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Abstract

Compressed Sensing MRI (CS-MRI) reconstructs images of the body’s internal
anatomy from undersampled and compressed measurements, thereby reducing
scan times and minimizing the duration patients need to remain still. Recently,
deep neural networks have shown great potential for reconstructing high-quality
images from highly undersampled measurements. However, since deep neural
networks operate on a fixed discretization, one needs to train multiple models for
different measurement subsampling patterns and image resolutions. This approach
is highly impractical in clinical settings, where subsampling patterns and image
resolutions are frequently varied to accommodate different imaging and diagnostic
requirements. We propose a unified model that is robust to different subsampling
patterns and image resolutions in CS-MRI. Our model is based on neural operators,
a discretization-agnostic architecture. We use neural operators in both image and
measurement (frequency) space, which capture local and global image features
for MRI reconstruction. Empirically, we achieve consistent performance across
different subsampling rates and patterns, with up to 4x lower NMSE and 5 dB
PSNR improvements over the state-of-the-art method. We also show the model is
agnostic to image resolutions with zero-shot super-resolution results. Our unified
model is a promising tool that is agnostic to measurement subsampling and imaging
resolutions in MRI, offering significant utility in clinical settings where flexibility
and adaptability are essential for efficient and reliable imaging.

1 Introduction

Magnetic Resonance Imaging (MRI) [3, 4] is a method of obtaining high-quality images of the body’s
internal anatomy by using magnetic fields and radio waves. MRI is a popular non-invasive imaging
technology, used in numerous medical and scientific applications such as neurosurgery [5], clinical
oncology [6], diagnostic test [7], neuroscience [8], and pharmaceutical research [9]. Despite its
popularity, MRI is greatly limited by a slow data acquisition process, which sometimes requires
patients to remain still for an hour [10, 11]. Hence, accelerating MRI scan times has garnered
tremendous attention [12, 13, 14, 15, 1].

Compressed Sensing (CS) [16], which revolutionized the recovery of signals from compressed data,
utilizes sparse coding [17] to enable MR imaging at sub-Nyquist subsampling rates, significantly
reducing the number of required measurements [18]. In practice, Compressed Sensing MRI (CS-MRI)
reduces acquisition time, substantially increasing the clinical utility of the imaging method. In this
context, MRI can be formulated as an ill-posed inverse problem [19, 20, 1], where prior information
about MR images is essential for successful reconstruction. CS-MRI can also be viewed as image
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Figure 1: (a) We propose a unified model for different CS-MRI reconstruction settings. Existing
models [1, 2] operate on a specific subsampling pattern, and require training additional models for
additional patterns. We propose a single discretization-agnostic model that operates on multiple
subsampling patterns for CS-MRI. (b) Our model (NO-VN) outperforms SOTA in cross-pattern
generalization. Notably, our model achieves consistent performance across different subsampling
patterns. (c) Comparison between our DISCO local integration operator (yellow) and the
standard 2d convolution (red). As resolution increases to continuum, our DISCO local operator
converges to a local integral, whereas the standard convolutional kernel converges to a point-wise
operator in image space. (d) Our model outperforms SOTA (E2E-VN) on zero-shot super-
resolution. Last row: zoomed-in visualization and difference from the ground truth.

recovery from compressed data [13, 21]. CS [22, 13, 23] achieves CS-MRI by assuming a sparsity
prior on the image in a transform domain (e.g., discrete wavelet transform [24]). While sparse
priors have been quite successful in compressing data [25, 26], recent work goes beyond classical
priors and proposes learning the underlying data structures using deep learning [14, 1, 27]. Current
state-of-the-arts [1, 15] follow this approach to find an end-to-end mapping from the undersampled
measurements to the image reconstruction while learning implicit priors directly in the image space
[1, 27] or the frequency domain [28, 29]. While successful, such methods only work for a fixed
discretization (resolution) of the measurement data and output image. On the other hand, in clinical
settings, radiologists need to constantly change resolutions for imaging and diagnosis purposes, which
requires many machine learning models. A unified model that is agnostic to discretizations would
greatly improve efficiency.

Neural operators are a class of deep learning architectures designed to learn maps between infinite-
dimensional function spaces. As such, neural operators are discretization and resolution agnostic,
and thus well equipped for accelerated MRI, where subsampling settings can vary in pattern, rate,
and resolution. In this work, we make the following contributions.

1. We propose a unified model that is robust to different subsampling patterns and image resolutions
in CS-MRI (Fig. 1a). We learn reconstruction priors in function space, which is discretization-
agnostic via neural operators (Fig. 1c). Our model follows an unrolled variational network
design [15, 1], incorporating neural operators (NOs) that operate on both the measurement and
image space. The measurement space neural operator makes our framework agnostic to different
measurement subsampling patterns, and the image space neural operator makes the framework
agnostic to different image resolutions. This approach allows the model to capture both local and
global features of images, leveraging the duality of the image and frequency spaces. To the best
of our knowledge, this is the first application of neural operators to MRI.

2. We empirically demonstrate that our model is robust to different measurement subsampling rates
and patterns (Fig. 1a). Our model performs consistently across these variations, whereas the
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existing existing method drops in performance (Fig. 1b). We achieve up to 4x lower NMSE and 5
dB PSNR improvement from the baseline when evaluating on different subsampling patterns.

3. Finally, we show that our model outperforms the state-of-the-art in zero-shot super-resolution
inference (Fig. 1d)

2 Related Works

Accelerated MRI. One way to accelerate MRI scan speed is parallel imaging, in which multiple
receiver coils acquire different views of the objective interest simultaneously, and then combine
them into a single image [12, 30, 31]. Paired with compressed sensing (CS-MRI), pre-defined
priors or regularization filters can be leveraged to improve reconstruction quality [22, 13]. Recent
works have shown that learned deep-learning priors outperform hand-crafted priors in reconstruction
fidelity. Convolutional neural networks (CNNs) [14, 15, 32, 1], variational networks [15, 1], and
generative adversarial networks (GANs) [14, 33] have all demonstrated superior performance in
CS-MRI reconstruction from subsampled measurements. However, unlike conventional compressed
sensing which operates in the function space, the aforementioned deep learning methods operate on a
fixed resolution. As a result, changes in resolution lead to degradation in performance.

Discretization-Agnostic Learning and Neural Operators. Empirically, researchers have shown
that diffusion models have relatively consistent performance with different measurement subsampling
patterns in accelerated MRI [34]. However, diffusion models usually take more runtime at inference.
Additionally, they are not fundamentally discretization-agnostic by design. Neural operators, as
introduced by [35, 36], are deep learning architectures specifically designed to learn mappings
between infinite-dimensional function spaces. They are discretization-agnostic, allowing evaluation
at any resolution, and converge to a desired operator as the resolution approaches infinity. Neural
operators have empirically achieved good performance across various applications, such as material
science [37], weather forecasting [38], and photoacoustic imaging [39]. Neural operators have various
designs. For example, the Fourier neural operator (FNO) [40], which performs global convolutions,
has shown consistent discretization-agnostic performance in various applications [35]. Other designs
of neural operators [41, 42] rely on integration with locally-supported kernels to capture local features,
which has shown to be useful in applications where local features are important, such as modeling
turbulent fluids. Additionally, neural operators with local integrals can be made efficient with parallel
computing compared to those requiring global integrals. We use neural operators to build our MRI
framework that is agnostic to subsampling patterns and image resolutions.

3 Methods

3.1 CS-MRI with Unrolling

Background. In MRI, images x depicting patient anatomy are reconstructed by acquiring measure-
ments k, in the frequency domain. They are related as

k = F(x) + ϵ (1)

where ϵ is the measurement noise and F is the Fourier transformation. In this paper, we consider
multi-coil MRI [43, 44] data, which images different regions of the anatomy in parallel. The forward
process of the ith coil measures ki = F(Six) + ϵi where Si is a position-dependent sensitivity map
for the ith coil.To speed up the imaging process, measurements are subsampled as k̃ = Mk, where
M is a binary mask that selects a subset of the k-space points. Classical compressed sensing methods
reconstruct the image x̂ by solving an optimization problem

x̂ = argminx
1

2

∑
i

∥∥∥A(x)− k̃
∥∥∥2 + λΨ(x) (2)

where i is coil index, A(·) = MFS(·) is the linear forward operator, and Ψ(x) is a prior regular-
ization term. The optimization objective can be considered as a combination of physics constraint
and prior. While the above optimization can be solved using classical optimization toolboxes, an
increasing line of works uses deep learning for MRI [45, 1]. Among them, unrolled networks [15, 1]
have gained popularity as they incorporate the known forward model, resulting in state-of-the-art
performance. Unrolling, which started with the nominal work of LISTA [46], proposes to design
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Figure 2: MRI reconstruction pipeline. We learn priors in function space with neural operators in
the measurement space KNO and image space INO.

networks using iterations of an optimization algorithm to solve inverse problems. This approach
incorporates domain knowledge (i.e., the forward model) and leverages deep learning to learn implicit
priors from data [47, 48]. In the context of MRI and assuming a differential regularization term, the
optimization problem is expanded to iterative gradient descent steps with injected CNN-based data
priors. Each layer mimics the gradient descent step from xt to xt+1:

xt+1 = xt − ηtA∗(A(xt)− k̃) + λt CNN(xt) (3)

where ηt controls the weight of data consistency term and λt controls that of the data-driven prior
term. The data consistency term samples the data in the frequency domain, hence it is applicable to
any spatial resolution. However, the prior term only operates on a specific resolution with CNNs.
This means when changing the subsampling patterns, one needs another CNN trained for that setting,
which greatly limits the flexibility of the reconstruction system.

Extending to Neural Operators. We learn the prior in function space via discretization-agnostic
neural operators KNO and INO. First, we use a measurement space neural operator KNO to learn
k-space prior k0 = KNO(k̃). Then, x0 = F−1(k0) becomes the input to the unrolled layers, each
of which features a data consistency loss and the image space INO for image prior learning:

xt+1 = xt − ηtA∗(A(xt)− k̃) + λtINO(xt) (4)

Note that we follow existing works [45, 1] and do not include priors on k in each unrolled layer
anymore. Our framework flexibly works for different resolutions.

Framework Overview. Fig. 2 depicts the pipeline of our neural operator framework for MRI
reconstruction. The subsampled measurement k̃ is first fed to a neural operator KNO which operates
in measurement k space to learn global image features and then inverse Fourier transformed to get an
image. Following Eqn. 4, we iterate a few cascades of unrolled layers, consisting of a neural operator
INO which operates in image x space and a data consistency update.

3.2 Neural Operator Designs

Neural operators learn mappings between function spaces and can be used for discretization-agnostic
MRI reconstruction. Since accurate MRI reconstruction is a function of both local and global features
of the image, we propose to incorporate both global and local inductive biases into our neural operator
architecture. We first discuss how we learn local features with local integration operators.

Local Features with Local Integration Operator. Historically, the most common method of
embedding a local inductive bias into deep neural networks has been by using locally-supported
convolutional kernels, as in convolutional neural networks (CNNs). However, standard discrete
convolutional kernels used in CNNs do not satisfy the resolution-agnostic properties of neural
operators. Specifically, [42] shows that CNN-style convolutional kernels converge to pointwise linear
operators as the resolution is increased, instead of the desired local integration in the limit of infinite
resolution. For a kernel κ and input function v defined over some compact subset D ⊂ Rd, the local
convolution operator is given by

(k ⋆ v)(y) =

∫
D

κ(x− y) · v(x) dx. (5)

Given a particular set of input points (xj)
m
j=1 ⊂ D with corresponding quadrature weights qj and

output positions yi ∈ D, [42] adopts the framework of discrete-continuous convolutions (DISCO) [49]
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and approximates the convolution as

(k ⋆ v)(yi) ≈
m∑
j=1

κ(xj − yi) · v(xj)qj . (6)

[42] proposes to parameterize κ as a linear combination of pre-defined basis functions κℓ: κ =∑L
ℓ=1 θ

ℓ · κℓ, where θℓ are learnable parameters. The convolutional kernel is thus parameterized
by a finite number of parameters, independently of the grid on which the kernel is evaluated. Since
we are operating on an equidistant grid on a compact subset of R2, we follow [42] and implement
Eqn. 6 using standard convolutional kernels (thus enjoying the benefits of acceleration on GPUs using
standard deep learning libraries) with two crucial modifications: (1) the kernel itself is defined as a
linear combination of basis functions κℓ, and (2) the size of the kernel scales with the input resolution
so as to remain a fixed size w.r.t. the input domain. We adopt the same basis functions as [42] in our
experiments, and we use the local integration operator as the resolution-agnostic building block for
the measurement space and image space operators.

Global Features. A common neural operator architecture for learning global features is the Fourier
neural operator (FNO) [40]. FNO takes the Fourier transform of the input, truncates the result beyond
some fixed number of modes, and pointwise multiplies the result with a learned weight tensor, which is
equivalent to a global convolution on the input by the convolution theorem. Interestingly, the forward
process of MRI is a Fourier transformation, which means that local operations in measurement
k space are equivalent to global operators in image x space and vice versa, due to their duality.
Following FNO, we could apply a pointwise multiplication between the measurement k and a learned
weight tensor to capture global image features. However, FNO truncates high frequencies, which
are crucial for MRI reconstruction. To address this, we directly apply the DISCO local integration
operator on the measurement space to capture global image features without feature map truncation.

UDNO: the Building Block. Without loss of generality, we make both the image neural operator
INO and measurement neural operator KNO be a local neural operator that captures local features in
the corresponding domain. As discussed earlier, such a design learns both global and local image
features. Each operator consists of multiple sub-layers, which we refer to as the U-Shaped DISCO
Neural Operator, or UDNO. U-shaped networks are one of the most popular architectures in computer
vision and have shown great performance in various applications from medical imaging to diffusion
[31, 50, 51]. The UDNO follows the encoder/decoder architecture of the U-Net [31], with regular
convolutions being replaced by neural operator DISCO layers. Additional details are provided in
Fig.4 and Section A of the appendix.

Loss. The parameters of the proposed neural operator are estimated from the training data by
minimizing the structural similarity loss between the reconstruction x and the ground truth image x∗

L(x̂,x∗) = −SSIM(x̂,x∗), (7)

where SSIM is the Structural Similarity index [52].

4 Experiments

For efficiency, and to focus on comparing the choice of network architecture for learning reconstruc-
tion priors, rather than unrolling dynamics, we conduct multiple-pattern and rate experiments with
single-cascade models.

4.1 Dataset and Setup

The fastMRI Dataset is a large and open dataset of knee and brain MRIs. We use their multi-coil
knee reconstruction subset with 34,742 slices for training and 7,135 slices for evaluation [44].

Subsampling Patterns and Rates. We use equispaced, random, magic, Gaussian, radial, and Poisson
subsampling patterns and 2x, 4x, 6x, and 8x subsampling rates (see Fig. 5). Higher rates result in
sparser k-space samples and shorter imaging-times at the cost of a more difficult inversion process.
Section B in the appendix provides additional subsampling details.

Neural Operator Model. Our neural operator model follows Fig. 2. The KNO (measurement space
neural operator) and INO (image space neural operator) are implemented as UDNOs with 2 input and
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Figure 3: Left: Multi pattern results. We fix the subsampling rate to 2x, and evaluate both models
across different patterns to measure cross-pattern generalization performance. Right: We fix the
pattern to equispaced and vary the subsampling rate.

output channels. This is because complex numbers, commonly used in MRI data, are represented
using two channels: one for the real part and one for the imaginary part. We train both our model and
baseline with a total batch size of 16 across 4 A100 (40G) GPUs. We provide UDNO details, DISCO
kernel basis configurations, and training hyper-parameters in Section B of the appendix.

SOTA Baseline. We compare with the SOTA End-to-End VarNet (E2E-VN) method [1], which
shares a similar network structure with our approach, but uses traditional resolution-dependent CNNs.

Evaluation Protocols. We evaluate image reconstruction performance using normalized mean square
error (NMSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM)
which are standard for the fastMRI dataset and MRI [44].

4.2 Agnostic to Measurement Subsampling

We pre-train both our NO-VN and E2E-VN (SOTA) on 2x equispaced samples for 20 epochs. Result
visualizations are provided in Section C of the appendix. Generally, we observe that the performance
of our NO-VN model withstands variations in measurement subsampling pattern and acceleration
rate, whereas SOTA performance degrades with variation.

Agnostic to Subsampling Patterns. Both pre-trained models are trained for an additional 20
epochs on a small dataset (3,474 samples) of Gaussian, radial, and Poisson 2x accelerated samples.
Visualizations are provided in Section C of the appendix. For irregular patterns, we achieve an
average improvement of 4.269 dB PSNR over the state-of-the-art baseline. On rectilinear patterns,
our performance remains comparable to the baseline. Visualizations are in Fig. 7 of the appendix.

Agnostic to Subsampling Rate. Both pre-trained models are trained for an additional 20 epochs
on a small dataset (3,474 samples) of 2x, 4x, 6x, 8x equispaced accelerated samples. Our model
consistently outperforms the SOTA, achieving 0.409 dB higher PSNR on average. Visualizations are
in Fig. 7 of the appendix.

Number of Cascades. In Section D of the appendix, we present cascade experiments to show that
our architecture improves with more unrolling cascades.

4.3 Zero-Shot Super-Resolution

We pre-train our NO-VN and the E2E-VN (baseline) models on 320x320 samples. We then evaluate
their performance on higher-resolution 640x640 samples. Since k-space interpolation leads to a larger
field of few in image space, we only evaluate at super-resolution in image space (INO). Compared to
our neural operator model, the convolution-based E2E-VN produces reconstructions with noticeable
artifacts, which can be misleading in clinical settings (see Fig.1d). Ensuring the reliability and
consistency of a model is crucial for accurate diagnosis and treatment.
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5 Conclusion

We introduce a unified model for Compressed Sensing MRI (CS-MRI) that overcomes the need for
training multiple deep learning models to handle different subsampling patterns and image resolutions,
which is a common issue in clinical practice. By utilizing neural operators, which are agnostic to
the input discretization, our model captures both local and global features for more flexible MRI
reconstruction. On the fastMRI dataset, our unified model achieves consistent performance across
varying subsampling patterns and outperforms state-of-the-art methods in terms of accuracy and
robustness. The unified model also improves super-resolution tasks. In future work, we aim to explore
super-resolution on higher-resolution MRI datasets, as we are currently limited by the resolution of
the fastMRI dataset. Our approach offers a versatile solution for more efficient and reliable MRI
in medical imaging, with significant utility in clinical settings where flexibility and adaptability to
varying subsampling patterns and resolutions are crucial.
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Appendix

In the appendix, we first present more details of the proposed U-shaped DISCO Neural Operator
(UDNO, in Section A). We then provide more details of the machine learning framework imple-
mentation (Section B) as well as additional numerical and visualization results of the multi-pattern
and multi-rate subsampling experiments (Section C). Finally in Section D we show that our model
performance improves when increasing the number of cascades of the unrolled layers (the INO and
data consistency layer in Fig. 2 ).

A UDNO Architecture

Figure 4: UDNO architecture. We propose a U-shaped neural operator UDNO to capture multi-scale
features of the input. The UDNO uses discrete-continuous convolutions (DISCOs) [49] as the local
integral operator. The final 1x1 convolution allows the module to flexibly project to the desired
number of output channels and is resolution invariant by virtue of being a pointwise operation. The
UDNO is an end-to-end neural operator.

We provide additional details of the proposed UDNO (U-Shaped DISCO Neural Operator) archi-
tecture. Fig. 4 depicts the overall architecture, which mimics the U-Net [53]. We use the updated
implementation of the U-Net in [1]. Our network architecture has two differences. First, all tradi-
tional convolutions are replaced with their DISCO counterparts. Second, transpose convolutions
are replaced by an interpolation upsampling step, followed by a DISCO2d layer, InstanceNorm
layer, and LeakyReLU activation. DISCO2d layers function as drop-in replacements for traditional
2d convolution layers. They do not change the spatial dimension of the input. The UDNO is an
end-to-end neural operator model.

As in the traditional U-Net [53], each encoder block halves the spatial dimensions and doubles
the feature channels. Each decoder step (upsampling + decoder) doubles the spatial dimensions
and halves the feature channels. Skip connections are included, as in the original architecture. All
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Figure 5: Subsampling mask patterns. The visualized patterns are all for the 4x acceleration rate. Top:
Rectilinear patterns. Equispaced, Random, Magic. Bottom: Irregular patterns. Gaussian, Radial,
Poisson

Table 1: k-space subsampling configurations (acceleration and center fraction parameters) used for
MRI experiments.

Alias Acceleration rate Center fraction rate
16x 16 0.02
8x 8 0.04
6x 6 0.06
4x 4 0.08

components of the UDNO operate in the function space and are not tied to a specific discretization,
thus making the model an end-to-end neural operator.

B Additional Implementation Details

We summarize the configurations of different CS-MRI subsampling rates in Table 1 and subsampling
patterns in Fig. 5.

B.1 Learning Sensitivity Maps for Multi-Coil MRI

In reconstruction, the sensitivity map Si for the ith coil is needed for coil reductions and expansions.
Inspired by [1], we use a UDNO with 4 encoder/decoder steps, 8 hidden channels, 0.02 DISCO
radius (assuming the domain is [−1, 1]2), and the kernel basis from [42] with 1 isotropic basis and 5
anisotropic basis rings, each containing 7 basis functions. We use this UDNO to predict the sensitivity
map Si from the input coil measurement ki. We then follow [1] to combine multiple coils weighted
by the corresponding learned sensitivity maps.

B.2 UDNO and DISCO Details

Both the KNO and INO use DISCO layers using the kernel basis from [42] with 1 isotropic basis
and 5 anisotropic basis rings, each containing 7 basis functions. The KNO (measurement space
neural operator) is implemented as a UDNO with 2 input and output channels, 16 hidden channels,
and 4 depth (encoder/decoder steps). KNO DISCO kernels have a radius cutoff of 0.04. The INO
(image-space neural operator) is implemented as a UDNO with 2 input and output channels, 18
hidden channels, and 4 encoder/decoder steps. INO DISCO kernels have a smaller radius cutoff of
0.02 with the same internal basis shape. We train both our model and the baseline with SSIM loss,
0.0003 learning rate, and 16 batch size on 4 A100 (40G) GPUs.
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C Additional Multi-Pattern and Multi-Rate Results

We summarize the numerical results of the proposed neural operator and the end-to-end VarNet
baseline [1]: Table 2 for different subsampling patterns and Table 3 for different subsampling rates.
We also visualize the numerical performance in Fig.6, where we observe that, unlike the baseline
method, the proposed neural operator achieves consistent performance across different subsampling
patterns and rates.

We also present the visual comparisons in Fig.7, where we see the neural operator outperforms the
baseline.

Table 2: Performance comparison of NO-VN (ours) and E2E-VN [1] (baseline) models across
different subsampling patterns. The metrics used are PSNR (dB), SSIM, and NMSE.

Pattern NO-VN (Ours) E2E-VN (Baseline)
PSNR ↑ SSIM ↑ NMSE ↓ PSNR ↑ SSIM ↑ NMSE ↓

Equispaced 37.219 0.925 0.011 37.264 0.917 0.008
Random 36.155 0.914 0.015 37.059 0.913 0.008
Magic 37.635 0.935 0.011 37.639 0.927 0.008
Gaussian 37.286 0.908 0.009 32.246 0.868 0.037
Radial 37.640 0.922 0.008 34.163 0.897 0.015
Poisson 39.683 0.944 0.005 35.393 0.922 0.011
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Table 3: Performance comparison of NO-VN (ours) and E2E-VN (baseline) models across different
subsampling rates. The metrics used are PSNR (dB), SSIM, and NMSE.

Rate NO-VN (Ours) E2E-VN (Baseline)
PSNR ↑ SSIM ↑ NMSE ↓ PSNR ↑ SSIM ↑ NMSE ↓

2x 39.762 0.942 0.005 39.825 0.938 0.005
4x 36.959 0.899 0.008 36.400 0.893 0.009
6x 35.149 0.873 0.012 34.630 0.867 0.014
8x 33.712 0.854 0.017 33.087 0.846 0.019

Figure 6: NMSE(↓), PSNR(↑), and SSIM(↑) results for NO-VN (ours) and E2E-VN (SOTA).
Left: Multi-rate. Right: Multi-pattern.
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Figure 7: Visualizations. Inference comparisons between our multi-pattern models, each trained
under identical conditions. Left: NO-VN (our model). Right: current SOTA baseline E2E-VN.
The rows represent different subsampling mask patterns, listed from top to bottom: equispaced,
random, magic, Gaussian, radial, and Poisson. All subsampling is performed at a 2x rate, and the
reconstruction quality is measured using PSNR.
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D Scaling with Cascades

We train and evaluate our NO-VN neural operator model on single resolution 4x equispaced subsam-
pled data, at increasing number of cascades. We find that as we increase the number of cascades,
reconstruction performance improves, as is expected in unrolled neural networks (Table 4 and Fig.8).

Figure 8: PSNR ↑, SSIM ↑, and NMSE ↓ plotted against number of cascades. As we increase the
number of cascades, reconstruction performance improves across all metrics.

Table 4: Performance comparison across different numbers of cascades. The metrics used are PSNR
(dB), SSIM, and NMSE.

Cascades PSNR ↑ SSIM ↑ NMSE ↓
1 37.008 0.898 0.0084
4 37.657 0.905 0.0076
8 38.158 0.909 0.0069
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