 0.73 0.00 0.15 0.66 0.62 0.66 0.70 0.66 0.75 0.64
3162 190.0 0.74 0.00 0.14 0.64 0.62 0.75 0.74 0.61 0.75 0.63

‘H
ar

d’

100 0.9 0.72 0.04 0.10 0.31 0.17 0.12 0.64 0.52 0.15 0.62
316 2.7 0.73 0.03 0.16 0.51 0.35 0.09 0.50 0.52 0.33 0.67

1000 8.8 0.73 0.01 0.17 0.52 0.33 0.09 0.69 0.68 0.52 0.73
3162 28.0 0.73 0.00 0.21 0.44 0.28 0.12 0.69 0.73 0.74 0.68

‘R
an

do
m

’ 100 0.9 0.72 0.00 0.09 0.50 0.34 0.05 0.31 0.43 0.20 0.46
316 2.5 0.72 0.00 0.11 0.64 0.51 0.06 0.32 0.37 0.28 0.54

1000 7.8 0.74 0.04 0.17 0.70 0.63 0.08 0.72 0.73 0.05 0.71
3162 24.0 0.73 0.02 0.10 0.63 0.62 0.08 0.74 0.70 0.13 0.76

Table 7: Mean test performance on Frozen-Lake-v1 for varying dataset sizes over 5 differently seeded training runs. Data:
Dataset used (‘Easy’, ‘Hard’, ‘Random’), Nep: Number of episodes used to create the dataset, T: Total dataset size i.e.
number of (s, a, r, s) tuples, VI : Value Iteration (Sutton & Barto, 1998) with oracle access to true MDP, VI-LCB (P):
VI-LCB (Rashidinejad et al., 2021) w/ paper reported constants, VI-LCB (Td.): VI-LCB (Rashidinejad et al., 2021) w/
tuned constants, IDP-VI (Ours): Our IDP-VI algorithm, VI Vanilla: VI-Vanilla with no pessimism penalty term, CQL:
Conservative Q-learning after 30 epochs (Kumar et al., 2020), QL: Q-learning (Watkins & Dayan, 1992), IDP-Q (Ours):
Our IDP-Q algorithm, Q-LCB: Q-learning with LCB (Shi et al., 2022), IDP-Q-KP (Ours): Our IDP-Q algorithm with
Known Transition Probabilities to calculate DSD Penalty.
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G.2.3. PRIOR MDP

Observing the Prior MDP results in Table. 8 and Fig. 9, 10, and 11 we note the strong performance of Q-LCB on the
‘Easy’and ‘Hard’datasets due to the relatively large amount of optimal transition data provided. In the ‘Random’dataset
however we see the strengths of our DSD-based approach able to capture the multi-modal nature of the problem with
insufficient optimal data. We also note how the Q-learning variant (IDP-Q) may have some instabilities in calculating the
DSD value when dealing with low probability state transitions (clipped at 10−6 for the PriorMDP environment) leading
to a perfomance impact which can occur with the larger sampled datasets (Fig. 10). This is less likely to occur in the
Value Iteration variant of our algorithm due to a larger batch size used during each update allowing a more stable DSD
calculation. A carefully constructed sampling function or a smoothing function on the penalty could be used to alleviate
this effect.

Data Nep
T

(×104) VI VI-LCB
(P)

VI-LCB
(Td.)

IDP-VI
(Ours)

VI
Vanilla CQL QL IDP-Q

(Ours)
Q

LCB
IDP-Q-KP

(Ours)

‘E
as

y’

100 3.0 29.54 -1.13 4.19 12.35 2.18 8.50 29.33 29.44 9.93 26.07
316 9.5 29.36 2.48 4.98 28.64 4.23 10.39 29.70 29.32 30.27 28.49
1000 30.0 29.48 0.30 10.33 30.31 8.39 11.91 29.61 25.46 30.31 27.20
3162 95.0 30.02 1.02 24.44 30.16 14.01 15.56 29.82 27.77 30.10 28.51

‘H
ar

d’

100 1.1 29.88 3.42 4.46 6.10 3.44 2.70 16.27 17.23 1.14 15.57
316 3.5 29.54 0.87 5.67 12.80 4.88 3.96 21.75 21.06 29.26 17.34
1000 11.0 29.37 -0.82 7.11 16.84 4.52 5.53 24.08 23.88 30.31 20.30
3162 35.0 29.75 1.00 11.62 21.68 11.65 6.54 26.13 11.69 30.47 24.12

‘R
an

do
m

’ 100 1.0 29.91 3.16 4.27 7.20 3.70 1.01 9.05 10.96 0.49 9.49
316 3.2 29.68 -0.03 7.73 10.94 7.36 1.86 11.68 13.30 7.71 12.40
1000 10.0 29.31 -1.37 7.94 18.79 8.23 3.59 14.25 15.99 7.30 15.88
3162 32.0 29.61 -3.27 12.93 23.14 12.90 3.41 15.81 12.05 7.41 15.50

Table 8: Mean Return on PriorMDP 64x64 for varying dataset sizes over 5 differently seeded training runs. Data: Dataset
used (‘Easy’, ‘Hard’, ‘Random’), Nep: Number of episodes used to create the dataset, T: Total dataset size i.e. number
of (s, a, r, s) tuples, VI : Value Iteration (Sutton & Barto, 1998) with oracle access to true MDP, VI-LCB (P): VI-LCB
(Rashidinejad et al., 2021) w/ paper reported constants, VI-LCB (Td.): VI-LCB (Rashidinejad et al., 2021) w/ tuned
constants, IDP-VI (Ours): Our IDP-VI algorithm, VI Vanilla: VI-Vanilla with no pessimism penalty term, CQL: Con-
servative Q-learning after 30 epochs (Kumar et al., 2020), QL: Q-learning (Watkins & Dayan, 1992), IDP-Q (Ours): Our
IDP-Q algorithm, Q-LCB: Q-learning with LCB (Shi et al., 2022), IDP-Q-KP (Ours): Our IDP-Q algorithm with Known
Transition Probabilities to calculate DSD Penalty.

G.2.4. DEEPSEA

As expected, the unimodal nature of the DeepSea MDP allows for a reasonable performance by existing model-based
approaches (VI-LCB). From the Table 9 and Fig. 19 we can see that our method (IDP-VI) is performant in these sparse
reward, unimodal settings as well.

G.2.5. RANDOM MDP

In Table 2, Fig. 12 we note how existing pessimism-based approaches require significantly larger data sizes to achieve
comparable results to our DSD-based algorithm. Returns are calculated over 100 steps and results are averaged over 5
differently seeded runs. We further point out for the ‘Easy’ case (Fig. 14) how the VI Vanilla approach (without pessimism)
keeps a consistent gap with the upper bound in performance (indicated by the Value Iteration curve) highlighting the need
for pessimism in Offline RL approaches in all data size regimes. For the ‘Random’case, we see how model-free approaches
(QL, IDP-Q) are insufficient and model-based approaches (IDP-VI, VI-Vanilla) use the data efficiently to learn a model of
the environment that can yield the optimal policy.

G.3. Value function plots

To visualize the value functions of our environments, we include the plots over different states in Fig. 20. We further
consider environments with an explicit bimodal distribution from which we sample the transition probabilities. The plots
are indicative of the multi-modal nature of our problem.
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|S| Data Nep
T

(×104) VI VI-LCB
(P)

VI-LCB
(Td.)

IDP-VI
(Ours)

VI
Vanilla CQL QL IDP-Q

(Ours)
Q

LCB
IDP-Q-KP

(Ours)

64

‘R
an

do
m

’

100 0.69 2.01 0.00 0.07 0.04 0.02 0.62 0.03 0.05 0.00 0.05
316 2.2 2.02 0.00 0.03 0.05 0.04 0.62 0.01 0.04 0.00 0.04
1000 6.8 2.03 0.01 0.72 0.73 0.72 0.62 0.01 0.03 0.00 0.02
3162 22.0 2.03 0.00 1.38 1.42 1.39 0.31 0.00 0.03 0.01 0.02

12
8

‘R
an

do
m

’

100 1.3 2.15 0.00 0.36 0.37 0.31 0.93 0.13 0.10 0.00 0.13
316 4.2 2.14 0.02 0.20 0.20 0.12 0.92 0.04 0.04 0.00 0.04
1000 13.0 2.16 0.00 0.98 0.96 0.94 0.92 0.02 0.04 0.00 0.10
3162 420.0 2.14 0.00 2.27 2.40 2.13 0.32 0.03 0.09 0.08 0.09

Table 9: Mean Return in the DeepSea environment for different state space sizes over 5 differently seeded training runs.
|S| : Size of State space (64 or 128), Data: Dataset used (‘Random’), Nep: Number of episodes used to create the dataset,
T: Total dataset size i.e. number of (s, a, r, s) tuples, VI : Value Iteration (Sutton & Barto, 1998) with oracle access
to true MDP, VI-LCB (P): VI-LCB (Rashidinejad et al., 2021) w/ paper reported constants, VI-LCB (Td.): VI-LCB
(Rashidinejad et al., 2021) w/ tuned constants, IDP-VI (Ours): Our IDP-VI algorithm, VI Vanilla: VI-Vanilla with no
pessimism penalty term, CQL: Conservative Q-learning after 30 epochs (Kumar et al., 2020), QL: Q-learning (Watkins &
Dayan, 1992), IDP-Q (Ours): Our IDP-Q algorithm, Q-LCB: Q-learning with LCB (Shi et al., 2022), IDP-Q-KP (Ours):
Our IDP-Q algorithm with Known Transition Probabilities to calculate DSD Penalty.

Data Nep
T

(×104) VI VI-LCB
(P)

VI-LCB
(Td.)

IDP-VI
(Ours)

VI
Vanilla CQL QL IDP-Q

(Ours)
Q

LCB
IDP-Q-KP

(Ours)

‘E
as

y’

100 3.0 38.19 -0.17 7.30 25.25 4.66 10.21 37.36 35.07 9.68 37.13
316 9.5 38.19 -0.18 16.29 36.77 6.44 14.85 37.40 26.29 35.57 36.91
1000 30.0 38.11 0.04 35.32 38.26 10.06 19.53 37.41 34.74 37.25 37.25
3162 95.0 38.22 -0.21 38.25 38.37 27.27 23.18 37.43 34.75 37.37 36.93

‘H
ar

d’

100 1.1 37.31 -0.55 4.18 10.51 3.92 3.01 27.64 29.54 0.24 27.08
316 3.5 37.35 0.16 5.16 20.83 5.31 7.52 33.60 30.74 32.44 32.21
1000 11.0 37.34 -0.85 9.89 32.61 8.77 8.75 36.10 27.59 36.94 32.92
3162 35.0 37.18 0.68 19.60 36.53 19.63 8.77 36.43 33.27 37.46 34.35

‘R
an

do
m

’ 100 1.0 37.31 0.51 4.93 5.69 4.69 2.06 11.89 15.15 -0.67 18.27
316 3.2 37.34 -2.03 13.08 15.16 13.31 4.80 13.09 16.18 2.56 21.42
1000 10.0 37.07 0.33 23.22 30.44 23.06 4.61 21.03 23.83 3.67 25.32
3162 32.0 37.03 1.44 31.04 35.80 31.83 4.04 23.03 25.54 2.41 26.65

Table 10: Mean Return on Random 64x64 for varying dataset sizes over 5 differently seeded training runs. Data: Dataset
used (‘Easy’, ‘Hard’, ‘Random’), Nep: Number of episodes used to create the dataset, T: Total dataset size i.e. number
of (s, a, r, s) tuples, VI : Value Iteration (Sutton & Barto, 1998) with oracle access to true MDP, VI-LCB (P): VI-LCB
(Rashidinejad et al., 2021) w/ paper reported constants, VI-LCB (Td.): VI-LCB (Rashidinejad et al., 2021) w/ tuned
constants, IDP-VI (Ours): Our IDP-VI algorithm, VI Vanilla: VI-Vanilla with no pessimism penalty term, CQL: Con-
servative Q-learning after 30 epochs (Kumar et al., 2020), QL: Q-learning (Watkins & Dayan, 1992), IDP-Q (Ours): Our
IDP-Q algorithm, Q-LCB: Q-learning with LCB (Shi et al., 2022), IDP-Q-KP (Ours): Our IDP-Q algorithm with Known
Transition Probabilities to calculate DSD Penalty.
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Figure 8: Performance of the policies obtained during training in the Portfolio Environment with asset range [50, 100] (Hi)
for the ‘Hard’ Dataset and ‘Random’ Dataset. The figures display the average portfolio return obtained from the policies
trained using different algorithms on the various data set sizes used. The figures indicate more stable performance with our
DSD penalty.
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Figure 9: Performance of the policies obtained during training in the Prior MDP Environment with 64 states and 64 actions
for the ‘Easy’ Dataset over 5 differently seeded training runs. Among model-based methods, the VI-LCB approach is the
most sample efficient. Yet given the large amount of optimal data provided, model-free methods perform remarkably well.

Figure 10: Performance of the policies obtained during training in the Prior MDP Environment with 64 states and 64
actions for the ‘Hard’ Dataset over 5 differently seeded training runs. All model-free methods perform comparably with
Q-LCB being able to perform well given enough (noisy) optimal data.
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Figure 11: Performance of the policies obtained during training in the Prior MDP Environment with 64 states and 64
actions for the ‘Random’ Dataset over 5 differently seeded training runs. It is clear from the figures that VI-LCB is the
most sample efficient method in the multimodal setting given minimal optimal data. We posit this is due to its ability to
characterize the mismatch more accurately than Azuma-Hoeffding based methods.

Figure 12: Performance of the policies obtained during training on a random MDP with 64 States and 64 Actions for the
‘Hard’ Dataset. We note a consistent gap between competing model-based methods and the optimal score. Model-free
algorithms are more sample efficient (e.g. performance at the 0.1T interval) given enough optimal data.
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Figure 13: Performance of the policies obtained during training on a random MDP with 64 States and 64 Actions for the
‘Random’ Dataset. We note that our form of pessimism helps to reach the optimal performance attained by value iteration
(with oracle knowledge) given enough data.

Figure 14: Performance of the policies obtained during training on a random MDP with 64 States and 64 Actions for the
‘Easy’ Dataset. We note that for the value iteration experiments, concentration bound based pessimism metrics require
significantly larger data to achieve similar performance.

35



Information-Directed Pessimism

Figure 15: Performance of the policies obtained during training in the Portfolio Environment with asset range [50, 55] (Lo)
for the ‘Hard’ Dataset. The figures display the average portfolio return obtained from the policies trained using different
algorithms on the various data set sizes used. The figures indicate more stable performance with our DSD penalty.

Figure 16: Performance of the policies obtained during training in the Frozen Lake Environment for the ‘Hard’ Dataset
over 5 differently seeded training runs. It is clear from the figures that over a range of episodes and samples, the return
using DSD is higher, with the intuition that the penalty is just enough at every state-action to improve learning.
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Figure 17: Performance of the policies obtained during training in the Frozen Lake Environment for the ‘Random’ Dataset
over 5 differently seeded training runs. The figures show comparable performance albeit with slightly increased stability
when using a DSD-based penalty.

Figure 18: Performance of the policies obtained during training in the Frozen Lake Environment for the ‘Easy’ Dataset
over 5 differently seeded training runs. We see that all methods (except VI-LCB) perform comparably given the large
amount of optimal data provided and the simple unimodally structured environment.
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Figure 19: Performance of the policies obtained during training in the DeepSea Environment with 64 states and 128 states
for the ‘Random’ Dataset over 5 differently seeded training runs. Since this is a sparse reward problem a large number of
samples are required for optimal performance. The model-based methods have a comparable advantage since the single
sampled trajectory from the optimal policy in the dataset can be used to construct an accurate environment model yielding
improved performance as shown in the bottom-right.
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Figure 20: Value function plots (estimating discounted returns) over different states for the environments considered show-
ing the multi-modal nature of the problem.
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