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Abstract

Estimating the response to an intervention with an associated dose conditional on a unit’s
covariates, the “conditional-average dose response” (CADR), is a relevant task in a variety of
domains, from healthcare to business, economics, and beyond. Estimating such a response
is challenging for several reasons: Firstly, it typically needs to be estimated from observa-
tional data, which can be confounded and negatively affect the performance of intervention
response estimators used for counterfactual inference. Secondly, the continuity of the dose
prevents the adoption of approaches used to estimate responses to binary-valued interven-
tions. That is why the machine learning (ML) community has proposed several tailored
CADR estimators. Yet, the proposal of most of these methods requires strong assump-
tions on the distribution of data and the assignment of interventions, which go beyond the
standard assumptions in causal inference. Whereas previous works have so far focused on
smooth shifts in covariate distributions across doses, in this work, we will study estimating
CADR from clustered data and where different doses are assigned to different segments of
a population. On a novel benchmarking dataset, we show the impacts of clustered data on
model performance. Additionally, we propose an estimator, CBRNet, that enables the ap-
plication of representation balancing for CADR estimation through clustering the covariate
space and a novel loss function. CBRNet learns cluster-agnostic and hence dose-agnostic
covariate representations for unbiased CADR inference. We run extensive experiments to
illustrate the workings of our method and compare it with the state of the art in ML for
CADR estimation.

1 Introduction

Predicting responses to interventions conditional on a unit’s covariates, so-called “conditional-average inter-
vention responses” has become a popular field of machine learning (ML) research (Shalit et al., 2016; Shi
et al., 2019).1. While a large share of studies focuses on estimating responses to categorical and especially
binary-valued interventions (Shalit et al., 2016; Yoon et al., 2018; Shi et al., 2019; Johansson et al., 2020), less
focus has been put on continuous-valued interventions, so interventions with an associated intensity or dose
(Schwab et al., 2019). Yet, estimating the conditional-average “dose response” (CADR) is of great interest
in many domains of applications, such as marketing (Farrelly et al., 2005), medicine (Calabrese, 2016), or
education (Turk, 2019), especially when too much or too little intervention can have negative effects (Frei &
Canellos, 1980), or when decision-makers must optimize resource usage (Vanderschueren et al., 2023).

Such responses must often be estimated from observational data. Hence, next to high-dimensional covariates
and non-linear dose-responses, an important challenge is for an estimator to adjust for confounding (Bica
et al., 2020), so the presence of a covariate vector that influences the dose assignment, as well as the
response (Haneuse, 2016). Not accounting for confounding might hinder methods from learning unbiased
estimates of CADR by overfitting the dose assignment mechanism (Shalit et al., 2016). Many approaches to
estimating responses to binary-valued interventions under observed confounding, however, cannot easily be

1Some literature also refers to the conditional-average response as the “individual” response. For a discussion on why the
term “conditional-average” is preferred over the term “individual”, we refer the reader to Vegetabile (2021)

1



Under review as submission to TMLR

𝒙!

𝒙"

(a) Input space
𝑠

ℙ(𝑠)

(b) Dose distributions

𝑦(𝑠)

𝑠
(c) Dose responses

Figure 1: Illustration of confounding by cluster (CBC). (a) We assume that there are clusters of
similar units in the data, visualized by the green and blue point cloud in an exemplary two-dimensional
covariate space. (b) The dose assignment mechanism is a function of the cluster so similar units are assigned
similar doses. This results in different distributions of dose assignment per cluster. (c) As dose responses
(y(s)) are heterogeneous and depend on a unit’s covariates (x1, x2), the dose response curves of units in
different clusters (green and blue curves) are different, resulting in confounded data.

transferred to the dose response setting (cf. Section 2). This is why the ML community has proposed several
tailored methods to learn CADR from observational data (Schwab et al., 2019; Bica et al., 2020; Nie et al.,
2021; Wang et al., 2022). Next to the standard assumptions necessary for causal inference (Stone, 1993),
most of these estimators rely on further assumptions on the underlying data, such as on the distribution
of covariates and the assignment of interventions and doses (Nie et al., 2021; Wang et al., 2022). These
assumptions drive algorithm development, yet are often not motivated by investigations of real-life scenarios
and their accompanying data-generating processes (DGPs). This potentially explains why ML estimators
for intervention response estimation have seen little adoption in practice (Curth et al., 2021). One such
assumption is a smooth shift in covariate distributions across different doses, as required by Wang et al.
(2022) and satisfied in the synthetic benchmarking datasets by Bica et al. (2020) and Nie et al. (2021) which
are frequently used in the literature.

In this paper, we investigate CADR estimation from data in which such assumptions are violated. Especially,
we will investigate scenarios in which units are clustered and where different doses are assigned to different
segments of a population, leading to “confounding by cluster” (CBC; cf. Figure 1). Such data is prevalent in
many domains, such as loan and insurance pricing, where groups of similar customers receive similar prices
(Phillips, 2013), or epidemiology, where the impacts of clustered data on modeling have been studied widely
(Berlin et al., 1999; Seaman et al., 2014). In ML research, however, we find that little interest has been
paid to understanding the impact of clustered data on intervention and dose response estimates. In this
paper, we take a step towards closing this gap in the literature. By analyzing the real-world applications of
CADR estimation in healthcare, public policy, and business, we abstract DGPs for clustered data and create
a novel semi-synthetic benchmarking dataset for dose response estimation from clustered data with varying
levels of confounding. We evaluate several ML methods, including traditional supervised learning methods
and tailored ML methods for CADR estimation. In addition, we propose a new method for estimating
CADR from clustered observational data with cluster-based dose assignment. Our method is called CBRNet
(Cluster-robust dose response estimation through Balanced Representation learning with neural Networks,
cf. Figure 3) and is motivated by preceding studies on estimating intervention responses under confounding
through the balancing of covariate distributions (Shalit et al., 2016; Schwab et al., 2018).

Contributions. Our paper makes three important contributions to the ML literature on dose response
estimation: (1) To the best of our knowledge, we are the first to investigate the impacts of learning from
clustered data on the performance of ML estimators for CADR; (2) we propose a novel semi-synthetic
benchmark that simulates CBC in observational data and that allows for testing its impacts on estimators;
(3) we introduce CBRNet, a method for CADR estimation from clustered data. By introducing a novel
loss function and by clustering the covariate space, we present an intuitive and effective approach to use
representation balancing for CADR estimation. We perform extensive experiments to test the performance
of CBRNet, both on our newly presented benchmark and on previously established datasets.
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Outline. Section 2 discusses related work on ML methods for CADR estimation and preceding bench-
marking practices. Our problem formulation follows in Section 3. We present our method, CBRNet, in
Section 4, discussing motivation and architecture. Our experimental setup is presented in Section 5, with
results following in Section 6. We conclude with Section 7, discussing the impact of our work and future
research directions.

2 Context

Background. The majority of ML literature on estimating intervention responses has been concerned with
“treatment effects”, so the differences in outcome between applying a specific intervention, the “treatment”,
or not (Johansson et al., 2016; Shalit et al., 2016; Louizos et al., 2017; Nie & Wager, 2017; Wager & Athey,
2018; Shi et al., 2019). Less attention has been paid to settings with interventions that are continuous-
valued, so that have an associated intensity or dose. Nevertheless, estimating continuous-valued intervention
responses, or simply “dose responses”, is relevant in a plethora of domains of application (Farrelly et al.,
2005; Calabrese, 2016; Turk, 2019; Vanderschueren et al., 2023). Compared to estimating treatment effects,
dose response estimation comes with unique challenges (Schwab et al., 2019), which make this an interesting
and relevant field of research.

For estimating treatment effects, controlled experiments, like randomized controlled trials (RCTs; Deaton
& Cartwright, 2018), are often considered the gold standard. Yet, due to the practically infinite amount
of possible doses, their application is signficantly complicated for dose response estimation (Holland-Letz
& Kopp-Schneider, 2014). Even when a suitable number of units is available, such experiments might be
prohibitively costly.

Alternatively, dose responses can be estimated using observational data. Yet, as with treatment effect estima-
tion, this comes with several challenges, most importantly: a) The impossibility of observing counterfactual
outcomes (Holland, 1986) and b) the presence of a dose assignment mechanism, which may have led to con-
founding in the data (Varadhan & Seeger, 2013). These challenges may prevent the adoption of traditional
supervised learning methods (Schwab et al., 2019).

ML dose response estimators. Phenomena, like observed confounding in data, are well described and
widely researched for treatment effect estimation (Curth et al., 2021). However, many methods presented for
estimating treatment effects do not translate to the dose response setting. Methods such as matching (Ho
et al., 2007), the propensity score (Rosenbaum & Rubin, 1983), representation balancing (Johansson et al.,
2016), representation learning (Louizos et al., 2017) and tailored tree-based estimators (Hill, 2011; Wager &
Athey, 2018) rely on the presence of two distinct groups, such as treated units and control units.

Hence, several tailored ML estimators for dose responses were proposed. Hirano & Imbens (2004) propose
the Hirano-Imbens estimator (HIE), built on the idea of the generalized propensity score (GPS), extending
the propensity score to continuous-valued interventions. Schwab et al. (2019) propose DRNet, a neural ar-
chitecture to learn conditional-average responses to multiple intervention options with an associated dose.
Their method can be combined with several balancing techniques to tackle the confounding of intervention
assignment, yet not the confounding of assigned doses. Alternatively, Bica et al. (2020) propose SCIGAN,
which leverages generative adversarial networks (GANs; Goodfellow et al., 2020), a method that learns how
to generate counterfactual responses. Generating counterfactual responses can remove confounding in the
data, enabling learning the dose response via supervised learning methods. Nie et al. (2021) propose VCNet,
a generalization of DRNet that accounts for the continuity of dose responses, by training a varying coeffi-
cient network (Hastie & Tibshirani, 1993). Nie et al. (2021) study the estimation of average dose responses,
by combining estimates of the conditional-average response through functional targeted regularization, a
method to build doubly-robust average dose response estimators inspired by van der Laan & Rubin (2006).
Wang et al. (2022) also tackle estimating the average dose response. Their estimator, ADMIT, minimizes
the maximal distributional difference between units of discrete dose intervals, assuming a smooth shift in
the probability distribution of covariates for units of different doses. Zhang et al. (2022) propose TransTEE,
a method using the transformer architecture (Vaswani et al., 2017) to build intervention effect estimators.
They claim that the attention mechanisms in these are superior in modeling observed confounders. Bellot
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et al. (2022) propose an architecture similar to DRNet, which uses multiple prediction heads for differ-
ent interventions with a dose, and use representation balancing to overcome intervention confounding for
conditional-average response estimation. Dose confounding is not addressed in their work.

Note that, even though methods such as VCNet and ADMIT were proposed for average dose response
estimation, their methodologies can be used to estimate conditional-average responses. Specifically, any
preceding method for average response estimation first trains a conditional-average response estimator. A
simple estimator of the average response can be obtained by the law of total expectation and averaging the
conditional-average estimates over a population of interest (Abrevaya et al., 2015). For a detailed description
of our problem setup, see Section 3.

Benchmarking practices in ML for dose response estimation. As counterfactual outcomes cannot
be observed, ML estimators for intervention responses cannot easily be evaluated using observational data
(Schwab et al., 2019; Bica et al., 2020). This is different from, for example, supervised learning (Hastie &
Tibshirani, 1993). Alternatively, many researchers derive theoretical guarantees for their estimators’ perfor-
mance based on assumptions or use semi- or fully synthetic datasets for an empirical evaluation. Neither
of these two approaches ensures good real-life performance. Datasets are usually constructed according to
a synthetic data-generating process (DGP), which defines causal relationships between covariates, interven-
tions, and outcomes. Prominent examples of such datasets for dose response estimation include the ones
presented by Bica et al. (2020) and Nie et al. (2021).

Curth et al. (2021) show that most research lacks analysis of the aspects of a synthetic dataset, and that
challenges in a dataset are often incompletely understood. In contrast to the preceding works, we argue that
the creation of dose response estimators should be use-case driven and that we need a better understanding
of the effects of different DGPs on model performance. Hence, we base the methodology of this work on
abstractions of real-life use cases of CADR estimation, motivating the creation of our new method.

3 Problem formulation

We leverage the Neyman-Rubin potential outcomes framework (Splawa-Neyman et al., 1990; Rubin, 1974)
and assume that we observe units defined by a pre-intervention covariate vector X ∈ X ⊂ Rm in some
m-dimensional feature space. Every unit is assigned a positive dose S ∈ S ⊂ R+. For the remainder of
our paper and without loss of generality, we set S = [0, 1] to be the unit interval. Every unit has potential
responses, or “outcomes” Y (s) ∈ Y ⊂ R, which are the responses had it received the dose s. Following
Schwab et al. (2019), we call Y (s) the “dose response”. The expected response for a dose given a unit’s
covariates, the “conditional-average dose response” (CADR), is subsequently given by

µ(s, x) = E[Y (s)|X = x]. (1)

Our goal is to estimate the CADR from observational data. We expect to have access to data in the form of
Dn = {(xi, si, yi)}n

i=1, where n is the total number of observed units. xi, si, and yi are the covariates, the

X

S

Y(s)

s

Figure 2: Single world interven-
tion graph (SWIG) illustrating causal
dependencies between variables in the
training data. Our goal is to estimate
the response of a unit to a dose s.

assigned dose, and the observed response of the i-th unit respec-
tively. We also refer to yi as the “factual response”. We operate
under the standard fundamental problem of causal inference (Hol-
land, 1986), so responses of a unit i to doses different from si,
so-called “counterfactual responses”, are never observed.

One challenge in CADR estimation from observational data lies
in the relationships between variables X, S, and Y . In observa-
tional data, unlike in controlled environments, doses were likely
assigned according to some (partially) unknown assignment mech-
anism based on units’ covariates. In the case of heterogenuous
dose responses, such a mechanism might introduce confounding, in
which the covariate vector influences both dose assignment and the
respective dose response. We illustrate the relationships between
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the different variables in the data in a single-world intervention graph (SWIG; Richardson & Robins, 2013)
in Figure 2. To learn an unbiased estimate of the CADR, a method must hence adjust for any potential
confounding (Shalit et al., 2016).

Finding unbiased estimates of intervention responses relies on a set of untestable assumptions (Stone, 1993).
In line with preceding works, we require the following standard assumptions to hold:
Assumption 1. (Consistency) The observed outcome Yi for a unit i that was assigned dose si is the potential
outcome Yi(si).
Assumption 2. (No hidden confounders) The assigned dose S is conditionally independent of the potential
outcome Y (s) given the covariates X, so {Y (s)|s ∈ S} ⊥⊥ S|X
Assumption 3. (Overlap) Every unit has a greater-than-zero probability of receiving any dose, so ∀s ∈ S :
∀x ∈ X with P(x) > 0 : 0 < P(s|x) < 1

Note. As indicated in Section 2, estimating the CADR is also relevant for estimating average dose responses
(ADR, µ̂(s)). Methods for ADR estimation are typically first training a CADR estimator µ̂(d, x) and
are subsequently deriving an estimate of the ADR through the law of total expectation by calculating
µ̂(s) = 1

n

∑n
i=1 µ̂(s, xi).

4 CBRNet: A method to tackle confounding by cluster in CADR estimation

Motivation. It is widely understood that use cases and applications should drive method selection (Luo,
2016), and that algorithm architecture plays a major role in estimator performance (Alaa & van der Schaar,
2018). This is especially true for intervention response estimators, whose performance cannot be studied on
real data. We hence argue that algorithm development should be aligned more closely with the study of real-
world applications. By now, the ML community has relied mostly on a small set of benchmarking datasets
(Curth et al., 2021), such as the IHDP dataset presented by Hill (2011) for treatment effect estimation, or
the datasets by Bica et al. (2020) and Nie et al. (2021) for dose response estimation. While posing distinct
challenges to estimators and relying on covariates acquired from real-world studies, these datasets are created
using synthetic DGPs specifying intervention assignment and potential outcomes. These mechanisms are
often created without further motivation, raising questions about their realisticness.

For this manuscript, we take an alternative approach and will focus on CADR estimation from clustered
data with cluster-based dose assignment. Whereas in preceding works intervention and dose assignment are
typically specific to a unit’s covariates, we assume that similar units form clusters and that dose assignment
is conditional on the cluster (cf. Figure 1). So, every unit i is assigned a cluster ci according to some
clustering function g(x) : X → C. If that assumption holds, we can reformulate “No hidden confounders”
(cf. Section 3) as {Y (s)|s ∈ S} ⊥⊥ S|C. While not previously studied in the ML literature on dose response
estimation, such mechanisms occur in several domains of application. Assuming that dose responses are
heterogeneous, such cluster-based assignment can introduce confounding in the data, often referred to as
“confounding by cluster” (Localio et al., 2002; Seaman et al., 2014; Zetterqvist et al., 2016; Berlin et al.,
1999). We identified several real-life scenarios in which such mechanisms apply:

• In the pricing of loan and insurance products, companies might want to identify the effect of price
on a customer’s willingness to buy or renew a product, yet in accordance with established business
processes similar customers were assigned to different price tiers (Yeo et al., 2002; Phillips, 2013);

• in marketing, a company might want to predict the effect of exposure to a marketing campaign, yet
customers were grouped by loyalty programs and have hence received distinct amounts of discounts
(Jonker et al., 2004; Ho et al., 2012);

• in medicine, practitioners might want to understand the effect of varying amounts of a drug on
health outcomes, yet patients were grouped by biomarkers to receive certain doses (Schacht et al.,
2014; Verhaart et al., 2014);

• in education, one might want to predict the effectiveness of certain learning programs on students’
educational success, yet students were divided based on ability, leaving them exposed to similar
interventions (Betts & Shkolnik, 2000);
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• in public policy, policymakers might want to estimate the effects of subsidies on research organi-
zations, yet organizations often form clusters with similar characteristics, which apply for grants
jointly (Broekel et al., 2015).

In all of the above scenarios, the data will likely be confounded. To learn an unbiased estimate of the
CADR, we must find an estimator robust to such observed confounding. As doses are driven by the clus-
ter, supervised estimators that do not address confounding or treatment assignment bias might overfit the
assignment mechanism and learn biased estimates of dose responses. Feed-forward neural networks, for ex-
ample, tend to memorize the relation between the dose and the outcome as observed in the available data
(Schwab et al., 2019). However, due to the non-random treatment assignment mechanism, some clusters
will be over- or underrepresented at a certain dose, compared to their proportion in the overall population.
These “traditional” supervised methods do not account for confounding, resulting from the dose assignment
mechanism (cf. below). Therefore, the resulting models may not generalize well to units of different clusters,
with different characteristics and different responses to doses. As illustrated in Figure 1c, the effect of a
particular dose on the outcome is different for observations from a different cluster. We propose to solve
this challenge by building a model that learns cluster-agnostic, and hence dose-agnostic representations of a
unit’s covariates, for unbiased CADR estimation.
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Figure 3: Architecture of CBRNet. The network
consists of three parts. A representation learner Φ,
an inference network I, and a clustering function ∆.
To overcome confounding by cluster, Φ is trained to
learn a dose-agnostic representation by minimizing a
tailored integral probability metric (IPM) over the re-
sponse space given the clusters identified by ∆. Subse-
quently, the inference network I is trained to learn the
response of a unit to a dose by minimizing a standard
mean squared error loss (MSE). For a full description
of our method see Section 4.

Architecture. The architecture of CBRNet is
shown in Figure 3. CBRNet consists of three parts
Φ, ∆, and I, based on our motivation in the para-
graph above. Φ : X → R is a representation learn-
ing function mapping the covariates into the repre-
sentation space R ⊂ Rn to learn a cluster-agnostic
representation. We use a standard feed-forward neu-
ral network for Φ, where both the number of layers
and the number of hidden nodes per layer are hyper-
parameters. ∆ : X × S → {1, . . . , k} is a clustering
function mapping a unit to one of k clusters by tak-
ing as input the covariates and doses of a unit. We
assume that dose assignment is conditional on the
cluster, hence adding the dose as input to the clus-
tering function is expected to improve performance
in separating clusters with heterogeneous doses. For
an overview of possible clustering algorithms, see
Madhulatha (2012). We propose to use k-means
(Lloyd, 1982) as a clustering function, minimizing
Euclidian distances between units of a certain clus-
ter. It is widely adopted in business and beyond
(Wu, 2012) and has previously been used in treat-
ment effect estimation (Berrevoets et al., 2020). We
train ∆ on all available training data and do not alter it during the training of the remaining network com-
ponents (see paragraph below). I : R × S → R is an inference function taking as input the covariates in
representation space R and a dose, to learn the CADR. As for Φ, we propose I to be a feed-forward neural
network with flexible hyperparameters, as similarly adopted by Shalit et al. (2016), Schwab et al. (2019),
and Bica et al. (2020).

Model selection and training. CBRNet is trained using gradient descent over the training dataset
Dn = {(xi, si, yi)}n

i=1 minimizing loss L defined as

L(x, s, y) = LI(y, ŷ) + λ ∗ LΦ(Φ, ∆, D). (2)

LI is a standard mean squared error (MSE) loss

LI = MSE(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2 (3)
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where yi is the true outcome of unit i and ŷi is the estimated outcome as calculated by the inference function
I. LΦ is a loss for the learned representation of the representation-learning network that ensures that Φ
learns a cluster-agnostic representation. We rely on using integral probability metrics (IPMs) to measure
the distances between the distributions of different clusters in the representation space R. As an IMP, such
as the maximum mean discrepancy (MMD; Gretton et al., 2006) or the Wasserstein distance (Kantorovich,
1960; Vaserstein, 1969), is defined for strictly two distributions, we take inspiration from Schwab et al. (2018)
and calculate LΦ as

LΦ(Φ, ∆, D) = 1
k − 1

k−1∑
i=1

IPM
(
{Φ(xj)}j:∆(xj ,sj)=i, {Φ(xj)}j:∆(xj ,sj)=k

)
. (4)

Intuitively, we choose one base cluster k and take as regularization loss the average over the pair-wise
distances between the remaining clusters and the base cluster. We set λ as a hyperparameter to balance
the two losses, LI and LΦ. Our proposition of the regularization loss allows for a flexible choice of IPM and
cluster number k, such as linear or kernel MMDs or the Wasserstein distance. We will test the impact of
different choices in our empirical evaluation in the following sections. In practice, we choose as base k the
cluster with the most observed units, in order to ensure accurate empirical approximation of the IPMs.

As discussed in previous works on ML for CADR estimators, model selection and hyperparameter tuning
are inherently difficult due to the unavailability of counterfactual outcomes (Schwab et al., 2019; Bica et al.,
2020). For an overview, Curth & van der Schaar (2023) discuss several approaches to model selection.
Choosing one procedure over another can significantly impact response estimation and model bias. For our
empirical evaluation and to not confuse the performance of CADR estimators with the performance of model
selection procedures, we propose to use a standard mean squared error over observed units in a validation
set to optimize hyperparameters of CBRNet. For further detail, we refer to Section 5 and our technical
implementation in Appendix E. We propose to use a validation set to optimize hyperparameters and to
choose the best model in terms of the validation set MSE.

5 Experimental Evaluation

We evaluate CBRNet empirically, by comparing it to several benchmarking methods on a novel semi-synthetic
dataset, the “Dry bean-DR data”. The following paragraphs will discuss the creation of this data, the
benchmarking methods, and the metrics used for evaluation. The dataset is available publically and has
been provided with the code for this manuscript. We want to mention that we do not claim the Dry bean-
DR dataset to be a superior dataset for evaluating CADR estimators. Instead, our proposal of the dataset
is meant to complement the set of available benchmarking datasets. The key novelty compared to other
established datasets is the cluster-based dose assignment.

Data generation. To simulate clustered data and cluster-based intervention assignments, we use a semi-
synthetic setup. While previous works primarily motivate the realisticness of their data by the use of
covariates sampled from real-life experiments, such as the TCGA data (Cancer Genome Atlas Research
Network et al., 2013), a dataset on gene sequences of cancer cells, we put a strong emphasis on the intervention
assignment mechanisms as a prime factor driving confounding. Our data generation starts by taking the
covariates of the dry bean dataset (Koklu & Ozkan, 2020). The dataset contains 13,611 samples of seven
different types of beans, listing 16 unique features per sample derived from a computer vision analysis.
We relate this data to intervention response estimation by considering a situation in which we want to
understand the effect of different irrigation levels on crop yields (Goldstein et al., 2017; Dehghanisanij et al.,
2022). Understanding the conditional-average responses to irrigation could lead to improved yields, yet
we have to estimate these responses from observational data, stemming from established farming practices.
Hence, the data likely is confounded. The data generation now proceeds in three steps:

Step 1 (Clustering): We take as clusters the types of beans in the original data and randomly aggregate
them to form three clusters. For a unit i, we denote the corresponding cluster as ci ∈ {1, 2, 3}. During model
training and application, we expect the cluster affiliation to be unknown.
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(α = 3, β = 0)
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(α = 3, β = 2
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Figure 4: Visualization of level on confounding in dry bean dataset. Per subfigure, the left plot
visualizes the dose distribution across the population and provides a color legend. The right plot visualizes
the dose response space. Per dose response, the line color corresponds to the assigned dose, which is marked
with a dot (·). In the unconfounded case (a), doses are homogeneously distributed across units. In the
confounded case (b), doses are assigned conditional on clusters, as evident by the color separation of different
dose responses.

Step 2 (Dose assignment): Different from preceding datasets (Schwab et al., 2019; Bica et al., 2020; Nie et al.,
2021), we assign doses based on clusters which will lead to a more rapid shift in covariate distributions across
different dose levels in the data. We refer back to Section 4 for real-world examples of such mechanisms.
Every cluster j is assigned a different “modal dose” mj , which is randomly drawn from { 1−β

2 , 1
2 , 1+β

2 } without
replacement. The parameter β ∈ [0, 1] determines the variability of doses across clusters. For β = 0 the
dose assignment is homogenous across clusters. For β = 1, dose assignment is maximally heterogeneous. We
set β = 1

2 for our main experiments, and show the impact of different levels of β in Appendix C. As the
cluster of a unit is determined by its location in the covariate space, the dose is implicitly dependent on the
covariates.

To add variability of doses within clusters, per unit i, we sample the individual dose si from a Beta-
distribution

Si ∼ Beta(α,
α

mci

+ (1 − α)), (5)

as motivated by Bica et al. (2020), ensuring that the mode of Si is mci . The parameter α determines the
variance of the Beta-distribution. For α = 0, the dose of a unit is sampled from a uniform distribution,
leading to no confounding, as the dose is unconditional on a unit’s covariates. For α → ∞, the dose
assignment is fully deterministic, and every unit in a cluster will be assigned the model dose. We can think
of α as the confounding strength. We visualize the impacts of parameters α and β in Appendix A.

Step 3 (Response calculation): We define a ground truth dose response per unit, which allows for the
calculation of counterfactual outcomes. The conditional-average dose response for a covariate vector xi and
a dose s is defined as

µ(s, xi) = 10
(

w⊺
1x + 12s

(
s − 3

4
w⊺

2x
w⊺

3x

)2
)

, (6)

where wl ∈ R16 for l ∈ {1, 2, 3} is a weight vector. We randomly sample half of the weights from a uniform
distribution U(0, 1) and set the remaining weights to zero to add noise covariates (Shi et al., 2019). We test
the effect of different degrees of sparseness in the weight vector in Appendix D. The individual dose response
per unit is finally calculated as yi = µ(si, xi) + ϵ where ϵ ∼ N (0, 1) is a random error term. The final data
for different values of α and β is visualized in Figure 4 illustrating the confounding.

Benchmarks. We compare CBRNet against several relevant baselines. First, we compare it against su-
pervised learning algorithms, namely linear regression, a regression tree, xgboost, as a state-of-the-art imple-
mentation of gradient-boosted trees and a feedforward multi-layer perceptron (MLP). Second, we compare
it against DRNet (Schwab et al., 2019) and VCNet (Nie et al., 2021), two popular and competitive dose
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Table 1: MISE per method on dry bean dataset for β = 1
2 and varying levels of α. We compare

CBRNet against several benchmarking methods over varying levels of confounding by cluster. The best
results are printed in bold, second-best results are in italics. Results for different values of α can be found
in Appendix C.

β = 1
2

α

Model 1.0 2.0 3.0 4.0

Linear Regression 3.32 ± 0.03 3.40 ± 0.06 3.30 ± 0.02 3.32 ± 0.03
CART 1.31 ± 0.06 1.40 ± 0.09 1.56 ± 0.15 1.53 ± 0.13
xgboost 0.91 ± 0.07 1.16 ± 0.09 1.15 ± 0.07 1.28 ± 0.04
MLP 0.54 ± 0.04 0.67 ± 0.08 0.83 ± 0.09 1.06 ± 0.08

DRNet 0.62 ± 0.03 0.78 ± 0.13 0.82 ± 0.07 0.98 ± 0.06
VCNet 0.75 ± 0.11 1.07 ± 0.10 1.18 ± 0.11 1.35 ± 0.07

CBRNet(MMDlin) 0.44 ± 0.09 0.47 ± 0.12 0.44 ± 0.07 0.63 ± 0.15
CBRNet(MMDrbf ) 0.45 ± 0.10 0.53 ± 0.14 0.50 ± 0.10 0.71 ± 0.17
CBRNet(Wass) 0.43 ± 0.09 0.46 ± 0.10 0.45 ± 0.08 0.55 ± 0.11

response estimators. For a discussion of these methods, see Section 2. To understand the impacts of different
IPMs on model performance, we train CBRNet using the linear MMD (MMDlin), a kernel MMD (MMDrbf )
using the radial basis function kernel, and the Wasserstein distance.

Performance metrics. We evaluate the performance of each method using the MISE metric introduced
by Schwab et al. (2019), which measures the ability of a method to estimate the CADR over all units in the
test data and all dose levels. For a test dataset with n units, the MISE is defined as

MISE = 1
n

n∑
i=1

∫
S

(µ(s, xi) − µ̂(s, xi))2 ds. (7)

6 Empirical Results

Performance on the dry bean dataset. For a total of 17 different combinations of α and β, we generate
10 random instances of the Dry bean-DR data. We use 70% of the data for training, 10% as a validation set
for hyperparameter tuning, and 20% as a test set for calculating performance metrics.

Fixing β = 1
2 , we report the performance of all nine estimators for different levels of α in Table 1. Performance

under different levels of β is stated in our extended results section in Appendix C. CBRNet outperforms all
benchmark methods across different levels of confounding, indicating that our proposed model architecture
is well-suited to learn CADR from clustered data.

CBRNet shows higher robustness to confounding by cluster than its benchmarks when the confounding
strength α increases. Irrespective of the chosen IPM for regularization, the performance of CBRNet is
stable for low to moderate levels of α, only increasing for the highest value of α = 4. For all other models,
performance is strictly decreasing for increases in α.

Similar behavior can be observed for different values of β. A notable case is given for β = 0, hence when there
is no variability of doses between clusters (cf. Table 2 in Appendix C). For β = 0, the data is unconfounded,
as doses are sampled from the same distribution for all units and all clusters. So, CBRNet also outperforms
the benchmark methods when learning CADR from clustered, but unconfounded data.

Hyperparameter sensitivity We further investigate the sources of gain of our proposed architecture by
testing the impact of two critical hyperparameters: (a) The strength of the regularization λ, and (b) the

9
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number of clusters k identified by the k-means clustering. The results of those experiments are summarized
in Figure 5. For both experiments, we fix the hyperparameters of CBRNet and iterate over varying levels
of λ and k. To stabilize results, for every parameter configuration, we generate 10 random instances of the
Dry bean-DR data with α = 2

3 and β = 3.

In Appendix B we visualize the impact of the IMP regularization on the representation space. We find a
strictly positive impact on model performance for low to moderate levels of regularization (λ < 0.1). These
results support the positive impact of regularizing for differences in cluster distributions in the representa-
tion space. These results are also independent of the chosen IPM, with MMDs and Wasserstein distance
performing comparably. Only for an increased level of regularization, does the predictive performance of
CBRNet decrease. This indicates that an overregularization is possible

The performance of CBRNet appears to be robust to the specified number of clusters k, with performance
converging on the Dry bean-DR data for larger k. We hence expect our method to have favorable asymptotical
properties for unclustered data, as long as the dose assignment can be approximated sufficiently well by a
large enough number of clusters and if sufficient data is available to approximate the IPMs. In applications,
next to before-mentioned model selection procedures, the number of clusters can be selected together with
domain experts, or by visual analysis.

Performance on established datasets To judge the performance of CBRNet on unclustered data, we
run experiments on previously established benchmarking datasets proposed by Bica et al. (2020)2 and Nie
et al. (2021). CBRNet performs competitively, beating all of its benchmark methods on three of the four
datasets. However, further decomposition is needed to understand the precise challenges in these datasets to
attribute performance to either the general architecture of CBRNet, or the IPM regularization. We provide
the full results on these datasets in Table 5 in Appendix C. While good performance on a benchmarking
dataset is no guarantee for performance in a real-world application, we consider these results to indicate the
effectiveness of our newly developed approach.

7 Conclusion

We studied the estimation of conditional-average dose responses (CADR) from clustered observational data.
Practitioners face clustered data in several real-life scenarios, covering applications in, e.g., business, eco-
nomics, and healthcare (cf. Section 4). In such scenarios, dose assignment is often cluster-specific, potentially
leading to confounding. This confounding mechanism is distinct from scenarios previously studied in the
ML literature on intervention response estimation and has impacts on the validity of assumptions that are
often made beyond standard ones necessary for applying causal inference (cf. Section 2).

To enable thorough testing of estimators under the presence of such data, we created a novel dataset, the
“Dry bean-DR data”, based on the covariates initially presented by Koklu & Ozkan (2020). Experiments on
this dataset reveal that traditional supervised estimators and ML estimators tailored to CADR estimation
suffer from confounding by cluster. To work towards solving this problem, we proposed a new ML estimator,
CBRNet. Using a novel loss function that averages integral probability metrics over any number of clusters in
the covariates space, we can leverage representation balancing for CADR estimation and prevent confounding
biases.

In comparison with its benchmarks, CBRNet shows improved performance, indicating our approach’s ap-
propriateness. Further experiments using established datasets revealed that CBRNet can similarly achieve
competitive performance on unclustered data.

2The DGP proposed by Bica et al. (2020) can incorporate up to three different interventions, each with an associated dose.
To comply with the architecture of CBRNet, we generate responses to only a single intervention.
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Figure 5: Hyperparameter robustness. (a) Moderate levels of regularization improve model performance.
Regularizing by the MMD with a radial basis function kernel (rbf) appears to overregularize earlier than
for linear MMD and Wasserstein distance. (b) We see robustness to the number of clusters. Performance
converges for all IPMs.

Our research has shown that understanding the context and unique characteristics of a CADR estimation
problem is imperative. Variations in the underlying data-generating process of observational data can have
adverse effects on model performance. To ensure good performance, especially given the inherent difficulty of
model selection in causal inference, practitioners must check the validity of any method-specific assumptions,
for example, by involving domain experts (Pearl, 2022).

Our implementation of CBRNet is available online for practitioners and fellow researchers to build upon
(cf. Appendix E). Our implementation uses a basic scikit-learn syntax (Pedregosa et al., 2011), enabling
efficient model setup, training and inference:

1 from src. methods . neural import CBRNet
2 model = CBRNet ()
3 model.fit(X_train , Y_train , S_train )
4 model. predict (X_test , S_test )

All relevant hyperparameters can be specified. The architecture of our method was motivated by the analysis
of real-world scenarios, leveraging and extending the concept of representation balancing, first proposed
in the literature on ML for causal inference by Shalit et al. (2016). We highlight three potential future
research directions: (1) A theoretical analysis of CBRNet and asymptotical guarantees of model performance
in clustered and unclustered data. Especially, an analysis of the necessary amount of data for effective
regularization could benefit the adoption of our model, as the IPMs for regularization are approximated
empirically. (2) Further research on model selection and hyperparameter tuning. While using a validation
set MSE can be a practical first guess (Curth & van der Schaar, 2023), alternative approaches could further
add performance guarantees when training models on real-life data. This research is not specific to CBRNet,
but is relevant to the wider related literature. (3) Finally, our research is specific to interventions with
an associated dose, hence extending our experiments to binary-valued interventions could be a promising
and insightful direction, especially given the limited number of benchmarking datasets for treatment effect
estimation (Curth et al., 2021).
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A Visualization of confounding mechanism
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(b) β = 0, α = 3
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(c) β = 1
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Figure 6: Visualization of dose distributions per cluster. Subfigures visualize the dose distributions of
different clusters for varying levels of confounding. Parameter β determines the difference in doses between
individual clusters. Parameter α determines the variability of doses within a cluster.

B Effect of regularization on covariate representation
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(d) Regul. rep.

Figure 7: Regularizing impact of integral probability metric (IPM). We visualize the regularizing
impact of the IPM. Figure (a) visualizes the density of different doses in the test data and provides a color
legend. The preceding figures are two-dimensional t-SNE plots of (b) the input space in X , (c) the learned
representation of CBRNet without regularization, and (d) the learned representation with regularization by
the MMD with a radial basis function kernel. The regularization effectively removes the clustering by dose
level.
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C Extended results

Table 2: MISE per method on dry bean dataset for β = 0 and varying levels of α.

β = 0

α

Model 0.0 1.0 2.0 3.0 4.0

Linear Regression 2.83 ± 0.01 3.27 ± 0.03 3.80 ± 0.03 4.19 ± 0.04 4.44 ± 0.04
CART 0.86 ± 0.03 1.04 ± 0.03 1.44 ± 0.07 1.93 ± 0.10 2.18 ± 0.11
xgboost 0.55 ± 0.03 0.69 ± 0.02 1.11 ± 0.08 1.58 ± 0.07 1.88 ± 0.10
MLP 2.83 ± 0.01 0.54 ± 0.08 1.17 ± 0.09 1.98 ± 0.05 2.52 ± 0.09

DRNet 0.41 ± 0.03 0.60 ± 0.06 0.99 ± 0.12 1.74 ± 0.19 1.92 ± 0.23
VCNet 0.34 ± 0.04 0.69 ± 0.04 1.04 ± 0.09 1.41 ± 0.09 1.69 ± 0.17

CBRNet(MMDlin) 0.25 ± 0.04 0.35 ± 0.05 0.41 ± 0.10 0.64 ± 0.08 0.88 ± 0.14
CBRNet(MMDrbf ) 0.26 ± 0.04 0.34 ± 0.05 0.42 ± 0.07 0.61 ± 0.08 0.92 ± 0.09
CBRNet(Wass) 0.28 ± 0.05 0.34 ± 0.05 0.42 ± 0.10 0.62 ± 0.08 0.86 ± 0.16

Table 3: MISE per method on dry bean dataset for β = 1
4 and varying levels of α.

β = 1
4

α

Model 1.0 2.0 3.0 4.0

Linear Regression 3.43 ± 0.03 3.84 ± 0.04 4.06 ± 0.03 4.35 ± 0.04
CART 1.17 ± 0.09 1.47 ± 0.11 1.74 ± 0.08 2.04 ± 0.21
xgboost 0.77 ± 0.07 1.04 ± 0.07 1.37 ± 0.09 1.66 ± 0.13
MLP 0.57 ± 0.06 1.01 ± 0.11 1.46 ± 0.13 2.14 ± 0.13

DRNet 0.72 ± 0.07 0.96 ± 0.07 1.30 ± 0.16 1.54 ± 0.20
VCNet 0.68 ± 0.05 1.16 ± 0.08 1.48 ± 0.16 1.83 ± 0.12

CBRNet(MMDlin) 0.41 ± 0.09 0.57 ± 0.17 0.71 ± 0.17 0.79 ± 0.22
CBRNet(MMDrbf ) 0.42 ± 0.11 0.57 ± 0.15 0.75 ± 0.26 0.87 ± 0.15
CBRNet(Wass) 0.44 ± 0.08 0.57 ± 0.15 0.69 ± 0.28 0.74 ± 0.17
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Table 4: MISE per method on dry bean dataset for β = 3
4 and varying levels of α.

β = 3
4

α

Model 1.0 2.0 3.0 4.0

Linear Regression 2.91 ± 0.01 2.92 ± 0.02 3.01 ± 0.03 3.01 ± 0.02
CART 1.24 ± 0.11 1.31 ± 0.08 1.32 ± 0.10 1.43 ± 0.11
xgboost 1.04 ± 0.05 1.04 ± 0.08 1.00 ± 0.06 1.09 ± 0.06
MLP 1.19 ± 0.09 1.19 ± 0.1 1.64 ± 0.11 1.57 ± 0.15

DRNet 0.60 ± 0.07 0.59 ± 0.06 0.71 ± 0.05 0.70 ± 0.08
VCNet 0.55 ± 0.10 0.62 ± 0.07 0.60 ± 0.05 0.66 ± 0.07

CBRNet(MMDlin) 0.35 ± 0.07 0.39 ± 0.11 0.39 ± 0.09 0.45 ± 0.06
CBRNet(MMDrbf ) 0.43 ± 0.11 0.49 ± 0.18 0.42 ± 0.06 0.51 ± 0.13
CBRNet(Wass) 0.34 ± 0.06 0.38 ± 0.10 0.42 ± 0.08 0.45 ± 0.07

Table 5: MISE on established benchmark datasets. CBRNet performs competitively against bench-
mark methods across established datasets, achieving state-of-the-art performance on three out of four
datasets, and improving over a standard MLP on all datasets.

Dataset
Model TCGA-2 IHDP-1 News-2 Synth-1

MLP 2.01 ± 0.1 2.79 ± 0.09 1.22 ± 0.12 1.60 ± 1.22

DRNet 0.35 ± 0.05 2.54 ± 0.08 0.81 ± 0.07 1.52 ± 1.06
VCNet 0.68 ± 0.30 1.42 ± 0.19 0.78 ± 0.06 0.90 ± 0.55

CBRNet(MMDlin) 0.24 ± 0.07 1.60 ± 0.33 1.12 ± 0.06 0.99 ± 0.66
CBRNet(MMDrbf ) 0.26 ± 0.09 1.56 ± 0.17 1.10 ± 0.05 0.99 ± 0.61
CBRNet(Wass) 0.24 ± 0.08 1.40 ± 0.25 1.10 ± 0.05 0.89 ± 0.56
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D Dataset ablation

In this section we test the effect of different levels of sparseness in the weight vectors determining the dose
response in the Dry bean-DR data (cf. Section 5). For four different levels of sparseness, α = 3 and β = 1

2 ,
we generate 10 instances of the Dry bean-DR data. We then train all methods on these instances of the data
and report results in Table 6. The results indicate that increasing sparsity does not immediately lead to a
decrease in model performance. Across models, performance increases for spareness levels up to 50%. Only
for a sparseness of 75% model performance decreases. While CBRNet is similarly affected by high levels of
sparsity, the decrease in model performance is less severe when compared with the benchmark methods.

Table 6: Model performance (MISE) per weight vector sparseness. We are iterating over different
levels of spareness in the weight vectors determining the dose response in the Dry bean-DR data (cf. Sec-
tion 5). Increasing sparsity does not immediately lead to a decrease in model performance. Across models,
performance increases for spareness levels up to 50%. Only for a sparseness of 75% model performance
decreases.

α=3, β = 1
2

Sparseness 0% 25% 50% 75%

Linear Regression 4.88 ± 0.05 4.39 ± 0.04 3.78 ± 0.04 18.91 ± 0.20
CART 2.45 ± 0.26 1.70 ± 0.08 1.37 ± 0.13 11.33 ± 1.22
xgboost 2.25 ± 0.16 1.55 ± 0.09 1.23 ± 0.08 6.25 ± 0.85
MLP 3.09 ± 0.21 0.98 ± 0.04 1.31 ± 0.28 5.41 ± 0.31

DRNet 1.18 ± 0.05 0.81 ± 0.06 0.66 ± 0.06 5.85 ± 0.30
VCNet 1.24 ± 0.27 0.73 ± 0.21 0.58 ± 0.13 5.70 ± 0.40

CBRNet(MMDlin) 0.88 ± 0.13 0.67 ± 0.12 0.50 ± 0.29 2.51 ± 0.82
CBRNet(MMDrbf ) 1.10 ± 0.30 1.05 ± 0.28 0.70 ± 0.35 2.71 ± 1.40
CBRNet(Wass) 0.90 ± 0.18 0.71 ± 0.22 0.51 ± 0.25 2.51 ± 0.87
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E Implementation, reproducibility, and hyperparameter optimization

Our experiments are written in Python 3.10 (Van Rossum et al., 1995) and were executed on an Apple M2
Pro SoC with 10 CPU cores, 16 GPU cores, and 16 GB of shared memory. The system needs approximately
one day for the iterative execution of all experiments. We aim for maximal reproducibility. All methods
considered in our manuscript are consistently implemented in an sklearn style. The code to reproduce all
experiments, results, and figures paper can be found online via https://anonymous.4open.science/r/
CBRNet-600C/.

For VCNet, we build on the original implementation provided by Nie et al. (2021) (https://github.com/
lushleaf/varying-coefficient-net-with-functional-tr). All remaining neural network architectures
were implemented in PyTorch (Paszke et al., 2017) using Lightning (Falcon et al., 2020). Xgboost is im-
plemented using the xgboost library (Chen & Guestrin, 2016). CART models were implemented using the
Scikit-Learn library (Pedregosa et al., 2011). Linear regression was implemented using the statsmodels
library (Seabold & Perktold, 2010).

For the TCGA-2 dataset, linear regression models were trained using the first 50 principal components of
the covariate matrix to reduce computational complexity.

Hyperparameter optimization. Results are not to be compared to the original papers, as the optimiza-
tion scheme and parameter search ranges differ from the original records. If not specified differently, the
remaining hyperparameters are set to match the specifications of the original authors.

Table 7: Hyperparameter search range for Linear Regression:

Parameter Values
Penalty {Elastic net, Lasso,

None}

Table 8: Hyperparameter search range for CART:

Parameter Values
Max depth {5, 15, None}
Min sample split {2, 5, 20}
Min samples per leaf {1, 5, 10}
Max features per split {None,

√
p(x)}

Splitting criterion {Gini}

Table 9: Hyperparameter search range for xgboost:

Parameter Values
Learning rate {0.01, 0.1, 0.2}
Max depth {3, 5, 7, 9}
Subsample {0.5, 0.7, 1.0}
Min child weight {1, 3, 5}
Gamma {0.0, 0.1, 0.2}
Columns sampled per tree {0.3, 0.5, 0.7}
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Table 10: Hyperparameter search range for MLP:

Parameter Values
Learning rate {0.0001, 0.001}
L2 regularization {0.0, 0.1}
Batch size {64, 128}
Hidden size {32, 48}
Num steps {5000}
Num layers {2}
Optimizer {Adam}

Table 11: Hyperparameter search range for DRNet:

Parameter Values
Learning rate {0.0001, 0.001}
L2 regularization {0.0, 0.1}
Batch size {64, 128}
Hidden size {32, 48}
Num dose strata {10}
Num steps {5000}
Num layers {2}
Optimizer {Adam}

Table 12: Hyperparameter search range for VCNet:

Parameter Values
Learning rate {0.001, 0.01}
Batch size {128, 256}
Hidden size {32}
Num steps {5000}
Optimizer {Adam}

Table 13: Hyperparameter search range for CBRNet:

Parameter Values
Learning rate {0.001, 0.01}
Batch size {128, 256}
Hidden size {32}
Num steps {5000}
Optimizer {Adam}
IPM Regularization {0.001, 0.01, 0.1}
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