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Abstract

Characterization of material structure with X-ray or neutron scattering using e.g.
Pair Distribution Function (PDF) analysis most often rely on refining a structure
model against an experimental dataset. However, identifying a suitable model is
often a bottleneck. Recently, new automated approaches have made it possible to
test thousands of models for each dataset, but these methods are computationally
expensive, and analysing the output, i.e., extracting structural information from the
resulting fits in a meaningful way is challenging. Our Machine Learning based
Motif Extractor (ML-MotEx) trains an ML algorithm on thousands of fits, and uses
SHAP (SHapley Additive exPlanation) values to identify which model features are
important for the fit quality. We use the method for 4 different chemical systems
including disordered nanomaterials and clusters. ML-MotEx opens for a new type
of modelling where each feature in a model is assigned an importance value for the
fit quality based on explainable ML.1

1 Introduction

The development of advanced, functional materials builds on an understanding of the intricate relation-
ship between material structure and properties, and over the past century, crystallographic methods
using scattering and diffraction have thus been essential for materials science. Crystallography allows
ab initio determination of crystal structures from diffraction data, and has provided us with the vast
knowledge of crystal chemistry that is now used in design of functional materials. However, in the
case of nanomaterials with limited long-range order, crystallographic methods are challenged, and ab
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initio structure determination, or structure solution, is not currently possible. Over the past decades,
total scattering with Pair Distribution Function (PDF) analysis has become an essential tool for
characterisation of nanomaterial structure.[1, 2] The PDF is the Fourier transform of normalized and
corrected X-ray, neutron, or electron scattering intensities, and is a function in real space representing
a histogram of interatomic distances in the sample. Compared to crystallographic methods relying on
long-range order, PDF analysis can be applied for nanomaterials,[3-5] disordered[1, 6, 7] or amor-
phous materials.[3, 5, 8] However, structure solution from the PDF is not possible except in a very
few simple cases,[9] using either the Reverse Monte Carlo method[10] or the LIGA algorithm.[11,
12] In the absence of broadly applicable ab initio nanostructure determination methods, it is therefore
necessary to propose reasonable starting models and to then ‘refine’ the model parameters against
the data using local minimization methods. The step of finding a starting model can be a major
challenge and is thus a bottleneck in complex material characterization. In the case of PDF analysis
of nanomaterials, such models are often guessed at by considering related bulk materials, however
these are often not good starting models for very small clusters and nanoparticles, where significant
structural changes may take place.[3, 5, 13, 14] A way of building plausible starting models is thus
needed, where structure models can be built capturing local bonding topologies suggested by known
chemistries.

Recently, automated methods such as ‘structure mining’ and ‘cluster mining’ have appeared in the
literature to help overcome this challenge.[15-17] In a study of the structure of metallic nanoparticles,
Banerjee et al. automatically generated thousands of discrete metal nanocluster structures and fitted
PDFs from each of them to experimental data to identify the best model in an automated manner.[17]
In a recent study of molybdenum oxide nanomaterials, a new approach were introduced, where a large
number of MoOx cluster structure models were automatically generated and compared their PDFs to
experimental data in order to identify dominating structural motifs in the sample, i.e. arrangements of
atoms that dominate the material structure on the local scale.[7] The authors hypothesised that the
structural motifs present in amorphous molybdenum oxides can also be found in crystalline structures,
and therefore used crystal structures of molybdenum oxides as starting models. From these models,
they cut out thousands of different cluster structure models of different sizes to build a ‘catalogue’ of
structure candidates. These models were all tested against the experimental PDFs to identify the best
fitting structural motif. In another study, a similar approach were used for identification of a bismuth
oxido cluster intermediate structure in a study of cluster growth.[18]

While these approaches can extend the structural space searched when identifying models for structure
refinement, new challenges arise. Firstly, the refinement processes can be computationally heavy,
which can limit the number of catalogue structures that are tested. For example, our brute force
approach for cluster identification above generates 2N � 1 structures for starting model sizes with N
atoms. Each structure must have its PDF computed and then refined against the target measured PDF,
so that its fit quality can be evaluated. This process is computationally costly and does not scale well
with number of structure candidates. Furthermore, for disordered, amorphous, and nanostructured
systems many hundred models may provide similar fit qualities, and if only reporting a few of them,
it is difficult to assess which structural features of these models are important. We therefore need
effective and unbiased methods to compare many fits to extract structural information. Here, we
introduce a completely new approach that uses an explainable Machine Learning (ML) model that,
after training, will predict the agreement factor for a test cluster with a given dataset. Furthermore,
the use of explainable ML informs which features in the model are important for the agreement
factor.[19-24] Our Machine Learning based Motif Extractor (ML-MotEx) model is illustrated in
Figure 1. Firstly, it builds a large catalogue of thousands of candidate structural motifs, which are
‘cut outs’ from a chosen bulk structure[7, 18] (step 1). The PDF is then computed from each one,
and each model is fit to the target dataset (step 2). The structures and Rwp values (explained in the
Methods section) from each fit are handed to an ML algorithm applying gradient boosting decision
trees (GBDTs),[25] which learns to predict Rwp values for new fits based on an atomic structure
model (step 3). The ML-MotEx algorithm then outputs quantified values of how important each atom
or feature in the starting structure is for the fit to yield a low Rwp value with the given fitting-algorithm
(step 4). This is done by using SHAP (Shapley Additive exPlanation)[26, 27] values, which is a
known method for explaining tree-based ML models. The amplitude of the SHAP value reflects how
important a structural feature is for the fit quality, while the sign of the SHAP value reflects whether
the feature affects the Rwp value of the fit towards 1 (poor fit) or 0 (perfect fit), in other words why it
is important.
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Figure 1: Illustration of the ML-MotEx process. Firstly, a starting model is provided. Using this
starting model, a structure catalogue is generated, and the structures in the catalogue are fitted to the
experimental data in question. An ML algorithm is then trained to predict Rwp values and finally
calculating quantified values of feature importance for the fit quality.

Compared to the automated, brute-force methods previously introduced for PDF analysis,[7, 15-17]
we can much faster screen a larger number of structures. Our method only needs to screen a sub-
sample (� 10.000) of the much larger number of motifs that can be generated from a bulk material to
learn how to predict which structures provide a good agreement with the data. The analysis done for
the examples presented below would take � 24 days for starting models with 24 atoms, � 3 � 106

years for starting models with 48 atoms and � 6 � 1013 years for starting models with 72 atoms
using a brute-force approach (section A in the SI), while ML-MotEx analysis is done in minutes or
hours. Furthermore, the use of explainable ML provides a way to better analyse the output of the
screening: instead of just identifying the model that provides the lowest Rwp value, we are able to
output a measure of how important each atom or feature (e.g. size or shape) in the starting model is
for the fit to yield a low Rwp value (step 4). This procedure is automated, can be done in quasi-real
experimental time and without human bias.

We illustrate the use of ML-MotEx using 4 different examples. We first show the principles of the
method using a simple model system based on simulated X-ray PDF data from a C60 buckyball.
We further demonstrate the use of ML-MotEx on experimental X-ray PDF data from amorphous,
disordered molybdenum oxides[7] and tungstate �-Keggin clusters in solution,[28] where it allows
identifying the main structural motifs present in the samples using different starting models. Lastly,
we extend the method to use a ‘cookie-cutter’ strategy to generate structures for the catalogue of
candidate motifs. Here, the algorithm is used to identify a bismuth oxido cluster by using a cut-out
of the �-Bi2O3 structure as starting model. The examples illustrate that it is possible to obtain
knowledge of dominating structural motifs from PDF in an automated manner using ML.

2 Results

2.1 ML-MotEx algorithm

ML-MotEx consists of four steps. These four steps are shown in Figure 1. In the first step, a starting
structure model is used to generate a catalogue of candidate structure motifs. As detailed in the
Methods section, the structures are generated by removing different numbers of atoms from the
original starting structure which results in thousands of smaller, candidate structure motifs. In the
second step, a fitting script is used to fit the generated candidate structures to the dataset. In the third
step, the fitting results are handed to the explainable ML algorithm which is optimised and trained.
By using this information, SHAP values of the atoms or structural features in the starting model are
calculated in the fourth step. The output of the algorithm is thus the starting model along with SHAP
values, indicating the importance of each individual atom in the structure for the fit quality, or in other
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words; how much each individual atom or feature affects the Rwp value either positively or negatively.
We refer to this value as the “atom contribution value”. We furthermore define the ratio between
the atom contribution value and its uncertainty as the “confidence factor”. Further definitions and
descriptions of the individual steps of the algorithm are given in the Methods section.

2.2 Example 1: Proof-of-concept: Identification of the C60 buckyball

We first show the use of ML-MotEx with a simple, proof-of-concept example, using a calculated
PDF from an ideal C60 buckyball (Figure 2A). The aim is to identify the structural motif, the C60

buckyball, from the data. We first need a starting structure that contains the motifs we are looking for.
In this simplified example, we use a single unit cell of the crystal structure of C60.[29] However, we
discarded all symmetry and generated a discrete structure model corresponding to the 132 atoms in
one unit cell. This model is shown in Figure 2B, where one whole C60 structure (Figure 2A) is seen
along with fragments of the neighbouring C60 buckyballs. The simulated PDF of the C60 buckyball
and the starting model are shown in Figure 2C. We can now use this starting model to generate
a catalogue of structures, which are all fitted to the data. The structures are created by removing
different numbers of atoms from the original starting structure, which results in thousands of smaller,
candidate structure motifs. This model generation and fitting steps are identical to our previously
reported brute-force approach, where we simply compare the Rwp values of all the fits to identify the
best structure motif. We first consider this simple approach. One of the limitations of the brute-force
method is that the possible candidate structures is exponential in N, the number of atoms in the model.
Since each atom in the starting model can be present or absent, the number of possible sub-clusters
is equal to 2N � 1. For large models such as the C60 starting model containing 132 atoms, this is
� 1040, a gigantic number, making it impossible to investigate all candidate structures. For this
example, we used 384,260 structures to train ML-MotEx, which is only a very small fraction of the
2132 � 1 possible candidate structures. Note that the model with a single C60 buckyball was not in
the generated structure catalogue. All these 384,260 structures were fitted to the PDF calculated from
the C60 cluster. Only a scale factor, an isotropic expansion/contraction factor, and isotropic Atomic
Displacement Parameters (ADPs) were refined, as detailed in the Methods section. We note that
refinement of the atom positions can be added to the fitting procedure to expand the chemical space
that is investigated. However, this would be computationally expensive and it would allow deviations
from the chemical topologies set up in the starting model.

To get an overview of the results from these fits, we plot the Rwp value versus the number of atoms in
the structure, Figure 2D. To further investigate the results, one must visually inspect the fits of the
catalogue of candidate structure motifs and their Rwp value. Some of the candidate structure motifs
are shown as inserts in Figure 2E, where transparent grey atoms represent atoms deleted from the
models. The fits of these structures to the dataset are presented in Figure 2E, along with the Rwp

values. The Rwp value appears to drop when the ‘outer’ atoms are removed, while it increases when
the atoms that are part of the center C60 buckyball are removed. From investigating these few, but
manually selected, structures and their corresponding fitted Rwp value, one can hypothesize that
the structure giving the best fit should be the C60 buckyball. However, this method can be biased
by human interaction, and it is time-consuming and difficult to go through the many fits to extract
structural information. We therefore move on to the ML-MotEx method. Using the catalogue of
candidate structure motifs and the corresponding Rwp values obtained above, we train a GBDT model
on the training set to predict the Rwp value of the candidate structure motifs. Figure 2F shows the
predicted Rwp values of the ML algorithm versus the Rwp value of the structures when they are fitted
to the simulated C60 dataset in DiffPy-CMI.[30] For the structures used in the test set, the GBDT
model predicts the Rwp value with a mean absolute error of 2.0 %. We now use explainable ML to
explain Rwp values with the use of the feature importance tool SHAP values.[27] As described in
detail in the Methods section, a SHAP value is calculated for each structural feature (here each atom
and the cluster size) for each candidate structure motif that is fitted to the PDF during the training
process. The amplitude of the SHAP value reflects how important a structural feature is for the fit
quality, while the sign of the SHAP value reflects whether the feature affects the Rwp value of the fit
towards 1 (poor fit) or 0 (perfect fit), in other words why it is important.

Figure 3A shows the most important results from the SHAP value analysis. The first feature we
consider is the number of atoms, with SHAP values shown in the top part of Figure 3A. The plot
represents SHAP values for the cluster size feature with the size shown on a colour scale, going from
small (blue) to large clusters (red). From the large amplitude of some of the SHAP values observed
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Figure 2: A) C60 buckyball, B) single C60 unit cell,[29] treated as a discrete structure with 132 atoms
and C) their simulated PDFs. The simulation parameters (presented in section B in the SI) mimic
typical values of a PDF dataset. D) Rwp values obtained in the fits using the C60 structure catalogue,
plotted as a function of number of atoms in the structure motifs. Note that the model with a single
C60 buckyball is not included in the set of 384,260 structures tested. This would result in a perfect
fit with Rwp = 0 %. E) Examples of candidate structure motifs with their corresponding fits to the
simulated C60 buckyball data. Grey, semitransparent atoms are removed from the starting model. F)
Predicted Rwp values versus true Rwp values. Rwp values from the fits of the catalogue structures to
the simulated C60 dataset, plotted versus the predicted Rwp values from the GBDT model from the
same structures. The mean squared error (MSE) and the mean absolute error (MAE) are based on all
76,852 predictions in the test set, which are structures the model has not been trained on.

from this feature, we see that the number of atoms in the structure motif is the most important feature
for the Rwp value. All small clusters (0–34 atoms, plotted in blue colours) show a large positive
SHAP value, which implies that the Rwp value of the fit to the PDF data is high, i.e. the fit quality is
low. All small clusters can thereby be discarded as structural models for satisfyingly describing the
data. Next, we can investigate the SHAP values obtained for the individual atoms in the structure. We
first consider atom 13, as labelled in the structure drawing in Figure 3B. The SHAP values obtained
from this atom for each of the fits in the training set are all plotted on the SHAP axis. For the models
where the atom is not present in the model, the SHAP value is shown in blue, while it is shown in
red for the atoms where it is present in the model. If first considering the cases where the atom is
kept in the model, the atom 13 SHAP values are generally negative, which means that the presence
of this atom pushes the Rwp value towards 0. We interpret this as ML-MotEx wants to keep the
atom in the model. The SHAP values obtained for the fits without the atom present are positive,
which confirms that if removing the atom, the fit quality becomes worse. Based on the SHAP values
obtained for the atom in each fit, we calculate an atom contribution value. The atom contribution
value is defined in the Methods section, and is calculated as the difference between the average SHAP
values obtained for the atom when kept in the model, and when removed from the model. A negative
atom contribution value means that the atom pushes the Rwp value down if kept in the structure. The
atom contribution value obtained for atom 13 is negative, and we therefore colour it yellow in the
structural representation in Figure 3B to indicate that it should be kept in the model. We use this
strategy to automatically go through all the atoms in the starting model and colour them yellow/black
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