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Abstract

The challenge of identifying the best feasible arm
within a fixed budget has attracted considerable
interest in recent years. However, a notable gap
remains in the literature: the exact exponential rate
at which the error probability approaches zero has
yet to be established, even in the relatively simple
setting of K-armed bandits with Gaussian noise.
In this paper, we address this gap by examining the
problem within the context of linear bandits. We
introduce a novel algorithm for best feasible arm
identification that guarantees an exponential de-
cay in the error probability. Remarkably, the decay
rate—characterized by the exponent—matches the
theoretical lower bound derived using information-
theoretic principles. Our approach leverages a pos-
terior sampling framework embedded within a
game-based sampling rule involving a min-learner
and a max-learner. This strategy shares its founda-
tions with Thompson sampling, but is specifically
tailored to optimize the identification process under
fixed-budget constraints. Furthermore, we validate
the effectiveness of our algorithm through compre-
hensive empirical evaluations across various prob-
lem instances with different levels of complexity.
The results corroborate our theoretical findings and
demonstrate that our method outperforms several
benchmark algorithms in terms of both accuracy
and efficiency.

1 INTRODUCTION
Many real-world decision-making systems, such as recom-
mendation platforms, clinical trials, and autonomous agents,
must make selections under feasibility constraints that re-
flect resource limitations, safety thresholds, or business re-
quirements. For instance, a system may wish to recommend
actions that maximize utility while adhering to pricing limits,

fairness constraints, or operational risks. These constraints
are often modeled as linear inequalities over contextual fea-
tures, with parameters—such as cost or risk scores—that are
unknown and must be inferred from data. Moreover, these
estimates are inherently noisy due to model approximation,
user behavior variability, and environmental uncertainty. We
formalize this as follows: an arm z ∈ Rd is considered
feasible if its expected cost satisfies ⟨θc, z⟩ ≤ τ , where
θc ∈ Rd is an unknown cost vector and τ ∈ R is a known
threshold. The goal is to identify the best feasible arm—the
one with the highest expected reward among all feasible op-
tions—based on noisy observations of both reward and cost.
This setting captures a wide range of constrained decision-
making problems and offers a tractable framework for in-
ference and optimization. It can be viewed as a constrained
variant of the best arm identification (BAI) problem in multi-
armed bandits (MAB). In classical BAI, the objective is to
identify the arm with the highest expected reward under a
fixed budget or confidence. However, feasibility constraints
introduce new challenges, especially under a fixed sampling
budget where confidence intervals cannot be reliably main-
tained. This motivates the development of new algorithms
that jointly reason over reward and constraint uncertainty
within limited resources.

The MAB problem is a central challenge in machine learn-
ing and statistical decision theory (Lattimore and Szepesvári
[2020]). Here, a decision-maker, often referred to as the
player, repeatedly selects one of several available arms. Each
arm corresponds to a distinct action, and upon selection, the
player receives a reward drawn from an unknown probability
distribution associated with that arm.

The MAB problem can be categorized into two main set-
tings: regret minimization and best arm identification. In
regret minimization, the goal is to maximize cumulative
reward, or equivalently, minimize cumulative regret, de-
fined as the gap between the algorithm’s cumulative reward
and that of always pulling the best arm at each time step.
In contrast, best arm identification focuses on maximizing
the probability of correctly identifying the arm with the
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highest expected reward (Maron and Moore [1997]), ei-
ther within a predetermined budget (Gabillon et al. [2012],
Komiyama et al. [2022]) or with a specified level of confi-
dence (Kalyanakrishnan et al. [2012], Kuroki et al. [2020]).

MAB problems have broad applications, including online
advertising, clinical trials, and recommendation systems
(Kuleshov and Precup [2014], Bouneffouf and Rish [2019]).
Despite their utility, these problems present key challenges,
such as managing the exploration-exploitation trade-off,
scalability across large action spaces, and incorporating
contextual information.

1.1 REGRET MINIMIZATION

Regret minimization focuses on reducing the cumulative
difference between the rewards obtained by the algorithm
and those of the optimal strategy, requiring a careful bal-
ance between exploration and exploitation. In the classic
K-armed bandit problem, algorithms such as UCB1 Auer
et al. [2002] and Thompson Sampling Thompson [1933] are
widely used. UCB1 selects arms based on an upper confi-
dence bound that prioritizes arms with higher uncertainty
until sufficient data is gathered, while Thompson Sampling
maintains a posterior distribution over rewards and selects
arms probabilistically based on reward samples. In the lin-
ear bandit setting, where rewards are linear functions of a
known context vector with unknown parameters, LinUCB
Abbasi-Yadkori et al. [2011] extends UCB1 by incorpo-
rating parameter uncertainty into the confidence bounds,
and LinTS Agrawal and Goyal [2013] applies a similar ap-
proach by sampling from the posterior distribution of the
linear parameters to select arms.

1.2 FIXED BUDGET BEST ARM IDENTIFICATION

The BAI problem seeks to identify the arm with the highest
expected reward, either under a fixed budget of arm pulls
or by minimizing the number of trials required to achieve
a specified level of confidence. Unlike regret minimization,
this objective places a greater emphasis on exploration to
ensure reliable identification of the optimal arm.

In the finite fixed budget setting, two algorithms are par-
ticularly noteworthy: Successive Rejects and Sequential
Halving. The Successive Rejects algorithm Audibert and
Bubeck [2010] iteratively eliminates the arm with the lowest
empirical mean reward after allocating a predefined number
of trials to all arms in each phase. This process continues
until only the best arm remains. The Sequential Halving
algorithm Karnin et al. [2013] adopts a similar phase-based
approach but eliminates half of the remaining arms with
the lowest observed rewards after each round. Subsequent
rounds concentrate trials on the more promising arms, im-
proving the efficiency of arm elimination.

Within the infinite fixed-budget setting, the primary objec-
tive of algorithms is to asymptotically achieve an exponen-

tial rate for the upper bound on regret as the time horizon T
approaches infinity. Algorithms in this category often priori-
tize efficient exploration-exploitation trade-offs to maximize
long-term performance. One notable example is the Top-
Two Thompson Sampling (TTTS) algorithm, introduced
by Russo [2016]. The Top-Two Thompson Sampling al-
gorithm introduces a critical tuning parameter, denoted by
β. Achieving optimal rate of posterior convergence under
this algorithm requires that β precisely match the optimal
allocation rate associated with the best arm. Only under
this condition does the algorithm attain the optimal rate
of posterior convergence. This dependency underscores the
importance of parameter selection and adaptive tuning mech-
anisms for Bayesian algorithms operating in infinite horizon
settings. Recently, new algorithm (Li et al. [2024]) called
Pure Exploration with Projection-Free Sampling (PEPS)
was developed; this algorithm does not need tuning of β and
achieves the optimal rate of posterior convergence when the
parameter set is convex and bounded (Kone et al. [2024]).

1.3 RELATED WORK

The literature on MABs has evolved significantly across
three key dimensions: (1) unconstrained vs. constrained
settings, (2) regret minimization vs. best arm identifica-
tion objectives, and (3) fixed-confidence vs. fixed-budget
paradigms. Our work bridges a critical gap in constrained
BAI under fixed budgets by proposing a tuning-free algo-
rithm with matching asymptotic bounds. Below, we contex-
tualize our contributions within these axes of research.

Unconstrained Best Arm Identification. Early work in
linear bandits focused on unconstrained settings. Recent
breakthroughs, such as the min-max game framework by
Li et al. [2024], achieve minimax optimal error rates with-
out tuning parameters. For structured bandits, Azizi et al.
[2021] proposed an early fixed-budget method for linear
BAI, though their theoretical guarantees fall short of tight-
ness. Yang and Tan [2022] offered a more refined analysis,
but their upper bound retains a constant suboptimality gap
compared to the lower bound. These advances, however, do
not account for resource constraints.

Constrained Bandits: Regret Minimization. In con-
strained regret minimization, confidence intervals for re-
wards and costs drive algorithm design. Works such as
Amani et al. [2019], Moradipari et al. [2021] and kernel-
ized extensions [Zhou and Ji, 2022] ensure sublinear regret.
Contextual settings further refine this approach [Pacchiano
et al., 2024]. While effective for minimizing cumulative re-
gret, these methods are ill-suited for identifying the optimal
feasible arm under fixed budgets.

Constrained Best Arm Identification. Under fixed-
confidence settings, safety constraints dominate. Katz-
Samuels and Scott [2019], Camilleri et al. [2022] maintain
conservative safe arm sets via confidence intervals, while
Wang et al. [2022], Shang et al. [2023] address pricing-



specific constraints. These methods prioritize statistical effi-
ciency over budget allocation, limiting their applicability to
fixed-budget scenarios. Hou et al. [2023] proposed an opti-
mal BAI algorithm that accounts for variance constraints.

Fixed-Budget Challenges. The fixed-budget setting de-
mands optimal resource allocation. Early efforts in K-armed
bandits [Faizal and Nair, 2022] and combinatorial settings
[Tang et al., 2024] lack matching error bounds. Recent
progress in linear bandits [Yang and Tan, 2022] achieves
minimax optimality, yet these ignore constraints entirely. A
key unresolved challenge lies in balancing cost-awareness
with asymptotic optimality under limited samples.

Infinite-Budget and Parameter Sensitivity. For infinite
horizons, Yang et al. [2025] proposed Top-Two Thompson
Sampling with β-optimality, requiring careful parameter
tuning. Parallel advances in unconstrained settings [Li et al.,
2024] eliminate tuning parameters via posterior sampling,
but extending this to constrained problems remains open.

Feasibility vs. Optimization. Prior work such as Katz-
Samuels and Scott [2018] identifies entire feasible arm sets,
diverging from our goal of pinpointing the best feasible arm.
Similarly, Pareto set identification [Kone et al., 2024] fo-
cuses on multi-objective trade-offs rather than constrained
single-objective optimization.

1.4 MAIN CONTRIBUTIONS

Our contributions in this paper are fourfold:

1. We propose a novel algorithm BLFAIPS that achieves
matching upper and lower bounds for the best feasible
arm identification problem under a fixed budget. This is
the first algorithm in this domain to achieve optimality
in the exponent of the error probability.

2. We derive two distinct forms of the exponential rate in
the lower bound (Theorems 4.1 and 4.2). One form is
derived from a Bayesian perspective, while the other
arises from a frequentist viewpoint. We further prove
the equivalence of these two formulations, thus unify-
ing both theoretical perspectives.

3. We improve the structure introduced in Li et al. [2024]
by replacing the exponential weights algorithm with
AdaHedge and eliminating the need for the doubling
trick. Additionally, we relax the assumption that the
reward is bounded, which was a requirement in their
theoretical guarantees and proofs.

4. We conduct empirical studies on synthetic and real-
world datasets to evaluate the performance of our al-
gorithm against several baseline methods on represen-
tative problem instances. Our results demonstrate that
the proposed algorithm consistently outperforms or
remains competitive with other state-of-the-art algo-
rithms across different scenarios.

2 PROBLEM SETUP

We consider the BAI problem for linear bandits in the fixed
budget setting with a budget T . In contrast to the conven-
tional setting in which there are no constraints, we impose a
constraint on the permissible arm to be selected at the end
of the horizon T . The precise problem setting is as follows.
There are two finite sets of arms – a training set X ⊂ Rd

and a testing setZ ⊂ Rd. At each time t ∈ [T ], based on the
learner’s past selections and their corresponding outcomes,
the learner chooses an arm Xt ∈ X and the environment
reveals noisy versions of a reward (r) and a cost (c) which
are respectively denoted as

Y r
t = ⟨θr, Xt⟩+ ϵt, and (1)

Y c
t = ⟨θc, Xt⟩+ ηt, (2)

where εt and ηt are zero mean independent Gaussian noises
with variances σ2 and γ2 respectively. In Eqns. (1) and (2),
θr ∈ Θr and θc ∈ Θc are unknown d-dimensional vec-
tors. The decision Xt at each time t is based on the history
Ht−1 := {(Xs, Y

r
s , Y

c
s )}t−1

s=1. Our goal is to select the arm
that maximizes the mean reward subject to a constraint on
the cost, measured according to the test vectors in Z . More
precisely, we denote µr(z) := ⟨θr, z⟩ and µc(z) := ⟨θc, z⟩
as the expected reward and cost of the testing arm vector
z ∈ Z . We define the best feasible arm as

z∗ := argmax
z∈Z:µc(z)≤τ

µr(z),

where τ ∈ R is the known threshold on the cost. At the end
of the horizon, the learner recommends an arm zout ∈ Z
which is its best guess of z∗. For ease of exposition later,
we define the following three sets.

• Suboptimal arm set
S := {z ∈ Z : µr(z) ≤ ⟨θr, z∗⟩};

• Superoptimal arm set
S := {z ∈ Z : µr(z) > ⟨θr, z∗⟩};

• Feasible arm set
F := {z ∈ Z : µc(z) ≤ τ};

• Infeasible arm set
F := {z ∈ Z : µc(z) > τ}

For convenient, denote A1 := F ∩ S,A2 := F ∩ S,A3 :=
F ∩ S . For any z ∈ Z , define Θz ⊂ Θr ×Θc such that for
any (θ1, θ2) ∈ Θz , the arm z is not the best feasible arm
while θr = θ1, θ

c = θ2.

Furthermore we have the following assumptions:

Assumption 2.1. Θr,Θc are both bounded and closed
with non-empty interiors such that maxθ∈Θr∥θ∥2 ≤
R1,maxθ∈Θc∥θ∥2 ≤ R2 .

Assumption 2.2. The training and testing sets are bounded
such that maxx∈X ∥x∥2 ≤ L1,maxz∈Z∥z∥2 ≤ L2 .

Assumption 2.3. The best feasible arm z1 is unique and
span(Z) ⊂ span(X ) .



Notations: We define ∥x∥A :=
√
x⊤Ax for any d-

dimensional column vector x and positive definite d × d
matrix A. Given a finite set X ⊂ Rd, we define the prob-
ability simplex as ∆X :=

{
λ ∈ R|X |

≥0 :
∑|X |

i=1 λi = 1
}
.

For any λ ∈ ∆X , we define the matrix A(λ) as A(λ) :=∑
x∈X λxxx

⊤. Denote two sequences of positive real num-
bers {an} and {bn} to be equal to first order in the exponent
as an

·
= bn if limn→∞

1
n log an

bn
= 0.

3 BEST LINEAR FEASIBLE ARM
IDENTIFICATION WITH POSTERIOR
SAMPLING (BLFAIPS)

We introduce a novel approach for linear feasible arm identi-
fication utilizing posterior sampling. This algorithm, called
BLFAIPS (and whose pseudocode is in Algorithm 1), em-
ploys posterior sampling for the min-learner and AdaHedge
for the max-learner. We call them min-learner and max-
learner since by Sion’s minimax theorem, the exponential
rate Γ in the lower bound, as we will see in Theorem 4.2,
can be represented by:

Γ := max
w∈∆X

inf
(θ1,θ2)∈Θz∗

1

2

(∥θ1−θr∥2A(w)

σ2
+
∥θ2−θc∥2A(w)

γ2

)
= max

w∈∆X
min

p∈∆(Θz∗ )

1

2
E
[∥θ1−θr∥2A(w)

σ2
+
∥θ2−θc∥2A(w)

γ2

]
= min

p∈∆(Θz∗ )
max
w∈∆X

1

2
E
[∥θ1−θr∥2A(w)

σ2
+
∥θ2−θc∥2A(w)

γ2

]
,

where the expectations above are with respect to (θ1, θ2) ∼
p. The quantity Γ captures the hardness of the best feasi-
ble arm identification problem—it characterizes the expo-
nential rate at which the optimal arm can be distinguished
from all other (possibly infeasible) arms under reward and
cost uncertainty. To match this fundamental limit, our al-
gorithm is designed to mirror the structure of this bound:
the max-learner adaptively selects sampling distributions
to maximize distinguishability, while the min-learner sim-
ulates adversarial parameters that minimize it. Since both
components achieve sublinear regret over time (though our
focus is not on regret), the overall algorithm converges to
the optimal error exponent in the long run. A comprehensive
description of the proposed algorithm is provided below.

Initialization In Line 1, we define the exploration distri-
bution using the G-optimal design, which is specifically
designed to determine the weights of the arms by minimiz-
ing the maximum confidence over the arms. This design
ensures that the exploration process effectively gathers suf-
ficient information about the unknown linear coefficients,
θr and θc. In Lines 2-3, we initialize the weight for the
AdaHedge algorithm with a uniform distribution, set the
covariance matrix to the identity matrix, and initialize S0 as

Algorithm 1 Best Linear Feasible arm identification with
Posterior Sampling (BLFAIPS)
Require: Finite set of arms X ⊂ Rd, Z ⊂ Rd, time hori-

zon T , posterior reward and cost distribution variance
parameter ηr, ηc, shrinking rate of exploration α = 1

4 ,
AdaHedge initial learning rate η1 := ∞, cost thresh-
old constant τ ∈ R, initial cumulative mixability gap
∆0 = 0.

1: Define λG = argminλ∈∆X maxx∈X ∥x∥2A(λ)−1

2: λ1 = 1
|X |1

3: Initialize V0 = I, S0 = 0, p1 = N (0, V0), θ̂1 arbitrar-
ily

4: for t = 1, 2, . . . , T do
5: γt = t−α ▷ Posterior Sampling
6: F̂ := {z ∈ Z | z⊤θ̂ct ≤ τ}
7: if |F̂ | ̸= ∅ then
8: Compute ẑt = argmaxz∈F̂ z⊤θ̂rt
9: else

10: Uniformly sample ẑt from Z
11: end if
12: Sample (θrt , θ

c
t ) ∼ N (θ̂rt , η

−1
r V −1

t−1) ⊗
N (θ̂ct , η

−1
c V −1

t−1) | Θẑt

13: Sample Xt ∼ λt where λt = (1− γt)λt + γtλ
G

14: Observe yrt = ⟨θrt , Xt⟩+ ϵt where ϵt ∼ N (0, σ2)
15: Observe yct = ⟨θct , Xt⟩ + γt where γt ∼ N (0, γ2)

▷ AdaHedge
16: Receive the loss vector lt ∈ R|X | where lt,x :=

−
(∥θr

t−θ̂r
t∥

2

xx⊤
σ2 +

∥θc
t−θ̂c

t∥
2

xx⊤
γ2

)
17: Compute the Hedge loss ht =

∑|X |
i=1 λt,ilt,i

18: Update Vt = Vt−1 +XtX
⊤
t

19: Sc
t = Sc

t−1 + xty
c
t , Sr

t = Sr
t−1 + xty

r
t

20: θ̂rt+1 = V −1
t Sr

t , θ̂ct+1 = V −1
t Sc

t

21: Update λt+1 ∝ λte
−ηtlt

22: Compute mixed loss

mt := −
1

ηt
log

(∑
i∈X

λt,ie
−ηtlt,i

)

23: Compute the mixability gap δt := ht −mt, ∆t =
∆t−1 + δt

24: Update the AdaHedge learning rate ηt+1 = log(|X |)
∆t

25: end for
26: Sample (θrT+1, θ

c
T+1) ∼ N (θ̂rT+1, σ

2V −1
T ) ⊗

N (θ̂cT+1, γ
2V −1

T ) | Θ
27: F̂ ← {z ∈ Z | z⊤θc ≤ τ}
28: if |F̂ | ̸= ∅ then
29: Compute ẑt ← argmaxz∈F̂ z⊤θ̂rT+1

30: else
31: Uniformly sample ẑt from Z
32: end if
33: Output: ẑout ← argmaxz∈F̂ z⊤θr



the d× 1 zero matrix, following the standard initialization
procedure for Ridge regression.

Min-learner From Lines 7 to 16, we perform posterior sam-
pling for the min-learner. In Line 7, we first compute the
empirical feasible arm set, and if this set is empty, we ran-
domly select the best empirical feasible arm. If the set is
not empty, we proceed in Line 9 to compare the empirical
rewards to identify the empirical best feasible arm. In Line
13, we then perform posterior sampling of (θrt , θ

c
t ) from the

posterior distribution N (θ̂rt , η
−1
r V −1

t−1) ⊗ N (θ̂ct , η
−1
c V −1

t−1)

within the space Θẑt , ensuring that ẑt is not the best fea-
sible arm. For the learning parameters, we choose ηr :=
η
σ2 , ηc := η

γ2 where η := min
{

σ2

8L2R2
1
, γ2

8L2R2
2

}
. Follow-

ing this, in Line 14, we draw the arm under the distribution
λt, which combines the AdaHedge distribution and the G-
optimal distribution, with the proportion of the G-optimal
distribution decreasing exponentially over time. Finally, in
Lines 15-16, we observe the reward and cost corresponding
to the selected arm, which are utilized for updating the ridge
estimator in Line 20.

Max-learner From Lines 18 to 24, we employ AdaHedge
for the max-learner instead of the traditional exponential
weighting algorithm, enabling the learning rate parameter
to automatically adapt to the environment without the need
for further tuning. Specifically, in Line 18, we compute the
loss for each arm x at time step t as

lt,x := −

(
∥θrt − θ̂rt∥2xx⊤

σ2
+
∥θct − θ̂ct∥2xx⊤

γ2

)
,

where the first term represents the loss from the reward
and the second term represents the loss from the cost. This
choice of loss function is derived from our lower bound
analysis in Section 4. Following this, in the subsequent
lines, we apply the AdaHedge algorithm to determine the
distribution for the next time step and update the necessary
parameters to calculate the learning rate for the next round.

Recommendation From Lines 26 to 33, upon accumulating
the relevant information, the algorithm recommends the
arm that is most likely to be the optimal feasible arm. This
procedure adheres to the principles of posterior sampling,
closely following the approach outlined in Lines 7 to 13.

Min-max intuition Our algorithm is guided by a game-
theoretic interpretation of the information-theoretic lower
bound. Intuitively, this corresponds to a zero-sum game
between two players: the learner (max-player) selects a sam-
pling distribution over arms to maximize information gain,
while the adversary (min-player) chooses alternative param-
eters that are hardest to distinguish from the true ones. This
formulation focuses exploration on the most informative re-
gions of the parameter space. The structure mirrors the lower
bound in Theorem 4.2, where the exponent is expressed as
a max–min over sampling distributions and perturbations

within the feasible set Θz∗ . We include a diagram in the
appendix to illustrate this interaction and support readers
less familiar with game-based bandit formulations.

Novelty of our algorithm Compared to the linear best arm
identification algorithm without constraints proposed by Li
et al. [2024], our algorithm, BLFAIPS, incorporates several
key innovations:

First, we replace the exponential weights algorithm with
AdaHedge (Lines 17-24). By utilizing AdaHedge, our al-
gorithm does not require the doubling trick employed in Li
et al. [2024] to achieve anytime adaptivity. Unlike standard
Hedge-style algorithms that need manually scheduled learn-
ing rates or restarts, AdaHedge automatically adapts to the
loss sequence, which leads to smoother convergence and
more effective use of the fixed sampling budget.

Second, we define a novel loss function (Line 18), derived
from our lower bound theorem (Theorem 4.2). This loss
function generalizes the one used in Li et al. [2024], allow-
ing for greater flexibility and improved theoretical guaran-
tees within constrained settings.

Finally, in Line 13, our algorithm incorporates constraints
directly into the posterior sampling process. This enhance-
ment contrasts with the min-learner approach of Li et al.
[2024], enabling our algorithm to better account for feasi-
bility constraints during decision-making.

These improvements collectively enhance both the theo-
retical and practical performance of our algorithm under
resource-constrained scenarios.

4 THEORETICAL GUARANTEES

In this section, we state an information-theoretic lower
bound on the error probability. We provide intuitive ex-
planations for each of the terms in the bound.

4.1 LOWER BOUND

Theorem 4.1. Under the environment Θr = Θc = Rd,
let Πr

t := N (θ̂rt ,Σ
r
t),Π

c
t := N (θ̂ct ,Σ

c
t) be the pos-

terior distribution of the unknown θr and θc at
time step t, for any sampling rule where Vw :=∑K

i=1 wixix
⊤
i and wi := limn→∞

Ti,n

n , where W :=
{w = (w1, w2, . . . , wK) :

∑
i wi = 1, wi ≥ 0, ∀ i ∈ [K]},

lim sup
T→∞

− 1

T
logPΠr

T ,Πc
T
(zout ̸= z∗) ≤ Γ

where the hardness term is

Γ := max
w∈W

min
z∈Z

min
i=1,2,3,4

{fi(w, z)} ,

and

f1(w, z) :=
(∆c(z))2

2γ2∥z∥2
V −1
w

· 1 {z ∈ A1} ,



f2(w, z) :=
(∆r(z))2

2σ2∥z − z∗∥2
V −1
w

· 1 {z ∈ A2} ,

f3(w, z) :=

(
(∆c(z))2

2γ2∥z∥2
V −1
w

+
(∆r(z))2

2σ2∥z − z∗∥2
V −1
w

)
· 1 {z ∈ A3} ,

f4(w, z) :=
(∆c(z))2

2γ2∥z∥2
V −1
w

· 1 {z = z∗} .

The complexity of the linear BAI problem under feasibil-
ity constraints is characterized by the hardness parameter
Γ. This parameter is composed of four terms, denoted by
f1(w, z), f2(w, z), f3(w, z), and f4(w, z), each reflecting
a specific source of difficulty in distinguishing arms based
on feasibility and optimality conditions.

The term f1(w, z) captures the challenge of misidentifying
superoptimal and infeasible arms as the best feasible arm.
This occurs when arms with superior rewards, but violat-
ing feasibility constraints, are incorrectly favored due to
insufficient exploration of feasibility conditions. The term
f2(w, z) quantifies the difficulty arising from confusing fea-
sible yet suboptimal arms with the optimal feasible arm.
In such cases, the agent may exploit arms that satisfy con-
straints but do not yield the highest reward due to inadequate
exploitation of known reward estimates.

Similarly, f3(w, z) corresponds to the hardness induced by
incorrectly identifying infeasible and suboptimal arms as op-
timal. This issue arises when infeasibility is not adequately
recognized during exploration, leading to wasted budget on
arms that neither satisfy constraints nor provide optimal re-
wards. Finally, f4(w, z) represents the difficulty associated
with mistakenly classifying the true best feasible arm as
being infeasible.

Theorem 4.2. Under the same assumptions as Theorem 4.1,
we establish the equivalence between two distinct expres-
sions of the hardness term in the lower bound:

Γ:= max
w∈∆X

inf
(θ1,θ2)∈Θz∗

1

2

(∥θ1 − θr∥2A(w)

σ2
+
∥θ2 − θc∥2A(w)

γ2

)
Compared to the equivalence of the two hardness terms with-
out constraint, the difference here is that the KL-divergence
in the reward and cost are summarized with the respective
rates since the variances of the noise in reward and cost are
different. If we set τ →∞, then our lower bound particular-
izes to the hardness term as in the sample complexity of pure
exploration for linear bandits (Jedra and Proutiere [2020]).
This form of the exponential rate in the lower bound is es-
pecially useful, as it aligns with the structure of our upper
bound, which is derived in the same form.

4.2 UPPER BOUND

We now state the upper bound on the error probability. Theo-
rem 4.3 establishes that the error probability of our proposed

algorithm BLFAIPS decays exponentially with rate (expo-
nent) at least Γ, where Γ is the same hardness constant
appearing in the lower bound of Theorem 4.1. This implies
that BLFAIPS is asymptotically optimal: no strategy can
achieve faster exponential decay rate.

Theorem 4.3. Under Assumptions 2.1, 2.2, and 2.3, with
probability 1,

lim inf
T→∞

− 1

T
logP(θr

T+1,θ
c
T+1)∼pT+1

(ẑout ̸= z∗) ≥ Γ,

where pT+1 := N (θ̂rT+1, σ
2V −1

T )⊗N (θ̂cT+1, γ
2V −1

T )|Θ .

To the best of our knowledge, our algorithm BLFAIPS is
the first to demonstrate matching upper and lower bounds in
the literature on BAI with constraints under a fixed budget,
both in the K-armed bandit setting (Faizal and Nair [2022])
and the linear bandit setting (Tang et al. [2024]).

5 PROOF SKETCH OF THEOREM 4.3
We provide a proof sketch for Theorem 4.3, which is the
central result of this paper. To prove this theorem, we first
introduce the following lemmas concerning good events:

Lemma 5.1. Define the good event as

E1,δ :=

T⋂
t=1

{
∥θ̂rt − θr∥Vt−1

≤

√
β1

(
t,

1

δ2

)
, and

∥θ̂ct − θc∥Vt−1 ≤

√
β2

(
t,

1

δ2

)}

where β1(t,
1
δ2 ) := (S1 + σ

√
2 log( 1

δ2 ) + d log
(
d+tL2

d

)
)2,

β2(t,
1
δ2 ) := (S2 + γ

√
2 log( 1

δ2 ) + d log
(
d+tL2

d

)
)2.

Then with probability 1− 2δ, good event E1,δ holds.

This lemma, which establishes the concentration property of
the ridge regression estimator over the entire time horizon,
plays a crucial role in the linear bandit literature.

Lemma 5.2. Define the good event:

E2,δ :=

T⋂
t=1

{
max
x∈X
|⟨θ̂rt , x⟩| ≤ B1, max

x∈X
|⟨θ̂ct , x⟩| ≤ B2

}
where

B1 = LR1+L

√
β1

(
T,

1

δ2

)
, B2 = LR2+L

√
β2

(
T,

1

δ2

)
Then,

E1,δ ⊆ E2,δ



This lemma demonstrates that, under the conditions of
Lemma 5.1 and the bounded Θ assumption, the empirical re-
ward and cost at each time step are also bounded. This result
is essential for applying the Azuma-Hoeffding inequality
and deriving an upper bound on regret in our analysis.

Lemma 5.3 (Lemma C.14 in Li et al. [2024]). Define the
event E3,δ :=

{
Vt ≥ 3

4A(λG),∀t ≥ T1(δ), x ∈ X
}

where

T1(δ) := maxx∈X

(
6
√

log(|X |Tδ )

λG
x

)4
.1 Then with probabil-

ity 1− δ, the event E3,δ holds.

This lemma establishes that, under the mixed G-optimal
design allocation, the algorithm gathers sufficient informa-
tion about the arms by a time point that is on the order of
O(log T ). This allows us to determine the time at which the
empirically best feasible arm coincides with the true one.

Lemma 5.4. Define the good event

E4,δ := {ẑt = z∗, ∀t > max {T1(δ) + 1, T2(δ)}} ,

where

T2(δ) := max

{(
mmax|X |
∆min

r

√
dβ1(t,

1

δ2
)

) 8
3

,

(
nmax|X |
∆min

c

√
dβ2(t,

1

δ2
)

) 8
3
}
.

Then
E1,δ ∩ E3,δ ⊆ E4,δ.

This lemma demonstrates that, with the support of Lem-
mas 5.1 and 5.3, after a time point in the order of O(log T ),
the empirically best feasible arm is indeed the true best
feasible arm. This result is crucial to our proof, as both
the min-learner strategy (posterior sampling) and the max-
learner strategy (AdaHedge) in our algorithm rely on the
accuracy of identifying the empirically best feasible arm.

Lemma 5.5. Define

E5,∞ :=

{
lim

T→∞
sup

θ1∈Θ1,θ2∈Θ2

1

T

∣∣∣∣log pT+1(θ1, θ2)

pT+1(θr, θc)

+
T

2

(∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2

)∣∣∣∣∣ = 0

}
,

with probability 1, the good event E5,∞ holds. This also
implies that

pT+1(θ1, θ2)

pT+1(θr, θc)

·
= exp

(
−1

2

(
∥θr−θ1∥2VT

σ2
+
∥θc−θ2∥2VT

γ2

))
.

1We note that A(λG) depends on x.

This lemma shows that as T →∞, the logarithm of the ratio
between pT+1(θ1, θ2) and pT+1(θ

r, θc) is asymptotically
equal to the hardness term in the exponential lower bound,
namely, Γ. This result is crucial for applying the Laplace
approximation to analyze the error probability in our proof.

Lemma 5.6. Define the good event

E6,δ :=

{∣∣∣∣ max
w∈∆X

inf
(θ1,θ2)∈Θz∗

(∥θ1−θr∥2A(w)

2σ2
+
∥θ2−θc∥2A(w)

2γ2

)
− inf
(θ1,θ2)∈Θz∗

(∥θ1−θr∥2V T

2σ2
+
∥θ2−θc∥2V T

2γ2

)∣∣∣∣≤o(1)

}
Then event E6, 1

T
holds with probability at least 1 − 28

T ,
conditioned on events E1, 1

T
, E2, 1

T
, E3, 1

T
, E4, 1

T
.

This lemma shows that when events E1, 1
T
E2, 1

T
E3, 1

T
, and

E4, 1
T

hold, the exponent in the lower bound Γ is asymptoti-
cally equal to the Laplace approximation of the integral of
the log-ratio, as stated in Lemma 5.5.

Then the error probability of our algorithm is

P(θr
T+1,θ

c
T+1)∼pT+1

(ẑout ̸= z∗)

=

∫
(θ1,θ2)∈Θz∗

pT+1(θ1, θ2) dθ1 dθ2∫
(θ1,θ2)∈Θz∗

pT+1(θ1, θ2) dθ1 dθ2

=

∫
(θ1,θ2)∈Θz∗

pT+1(θ1, θ2)/pT+1(θ
r, θc) dθ1dθ2∫

(θ1,θ2)∈Θz∗
pT+1(θ1, θ2)/pT+1(θr, θc) dθ1 dθ2

(a)
·
=

∫
(θ1,θ2)∈Θz∗

exp (M) dθ1dθ2∫
(θ1,θ2)∈Θz∗

exp (M) dθ1dθ2
,

where M = M(θ1, θ2) := − 1
2

(∥θr−θ1∥2
VT

σ2 +
∥θc−θ2∥2

VT

γ2

)
and (a) comes from good event E5,∞. Furthermore, from
the Laplace approximation (Lemma G.3) and the fact that

inf
(θ1,θ2)∈Θ

∥θr − θ1∥2VT

σ2
+
∥θc − θ2∥2VT

γ2
= 0 ,

we have

P(θr
T+1,θ

c
T+1)∼pT+1

(ẑout ̸= z∗)

·
= exp

(
−T

2
inf

(θ1,θ2)∈Θz∗

(∥θr−θ1∥2V T

σ2
+
∥θc−θ2∥2V T

γ2

))
.

Then combining with the good event E6,δ , we have

P(θr
T+1,θ

c
T+1)∼pT+1

(ẑout ̸= z∗)
·
= exp (−TΓ) .

To summarize, with the choice δ = 1
T , with probability 1,

lim
T→∞

− 1

T
logP(θr

T+1,θ
c
T+1)∼pT+1

(ẑout ̸= z∗) = Γ .



6 EMPIRICAL STUDIES
For the empirical studies, we compare our proposed algo-
rithm BLFAIPS against three baselines: a modified Lin-
ear Thompson Sampling algorithm (Agrawal and Goyal
[2013]), which selects the empirically best feasible arm at
each round; the Linear β-Top-Two Thompson Sampling
algorithm, where β is set to match the allocation rate of
the best feasible arm; and an Oracle baseline, which pulls
arms according to the optimal allocation rate derived from
the lower bound established in Theorem 4.1; the Linear
Top-Two Thompson Sampling algorithm with the optimal
β under constraints, which can be viewed as an extension
from K-armed bandits to linear bandits of the algorithm in
Yang and Tan [2022]. Due to space constraints, we show
one representative plot here in the main paper. Other plots
for other parameters are shown in Appendix H.

6.1 "END OF OPTIMISM" INSTANCE

We perform our first experiment on the ubiquitous “End
of Optimism” instance (Lattimore and Szepesvari [2017])
plus an additional feasibility constraint. This can be viewed
as the Soare’s Instance as considered in Li et al. [2024]
with linear constraints. To be more specific, in this in-
stance, we choose θr = [1, 0]⊤, θc = [0, 1]⊤, τ = 0.5,
there are five arms: [1, 0]⊤, [0, 0.15]⊤, [0, 1]⊤, [1.2, 1.2]⊤,
[cos(α), sin(α)]⊤, where [1, 0]⊤ is the best feasible arm,
[0, 0.15]⊤ is the suboptimal feasible arm, [0, 1]⊤ is the sub-
optimal and infeasible arm, [1.2, 1.2]⊤ is the superoptimal
and infeasible arm. Figures 1, 7, and 8 (in Appendix H.1)
show the accuracies of identifying the best feasible arm over
time for these algorithms when α = 0.1, 0.2, 0.3. The plots
also present confidence intervals, represented by a range of
plus or minus two standard deviations from the average. We
choose the time horizon T = 2, 000 and run each algorithm
over 50 repetitions.

Figure 1: α = 0.1

The experimental results, as illustrated by the plots, demon-
strate that our proposed algorithm, BLFAIPS, consistently
outperforms alternative approaches, including the con-
strained versions of Linear Thompson Sampling and Linear

β-Top-two Thompson Sampling. This performance advan-
tage persists even when the β parameter is fine-tuned to
match the true allocation rate of the given instance.

6.2 RANDOM INSTANCES

We next evaluate the performance of our algorithm on ran-
dom instances within a d-dimensional unit ball. For these ex-
periments, we randomly sampled K = 5, 20, 50 arms from
d = 2, 20, 50-dimensional spaces. The parameters were set
as follows: θr = [1, 0, . . . , 0]⊤ ∈ Rd, θc = [0, . . . , 0, 1]⊤ ∈
Rd, and τ = 0.5. Figures 2, 3, and 9 (in Appendix H.2)
present the accuracies over time for varying values of K,
while Figures 4, 9, 10 illustrate the accuracies over time for
different dimensionalities d.

Figure 2: d = 2,K = 5

Figure 3: d = 2,K = 50

Figure 4: d = 50,K = 20



The results indicate that our proposed algorithm, BLFAIPS,
consistently exhibits faster convergence compared to com-
peting algorithms across varying numbers of arms K and
dimensionalities d in random instances.

6.3 COMPARISON WITH PEPS

We also compare our algorithm with the PEPS algorithm
introduced by Li et al. [2024], which uses AdaHedge but
does not incorporate the doubling trick. While their algo-
rithm PEPS performs well empirically, they did not provide
a formal upper bound guaranteeing its asymptotic optimal-
ity. In contrast, our Theorem 4.3 establishes such a guaran-
tee, matching the information-theoretic lower bound (Theo-
rem 4.1) and closing a key theoretical gap in the literature.

We evaluate both algorithms (and others) in the uncon-
strained setting using the same configuration as in the ran-
dom instance experiments with d = 2 and K = 5, except
that the constraint threshold τ is set to∞. When the sam-
pling budget T is known in advance, PEPS and BLFAIPS
achieve comparable performance. However, when T is un-
known, as is common in many real-world applications, PEPS
tends to waste almost half its budget during its initial ex-
ploration phase, leading to strictly inferior results. In such
cases, BLFAIPS achieves superior performance as shown in
Figure 5.
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Figure 5: Comparison of BLFAIPS to PEPS for unknown T

6.4 EVALUATION ON A REAL-WORLD DATASET

We also conducted an experiment utilizing a real-world
dataset: the MovieLens 10M dataset augmented with IMDb
ratings, based on an open-source preprocessing script Lab
[2017]. Our objective was to identify the highest-rated
movie (on a 1-to-5 scale) among the top 20 movies in Movie-
Lens, subject to the constraint that the IMDb rating as of
April 2025 remains below τ = 7.5 (on a 1-to-10 scale).

To assess the feasibility-aware performance of our algorithm,
we calculated the cumulative accuracies over 5,000 time
steps for various algorithms. Accuracy is defined as the
proportion of instances where the selected movie satisfies
the IMDb constraint and is simultaneously the highest-rated

based on user ratings.

Since this is a real-world dataset, the true problem instance
is unknown. Thus, it not possible to determine an optimal so-
lution or a lower bound. We compared our approach against
baseline configurations using the same parameters, which
were set as follows: σ = 1, γ = 1, L =

√
3, R1 =

√
10,

and R2 =
√
20. Each algorithm was executed 50 times over

the 5,000 time steps.

As illustrated in Figure 6, our proposed method BLFAIPS
significantly outperforms both the constrained versions of
Linear Feasible Thompson Sampling and Linear TTTS with
β = 0.5. It consistently achieves higher accuracy while
maintaining similar error bars, showing the accuracy, stabil-
ity, and robustness of BLFAIPS.
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Figure 6: Comparison of accuracies of various algorithms
on the MovieLens dataset

7 CONCLUSION AND FUTURE WORK
In this paper, we addressed the best feasible arm identifi-
cation problem under a fixed budget in linear bandits. We
proposed a novel algorithm that matches upper and lower
bounds on the exponential rate of the error probability. To
the best of our knowledge, it is the first to attain such opti-
mality in this domain. Our contributions include two equiva-
lent formulations of the lower bound rate from Bayesian and
frequentist perspectives, structural improvements to existing
methods, and empirical results showing the superiority of
our approach over several baselines.

Our theoretical findings provide a basis for further explo-
ration in constrained bandit problems. While we have estab-
lished matching bounds under specific conditions, extending
these results to more general settings, such as non-convex
or high-dimensional parameter spaces, remains valuable.
Refining guarantees under weaker assumptions, especially
regarding noise and cost constraints, could further broaden
applicability.

We hope our work will inspire advances in constrained best
arm identification and related problems within the multi-
armed bandit framework.
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A TABLE OF NOTATION

B1 = 2LR1 + L
√
β1(T,

1
δ2 ) Upper bound of maxx∈X maxt≤T |⟨x, θ̂rt⟩|

B2 = 2LR2 + L
√

β2(T,
1
δ2 ) Upper bound of maxx∈X maxt≤T |⟨x, θ̂ct ⟩|

T1(δ) Time while the algorithm collecting enough information for the exploration

∆r
min := minz∈Z(z

∗ − z)⊤θr minimum gap of the reward for Z

∆c
min := minz∈Z |τ − z⊤θc| minimum gap of the cost for Z

V T := 1
T (I +

∑T
t=1 XtX

⊤
t ) Empirical variance matrix after T rounds

pT+1 := N
(
θ̂rT+1, η

−1
r V −1

T

)
⊗ posterior distribution for recommendation at time T

N
(
θ̂cT+1, ηc

−1V −1
T

) ∣∣∣Θ
ηr learning rate of reward for min-learner

ηc learning rate of cost for min-learner

pt := N (θ̂rt , η
−1
r V −1

t−1)⊗ posterior distribution for sampling at time t

N (θ̂ct , η
−1
c V −1

t−1)|Θẑt

pT := 1
T

∑T
t=1 pt Average posterior distribution for sampling over T rounds

p̃t := N (θ̂rt , η
−1
r V −1

t−1)⊗ optimal posterior distribution for sampling at time t

N (θ̂ct , η
−1
c V −1

t−1)|Θz∗

B PROOF OF THEOREM 4.1

Proof. We use the standard posterior convergence analysis to derive this theorem. Without loss of generality, we assume
that the training and testing arm sets X ,Z both span Rd. Denote the data as D = {(Xi, Yi)}ni=1 and Xi ∈ Rd. Define

X =

X
⊤
1
...

X⊤
n

 ∈ Rn×d

We assume the prior distribution for θr, θc are multivariate Gaussian:

θr ∼ N (θr0, λ
−1I) and θc ∼ N (θc0, λ

−1I)
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The likelihood for each reward and cost Y r
i , Y

c
i are:

P (Y r
i | θr) = N (Y r

i | ⟨θr, Xi⟩, σ2) and P (Y c
i | θc) = N (Y c

i | ⟨θc, Xi⟩, γ2)

For n observations, the likelihood is:

P (D | θr) =
n∏

i=1

N (Y r
i | ⟨θr, Xi⟩, σ2) and P (D | θc) =

n∏
i=1

N (Y c
i | ⟨θc, Xi⟩, γ2)

Let X ∈ Rn×d be the feature matrix where each row is X⊤
i . Then the vector of rewards and costs Y r =

(Y r
1 , Y

r
2 , . . . , Y

r
n)

⊤, Y c = (Y c
1 , Y

c
2 , . . . , Y

c
n )

⊤ follows:

Y r | θr ∼ N (Xθr, σ2I) and Y c | θc ∼ N (Xθc, γ2I)

Using Bayes’ theorem, the posterior distribution is:

P (θ∗ | D) ∝ P (D | θ∗)P (θ∗)

Since both the prior and likelihood are Gaussian, the posterior is also Gaussian, the posterior mean and covariance of the
reward are

Σr
n =

(
λI +

1

σ2
X⊤X

)−1

and θrn = Σr
n

(
λθr0 +

1

σ2
X⊤Y r

)
where the posterior distribution is

θr | D ∼ N (θrn,Σ
r
n)

The posterior mean and covariance of the cost are:

Σc
n =

(
λI +

1

γ2
X⊤X

)−1

and θcn = Σc
n

(
λθc0 +

1

γ2
X⊤Y c

)
where the posterior distribution is

θc | D ∼ N (θcn,Σ
c
n).

Assume θr0, θ
c
0 are zero vectors, then

Σr
n = σ2

(
λσ2I +X⊤X

)−1
,

θrn =
(
λσ2I +X⊤X

)−1
X⊤Y r,

Σc
n = γ2

(
λγ2I +X⊤X

)−1
,

θcn =
(
λγ2I +X⊤X

)−1
X⊤Y c.

Hence the posterior distributions of the expected reward and cost of arm z ∈ Z are:

µr(z) | D ∼ N (⟨θrn, z⟩, σ2∥z∥2
V −1
nr

) and µc(z) | D ∼ N (⟨θcn, z⟩, γ2∥z∥2
V −1
nc

),

where Vnr := λσ2I +X⊤X , Vnc := λγ2I +X⊤X . Let µr
n(z), µ

c
n(z) denote the sample reward and cost of arm z ∈ Z at

step n drawn from the posterior distribution µr(z)|D, µc(z)|D. Therefore for any suboptimal arm z ̸= z∗,

µr(z)− µ(z∗) | D ∼ N (⟨θrn, z − z∗⟩, σ2∥z − z∗∥2
V −1
nr

).

For any arm z ∈ Z ,

τ − µc(z) | D ∼ N (τ − ⟨θcn, z⟩, γ2∥z∥2
V −1
nc

).

Denote the reward gap and sample reward gap for suboptimal arm z ̸= z∗ as ∆r(z) := ⟨θr, z∗ − z⟩,∆r
n(z) := ⟨θrn, z∗ − z⟩

respectively, define the cost gap and sample cost gap for arm z ∈ Z by ∆c(z) := |τ − ⟨θc, z⟩|,∆c
n(z) := |τ − ⟨θcn, z⟩|

respectively.



Since

1− P(zout ̸= z∗) = P({µc
n(z

∗) > τ} ∪ {∃z ̸= z∗, µr
n(z) ≥ µr

n(z
∗) and µc

n(z) ≤ τ})
·
= max

z∈Z
{P(µr

n(z) ≥ µr
n(z

∗), µc
n(z) ≤ τ) · 1 {z ̸= z∗} ,P(µc

n(z) > τ) · 1 {z = z∗}} ,

then the problem reduces to derive the asymptotic expression within the maximum term. The following lemma about
Gaussian distribution will be useful in our proofs:

Lemma B.1. For Gaussian distribution X ∼ N (µ, σ2) with µ ≤ 0,

x

1 + x2

1√
2π

exp
(
− µ2

2σ2

)
≤ P(X ≥ 0) ≤ 1

2
exp

(
− µ2

2σ2

)
where x = −µ

σ .

With the above lemma, first if z = z∗ we obtain the following lemma.

Lemma B.2. P(µc
n(z

∗) > τ)
·
= exp

(
− (∆c

n(z
∗))2

2γ2∥z∗∥2

V
−1
nc

)
.

Proof. Since µc
n(z

∗) ∼ N (⟨θcn, z∗⟩, γ2∥z∗∥2
V −1
nc

), applying Lemma B.1 we have

x

1 + x2

1√
2π

exp

(
− (⟨θcn, z∗⟩ − τ)2

2γ2∥z∗∥2
V −1
nc

)
≤ P(µc

n(z
∗) > τ) ≤ 1

2
exp

(
− (⟨θcn, z∗⟩ − τ)2

2γ2∥z∗∥2
V −1
nc

)

where x =
τ−⟨θc

n,z
∗⟩

γ∥z∗∥
V

−1
nc

here. Then

1

n
log

1√
2π

+
1

n
log

x

1 + x2
≤ 1

n
log

 P(µc
n(z

∗) > τ)

exp

(
− (⟨θc

n,z
∗⟩−τ)2

2γ2∥z∗∥2

V
−1
nc

)
 ≤ 1

n
log

1

2
.

Notice ∥z∗∥V −1
nc

=
∥z∗∥

V
−1
π√

n
where Vπc :=

λγ2

n I +
∑K

i=1
Tn(z)

n zz⊤ and Tn(z) is the total number of pulls of arm z over n
rounds. Since there must exist one arm j∗ such that Tn(j

∗) ≥ n
K , then

Vmin :=
λγ2

n
I +

j∗j∗⊤

K
≲ Vπc ≲

λγ2

n
I +

K∑
i=1

zz⊤ := Vmax.

Hence limn→∞
1
n log x

1+x2 = 0 since limn→∞
1
n log n = 0, we have

lim
n→∞

1

n
log

 P(µc
n(z

∗) > τ)

exp

(
− (⟨θc

n,z
∗⟩−τ)2

2γ2∥z∗∥2

V
−1
nc

)
 = 0.

Lemma B.3. For z ∈ F ∩ S , P(µr
n(z) ≥ µr

n(z
∗), µc

n(z) ≤ τ)
·
= exp

(
− (∆r

n(z))
2

2σ2∥z−z∗∥2

V
−1
nr

)
.

Proof. First P(µc
∞(z) ≤ τ) = 1 since z ∈ F , then by Lemma B.1,

x

1 + x2

1√
2π

exp

(
− (∆r

n(z))
2

2σ2∥z − z∗∥2
V −1
nr

)
≤ P(µr

n(z) ≥ µr
n(z

∗)) ≤ 1

2
exp

(
− (∆r

n(z))
2

2σ2∥z − z∗∥2
V −1
nr

)
,



where x =
∆r

n(z)
σ∥z−z∗∥

V
−1
nr

.

Then

1

n
log

1√
2π

+
1

n
log

x

1 + x2
≤ 1

n
log

P(µr
n(z) ≥ µr

n(z
∗) | D)

exp

(
− (⟨θr

n,z−z∗⟩)2
2σ2∥z−z∗∥2

V
−1
n

)
 ≤ 1

n
log

1

2
.

Notice that ∥z − z∗∥V −1
nr

=
∥z−z∗∥

V
−1
π√

n
where Vπr := λσ2

n I +
∑K

i=1
Tn(z)

n zz⊤ and Tn(z) is the total number of pulls of
arm z over n rounds. Since there must exist one arm j∗ such that Tn(j

∗) ≥ n
K , then

Vmin :=
λσ2

n
I +

j∗j∗⊤

K
≲ Vπr ≲

λσ2

n
I +

K∑
i=1

zz⊤ := Vmax.

Hence limn→∞
1
n log x

1+x2 = 0 since limn→∞
1
n log n = 0, we have

lim
n→∞

1

n
log

 P(µr
n(z) ≥ µr

n(z) | D)

exp

(
− (⟨θr

n,z−z∗⟩)2
2σ2∥z−z∗∥2

V
−1
nr

)
 = 0.

Hence

P(µr
n(z) ≥ µr

n(z
∗), µc

n(z) ≤ τ)
·
= exp

(
− (∆r

n(z))
2

2σ2∥z − z∗∥2
V −1
nr

)
.

Lemma B.4. For z ∈ F ∩ S , P(µr
n(z) ≥ µr

n(z
∗), µc

n(z) ≤ τ)
·
= exp

(
− (∆c

n(z))
2

2γ2∥z∥2

V
−1
nc

)

Proof. First P(µr
∞(z) ≥ µr

∞(z∗)) = 1 since i ∈ S, then with the similar procedure as in Lemma B.3,

P(µc
n(z) ≤ τ)

·
=

1

2
exp

(
− (∆c

n(z))
2

2γ2∥z∥2
V −1
nc

)
.

Hence

P(µr
n(z) ≥ µr

n(z
∗), µc

n(z) ≤ τ)
·
= exp

(
− (∆c

n(z))
2

2γ2∥z∥2
V −1
nc

)
.

Lemma B.5. For i ∈ F ∩ S, P(µr
n,i ≥ µr

n,1, µ
c
n,i ≤ τ)

·
= exp

(
− (∆c

n(z))
2

2γ2∥z∥2

V
−1
nc

)
· exp

(
− (∆r

n(z))
2

2σ2∥z−z∗∥2

V
−1
nr

)

Proof. Since P(µr
n,i ≥ µr

n,1, µ
c
n,i ≤ τ) = P(µr

n,i ≥ µr
n,1) · P(µc

n,i ≤ τ), then with the similar procedure as in Lemma B.3,
this lemma can be proved.

For convenience, denote A1 := F ∩ S,A2 := F ∩ S,A3 := F ∩ S.

To summarize,

1− P(zout ̸= z∗)
·
= max

z∈Z
{P(µr

n(z) ≥ µr
n(z

∗), µc
n(z) ≤ τ) · 1 {z ̸= z∗} ,P(µc

n(z) > τ) · 1 {z = z∗}}



·
= max

z∈Z

{
exp

(
− (∆c

n(z
∗))2

2γ2∥z∗∥2
V −1
nc

)
, exp

(
− (∆c

n(z))
2

2γ2∥z∥2
V −1
nc

)
1{z ∈ A1},

exp

(
− (∆r

n(z))
2

2σ2∥z − z∗∥2
V −1
nr

)
1{z ∈ A2}, exp

(
− (∆c

n(z))
2

2γ2∥z∥2
V −1
nc

)
· exp

(
− (∆r

n(z))
2

2σ2∥z − z∗∥2
V −1
nr

)
1{z ∈ A3}

}
.

Hence

1− P(zout ̸= z∗)
·
= exp

(
− nmin

z∈Z

{
(∆c

n(z))
2

2γ2∥z∥2
V −1
w

1 {z ∈ A1} ,
(∆r

n(z))
2

2σ2∥z − z∗∥2
V −1
w

1 {z ∈ A2} ,(
(∆c

n(z))
2

2γ2∥z∥2
V −1
w

+
(∆r

n(z))
2

2σ2∥z − z∗∥2
V −1
w

)
1 {i ∈ A3} ,

(∆c
n(z))

2

2γ2∥z∗∥2
V −1
w

})
≥ exp

(
− nmax

w∈W
min
z∈Z

{
(∆c(z))2

2γ2∥z∥2
V −1
w

1 {z ∈ A1} ,
(∆r(z))2

2σ2∥z − z∗∥2
V −1
w

1 {z ∈ A2} ,(
(∆c(z))2

2γ2∥xi∥2V −1
w

+
(∆r(z))2

2σ2∥z − z∗∥2
V −1
w

)
1 {z ∈ A3} ,

(∆c(z∗))2

2γ2∥z∗∥2
V −1
w

})
= exp(−nΓ)

for any sampling rule where Vw :=
∑K

i=1 wixix
⊤
i and wi := limn→∞

Ti,n

n .

Let W := {w = (w1, w2, . . . , wK) :
∑

i wi = 1, wi ≥ 0, ∀ i ∈ [K]}. The exponential rate in the lower bound can be
written as

Γ := max
w∈W

min
z∈Z

{
(∆c(z))2

2γ2∥z∥2
V −1
w

1 {z ∈ A1} ,
(∆r(z))2

2σ2∥z − z∗∥2
V −1
w

1 {z ∈ A2} ,(
(∆c(z))2

2γ2∥z∥2
V −1
w

+
(∆r(z))2

2σ2∥z − z∗∥2
V −1
w

)
1 {z ∈ A3} ,

(∆c(z∗))2

2γ2∥z∗∥2
V −1
w

}
.

C PROOF OF THEOREM 4.2

Proof. We start from the right-hand side of the equation in Theorem 4.2, this optimization problem is equivalent to the
following:

min
θ1,θ2

1

2

(∥θ1 − θr∥2Vw

σ2
+
∥θ2 − θc∥2Vw

γ2

)
s.t. (θ1, θ2) ∈ Θz∗

By the definition of feasibility, this optimization problem is equal to:

min
θ1,θ2

1

2

(∥θ1 − θr∥2Vw

σ2
+
∥θ2 − θc∥2Vw

γ2

)
s.t. θ⊤2 z

∗ > τ or ∃z ∈ Z\z∗ : θ⊤1 z ≥ θ⊤1 z
∗ and θ⊤2 z ≤ τ

Furthermore this problem can be divided into two optimization problem and the minimum of the solutions of this two
problem will equal to the solution of the original optimization problem, the two subproblems are:

min
θ1,θ2

1

2

(∥θ1 − θr∥2Vw

σ2
+
∥θ2 − θc∥2Vw

γ2

)
s.t. ∃z ∈ Z\z∗ : θ⊤1 z ≥ θ⊤1 z

∗ and θ⊤2 z ≤ τ



and

min
θ1,θ2

1

2

(∥θ1 − θr∥2Vw

σ2
+
∥θ2 − θc∥2Vw

γ2

)
(3)

s.t. θ⊤2 z
∗ > τ (4)

Then the Lagrange multiplier of the first suboptimization problem is

L(θ1, θ2, µ, ν) =
1

2

(
∥θ1 − θr∥2Vw

σ2
+
∥θ2 − θc∥2Vw

γ2

)
− µ(θ⊤1 z − θ⊤1 z

∗)− ν(τ − θ⊤2 z).

Derivative with respect to θ1:
∂L
∂θ1

=
1

σ2
Vw(θ1 − θr)− µ(z − z∗),

and solving ∂L
∂θ1

= 0 gives:

θ1 − θr = µσ2V −1
w (z − z∗). (5)

Derivative with respect to θ2:
∂L
∂θ2

=
1

γ2
Vw(θ2 − θc) + νz,

and solving ∂L
∂θ2

= 0 gives:
θ2 − θc = −νγ2V −1

w z.

Derivative with respect to µ:
∂L
∂µ

= −θ⊤1 z + θ⊤1 z
∗,

and the condition is:
θ⊤1 z = θ⊤1 z

∗.

Derivative with respect to ν:
∂L
∂ν

= −τ + θ⊤2 z,

and the condition is:
θ⊤2 z = τ.

From Eqn. (5), we have

∥θr − θ1∥2Vw
= µ2σ4∥z − z∗∥2

V −1
w

,

then

µσ2 =
∥θr − θ1∥Vw

∥z − z∗∥V −1
w

. (6)

Plugging Eqn. (6) into Eqn. (5), we have

(z − z∗)⊤(θ1 − θr) = ∥z − z∗∥V −1
w
∥θr − θ1∥Vw

or

∥θr − θ1∥2Vw
=

((z − z∗)⊤(θ1 − θr))2

∥z − z∗∥2
V −1
w

(7)



Similarly, we also have

z⊤(θc − θ2) = ∥θ2 − θc∥Vw∥z∥V −1
w

.

Substitute τ = θ⊤2 z into it,

z⊤θc − τ = ∥θ2 − θc∥Vw
∥z∥V −1

w

or

∥θ2 − θc∥2Vw
=

(τ − z⊤θc)2

∥z∥2
V −1
w

. (8)

With Eqns. (7) and (8), the optimization problem becomes

min
θ1,θ2

1

2

(
((z − z∗)⊤(θr − θ1))

2

σ2∥z − z∗∥2
V −1
w

+
(τ − z⊤θc)2

γ2∥z∥2
V −1
w

)
(9)

s.t. ∃z ∈ Z\z∗ : θ⊤1 z ≥ θ⊤1 z
∗ and θ⊤2 z ≤ τ.

If z ∈ A1, to minimize the objective function, θ1 = θr, the minimum objective function value will then be
(∆c(z))2

2γ2∥z∥2

V
−1
w

1 {z ∈ A1};

if z ∈ A2, to minimize the objective function, θ2 = θc since in this case τ = θ⊤2 z = (θc)⊤z, which will make the second
term in Eqn. (9) to be zero. On the other hand for the first term, since

(z − z∗)⊤(θ1 − θr) = (z − z∗)⊤θ1 + (z∗ − z)⊤θr = (z − z∗)⊤θ1 +∆r(z),

then with the constraint θ⊤1 z ≥ θ⊤1 z
∗, the minimum will occur at θ1 such that θ⊤1 z = θ⊤1 z

∗. Hence the minimum
objective value will then be (∆r(z))2

2σ2∥z−z∗∥2

V
−1
w

1 {z ∈ A2}. Similarly, we can see if z ∈ A3, the minimum will be ( (∆c(z))2

2γ2∥z∥2

V
−1
w

+

(∆r(z))2

2σ2∥z−z∗∥2

V
−1
w

)1 {z ∈ A3}.

For the second optimization problem, recall that it is

min
θ1,θ2

1

2

(∥θ1 − θr∥2Vw

σ2
+
∥θ2 − θc∥2Vw

γ2

)
s.t. θ⊤2 z

∗ > τ.

First since the first term and second term are independent, the minimum occurs when θ1 = θr, then we assume θ⊤2 z
∗ = τ+α,

where α ≥ 0, then the Langrangian is

L(θ2, µ) =
∥θ2 − θc∥2Vw

2γ2
+ µ(τ − θ⊤2 z

∗ + α).

Then

∂L
∂θ2

=
1

γ2
Vw(θ2 − θc)− µz∗ = 0.

therefore

θ2 − θc = γ2µV −1
w z∗,

which implies that

∥θ2 − θc∥2Vw
= γ4µ2∥z∗∥2Vw

−1 ,



and which leads to

γ2µ =
∥θ2 − θc∥Vw

∥z∗∥Vw
−1

.

Hence

(θ2 − θc)⊤z∗ = ∥θ2 − θc∥Vw
∥z∗∥Vw

−1 .

The optimization problem then becomes

min
θ2

((θ2 − θc)⊤z∗)2

2γ2∥z∗∥2
Vw

−1

s.t. θ⊤2 z
∗ = τ + α,

since (θ2 − θc)⊤z∗ = τ − (θc)⊤z∗ + α = ∆c(z∗) + α, then when we choose α → 0, we get the minimum value
(∆c(z∗))2

2γ2∥z∗∥2
Vw−1

.

To summarize, the original optimization problem is equivalent to

min
z∈Z

{
(∆c(z))2

2γ2∥z∥2
V −1
w

1 {z ∈ A1} ,
(∆r(z))2

2σ2∥z − z∗∥2
V −1
w

1 {z ∈ A2} ,(
(∆c(z))2

2γ2∥z∥2
V −1
w

+
(∆r(z))2

2σ2∥z − z∗∥2
V −1
w

)
1 {z ∈ A3} ,

(∆c(z∗))2

2γ2∥z∗∥2
V −1
w

}
.

Hence the theorem is proved.

D PROOF OF THEOREM 4.3

During the proof of Theorem 4.3, we need the help of the good event lemmas in Section E. When these good events hold,
the error probability of our algorithm is

P(θr
T+1,θ

c
T+1)∼pT+1

(ẑout ̸= z∗)

·
=

∫
(θ1,θ2)∈Θz∗

pT+1(θ1, θ2) dθ1dθ2∫
(θ1,θ2)∈Θz∗

pT+1(θ1, θ2) dθ1dθ2

=

∫
(θ1,θ2)∈Θz∗

pT+1(θ1, θ2)/pT+1(θ
r, θc) dθ1dθ2∫

(θ1,θ2)∈Θz∗
pT+1(θ1, θ2)/pT+1(θr, θc) dθ1dθ2

(a)
·
=

∫
(θ1,θ2)∈Θz∗

exp (M) dθ1dθ2∫
(θ1,θ2)∈Θz∗

exp (M) dθ1dθ2

where M := − 1
2

(
∥θr−θ1∥2

VT

σ2 +
∥θc−θ2∥2

VT

γ2

)
and (a) comes from the definition of the good event E5,∞. Notice that when

T is enough large, at the last round the probability that all arms are empirically identified as infeasible is asymptotically equal
to zero according to the good event in Lemma 5.4. Furthermore, using the Laplace approximation (stated in Lemma G.3)
and the fact that

inf
(θ1,θ2)∈Θ

∥θr − θ1∥2VT

σ2
+
∥θc − θ2∥2VT

γ2
= 0 ,

we have

P(θr
T+1,θ

c
T+1)∼pT+1

(ẑout ̸= z∗)
·
= exp

(
−T

2
inf

(θ1,θ2)∈Θz∗

(
∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2

))
.



Then combining with the good event E6,δ , we have

P(θr
T+1,θ

c
T+1)∼pT+1

(ẑout ̸= z∗)
·
= exp (−TΓ) .

To summarize, with the choice δ = 1
T , with probability 1,

lim
T→∞

− 1

T
logP(θr

T+1,θ
c
T+1)∼pT+1

(ẑout ̸= z∗) = Γ .

E GOOD EVENT LEMMAS

Lemma E.1. Define the good event 1 as

E1,δ :=

{
∥θ̂rt − θr∥Vt−1 ≤

√
β1(t,

1

δ2
) and ∥θ̂ct − θc∥Vt−1 ≤

√
β2(t,

1

δ2
) ∀t ∈ [T ]

}

where β1(t,
1
δ2 ) := (S1+σ

√
2 log( 1

δ2 ) + d log
(
d+tL2

d

)
)2, β2(t,

1
δ2 ) := (S2+γ

√
2 log( 1

δ2 ) + d log
(
d+tL2

d

)
)2. Then with

probability 1− 2δ, good event E1,δ holds.

Proof. This lemma is proved directly with union bound with Lemmas G.1 and G.2.

Lemma E.2. Define good event

E2,δ :=

{
max
x∈X
|⟨θ̂rt , x⟩| ≤ B1 and max

x∈X
|⟨θ̂ct , x⟩| ≤ B2 ∀t ∈ [T ]

}

where B1 = LR1 + L
√
β1(T,

1
δ2 ), B2 = LR2 + L

√
β2(T,

1
δ2 ). Then

E1,δ ⊆ E2,δ

Proof. Follow the proof of Lemma D.2 in Li et al. [2024], when event E1,δ holds, for any x ∈ X ,

|⟨x, θ̂rt⟩| = |⟨x, θr⟩|+ |⟨x, θ̂rt − θr⟩|

≤ LR1 + ∥x∥V −1
t−1
∥θ̂rt − θr∥Vt−1

≤ LR1 + ∥x∥V −1
t−1

√
β1(T,

1

δ2
)

≤ LR1 + L

√
β1(T,

1

δ2
)

and

|⟨x, θ̂ct ⟩| = |⟨x, θc⟩|+ |⟨x, θ̂ct − θc⟩|

≤ LR2 + ∥x∥V −1
t−1
∥θ̂ct − θc∥Vt−1

≤ LR2 + ∥x∥V −1
t−1

√
β2(T,

1

δ2
)

≤ LR2 + L

√
β2(T,

1

δ2
).

Hence maxx∈X |⟨θ̂rt , x⟩| ≤ B1 and maxx∈X |⟨θ̂ct , x⟩| ≤ B2 for all t ∈ [T ].

Lemma E.3 (Lemma C.14 in Li et al. [2024]). Define the event E3,δ :=
{
Vt ≥ 3

4A(λG),∀t ≥ T1(δ), x ∈ X
}

where

T1(δ) := maxx∈X

(
6
√

log(|X |Tδ )

λG
x

)4

. Then with probability 1− δ, the event E3,δ holds.



Lemma E.4. Define the good event

E4,δ := {ẑt = z∗, ∀t > max {T1(δ) + 1, T2(δ)}}

where T2(δ) := max
{
(mmax|X |

∆r
min

√
dβ1(t,

1
δ2 ))

8
3 , (nmax|X |

∆c
min

√
dβ2(t,

1
δ2 ))

8
3

}
. Then E1,δ ∩ E3,δ ⊆ E4,δ.

Proof. First from Lemma C.15 in Li et al. [2024] we have under E1,δ ∩E3,δ , for any t > T1(δ)+1, we have for any x ∈ X ,

|⟨x, θ̂rt − θr⟩| ≤
√

d

t3/4
β1(t,

1

δ2
). (10)

and

|⟨x, θ̂ct − θc⟩| ≤
√

d

t3/4
β2(t,

1

δ2
).

Since X spans Rd, there exists z∗ − z =
∑

x∈X m(x)x, z =
∑

x∈X n(x)x for any z ∈ Z where 0 ≤ m(x), n(x) < ∞.
Then

|⟨z∗ − z, θ̂rt − θr⟩| =
∣∣∣∣〈∑

x∈X
m(x)x, θ̂rt − θr

〉∣∣∣∣
≤
∑
x∈X

m(x)
d

t3/4
β1(t,

1

δ2
)

≤ mmax|X |
√

d

t3/4
β1(t,

1

δ2
)

and

|⟨z, θ̂rt − θr⟩| =
∣∣∣∣〈∑

x∈X
n(x)x, θ̂rt − θr

〉∣∣∣∣
≤
∑
x∈X

n(x)
d

t3/4
β2(t,

1

δ2
)

≤ nmax|X |
√

d

t3/4
β2(t,

1

δ2
),

where mmax := maxx∈X m(x), nmax := maxx∈X n(x) .

Therefore when t > max
{
(mmax|X |

∆r
min

√
dβ1(t,

1
δ2 ))

8
3 , (nmax|X |

∆c
min

√
dβ2(t,

1
δ2 ))

8
3

}
, for all x ∈ X ,

|⟨z∗ − z, θ̂rt − θr⟩| < ∆r
min

and

|⟨z, θ̂rt − θr⟩| < ∆c
min .

Hence ẑt = z∗ and E1,δ ∩ E3,δ ⊆ E4,δ .

Lemma E.5. Define E5,∞ := limT→∞ supθ1∈Θ1,θ2∈Θ2

1
T

∣∣∣∣log pT+1(θ1,θ2)
pT+1(θr,θc) +

T
2 (

∥θr−θ1∥2
V T

σ2 +
∥θc−θ2∥2

V T

γ2 )

∣∣∣∣ = 0 , with

probability 1, the good event E5,∞ holds, which also means pT+1(θ1,θ2)
pT+1(θr,θc)

·
= exp

(
− 1

2 (
∥θr−θ1∥2

VT

σ2 +
∥θc−θ2∥2

VT

γ2 )

)
.

Proof. Since pT+1 := N (θ̂rT+1, σ
2V −1

T )⊗N (θ̂cT+1, γ
2V −1

T )|Θ, then

pT+1(θ1, θ2)

pT+1(θr, θc)
= exp

(
− 1

2

(∥θ1 − θ̂rT+1∥2VT

σ2
+
∥θ2 − θ̂cT+1∥2VT

γ2
−
∥θr − θ̂rT+1∥2VT

σ2
−
∥θc − θ̂rT+1∥2VT

γ2

))
.



Hence,

log
pT+1(θ1, θ2)

pT+1(θr, θc)
+

T

2

(
∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2

)

− 1

2

(
∥θ1 − θ̂rT+1∥2VT

− ∥θr − θ̂rT+1∥2VT
− ∥θr − θ1∥2VT

σ2
+
∥θ2 − θ̂cT+1∥2VT

− ∥θc − θ̂rT+1∥2VT
− ∥θc − θ2∥2VT

γ2

)
.

Following the proof of Lemma C.3 in Li et al. [2024], when T →∞, with probability 1− 2δ,∣∣∣∥θr − θ̂rT+1∥2VT
− ∥θ1 − θ̂rT+1∥2VT

+ ∥θr − θ1∥2VT

∣∣∣
=

∣∣∣∣∣−2
T∑

s=1

ϵsx
⊤
s (θ

r − θ1)

∣∣∣∣∣
≤ O

(
σLR1

√
T

√
2d log

(
d+ TL2

dδ

))
.

Similarly, we have: ∣∣∣∥θc − θ̂cT+1∥2VT
− ∥θ2 − θ̂cT+1∥2VT

+ ∥θc − θ2∥2VT

∣∣∣
=

∣∣∣∣∣−2
T∑

s=1

ηsx
⊤
s (θ

c − θ2)

∣∣∣∣∣
≤ O

(
γLR2

√
T

√
2d log

(
d+ TL2

dδ

))
.

With the choice δ = 1
T , with probability 1, the event E5,∞ holds.

Lemma E.6. Define the good event

E6,δ :=

{∣∣∣∣ max
w∈∆X

inf
(θ1,θ2)∈Θz∗

1

2

(
∥θ1 − θr∥2A(w)

σ2
+
∥θ2 − θc∥2A(w)

γ2

)

− inf
(θ1,θ2)∈Θz∗

1

2

(
∥θ1 − θr∥2

V T

σ2
+
∥θ2 − θc∥2

V T

γ2

)∣∣∣∣ ≤ o(1)

}
.

Event E6, 1
T

holds with probability at least 1− 28
T , conditioned on events E1, 1

T
, E2, 1

T
, E3, 1

T
, E4, 1

T
.

Proof. We decompose the simple regret with the following terms:

max
λ∈∆X

Eθ∼p̃T

[
∥θ1 − θr∥2A(λ)

σ2
+
∥θ2 − θc∥2A(λ)

γ2

]
− min

p∈P(Θz∗ )
Eθ∼p

[
∥θ1 − θr∥2

V T

σ2
+
∥θ2 − θc∥2

V T

γ2

]

= max
λ∈∆X

Eθ∼p̃T

[
∥θ1 − θr∥2A(λ)

σ2
+
∥θ2 − θc∥2A(λ)

γ2

]
− inf

(θ1,θ2)∈Θz∗

(
∥θ1 − θr∥2

V T

σ2
+
∥θ2 − θc∥2

V T

γ2

)

= max
λ∈∆X

Eθ∼p̃T

[
∥θ1 − θr∥2A(λ)

σ2
+
∥θ2 − θc∥2A(λ)

γ2

]
− 1

T
inf

(θ1,θ2)∈Θz∗

(∥θ1 − θr∥2VT

σ2
+
∥θ2 − θc∥2VT

γ2

)
+ F6

= max
λ∈∆X

Eθ∼p̃T

[
∥θ1 − θr∥2A(λ)

σ2
+
∥θ2 − θc∥2A(λ)

γ2

]
− max

λ∈∆X

1

T

T∑
t=1

E(θ1,θ2)∼pt

[
∥θ1 − θ̂rt∥2A(λ)

σ2
+
∥θ2 − θ̂ct∥2A(λ)

γ2

]
︸ ︷︷ ︸

F1



+ max
λ∈∆X

1

T

T∑
t=1

E(θ1,θ2)∼pt

[
∥θ1 − θ̂rt∥2A(λ)

σ2
+
∥θ2 − θ̂ct∥2A(λ)

γ2

]
− 1

T

T∑
t=1

E(θ1,θ2)∼pt

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2


︸ ︷︷ ︸

F2

+
1

T

T∑
t=1

E(θ1,θ2)∼pt

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2

− 1

T

T∑
t=1

E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2


︸ ︷︷ ︸

F3

+
1

T

T∑
t=1

E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2

− 1

T

T∑
t=1

E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2XtX⊤
t

σ2
+
∥θ2 − θ̂ct∥2XtX⊤

t

γ2


︸ ︷︷ ︸

F4

+
1

T

T∑
t=1

E(θ1,θ2)∼p̃t

∥θ1−θ̂rt∥2XtX⊤
t

σ2
+
∥θ2−θ̂ct∥2XtX⊤

t

γ2

 − 1

T
inf

(θ1,θ2)∈Θz∗

(
∥θ1−θ̂rT+1∥2VT

σ2
+
∥θ2−θ̂cT+1∥2VT

γ2

)
︸ ︷︷ ︸

F5

+F6.

where

F6 :=
1

T
inf

(θ1,θ2)∈Θz∗

(
∥θ1 − θ̂T+1∥2VT

σ2
+
∥θ2 − θ̂T+1∥2VT

γ2

)
− inf

(θ1,θ2)∈Θz∗

(
∥θ1 − θr∥2

V T

σ2
+
∥θ2 − θc∥2

V T

γ2

)
.

By combining Lemmas F.1, F.2, F.6, F.7, F.8, and F.9 with the union bound, this completes the proof of the lemma.

F LEMMAS FOR THE PROOF OF LEMMA 5.6

Lemma F.1. When the good events E1,δ, E3,δ both hold,

max
λ∈∆X

Eθ∼pT

[
∥θ1 − θr∥2A(λ)

σ2
+
∥θ2 − θc∥2A(λ)

γ2

]

− max
λ∈∆X

1

T

T∑
t=1

E(θ1,θ2)∼pt

[
∥θ1 − θ̂rt∥2A(λ)

σ2
+
∥θ2 − θ̂ct∥2A(λ)

γ2

]
≤ o(1).

Proof. Consider,

F1 : = max
λ∈∆X

Eθ∼pT

[
∥θ1 − θr∥2A(λ)

σ2
+
∥θ2 − θc∥2A(λ)

γ2

]

− max
λ∈∆X

1

T

T∑
t=1

E(θ1,θ2)∼pt

[
∥θ1 − θ̂rt∥2A(λ)

σ2
+
∥θ2 − θ̂ct∥2A(λ)

γ2

]

= max
λ∈∆X

1

T

T∑
t=1

Eθ∼pt

[
∥θ1 − θr∥2A(λ)

σ2
+
∥θ2 − θc∥2A(λ)

γ2

]

− max
λ∈∆X

1

T

T∑
t=1

E(θ1,θ2)∼pt

[
∥θ1 − θ̂rt∥2A(λ)

σ2
+
∥θ2 − θ̂ct∥2A(λ)

γ2

]

≤ max
λ∈∆X

1

T

T∑
t=1

Eθ∼pt

[
∥θ1 − θr∥2A(λ) − ∥θ1 − θ̂rt∥2A(λ)

σ2
+
∥θ2 − θc∥2A(λ) − ∥θ2 − θ̂ct∥2A(λ)

γ2

]
.



When the event E1,δ and E3,δ both hold,

∥θ1 − θr∥2A(λ) − ∥θ1 − θ̂rt∥2A(λ) = (θ1 − θr)⊤A(λ)(θ1 − θr)− (θ1 − θ̂rt)
⊤A(λ)(θ1 − θ̂rt)

= (θr + θ̂rt − 2θ1)
⊤A(λ)(θr − θ̂rt)

=
∑
x∈X

λx(θ
r + θ̂rt − 2θ1)

⊤xx⊤(θr − θ̂rt)

≤ max
x∈X

(θr + θ̂rt − 2θ1)
⊤xx⊤(θr − θ̂rt)

≤ (3LR1 +B1)max
x∈X

x⊤(θr − θ̂rt).

From Eqn. (10), we have maxx∈X |⟨x, θ̂rt − θr⟩| ≤
√

d
t3/4

β1(t,
1
δ2 ) for t > T1(δ) + 1; from event E1,δ, we have

maxx∈X |⟨x, θ̂rt − θr⟩| ≤ L
√
β1(t,

1
δ2 ) for t ≥ 1. Hence

max
x∈X

1

T

T∑
t=1

x⊤(θr − θ̂rt) = max
x∈X

1

T

T1(δ)+1∑
t=1

x⊤(θr − θ̂rt) + max
x∈X

1

T

T∑
t=T1(δ)+2

x⊤(θr − θ̂rt)

≤
(T1(δ) + 1)L

√
β1(t,

1
δ2 )

T
+

1

T

T∑
t=T1(δ)+2

√
d

t3/4
β1(t,

1

δ2
)

≤
(T1(δ) + 1)L

√
β1(t,

1
δ2 )

T
+

8

5

(T + 1)
5
8

T
.

Hence when we choose δ = 1
T ,

lim
T→∞

max
λ∈∆X

1

T

T∑
t=1

Eθ∼pt

∥θ1 − θr∥2A(λ) − ∥θ1 − θ̂rt∥2A(λ)

σ2
≤ o(1).

Similarly we can also prove

lim
T→∞

max
λ∈∆X

1

T

T∑
t=1

Eθ∼pt

∥θ2 − θc∥2A(λ) − ∥θ2 − θ̂ct∥2A(λ)

γ2
≤ o(1).

Hence

F1 ≤ o(1) .

Lemma F.2. With probability 1− 12
T ,

F2 ≤ o(1).

Proof. Consider,

F2 : = max
λ∈∆X

1

T

T∑
t=1

E(θ1,θ2)∼pt

[
∥θ1 − θ̂rt∥2A(λ)

σ2
+
∥θ2 − θ̂ct∥2A(λ)

γ2

]

− 1

T

T∑
t=1

E(θ1,θ2)∼pt

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2





= max
λ∈∆X

1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


− 1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ̃t

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2

 .

For any λ,

1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ̃t

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


=

1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ

∥θ1−θ̂rt∥2xtx⊤
t

σ2
+
∥θ2−θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ̃t

∥θ1−θ̂rt∥2xtx⊤
t

σ2
+
∥θ2−θ̂ct∥2xtx⊤

t

γ2


− 1

T

T∑
t=1

Ext∼λ

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

+
1

T

T∑
t=1

Ext∼λ̃t

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


+

1

T

T∑
t=1

Ext∼λ

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

Ext∼λ̃t

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


=

1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ

∥θ1−θ̂rt∥2xtx⊤
t

σ2
+
∥θ2−θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ̃t

∥θ1−θ̂rt∥2xtx⊤
t

σ2
+
∥θ2−θ̂ct∥2xtx⊤

t

γ2


− 1

T

T∑
t=1

Ext∼λ

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

+
1

T

T∑
t=1

Ext∼λ̃t

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


+

1

T

T∑
t=1

Ext∼λ

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

Ext∼λt

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


+

1

T

T∑
t=1

Ext∼λt

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

Ext∼λ̃t

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


= F2,1 + F2,2 + F2,3

where

F2,1 :=
1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ

∥θ1−θ̂rt∥2xtx⊤
t

σ2
+
∥θ2−θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ̃t

∥θ1−θ̂rt∥2xtx⊤
t

σ2
+
∥θ2−θ̂ct∥2xtx⊤

t

γ2


− 1

T

T∑
t=1

Ext∼λ

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

+
1

T

T∑
t=1

Ext∼λ̃t

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


and

F2,2 :=
1

T

T∑
t=1

Ext∼λ

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

Ext∼λt

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


and

F2,3 :=
1

T

T∑
t=1

Ext∼λt

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

Ext∼λ̃t

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2





Then with Lemma F.3, F.4, and F.5, we have for any λ, with probability 1− 6
T ,

1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


− 1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ̃t

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


= F2,1 + F2,2 + F2,3

≤ o(1) .

Define λ := argmaxλ∈∆X
1
T

∑T
t=1 E(θ1,θ2)∼pt,xt∼λ

[
∥θ1−θ̂r

t∥
2

xtx
⊤
t

σ2 +
∥θ2−θ̂c

t∥
2

xtx
⊤
t

γ2

]
. Next, denote the ε-covering of ∆X as

Bε :=
{
λ1 : ∥λ1 − λ∥1 ≤ ε

}
. Then there exists λ2 ∈ Bε such that

max
λ∈∆X

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


− max

λ∈Bε

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


≤

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2

− T∑
t=1

E(θ1,θ2)∼pt,xt∼λ2

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


(a)

≤
T∑

t=1

E(θ1,θ2)∼pt

(
(LR1 +B1)

2

σ2
+

(LR2 +B2)
2

γ2

)
∥λ− λ2∥1

≤ Tε

(
(LR1 +B1)

2

σ2
+

(LR2 +B2)
2

γ2

)
The term (a) follows from the fact that

E(θ1,θ2)∼pt,xt∼λ

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


is
(

(LR1+B1)
2

σ2 + (LR2+B2)
2

γ2

)
-Lipschitz for any t under the event E2,δ .

Additionally, since |Bε| ≤
(
3
ε

)|X |
, with probability 1 − 6

T , and based on the proof of Lemmas F.3, F.4, and F.5 with
δ = 1

T |Bε| and ε = 1√
T

, we can also conclude that

max
λ∈Bε

1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


− 1

T

T∑
t=1

E(θ1,θ2)∼pt,xt∼λ̃t

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2

 ≤ o(1)

Hence with probability 1− 12
T ,

F2 ≤
1√
T

(
(LR1 +B1)

2

σ2
+

(LR2 +B2)
2

γ2

)
+ o(1) = o(1) .



Lemma F.3. With probability 1− 2
T ,

F2,1 ≤ o(1) .

Proof. Denote Ft as the history up to t as in the algorithm. Since

F2,1 : =
1

T

T∑
t=1

(
E(θ1,θ2)∼pt,xt∼λ

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


− E(θ1,θ2)∼pt,xt∼λ̃t

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


− Ext∼λ

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


+ Ext∼λ̃t

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

) =:
1

T

T∑
t=1

Yt

One can see that E[Yt | Ft−1] = 0 is a martingale difference since pt is determined under Ft−1.

Furthermore, under the good event E2,δ ,

∥θrt − θ̂rt∥2xtx⊤
t
≤ (B1 + LR1)

2, ∥θct − θ̂ct∥2xtx⊤
t
≤ (B2 + LR2)

2 ,

then

|Yt| ≤ 4

(
(B1 + LR1)

2

σ2
+

(B2 + LR2)
2

γ2

)
Then by Azuma–Hoeffding’s inequality, with probabaility at least 1− 2

T ,

F2,1 ≤

√
8( (B1+LR1)2

σ2 + (B2+LR2)2

γ2 ) log(T )

T
≤ o(1) .

Lemma F.4. With probability 1− 2
T ,

F2,2 ≤ o(1) .

Proof. Apply the upper bound of the AdaHedge as in De Rooij et al. [2014], we have

max
λ∈∆X

T∑
t=1

Ext∼λ

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

− T∑
t=1

Ext∼λt

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


≤ 2rT

√
T log |X |+ rT

(16
3

log |X |+ 2
)

where rT := maxt∈[T ] maxx∈X
∥θr

t−θ̂r
t∥

2

xtx
⊤
t

σ2 +
∥θc

t−θ̂c
t∥

2

xtx
⊤
t

γ2 .

Then with the choice δ = 1
T , with probability 1− 2

T , good events E1,δ, E2,δ hold for any t ∈ [T ], hence by Lemma 5.1 and
Lemma 5.2,

rT ≤
(LR1 +B1)

2

σ2
+

(LR2 +B2)
2

γ2
= O(log T )



Hence

F2,2 ≤
1

T
max
λ∈∆X

T∑
t=1

Ext∼λ

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

Ext∼λt

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


≤ O

(
2 log T

√
T log |X |+ log T ( 163 log |X |+ 2)

T

)
≤ o(1) .

Lemma F.5. With probability 1− 2
T ,

F2,3 ≤ o(1) .

Proof. Consider,

F2,3 :=
1

T

T∑
t=1

Ext∼λt

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

− 1

T

T∑
t=1

Ext∼λ̃t

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2


By the definition of λ̃t := (1− γt)λt + γtλ

G, we have

F2,3 =
1

T

T∑
t=1

γt

Ext∼λt

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

− Ext∼λG

∥θrt − θ̂rt∥2xtx⊤
t

σ2
+
∥θct − θ̂ct∥2xtx⊤

t

γ2

 .

Furthermore, under good event E2,δ ,

∥θrt − θ̂rt∥2xtx⊤
t
≤ (B1 + LR1)

2, ∥θct − θ̂ct∥2xtx⊤
t
≤ (B2 + LR2)

2 ,

Hence with γt = t−
1
4 , δ := 1

T ,

F2,3 ≤
2

T

(
(LR1 +B1)

2

σ2
+

(LR2 +B2)
2

γ2

) T∑
t=1

t−
1
4

≤ 8

3T

(
(LR1 +B1)

2

σ2
+

(LR2 +B2)
2

γ2

)
T

3
4

≤ o(1) .

Lemma F.6. With probability 1− 3
T ,

F3 ≤ o(1).

Proof. When the good events E2,δ and E4,δ both hold, by the definition of p̃t, for t > max{T1(δ) + 1, T2(δ)}, we have
ẑt = z∗, and thus p̃t = pt.

Hence, with probability 1− 3δ and δ = 1
T , we can write:

F3 :=
1

T

T∑
t=1

E(θ1,θ2)∼pt

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2


− 1

T

T∑
t=1

E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2





=
1

T

max{T1(δ)+1,T2(δ)}∑
t=1

E(θ1,θ2)∼pt

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2


− 1

T

max{T1(δ)+1,T2(δ)}∑
t=1

E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2


≤

2max{T1(δ) + 1, T2(δ)}
(

(LR1+B1)
2

σ2 + (LR2+B2)
2

γ2

)
T

= o(1).

Lemma F.7. With probability 1− 2
T ,

F4 ≤ o(1).

Proof. We define F4 as follows:

F4 :=
1

T

T∑
t=1

E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2


− 1

T

T∑
t=1

E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2

 .

Since

Ext

E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2

 ∣∣∣∣Ft−1

 = E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2

 ,

we observe that:

E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2

− E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2


is a martingale difference sequence.

When the good event E2,δ holds, we have:∣∣∣∣∣∣E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2A(λ̃t)

σ2
+
∥θ2 − θ̂ct∥2A(λ̃t)

γ2

− E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2xtx⊤
t

σ2
+
∥θ2 − θ̂ct∥2xtx⊤

t

γ2

∣∣∣∣∣∣
≤ 2

(
(LR1 +B1)

2

σ2
+

(LR2 +B2)
2

γ2

)
.

Then, with probability at least 1− 2
T and δ = 1

T , we have:

F4 ≤

√√√√2
(

(LR1+B1)2

σ2 + (LR2+B2)2

γ2

)
log T

T
≤ o(1).



Lemma F.8. With probability 1− 4
T ,

F5 :=
1

T

T∑
t=1

E(θ1,θ2)∼p̃t

∥θ1 − θ̂rt∥2XtX⊤
t

σ2
+
∥θ2 − θ̂ct∥2XtX⊤

t

γ2


− 1

T
inf

(θ1,θ2)∈Θz∗

(
∥θ1 − θ̂rT+1∥2VT

σ2
+
∥θ2 − θ̂cT+1∥2VT

γ2

)
≤ o(1).

Proof. Since p̃t := N (θ̂rt , η
−1
r V −1

t−1)⊗N (θ̂ct , η
−1
c V −1

t−1)|Θz∗ , we define the normalization term at time t as

Wt :=

∫
(θ1,θ2)∈Θz∗

exp

(
−1

2

[
ηr∥θ1 − θ̂rt∥2Vt−1

+ ηc∥θ2 − θ̂ct∥2Vt−1

])
dθ1dθ2

Then we have for t > 1,

log
Wt

Wt−1
:= log

∫
(θ1,θ2)∈Θz∗

exp
(
− 1

2

[
ηr∥θ1 − θ̂rt∥2Vt−1

+ ηc∥θ2 − θ̂ct∥2Vt−1

])
dθ1dθ2

Wt−1

= log

∫
(θ1,θ2)∈Θz∗

exp
(
− 1

2

[
ηr∥θ1 − θ̂rt∥2Vt−1

+ ηc∥θ2 − θ̂ct∥2Vt−1
+ wt−1 − wt−1

])
dθ1dθ2

Wt−1

where wt := ηr∥θ1 − θ̂rt∥2Vt−1
+ ηc∥θ2 − θ̂ct∥2Vt−1

Then

log
Wt

Wt−1
= logE(θ1,θ2)∼p̃t

exp

(
−1

2

[
ηr∥θ1 − θ̂rt∥2Vt−1

+ ηc∥θ2 − θ̂ct∥2Vt−1
− wt−1

])
= logE(θ1,θ2)∼p̃t

exp

(
−1

2
Γ1 +

1

2
Γ2

)
(a)

≤ 1

2
logE(θ1,θ2)∼p̃t

exp (−Γ1) +
1

2
logE(θ1,θ2)∈p̃t

exp (Γ2)

where

Γ1 : = ηr∥θ̂rt−1 − θ1∥2xt−1x⊤
t−1

+ ηc∥θ̂ct−1 − θ2∥2xt−1x⊤
t−1

Γ2 : = ηr∥θ̂rt−1 − θ1∥2Vt−1
− ηr∥θ̂rt − θ1∥2Vt−1

+ ηc∥θ̂ct−1 − θ2∥2Vt−1
− ηc∥θ̂ct − θ2∥2Vt−1

and (a) follows from the Cauchy–Schwarz inequality. Next,

−∥θ̂rt−1 − θ1∥2xt−1x⊤
t−1
≤ −∥θr − θ1∥2xt−1x⊤

t−1
+ 2(θr − θ̂rt−1)

⊤(xt−1x
⊤
t−1)(θ

r − θ1)

≤ −∥θr − θ1∥2xt−1x⊤
t−1

+ 2∥θr − θ̂rt−1∥Vt−2
∥xt−1∥V −1

t−2
∥θr − θ1∥xt−1x⊤

t−1

≤ −∥θr − θ1∥2xt−1x⊤
t−1

+ 2∥θr − θ̂rt−1∥Vt−2
∥xt−1∥V −1

t−2
D1

= −∥θr − θ1∥2xt−1x⊤
t−1

+ a1

where a1 := 2∥θr − θ̂rt−1∥Vt−2
∥xt−1∥V −1

t−2
D1 and D1 := maxx∈X x⊤(θ1 − θr).

On the other hand, since

− ∥θr − θ1∥2xt−1x⊤
t−1
≤ −∥θ̂rt−1 − θ1∥2xt−1x⊤

t−1
− 2(θr − θ̂rt−1)

⊤(xt−1x
⊤
t−1)(θ̂

r
t−1 − θ1)

≤ −∥θ̂rt−1 − θ1∥2xt−1x⊤
t−1

+ 2∥θr − θ̂rt−1∥Vt−2∥xt−1∥V −1
t−2
∥θ̂rt−1 − θ1∥xt−1x⊤

t−1
.

≤ −∥θ̂rt−1 − θ1∥2xt−1x⊤
t−1

+ 2∥θr − θ̂rt−1∥Vt−2
∥xt−1∥V −1

t−2
(∥θr − θ̂rt−1∥xt−1x⊤

t−1
+ ∥θr − θ1∥xt−1x⊤

t−1
)



≤ −∥θ̂rt−1 − θ1∥2xt−1x⊤
t−1

+ 2∥θr − θ̂rt−1∥Vt−2∥xt−1∥V −1
t−2

(∥θr − θ̂rt−1∥xt−1x⊤
t−1

+D1)

≤ −∥θ̂rt−1 − θ1∥2xt−1x⊤
t−1

+ 2∥θr − θ̂rt−1∥Vt−2
∥xt−1∥V −1

t−2
(∥θr − θ̂rt−1∥Vt−2

∥xt−1∥V −1
t−2

+D1)

= −∥θ̂rt−1 − θ1∥2xt−1x⊤
t−1

+ a1 +
a21
2D2

1

then

−∥θr − θ1∥2xt−1x⊤
t−1
≤ −∥θ̂rt−1 − θ1∥2xt−1x⊤

t−1
+ 2a1 +

a21
2D2

1

.

Similarly we also have

−∥θc − θ2∥2xt−1x⊤
t−1
≤ −∥θ̂ct−1 − θ2∥2xt−1x⊤

t−1
+ 2a2 +

a22
2D2

2

,

where a2 := 2∥θc − θ̂ct−1∥Vt−2∥xt−1∥V −1
t−2

D1 and D2 := maxx∈X x⊤(θ2 − θc).

Furthermore, from Corollary 1 in Kone et al. [2024], when we choose

ηr ≤
1

8L2R2
1

and ηc ≤
1

8L2R2
2

,

whence, exp(−Γ1) is concave in terms of (θ1, θ2).

Then

log
Wt

Wt−1
≤ 1

2
logE(θ1,θ2)∼p̃t

exp (−Γ1) +
1

2
logE(θ1,θ2)∼p̃t

exp (Γ2)

≤ 1

2

(
−E(θ1,θ2)∼p̃t

ηr∥θ̂rt−1 − θ1∥2xt−1x⊤
t−1

+ ηc∥θ̂ct−1 − θ2∥2xt−1x⊤
t−1

+ ηr

(
2a1 +

a21
2D2

1

)
+ ηc

(
2a2 +

a22
2D2

2

))
+

1

2
logE(θ1,θ2)∈p̃t

exp (Γ2)

Then by telescoping

log
WT+1

W1
=

T+1∑
t=2

log
Wt

Wt−1

≤ 1

2

T+1∑
t=2

(
−E(θ1,θ2)∼p̃t

ηr∥θ̂rt−1 − θ1∥2xt−1x⊤
t−1

+ηc∥θ̂ct−1−θ2∥2xt−1x⊤
t−1

+ηr

(
2a1+

a21
2D2

1

)
+ηc

(
2a2+

a22
2D2

2

))

+
1

2

T+1∑
t=2

logE(θ1,θ2)∼p̃t
exp (Γ2) (11)

On the other hand, let z > 0, and (θ̃rT , θ̃
c
T ) = argmin(θ1,θ2)∈Θz∗

(
ηr∥θ1 − θ̂rT+1∥2VT

+ ηc∥θ2 − θ̂cT+1∥2VT

)
.

Given that Θz∗ constitutes a union of convex sets, there exists a convex subset C ⊆ Θz∗ such that (θ̃rT , θ̃
c
T ) ∈ C and

vol(C) > 0.

Next, define the set Nz as follows:

Nz :=
{
(1− z)(θ̃rT , θ̃

c
T ) + z(θ1, θ2) | (θ1, θ2) ∈ C

}
= (1− z)(θ̃rT , θ̃

c
T ) + zC,

which represents a convex combination of the point (θ̃rT , θ̃
c
T ) and elements from C, parameterized by z ∈ [0, 1].

Hence,

log
WT+1

W1
≥ log

∫
C exp

(
−ηr∥θ1−θ̂r

T+1∥
2
VT

+ηc∥θ2−θ̂c
T+1∥

2
VT

2

)
dθ1 dθ2

W1



≥ log

∫
Nz

exp

(
−ηr∥θ1−θ̂r

T+1∥
2
VT

+ηc∥θ2−θ̂c
T+1∥

2
VT

2

)
dθ1 dθ2

W1

= log

∫
zC exp

(
−ηr∥θ̂r

T+1−(1−z)θ̃r
T−θ1∥2

VT
+ηc∥θ̂c

T+1−θ̃c
T−θ2∥2

VT

2

)
dθ1 dθ2

W1

= log

∫
C z

2d exp

(
−ηr∥(1−z)(θ̂r

T+1−θ̃r
T )+zθ̂r

T+1−zθ1∥2
VT

+ηc∥(1−z)(θ̂c
T+1−θ̃c

T )+zθ̂c
T+1−zθ2∥2

VT

2

)
dθ1 dθ2

W1

≥ log

∫
C z

2d exp

(
−ηr∥(1−z)(θ̂r

T+1−θ̃r
T )∥2

VT
+z∥θ̂r

T+1−θ1∥2
VT

+ηc∥(1−z)(θ̂c
T+1−θ̃c

T )∥2
VT

+z∥θ̂c
T+1−θ2∥2

VT

2

)
dθ1 dθ2

W1

= 2d log(z)− ηr(1− z)

2
∥θ̂rT+1 − θ̃rT ∥2VT

− ηc(1− z)

2
∥θ̂cT+1 − θ̃cT ∥2VT

+ log

∫
C exp

(
−ηrz∥θ1−θ̂r

T+1∥
2
VT

+ηcz∥θ2−θ̂c
T+1∥

2
VT

2

)
dθ1 dθ2

W1

≥ 2d log(z)− ηr(1− z)

2
∥θ̂rT+1 − θ̃rT ∥2VT

− ηc(1− z)

2
∥θ̂cT+1 − θ̃cT ∥2VT

− E(θ1,θ2)∼Uni(C)
ηrz∥θ1 − θ̂rT+1∥2VT

+ ηcz∥θ2 − θ̂cT+1∥2VT

2
+ log

vol(C)
W1

.

Then with Eqn. (11), we have

1

2

T∑
t=1

E(θ1,θ2)∼p̃t

(
ηr∥θ̂rt − θ1∥2xtx⊤

t
+ ηc∥θ̂ct − θ2∥2xtx⊤

t

)
− 1− z

2
inf

(θ1,θ2)∈Θz∗

(
ηr∥θ1 − θ̂rT+1∥2VT

+ ηc∥θ2 − θ̂cT+1∥2VT

)
≤ 1

2

T+1∑
t=2

[
ηr

(
2a1 +

a21
2D2

1

)
+ ηc

(
2a2 +

a22
2D2

2

)]
+ E(θ1,θ2)∼Uni(C)

ηrz∥θ1 − θ̂rT+1∥2VT
+ ηcz∥θ2 − θ̂cT+1∥2VT

2

− 2d log z − log
vol(C)
W1

+
1

2

T+1∑
t=2

logE(θ1,θ2)∈p̃t
exp (Γ2) .

Then with the choice z = 1
T ,

ηr :=
η

σ2
, ηc :=

η

γ2
and η := min

{
σ2

8L2R2
1

,
γ2

8L2R2
2

}
.

From Lemma 12 in Kone et al. [2024], we have with probability 1− 4
T ,

1

2

T+1∑
t=2

[
ηr

(
2a1 +

a21
2D2

1

)
+ ηc

(
2a2 +

a22
2D2

2

)]
= O(

√
T log2 T ), and

1

2

T+1∑
t=2

logE(θ1,θ2)∼p̃t
exp (Γ2) = O(

√
T log2 T ) .

Also, under good event E1, 1
T

, we have

E(θ1,θ2)∼Uni(C)
ηrγ∥θ1 − θ̂rT+1∥2VT

+ ηcγ∥θ2 − θ̂cT+1∥2VT

2
= O(1), and

−2d log z = 2d log T = O(log T ).

Since Θz∗ is finite and vol(C) > 0, observe from the definition of Wt that W1 ≤ vol(Θz∗). Thus, − log vol(C)
W1

= O(1).



To summarize, with probability 1− 4
T ,

F5 :=
1

T

T∑
t=1

E(θ1,θ2)∼p̃t

∥θ1−θ̂rt∥2XtX⊤
t

σ2
+
∥θ2−θ̂ct∥2XtX⊤

t

γ2

− 1

T
inf

(θ1,θ2)∈Θz∗

(
∥θ1−θ̂rT+1∥2VT

σ2
+
∥θ2−θ̂cT+1∥2VT

γ2

)

≤ O
(√ log2 T

T

)
= o(1).

Lemma F.9. With probability 1− 4
T ,

F6 :=
1

T
inf

(θ1,θ2)∈Θz∗

(
∥θ1 − θ̂T+1∥2VT

σ2
+
∥θ2 − θ̂T+1∥2VT

γ2

)
− inf

(θ1,θ2)∈Θz∗

(
∥θ1 − θr∥2

V T

σ2
+
∥θ2 − θc∥2

V T

γ2

)
≤ o(1).

Proof. Denote (θ3, θ4) := argmin(θ1,θ2)∈Θz∗

(
∥θ1−θr∥2

VT

σ2 +
∥θ2−θc∥2

VT

γ2

)
. Then,

F6 =
1

T

[
inf

(θ1,θ2)∈Θz∗

(
∥θ1 − θ̂T+1∥2VT

σ2
+
∥θ2 − θ̂T+1∥2VT

γ2

)

− inf
(θ1,θ2)∈Θz∗

(∥θ1 − θr∥2VT

σ2
+
∥θ2 − θc∥2VT

γ2

)]

≤ 1

T

[(
∥θ3 − θ̂T+1∥2VT

σ2
+
∥θ4 − θ̂T+1∥2VT

γ2

)
−
(∥θ3 − θr∥2VT

σ2
+
∥θ4 − θc∥2VT

γ2

)]

=
1

T

[
(∥θ3 − θ̂T+1∥VT

− ∥θ3 − θr∥VT
)(∥θ3 − θ̂T+1∥VT

+ ∥θ3 − θr∥VT
)

σ2

+
(∥θ4 − θ̂T+1∥VT

− ∥θ4 − θc∥VT
)(∥θ4 − θ̂T+1∥VT

− ∥θ4 + θc∥VT
)

γ2

]

=
1

T

[
∥θr − θ̂T+1∥VT

(∥θ3 − θ̂T+1∥VT
+ ∥θ3 − θr∥VT

)

σ2

+
∥θc − θ̂T+1∥VT

(∥θ4 − θ̂T+1∥VT
− ∥θ4 + θc∥VT

)

γ2

]
(a)

≤ 1

T

[
∥θr − θ̂T+1∥VT

(3LR1 +B1)
√
T

σ2

+
∥θc − θ̂T+1∥VT

(3LR2 +B2)
√
T

γ2

]

(b)

≤ 1√
T

[√
β1(T + 1, 1

δ2 )(3LR1 +B1)

σ2

+

√
β2(T + 1, 1

δ2 )(3LR2 +B2)

γ2

]
where (a) comes from the good event E2,δ , and (b) comes from Lemmas G.1 and G.2.

Then, with probability 1− 4δ and with the choice δ = 1
T ,

F6 ≤
1√
T

[√
β1(T + 1, T 2)(3LR1 +B1)

σ2
+

√
β2(T + 1, T 2)(3LR2 +B2)

γ2

]
= o(1).



G USEFUL LEMMAS

In this section we present some useful existing lemmas for our proof.

Lemma G.1 (Theorem 2 in Abbasi-Yadkori et al. [2011]). For all t > 0, with probability 1− δ,

∥θ̂rt − θr∥Vt−1 ≤
√
β1(t,

1

δ2
)

where β1(t,
1
δ2 ) := (S1 + σ

√
2 log( 1

δ2 ) + d log
(
d+tL2

d

)
)2 .

Lemma G.2 (Theorem 2 in Abbasi-Yadkori et al. [2011]). For all t > 0, with probability 1− δ,

∥θ̂ct − θc∥Vt−1
≤
√

β2(t,
1

δ2
)

where β2(t,
1
δ2 ) := (S2 + γ

√
2 log( 1

δ2 ) + d log
(
d+tL2

d

)
)2 .

Lemma G.3 (Laplace Approximation). Denote V T := I + 1
T

∑T
t=1 XtX

⊤
t , for any bounded open sets Θ1,Θ2 ⊆

Rd, we have∫
Θ1

∫
Θ2

exp

(
−T

2
(
∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2
)

)
dθ1 dθ2

.
= exp

(
−T

2
inf

θ1∈Θ1,θ2∈Θ2

∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2

)
.

Proof. First, since Θ1 and Θ2 are bounded,

LHS ≤ Vol(Θ1) · Vol(Θ2) exp

(
−T

2
inf

θ1∈Θ1,θ2∈Θ2

∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2

)
.

Second, define (θ∗1 , θ
∗
2) := argmin(θ1,θ2)∈Θ1×Θ2

∥θr−θ1∥2
V T

σ2 +
∥θc−θ2∥2

V T

γ2

For any θ1 ∈ Θ1, θ2 ∈ Θ2, since∣∣∣∣∣
(
∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2

)
−

(
∥θr − θ∗1∥

2
V T

σ2
+
∥θc − θ∗2∥

2
V T

γ2

)∣∣∣∣∣
≤ 1

σ2

∣∣∣ ∥θr − θ1∥2V T
− ∥θr − θ∗1∥

2
V T

∣∣∣+ 1

γ2

∣∣∣ ∥θc − θ2∥2V T
− ∥θc − θ∗2∥

2
V T

∣∣∣
≤ 4L2R1

σ2
∥θ1 − θ∗1∥2 +

4L2R2

γ2
∥θ2 − θ∗2∥2

then when ∥θ1 − θ∗1∥2 ≤ ϵ1, ∥θ2 − θ∗2∥2 ≤ ϵ2,∣∣∣∣∣
(
∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2

)
−

(
∥θr − θ∗1∥

2
V T

σ2
+
∥θc − θ∗2∥

2
V T

γ2

)∣∣∣∣∣
≤ 4L2R1

σ2
ϵ1 +

4L2R2

γ2
ϵ2.

Define Θ∗
1 := {θ1 | ∥θ1 − θ∗1∥ ≤ ϵ1} ,Θ∗

2 := {θ2 | ∥θ2 − θ∗2∥ ≤ ϵ2}, then

LHS ≥
∫
Θ∗

1

∫
Θ∗

2

exp

(
−T

2
(
∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2
)

)
dθ1 dθ2



≥ Vol(Θ∗
1) · Vol(Θ∗

2) exp

(
− T

2

(4L2R1

σ2
ϵ1 +

4L2R2

γ2
ϵ2

))
exp

(
− T

2
inf

θ1∈Θ1,θ2∈Θ2

∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2

)
Then when we choose ϵ1 → 0, ϵ2 → 0, we can have∫
Θ1

∫
Θ2

exp

(
−T

2
(
∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2
)

)
dθ1 dθ2

.
= exp

(
−T

2
inf

θ1∈Θ1,θ2∈Θ2

∥θr − θ1∥2V T

σ2
+
∥θc − θ2∥2V T

γ2

)
.

H MORE EMPIRICAL PLOTS

H.1 MORE PLOTS FOR "END OF OPTIMISM" INSTANCE

Figure 7: α = 0.2

Figure 8: α = 0.3



H.2 MORE PLOTS FOR RANDOM INSTANCE

Figure 9: d = 2,K = 20

Figure 10: d = 20,K = 20
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