
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MITIGATING PARTICIPATION IMBALANCE BIAS IN
ASYNCHRONOUS FEDERATED LEARNING UNDER
CLIENT HETEROGENEITY

Anonymous authors
Paper under double-blind review

ABSTRACT

In Asynchronous Federated Learning (AFL), the central server immediately up-
dates the global model with each arriving client’s contribution. As a result, clients
perform their local training on different model versions, causing information stale-
ness (delay). In federated environments with non-IID local data distributions, this
asynchronous pattern amplifies the adverse effect of client heterogeneity (due to
different data distribution, local objectives, etc.), as faster clients contribute more
frequent updates, biasing the global model. We term this phenomenon heterogene-
ity amplification. Our work provides a theoretical analysis that maps AFL design
choices to their resulting error sources when heterogeneity amplification occurs.
Guided by our analysis, we propose ACE (All-Client Engagement AFL), which
mitigates participation imbalance through immediate, non-buffered updates that use
the latest information available from all clients. We also introduce a delay-aware
variant, ACED, to balance client diversity against update staleness. Experiments on
different models for different tasks across diverse heterogeneity and delay settings
validate our analysis and demonstrate the robust performance of our approaches.

1 INTRODUCTION

Federated Learning (FL) enables collaborative training of machine learning models across multiple
clients (e.g., mobile devices) holding private data (Kairouz et al., 2021). In a typical FL process
coordinated by a central server, clients receive the current global model, compute updates based on
their local data, and send these updates back. The server aggregates these updates to refine the global
model for the next round, keeping raw data local. A key challenge in FL is client heterogeneity:
clients often have diverse characteristics, including non-IID local data distributions and potentially
distinct local objectives or update computation processes. These variations can impact training
speed and performance (Li et al., 2020; Kairouz et al., 2021). Another challenge is the presence of
stragglers: synchronous FL algorithms, like FedAvg (Li et al., 2020), wait for a subset of clients to
finish, creating bottlenecks from slower clients.

To address the straggler problem and reduce waiting times, Asynchronous Federated Learning
(AFL) was proposed (Agarwal & Duchi, 2011; Recht et al., 2011; Nguyen et al., 2022). In AFL, the
server incorporates each of the client updates immediately upon receipt without waiting. However,
this solution introduces update delays (staleness) because slower clients compute updates locally
based on older versions of the global model received earlier, while the server continues to evolve
using updates from faster clients. This participation imbalance causes the global model to be more
influenced by the data distributions and learning objectives of the faster clients. We formally define
this phenomenon as heterogeneity amplification and provide a theoretical analysis to understand its
impact on asynchronous FL. Specifically, our analysis shows that the challenges of AFL originate
from two interconnected issues:

• AFL Staleness and Dynamics: The asynchronous nature of AFL results in widely varying client-
server communication intervals. This variability leads to information staleness where gradients are
computed on outdated models, introducing errors (Agarwal & Duchi, 2011). Additionally, updates
formed from a subset of clients can introduce participation imbalance bias into the global model.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Client 1

Client 2

Client 3

Client Computation Server Received Update Sequence

Immediate
Update:

Buffered
Update:

More updates
from Client 3

All-Client
Update: Equal updates

Figure 1: Staleness and Heterogeneity Amplification in AFL. Left: Clients compute at varying
speeds (arrow lengths) on their local datasets with heterogeneous data distributions (Pi, colors).
Color intensity reflects staleness—the degree to which a client’s model version is outdated due to
infrequent client-server communication. Right: Update sequences (during t0 to t1): ‘Immediate
Update’ applies client updates on arrival; ‘Buffered Update’ waits and aggregates multiple clients’
updates before applying. However, both strategies demonstrate heterogeneity amplification: faster
clients (e.g., Client 3) contribute more frequently, resulting in their imbalanced influence. In contrast,
the ‘All-Client Update’ strategy aims to balance updates (despite staleness) from all the clients and
thereby mitigate heterogeneity amplification.

• Heterogeneity Amplification: The interaction between client heterogeneity (including non-IID
data distributions, different local objectives) and the dynamics of the AFL system (varying commu-
nication frequencies, partial participation) leads to faster and more frequent contributing clients
having a greater influence on the global model, as shown in Figure 1. This affects convergence and
degrades performance (Wang et al., 2024b; Koloskova et al., 2022).

Addressing these challenges requires a fundamental understanding of heterogeneity amplification,
which can help mitigate its impact on convergence. To this end, we make the following contributions.

• Theoretical Framework and Algorithm Design (Section 3). We provide a theoretical framework
that analyzes heterogeneity amplification by decomposing the discrepancy between the server’s
aggregated update and the ideal gradient. This connects AFL design choices to the resulting error
and motivates our proposed algorithm, ACE (All-Client Engagement AFL). It realizes an all-
client aggregation through a non-buffered, immediate update to eliminate participation imbalance
bias. We also introduce a practical delay-aware variant ACED, to handle clients with extreme
delays by managing the trade-off between client diversity and update staleness.

• Comparative Theoretical Analysis (Section 4). Using our framework, we comparatively an-
alyze ACE against recent AFL methods (FedBuff (Nguyen et al., 2022), CA2FL (Wang et al.,
2024b), Delay-adaptive ASGD (Koloskova et al., 2022), Vanilla ASGD (Mishchenko et al., 2022)).
We show how its all-client design eliminates participation imbalance bias and mitigates the
delay-heterogeneity interaction, resulting in a convergence rate robust to arbitrary heterogeneity
(Theorem 1). In parallel, its non-buffered, immediate update mechanism improves communication
efficiency and leads to faster convergence (Appendix E).

• Experimental Validation (Section 5 and Appendix F) We validate our findings through extensive
experiments against the aforementioned baselines. Results across various models and tasks (Fig. 2,
Fig. a.2, Table a.2) demonstrate ACE’s robustly faster convergence and higher final accuracy,
particularly under the challenging conditions of high client heterogeneity and high delay.

Overall, we provide a novel theoretical framework that provides valuable insights for mitigating biases
in AFL. This guides our ACE algorithm which uses all-client aggregation for robust, communication-
efficient convergence under heterogeneity. Our practical ACED variant manages the trade-off between
client diversity and update staleness, and experiments validate our methods.

2 RELATED WORK

Asynchronous FL and its Challenges. Asynchronous federated learning (AFL) (Agarwal & Duchi,
2011; Recht et al., 2011) enhances training efficiency in large-scale distributed learning by eliminating
costly synchronization steps in synchronous protocols like FedAvg (Li et al., 2020). While effective
in reducing wall-clock time, especially in the presence of slow or straggling clients, asynchronicity

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

changes the learning dynamics and introduces several challenges (Lian et al., 2015). Beyond
foundational FL challenges like client heterogeneity (Kairouz et al., 2021; Li et al., 2020) and
stochastic noise (Bottou et al., 2018), AFL introduces the critical issue of update staleness. This
problem arises as faster clients continuously update the server’s global model, causing slower clients
to compute gradients on outdated model versions. This imbalance in update frequency not only
leads to model staleness but also reduces the influence of slower clients on the global model. When
client data is non-IID, this dynamic gives faster clients a dominant influence, biasing the global
model towards their local data distributions. Prior work(Wang et al., 2024b; Koloskova et al., 2022)
has observed performance degradation in experiments under high heterogeneity and delay, but their
theoretical analyses were derived on an algorithm-specific basis. These analyses reveal that the
convergence guarantees of methods like FedBuff (Nguyen et al., 2022) and CA2FL (Wang et al.,
2024b) depend on the degree of client data heterogeneity, but a theoretical framework to analyze
the delay-heterogeneity interaction and guide algorithm design was missing. We are the first to
formally define this interaction as heterogeneity amplification and provide a theoretical analysis that
identifies its cause in partial client participation, a common design choice in many AFL algorithms.

Mitigation Strategies. Given AFL’s challenges, particularly client heterogeneity amplification,
various mitigation strategies have been explored, focusing on different aspects of the problem.

First, some strategies, often adapted from synchronous FL, target client drift using methods like
regularization (Li et al., 2020) (Acar et al., 2021)) or control variates (Karimireddy et al., 2020).
However, the full participation assumption of methods such as SCAFFOLD (Karimireddy et al.,
2020) only works in a limited number of scenarios where the server can actively control the queuing
dynamics of the AFL system.

Second, other strategies directly address the impact of model delays (staleness). These include
adaptive step-sizing based on delay magnitude (Koloskova et al., 2022; Cohen et al., 2021; Aviv et al.,
2021) and error feedback (Zheng et al., 2017; Stich & Karimireddy, 2020). While improving stability
with stale updates, reacting primarily to delay magnitude does not always resolve the imbalanced
client influence if heterogeneity amplification causes faster clients to dominate the update.

Third, aggregation strategies involving state caching and buffering have been explored to mitigate
participation variance. One line of work utilizes client state caching to reuse historical gradients, such
as MIFA (Gu et al., 2021) and FedVARP (Jhunjhunwala et al., 2022). While sharing the high-level
concept of state reuse, these methods typically operate within synchronous or round-based protocols
that impose synchronization barriers. Furthermore, their theoretical analysis generally focuses on
proving the sufficiency of a heuristic algorithm, rather than deriving the necessary design conditions
to eliminate bias from first principles. Another direction employs buffering or calibration, as seen in
FedBuff (Nguyen et al., 2022) and CA2FL (Wang et al., 2024b). While FedBuff simply aggregates
updates from a subset, CA2FL attempts to calibrate a cached all-client state using updates from
a subset (m < n). However, as detailed in Appendix F.1.2, this calibration mechanism imposes
non-uniform weighting on client updates, which structurally retains the participation imbalance bias
and heterogeneity amplification. In contrast, our work establishes a prescriptive framework for truly
asynchronous, non-buffered systems. We derive that aggregating updates from all clients (m = n)
with equal weighting is a necessary condition to eliminate the participation bias term. Guided by this,
our ACE algorithm maintains a server-side cache of the latest gradients from all clients and performs
an immediate global update upon every single client arrival, thereby eliminating bias without reducing
update frequency or enforcing synchronization.

3 PRELIMINARIES AND ANALYTICAL FRAMEWORK

Asynchronous Federated Learning (AFL) is designed to enhance system efficiency by allowing clients
to operate without waiting for slower participants (stragglers). This section establishes the notations,
problem setting, key assumptions for our analysis, and the analytical foundation motivating our
method, ACE. More details can be found in Appendix A.

3.1 PROBLEM SETTING AND NOTATIONS

We consider n clients orchestrated by a central server, minimizing a global objective F (w) =
1
n

∑n
i=1 Fi(w), where each Fi(w) = Eξi∼Pi

[fi(w; ξi)] is the expected loss over client i’s true local
data distribution Pi. Clients compute stochastic gradients ∇fi(w; ξi) from samples ξi ∼ Pi as
approximations to ∇Fi(w). The server maintains the global model wt ∈ Rd at server iteration t (up

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

to T total iterations). In asynchronous settings, wt+1 = wt − ηut. The global update ut typically
uses stale information; a contribution from client i may be based on a model wt−τt

i , where τ ti ≥ 0 is
its information staleness (delay) relative to t (in server iterations).

We define: E[·] as the total expectation over all sources of randomness (e.g., client data sampling, τ ti
values). F t is the σ-algebra of all information up to server iteration t (including wt). Et[·] := E[·|F t]
is the conditional expectation given F t. The global update ut is formed from clients’ stochastic
contributions, where each client i uses a fresh data sample ξi with its respective stale model (e.g.,
wt−τt

i). LetHt be the σ-algebra containing all information determining ut (including stale models
used and aggregation rules) except the randomness from the set of these fresh data samples {ξi}
contributing to ut. Then, ūt := E{ξi}[u

t|Ht] is the expected update over these fresh samples.

3.2 ASSUMPTIONS

Our subsequent theoretical analysis relies on several standard assumptions common in the optimiza-
tion literature (Stich & Karimireddy, 2020; Wang et al., 2024b; Nguyen et al., 2022), particularly for
stochastic and asynchronous methods. We assume the following hold throughout the paper unless
otherwise stated:
Assumption 1 (Lower Boundedness). The global objective function F (w) (an expectation over true
local distributions) is bounded below, i.e., F (w) ≥ F ∗ > −∞ for all w ∈ Rd.
Assumption 2 (L-Smoothness). Each local objective function Fi(w) (an expectation) is L-smooth
for some L ≥ 0, implying ∥∇Fi(w) −∇Fi(w

′)∥2 ≤ L∥w − w′∥2 for all w,w′. This also implies
F (w) is L-smooth.

Assumption 3 (Unbiased Stochastic Gradients). Given t ≤ t2 < t3, let ξt3i with i ∈ [n] and t3 ≥ 1
be data sample drawn from Pi, and Ft2 be the σ-algebra representing all information available up to
server iteration t2, then E

[
∇fi(wt; ξt3i) | Ft2

]
= ∇Fi(w

t).

Assumption 4 (Bounded Sampling Noise). The sampling noise of the local stochastic gradients is
uniformly bounded: Eξi∥∇fi(w; ξi)−∇Fi(w)∥22 ≤ σ2 for some σ ≥ 0.
Assumption 5 (Bounded Delay). ∀i, t : τ ti ≤ τmax, where τmax bounds the maximum interval
between server iterations for any two consecutive global model updates triggered by any client i.

Assumptions 1-4 characterize the optimization problem, and Assumption 5 constrains staleness.
Beyond these, some analyses for algorithms with partial client participation (e.g., FedBuff (Nguyen
et al., 2022)) or single-client updates (e.g., Vanilla ASGD (Mishchenko et al., 2022)) also assume
Bounded Data Heterogeneity (BDH) , i.e., ∥∇Fi(w)−∇F (w)∥2 ≤ ζ2 <∞, which bounds how
much any single client’s local gradient can diverge from the true global gradient. This bound is
required to analyze convergence in partial participation settings, as it controls the bias from averaging
over a non-representative subset of clients. Our method, ACE, by employing full aggregation, is de-
signed to eliminate the participation imbalance bias (see Section 3.3) from partial client participation,
thereby eliminating the need for the BDH assumption in its convergence analysis.

3.3 THEORETICAL MOTIVATION FOR ACE: AN MSE DECOMPOSITION

In AFL, clients compute updates based on stale model versions. Client i might use wt−τt
i (where

τ ti ≥ 0 is its information delay relative to server iteration t), while the server is at wt. We denote the
collection of stale models used by clients as wt

stale = {wt−τt
i }ni=1. This presents a critical challenge:

since the latest model versions available to clients for their local computations are at best these stale
versions, any global gradient estimate ut (formed from their contributions) is inherently based on
this outdated information when aiming to approximate ∇F (wt). This creates a gap between the
information used for client updates and the ideal current gradient at the server.

Our analysis starts from the standard descent lemma (details in Appendix B.1) for L-smooth functions
(Assumption 2)). For an update wt+1 = wt − ηut, this lemma bounds the change in the objective as:

E[F (wt+1)] ≤ E[F (wt)]− ηE[⟨∇F (wt), ut⟩] + Lη2

2
E∥ut∥2 (1)

By summing this inequality over T iterations and rearranging terms, we derive the following bound (2).
This inequality bounds the average squared norm of the true gradient, a standard measure of conver-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

gence for non-convex objectives, by terms including the Mean Squared Error (MSE) of our gradient
estimates (details of the constants γ1, γ2 > 0 are in Appendix B.2):

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≤ γ1(F (w0)− E[F (wT)])

Tη
+ γ2η

 1

T

T−1∑
t=0

E∥ut −∇F (wt)∥22︸ ︷︷ ︸
MSEt

 (2)

Bound (2) is important because its left-hand side, the average squared gradient norm, diminishes
as an algorithm converges to a stationary point in non-convex optimization (Wang et al., 2024b;
Mishchenko et al., 2022; Nguyen et al., 2022). It indicates that this convergence metric is upper-
bounded by the average MSEt. Therefore, controlling MSEt of the gradient estimates is key to
improving the convergence guarantee, motivating its detailed analysis for algorithmic design.

Decomposing the MSEt term. To analyze the error sources contributing to MSEt, we decompose
the error ut −∇F (wt). We introduce ūt (the expectation of ut over data sampling randomness, as
defined in Section 3.1) and ∇F (wt

stale) = 1
n

∑n
i=1∇Fi(w

t−τt
i) (the average true gradient on the

latest stale models actually used by clients). With a telescoping sum, the error is decomposed as1:

ut −∇F (wt) = (ut − ūt)︸ ︷︷ ︸
:=A, Noise

+(ūt −∇F (wt
stale))︸ ︷︷ ︸

:=B, Bias

+(∇F (wt
stale)−∇F (wt))︸ ︷︷ ︸
:=C, Delay

(3)

Using the inequality ∥x + y + z∥2 ≤ 3(∥x∥2 + ∥y∥2 + ∥z∥2) (an application of Lemma a.3 in
Appendix B.1), we bound MSEt with the decomposition:

MSEt = E∥ut −∇F (wt)∥22 ≤ 3E∥A∥22 + 3E∥B∥22 + 3E∥C∥22 (4)

Now let’s analyze each error component (further discussions can be found in Section 4):

• Term A (Sampling Noise): A = ut − ūt, represents the stochastic error from using mini-batch
gradient approximations (see Assumption 4). It depends on factors like the number of participating
clients and the structure of ut.

• Term B (Bias Error): B = ūt − ∇F (wt
stale), quantifies the deviation of the expected gradient

estimate ūt from the true average gradient evaluated at the specific stale states wt−τt
i used by the

clients. This bias can arise from partial client participation in forming ut or from local training
steps if the clients optimize local objectives.

• Term C (Delay Error): C = ∇F (wt
stale)−∇F (wt), captures the discrepancy between the average

gradient on stale models and the gradient on the current server model. It generally grows with
longer delays τ ti .

This specific structure (A: Noise, B: Bias, C: Delay) helps isolate error sources relevant to AFL
algorithm design. Noise (Term A) and Delay (Term C) are inherent to asynchronous optimization. In
contrast, Bias Error (Term B), arises from a specific design choice: partial client participation. We
therefore target Term B for complete elimination. The condition B ≡ 0 mathematically necessitates
an all-client aggregation scheme. This principled design not only eliminates the primary source of
heterogeneity amplification but also maximally reduces Noise (Term A) and helps contain Delay
(Term C) by preventing bias accumulation in model drift (quantified in Section 4).

Algorithm Design. To achieve B ≡ 0 (Bias Error elimination), it requires ūt ≡ ∇F (wt
stale) =

1
n

∑n
i=1∇Fi(w

t−τt
i). Our all-client aggregation design for ut is ut := 1

n

∑n
i=1∇fi(wt−τt

i ; ξκi
i).

Here, for each client i in the sum, wt−τt
i is the stale model version upon which its currently cached

gradient was computed. The superscript κi on the sample ξκi
i signifies that this specific sample

was used by client i to generate the gradient that was received and cached by the server at server
iteration κi (where t− τ ti < κi ≤ t). This sample ξκi

i was drawn by client i at the time of its local
computation on wt−τt

i . Given Assumption 3, taking the expectation of ut over these respective fresh
samples {ξκi

i } yields ūt = 1
n

∑n
i=1∇Fi(w

t−τt
i) = ∇F (wt

stale).

1This framework is extensible to other scenarios. For instance, by applying further telescoping sums, the
Bias term B can be decomposed to isolate adversarial bias (e.g., ūt − ūt

honest) in Byzantine settings, or the Noise
term A can be expanded to model errors from gradient compression.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This leads to our ACE (All-Client Engagement AFL) algorithm’s core update principle Eq. 5,
where this Bias Error (Term B) is eliminated:

Bias Error (Term B) = 0 ⇐⇒ ut :=
1

n

n∑
i=1

∇fi(wt−τt
i ; ξκi

i) (5)

By employing full aggregation, ACE aims to directly eliminate a key component of heterogeneity
amplification related to imbalanced client influence from partial updates, potentially leading to a
tighter convergence bound.

3.4 ACE ALGORITHM: CONCEPTUAL AND PRACTICAL VARIANTS

(1) ACE Conceptual Implementation. (Algorithm 1) The ACE algorithm primarily targets the
Bias Error (Term B in InEq. 3) via a full aggregation strategy. In its main conceptual form (direct
aggregation), the server computes the global update ut by averaging the latest available gradients U t

i
from all n clients:

ut :=
1

n

n∑
i=1

U t
i ∈ Rd, where U t

i = ∇fi(wt−τt
i ; ξi) (6)

Here, U t
i is the most recent gradient from client i, computed on its stale model wt−τt

i using a fresh
data sample ξi. To eliminate the participation bias from our analysis in Section 3.3, this method stores
all n gradients for an immediate update on each arrival. This offers higher communication efficiency
than buffered methods (Nguyen et al., 2022; Wang et al., 2024b), which require similar storage but
must wait for a buffer to fill. An alternative, efficient computation of ut for ACE uses an incremental
rule (Algorithm a.5), ut = ut−1 + (unew

jt
− uprev

jt
)/n, and can reduce the server’s cost from O(nd) to

O(d) by distributing the overhead to clients. Appendix F.3.3 further explores a compression scheme
to reduce the total system cost. For clarity, Algorithm 1 details only the direct aggregation method.

Algorithm 1 Conceptual ACE (Direct Aggregation, Incremental Rule see Algorithm a.5)

1: Server Initialization:
2: Initialize global model w0.
3: For each client i ∈ [n]: U cache

i ← ∇fi(w0; ξ0i). ▷ Initial gradients based on w0, forming u0

4: u0 ← 1
n

∑n
i=1 U

cache
i .

5: w1 ← w0 − ηu0.
6: Server makes w1 available to clients.
7: Server Loop: For t = 1, . . . , T − 1: ▷ To compute ut and model wt+1

8: Wait to receive a gradient gj from some client j. ▷ gj = ∇fj(wt−τt
j ; ξtj), where wt−τt

j is the
model client j used and ξtj is its fresh sample for this contribution to ut.

9: Update server’s cache for client j: U cache
j ← gj .

10: Compute global update: ut ← 1
n

∑n
i=1 U

cache
i . ▷ Uses latest gj , cached U cache

i from others
11: Update global model: wt+1 ← wt − ηut.
12: Server makes wt+1 available (e.g., to client j).
13: Client i Operation (runs continuously):
14: wlocal ← latest model version received from server.
15: Compute gradient gi = ∇fi(wlocal; ξ

new
i). ▷ ξnew

i is a fresh sample
16: Send gi to server.

(2) Practical Variant: ACED (All-Client Engagement Bounded Delay-Aware AFL). The concep-
tual ACE assumes bounded delays (Assumption 5) and active participation from all clients to ensure
Term B elimination. However, this strict assumption becomes impractical in real-world scenarios
with client dropouts or extreme delays.

To address this, ACED enforces a delay threshold τalgo for including gradients in aggregation. The
server caches the latest gradient U cache

i from each client and its model’s dispatch time tstart
i . At

iteration t, the active set A(t) = {i ∈ [n] | t− tstart
i ≤ τalgo} includes clients with sufficiently fresh

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

information. If A(t) is non-empty (nt = |A(t)| > 0), the server does a bounded delay-aware update:

ut
BDA :=

1

nt

∑
i∈A(t)

U cache
i , where A(t) = {i ∈ [n] | t− tstart

i ≤ τalgo} (7)

The model update is wt+1 = wt − ηut
ACED. This allows clients to rejoin A(t) upon providing fresh

updates. Algorithm a.1 (see Appendix D) details this. However, it is worth noting that if nt < n,
Term B may not be fully eliminated, and this variant needs separate convergence analysis. Due to the
limited space, further discussion on ACED can be found in Appendix D.

4 THEORETICAL COMPARISON OF AFL ALGORITHMS

We apply our MSE decomposition (InEq. 4 from Section 3) to analyze the Sampling Noise (E∥A∥2),
Bias Error (E∥B∥2), and Delay Error (E∥C∥2) for representative AFL algorithms (details for these
baseline algorithms can be found in Appendix F.1). This analysis relies on Assumptions in Section
3.2. Key notation includes ζ2 for bounded data heterogeneity (if an algorithm assumes it), the set
of participating clientsMt of size m = |Mt|, the number of local steps K, and local learning rate
ηl. We denote a weighted sum of {Xi}ni=1 as

∑
i Xi (detailed weights omitted), and X ≲ Y + Z to

signify X ≤ aY + bZ for some constants a, b > 0.

Term A: Sampling Noise Analysis (E∥A∥2 = E∥ut − ūt∥22): This term reflects the variance from
stochastic gradient estimation using mini-batches. Aggregation over more clients reduces this noise,
while multiple local steps can accumulate it. (Details in Appendix B.3.)

• Vanilla ASGD(Mishchenko et al., 2022) & Delay-Adaptive ASGD(Koloskova et al.,
2022) (single client update, m = 1,K = 1): E∥A∥2 ≤ σ2. With m = 1, there is no noise
reduction from aggregation.

• FedBuff(Nguyen et al., 2022) & CA2FL(Wang et al., 2024b) (subset m < n clients, local
steps K ≥ 1):E∥A∥2 ≲ Kη2

l

m σ2. Noise variance is reduced by averaging over m clients but
scales with local steps K and the local learning rate ηl.

• ACE (Ours) (full aggregation over n clients, K = 1): E∥A∥2 ≤ σ2

n . This achieves maximal
sampling noise reduction by averaging across all n clients.

Term B: Bias Error Analysis (E∥B∥2 = E∥ūt−∇F (wt
stale)∥22): This term measures the systematic

deviation of the conditionally expected update ūt = Eξ[u
t|Ht] from ∇F (wt

stale), the ideal average
gradient on the actual stale models clients used. Such bias primarily arises if ut is constructed using
only a subset of clients (m < n) or involves multiple local steps (K ≥ 1) that optimize divergent
local objectives. (Details in Appendix B.4.)

• Vanilla ASGD(Mishchenko et al., 2022) & Delay-Adaptive ASGD(Koloskova et al.,
2022) & FedBuff(Nguyen et al., 2022) (m < n,K ≥ 1):

E∥B∥2 ≲

(
(σ2 +Kζ2) +

∑
i∈Mt

E∥∇F (wt−τt
i)∥22

)
+ (n−m)

(
ζ2 +

n∑
i=1

E∥∇F (wt−τt
i)∥22

)

This suffers from both local steps (K ≥ 1) and partial client participation (m < n).
• CA2FL(Wang et al., 2024b) (m < n,K ≥ 1):

E∥B∥2 ≲
(
1 + (1− m

n
)2
)(

(σ2 +Kζ2) +
n∑

i=1

E∥∇F (wt−τt
i)∥22

)
.

Calibration reduces the partial participation component of bias, but bias related to the number
of local steps (K) and imperfect calibration (m < n) persists.

• ACE (Ours) (n clients, K = 1): By its design ut = 1
n

∑
∇fi(wt−τt

i ; ξκi
i), Assumption

3 implies ūt = 1
n

∑
∇Fi(w

t−τt
i) = ∇F (wt

stale). Therefore, E∥B∥2 = 0. This design
eliminates this bias term by ensuring full aggregation and K = 1.

Term C: Delay Error Analysis (E∥C∥2 = E∥∇F (wt
stale) − ∇F (wt)∥22): This term captures the

error from using stale model versions. It is bounded by the average model drift clients experience,
Dt

i := E∥wt−τt
i − wt∥22, which measures how much the global model wt has changed during client

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

i’s effective delay interval τ ti . Using Assumption 2 and Lemma a.3 in Appendix B.1:

E∥C∥2 = E

∥∥∥∥∥ 1n
n∑

i=1

(∇Fi(w
t−τt

i)−∇Fi(w
t))

∥∥∥∥∥
2

2

≤ 1

n

n∑
i=1

E∥∇Fi(w
t−τt

i)−∇Fi(w
t)∥22 ≤

L2

n

n∑
i=1

Dt
i .

The bound on model drift Dt
i = E∥

∑t−1
s=t−τt

i
ηus∥22 (where us is the server update at iteration s)

highlights how different algorithm designs influence this drift: (Details in Appendix B.5.)

• Vanilla ASGD(Mishchenko et al., 2022), Delay-Adaptive ASGD(Koloskova et al., 2022),
FedBuff(Nguyen et al., 2022) (ut from subsetMt of size m ≤ n, local steps K ≥ 1):

Dt
i ≲ τ ti η

2η2l

Kσ2

m
+

1

m

t−1∑
s′=t−τt

i

E∥∇F (ws′

stale)∥22 + (n−m)K2ζ2

 .

The term (n−m)K2ζ2 represents a per-iteration bias arising from partial participation
(m < n), local steps (K), and client heterogeneity (ζ2). Its multiplication by τ ti illus-
trates how this bias accumulates. This τζ2 interaction term is the direct mathematical
representation of heterogeneity amplification.

• CA2FL(Wang et al., 2024b) (ut from subsetMs, local steps K ≥ 1):

Dt
i ≲ τ ti η

2η2l

(
1 + (1− m

n
)2
)Kσ2

m
+

t−1∑
s′=t−τt

i

E∥∇F (ws′
stale)∥22

 .

Calibration aims to remove the direct ζ2 term from partial participation bias found in
FedBuff’s drift, though effects of K and incomplete calibration (m < n) remain.

• ACE (Ours) (ut averages over all n clients, K = 1):

Dt
i ≲ τ ti η

2

σ2

n
+

t−1∑
s′=t−τt

i

E∥∇F (ws′

stale)∥22

 .

Here, the ζ2 term from partial participation is absent because ut in ACE averages information
from all n clients, inherently balancing expected contributions during the drift calculation.

Comparative Insights. The impact of algorithmic design choices on the error terms is summarized
in Table 1. (Green text indicates a positive impact, red a negative one). This comparison highlights:

• The number of participating clients m affects Noise (Term A, reduced by larger m) and Bias (Term
B, introduced if m < n).

• Eliminating Term B bias and mitigating the delay-heterogeneity interaction (often appearing in
Term C analysis) necessitates using information from all n clients, via full aggregation (ACE) or
careful calibration (CA2FL).

• Multiple local steps (K > 1) increase the bounds of all error components by accumulating sampling
noise and multiplicatively amplifying the bias and delay errors.

• Adaptive learning rates mitigate the error accumulation captured by per-iteration model drift Dt
i by

down-weighting updates with large τ ti delays.

Table 1: Impact of Algorithmic Elements on Error Terms (A: Noise, B: Bias, C: Delay)
Algorithm Sampling Noise, E∥ut − ūt∥22 Bias, E∥ūt −∇F (wt

stale)∥22 Delay, E∥∇F (wt
stale)−∇F (wt)∥22

Vanilla ASGD
(Mishchenko et al., 2022)

Not Reduced (due to m = 1) Contains bias from K ≥ 1 and
partial participation m = 1.

Contains τζ2 interaction (from
m = 1).

Delay-adapt ASGD
(Koloskova et al., 2022)

Not Reduced (due to m = 1) Contains bias from K ≥ 1 and
partial participation m = 1.

Contains τζ2 interaction (from
m = 1); Adaptive LR (smaller η)
may reduce reduce delay error.

FedBuff
(Nguyen et al., 2022)

Reduced by m, but increased by
local steps K ≥ 1.

Contains bias from K ≥ 1 and
partial participation m < n.

Contains τζ2 interaction; Error in-
creased by K ≥ 1.

CA2FL
(Wang et al., 2024b)

Reduced by m, but increased by
local steps K ≥ 1.

Contains bias from K ≥ 1 and
partial participation m < n.

No τζ2 interaction (Calibration);
Error increased by K ≥ 1.

ACE (Ours) Max. Reduction (by m = n). Eliminated (by m = n,K = 1). No τζ2 interaction (by m = n).

Convergence rate. Plugging the bounds for ACE’s MSEt components into the general convergence
rate expression (Bound 2) indicates a key benefit of full aggregation. The resulting rate’s upper
bound is independent of the Bounded Data Heterogeneity (BDH) parameter ζ2, demonstrating ACE’s
theoretical robustness to arbitrarily high client heterogeneity. This rate is achieved by selecting an
optimal practical learning rate η ∝

√
n/T (see Appendix B.2), leading to Theorem 1:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Theorem 1 (Convergence Rate of ACE (Alg. 1)). Suppose Assumptions A1-A5 hold. By choosing
an appropriate global step size η proportional to

√
n/T , ACE (Algorithm 1) achieves the following

convergence rate for smooth non-convex objectives:

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≲
∆√
nT

+
Lσ2

√
nT

+
L2τmaxσ

2

T

where ∆ = F (w0)− F (wT). (Proof can be found in Appendix C).

5 EXPERIMENTAL RESULTS

Experimental Setup. We simulate Asynchronous Federated Learning (AFL) on CIFAR-10
dataset(Krizhevsky, 2009) with N = 100 clients. Non-IID conditions are created using a Dirichlet
distribution (varying α), and client delays follow an exponential distribution (varying mean β). We
chose this synthetic heterogeneity setup specifically to independently control heterogeneity (α) and
delay (β), allowing us to isolate and verify the multiplicative “heterogeneity amplification” effect pre-
dicted by our theory. We compare our ACE algorithm against FedBuff (Nguyen et al., 2022), CA2FL
(Wang et al., 2024b), Delay-adaptive ASGD (Koloskova et al., 2022) and Vanilla ASGD (Mishchenko
et al., 2022), measuring over T = 500 server iterations. Appendix F.3 provides additional results on
more models and tasks, including image classification across more heterogeneities and delay settings
and Natural Language Processing (NLP) tasks with BERT(Sanh et al., 2019; Devlin et al., 2019)
models.

1. Impact of Non-IID Data (Client Heterogeneity). Comparing Figure 2(a) with (b), or (c) with
(d), increasing data heterogeneity (lower α) typically degrades performance. ACE and CA2FL
consistently achieve higher final accuracy and converge faster, especially under high heterogeneity
(α = 0.1). This aligns with our theory that mitigating aggregation bias (Term B in our analysis), as
ACE does via its full participation logic, enhances robustness to client heterogeneity.

2. Impact of Delay and Heterogeneity Amplification. Increased system delay generally leads to a
decline in accuracy for all methods due to larger model drift (as it scales with growing τmax), as seen
when comparing scenarios with higher delay and lower delay (Fig. 2(c) vs. (a) , or (d) vs. (b)).

0 100 200 300 400 500
Server iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

(a) Dir (0.1)

0 100 200 300 400 500
Server iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 (b) Dir (0.3)

0 100 200 300 400 500
Server iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9(c) Dir (0.1) - Increased Delay

0 100 200 300 400 500
Server iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9(d) Dir (0.3) - Increased Delay

ACE
CA2FL
Fedbuff
Delay-Adaptive ASGD
Vanilla ASGD

Figure 2: Impact of data heterogeneity (Dirichlet α) and client delay (Exponential mean β) on
CIFAR-10 test accuracy over 500 server iterations. (a) α = 0.1, low delay (β = 5). (b) α = 0.3,
low delay. (c) α = 0.1, increased delay (β = 30). (d) α = 0.3, increased delay. ACE demonstrates
robust performance toward various heterogeneity and delay. Extended results are in Appendix F.2.

Algorithms with partial client participation (e.g., FedBuff, Vanilla ASGD, Delay-adaptive ASGD),
according to our theory (Section 4), are more vulnerable to the τζ2 interaction within their Delay
Error (Term C). Specifically, for these methods, the performance degradation caused by increased
delay is more evident when data heterogeneity is high (accuracy difference between Fig. 2(a) and
(c)) compared to when heterogeneity is lower (accuracy difference between Fig. 2(b) and (d)). This
greater performance drop, along with the slower convergence of the baseline methods, illustrates the
heterogeneity amplification effect. In contrast, the superior performance of ACE, supports our insight
in Section 4 that all client participation mitigates heterogeneity amplification.

3. Ablation Study on Local Steps (K). To validate our choice of K = 1, we conducted an ablation
study varying K ∈ {1, 5, 10} (Table 2). While theoretically increasing K can help reduce the initial
suboptimality error term (related to ∆) faster as T increases (as indicated in Table a.1), our results
demonstrate that this benefit is overwhelmed by the amplified local model drift in the asynchronous
setting. As detailed in our analysis (Section 4 and Appendix B.5), delay τ interacts with K in a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Comprehensive Ablation Study on Local Steps (K) across Varying Heterogeneity (α) and
Delay (β). We report the final test accuracy (%) at T = 500 server iterations. The K = 1 column
corresponds to the main results in Figure 2. Data for K = 5 and K = 10 demonstrates that increasing
local steps consistently degrades performance in AFL due to drift amplification. ACE shows superior
robustness, whereas single-client methods (Vanilla/Delay-Adaptive ASGD) and buffered methods
(FedBuff) suffer significant drops, particularly under high delay conditions.

Algorithm
(a) High Het., Low Delay (b) Mod. Het., Low Delay (c) High Het., High Delay (d) Mod. Het., High Delay

(α = 0.1, β = 5) (α = 0.3, β = 5) (α = 0.1, β = 30) (α = 0.3, β = 30)

K = 1 K = 5 K = 10 K = 1 K = 5 K = 10 K = 1 K = 5 K = 10 K = 1 K = 5 K = 10

ACE (Ours) 76.2 75.5 74.8 83.5 83.0 82.4 71.5 70.2 69.1 77.8 77.1 76.2
CA2FL(Wang et al., 2024b) 70.5 68.1 65.4 79.2 77.5 75.3 63.2 58.5 53.1 71.5 68.2 64.9
FedBuff(Nguyen et al., 2022) 63.8 60.2 56.5 75.8 73.2 69.8 51.5 45.8 39.5 66.5 62.1 57.4
Delay-Adaptive ASGD(Koloskova et al., 2022) 64.0 61.5 57.8 78.0 75.4 72.1 55.0 49.5 42.8 68.0 63.5 58.2
Vanilla ASGD(Mishchenko et al., 2022) 45.0 41.2 36.5 75.0 71.5 67.0 30.5 24.8 18.5 58.5 52.4 46.8

multiplicative, harmful way. For instance, the drift error bound for FedBuff(Nguyen et al., 2022)
scales with O(τ · (n−m)K2ζ2), and for CA2FL(Wang et al., 2024b) it involves terms scaling with
O((1 + 1

n2 (n − m)2)τ · Kσ2). Consequently, increasing K causes clients to accumulate larger
deviation vectors based on outdated information. Empirically, this leads to consistent performance
degradation for all algorithms as K increases. Notably, ACE exhibits the greatest robustness, as its
full aggregation (m = n) eliminates the (n−m) multiplier, thereby minimizing this multiplicative
drift error.

0 10 20 30 40 50 60 70
Client Dropout Percentage (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Fi
na

l T
es

t
Ac

cu
ra

cy

(a) Algorithm Comparison under Client Dropouts

ACED (algo = 10)
Conceptual ACE
CA2FL
Vanilla ASGD

0 10 20 30 40 50 60 70
Client Dropout Percentage (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90 (b) Ablation on algo for ACED

Vanilla ASGD (Baseline)
ACED (algo = 1)
ACED (algo = 5)
ACED (algo = 10)
ACED (algo = 25)

ACED (algo = 50)
ACED (algo = 100)
ACED (algo = 200)
ACED (algo =)

Figure 3: Final test accuracy (T = 500, Dir(α = 0.3), β = 5) vs. client dropout. (a) ACED
(τalgo = 10) shows superior dropout robustness compared to Conceptual ACE, CA2FL, and Vanilla
ASGD. (b) Ablation on ACED’s τalgo: performance suffers if τalgo is too small (partial participation
bias) or too large (staleness error), but is stable across moderate τalgo values.

Delay-aware Aggregation under Client Dropouts. We investigate ACED’s robustness to client
dropouts (from 0% to 70%) under Dir(α = 0.3) and β = 5, starting at t = T/2 = 250, as shown in
Figure 3. Compared to other methods, ACED (using τalgo = 10 = 2β) exhibits enhanced resilience,
highlighting the role of τalgo in managing a trade-off between two error sources. Our ablation study
quantifies this trade-off: an excessively small τalgo (e.g., 1, resembling Vanilla ASGD) minimizes
staleness but incurs high participation bias. Conversely, a very large τalgo (e.g., ≥ 100 = T/5)
includes too many stale updates, leading to model drift. Therefore, since ACED allows dropped or
delayed clients to contribute again once their delay recovers (Algorithm a.1), selecting τalgo within
a wide moderate range ([10, 50]) proves effective. This strategy maximizes participation to better
address the common challenge of heterogeneity in AFL and reduce the impact of participation bias.

6 CONCLUSION

Our work introduces a general theoretical framework to analyze Asynchronous Federated Learning
(AFL) algorithms by decomposing the total error. Our analysis using this framework identifies
that client participation imbalance bias is the root cause of heterogeneity amplification. Based
on this insight, we propose ACE; its immediate, non-buffered aggregation of all clients eliminates
participation bias and ensures robust, communication-efficient convergence under high heterogeneity.
For practical challenges like extreme delays, the delay-aware variant ACED uses a staleness threshold
to manage the trade-off between maximizing client diversity (to reduce bias) and minimizing error
from stale gradients (to reduce delay error). Experiments confirm our methods achieve more stable
performance, particularly in challenging settings with high data heterogeneity and system delays.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh
Saligrama. Federated learning based on dynamic regularization. In International Conference on
Learning Representations (ICLR), 2021.

Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In Advances in
Neural Information Processing Systems, volume 24, pp. 873–881, 2011.

Rotem Zamir Aviv, Ido Hakimi, Assaf Schuster, and Kfir Yehuda Levy. Learning under delayed
feedback: Implicitly adapting to gradient delays. In International Conference on Machine Learning
(ICML), pp. 376–386. PMLR, 2021.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
optimization robust to arbitrary delays. In Advances in Neural Information Processing Systems,
volume 34, pp. 9024–9035, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, 2019.
Association for Computational Linguistics.

Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast federated learning in the
presence of arbitrary device unavailability. Advances in Neural Information Processing Systems,
34:12052–12064, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Divyansh Jhunjhunwala, Pranay Sharma, Aushim Nagarkatti, and Gauri Joshi. Fedvarp: Tackling
the variance due to partial client participation in federated learning. In Uncertainty in Artificial
Intelligence, pp. 906–916. PMLR, 2022.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):
1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning (ICML), pp. 5132–5143. PMLR, 2020.

Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous sgd for distributed and federated learning. In Advances in Neural Information
Processing Systems, volume 35, pp. 17202–17215, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Toronto, ON, Canada, 2009.

Ken Lang. Newsweeder: Learning to filter netnews. In Armand Prieditis and Stuart Russell (eds.),
Proceedings of the Twelfth International Conference on Machine Learning (ICML 1995), pp.
331–339. Morgan Kaufmann, 1995.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine learning and
systems 2 (MLSys), volume 3, 2020.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient
for nonconvex optimization. In Advances in Neural Information Processing Systems, volume 28,
2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous sgd
beats minibatch sgd under arbitrary delays. In Advances in Neural Information Processing Systems,
volume 35, pp. 420–433, 2022.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In Proceedings of The
25th International Conference on Artificial Intelligence and Statistics (AISTATS), volume 151 of
Proceedings of Machine Learning Research, pp. 3581–3607. PMLR, 2022.

Benjamin Recht, Christopher Re, Stephen J. Wright, and Feng Niu. Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems,
volume 24, pp. 693–701, 2011.

Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations (ICLR), 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Sgd with delayed
gradients. Journal of Machine Learning Research, 21(237):1–36, 2020.

Xiaolu Wang, Yuchang Sun, Hoi-To Wai, and Jun Zhang. Dual-delayed asynchronous sgd for
arbitrarily heterogeneous data. arXiv preprint arXiv:2405.16966, 2024a.

Yujia Wang, Yuanpu Cao, Jingcheng Wu, Ruoyu Chen, and Jinghui Chen. Tackling the data
heterogeneity in asynchronous federated learning with cached update calibration. In International
Conference on Learning Representations (ICLR), 2024b.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation. In International Conference
on Machine Learning (ICML), pp. 4120–4129. PMLR, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix Contents

A Notations 2

A.1 Problem Setting . 2

A.2 Notations . 2

B Proofs for Section 4 4

B.1 Useful Lemmas . 4

B.2 MSE Convergence Control and the Optimal Learning Rate 8

B.3 Theorem on Sampling Noise (Term A) . 11

B.4 Theorem on Bias Error (Term B) . 13

B.5 Theorem on Delay Error (Term C) . 16

C Convergence Rate of ACE 22

C.1 Proof of the Rate . 22

C.1.1 Alternative Convergence Analysis with Explicit Independence 25

D Detailed Discussion on the Delay-Aware Variant 29

D.1 Pseudo-Code of ACED . 29

D.2 Assumptions for ACED . 29

D.3 Convergence Theorem for ACED . 30

D.3.1 Alternative Convergence Rate Analysis for ACED 35

D.4 Discussions on ACED . 39

D.4.1 Algorithm Behavior with Dropped Clients 39

D.4.2 Discussion of the Assumptions . 40

E Rate Comparison with Other AFL Algorithms 41

F Additional Experimental Details 43

F.1 Detailed Discussion on Baseline Methods . 43

F.1.1 FedBuff (Federated Learning with Buffered Asynchronous Aggregation) . 43

F.1.2 CA²FL (Cache-Aided Asynchronous Federated Learning) 44

F.1.3 Delay-Adaptive Asynchronous SGD (ASGD) 45

F.1.4 ACE and ACED: Asynchronous Full and Dynamic Participation 46

F.2 Extended Convergence Analysis and Stability Visualization for Section 5 48

F.3 Additional Experiments . 49

F.3.1 Results on CIFAR-100 dataset . 49

F.3.2 Results on 20Newsgroup Text Classification for BERT models 50

F.3.3 Reducing the Memory Overhead of ACE by Compression 52

F.4 Hyper-parameter Configurations . 54

1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A NOTATIONS

This section outlines the notation used and details the problem setup as presented in the paper.

A.1 PROBLEM SETTING

The paper considers an Asynchronous Federated Learning (AFL) system with n clients and a central
server. The objective is to minimize a global function F (w), which is an average of local client
objectives Fi(w):

F (w) =
1

n

n∑
i=1

Fi(w)

Each local objective Fi(w) is the expected loss over client i’s true local data distribution Pi:

Fi(w) = Eξi∼Pi
[fi(w; ξi)]

Here, w ∈ Rd represents the model parameters, and fi(w; ξi) is the loss for a data sample ξi from
client i’s distribution. Clients compute stochastic gradients ∇fi(w; ξi) as approximations to the true
local gradients∇Fi(w).

The server maintains the global model wt at server iteration t (up to T total iterations). In the
asynchronous setting, the global model is updated, for example, via wt+1 = wt − ηut. The crucial
aspect is that the global update ut is formed using potentially stale information. A contribution
from client i to ut might be based on a model version wt−τt

i it received earlier, where τ ti ≥ 0 is the
information staleness (or delay) of that client’s information relative to the current server iteration t.

A.2 NOTATIONS

The following notations are used:

• n: Total number of clients.

• wt ∈ Rd: Global model parameters at server iteration t.

• d: Dimensionality of the model parameters.

• T : Total number of server iterations.

• F (w): Global objective function.

• Fi(w): Local objective function for client i.

• Pi: True local data distribution for client i.

• fi(w; ξi): Loss function for client i on data sample ξi.

• ∇F (w): True gradient of the global objective function.

• ∇Fi(w): True gradient of the local objective function for client i.

• ∇fi(w; ξi): Stochastic gradient computed by client i from sample ξi based on model w.

• η: Server-side learning rate (step size).

• ηl: Client-side local learning rate (mentioned in context of other algorithms like FedBuff in
Section 4).

• ut: Global update vector applied by the server at iteration t.

• τ ti , ρ
t
i: Information staleness (delay) for client i’s contribution to the update at server iteration

t. This is the difference in server iterations between when client i received the model it used
for computation and the current server iteration t. ρti is specified for the delay of the models
in the cache in CA2FL (Wang et al., 2024b).

• E[·]: Total expectation over all sources of randomness.

• F t: The σ-algebra of all information available up to server iteration t (including wt).

• Et[·] or E[·|F t]: Conditional expectation given F t.

2

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Ht: The σ-algebra containing all information determining ut (including stale models used
and aggregation rules) except the randomness from the set of fresh data samples {ξi}
contributing to ut.

• ut := E{ξi}[u
t|Ht]: Expected global update over the fresh data samples {ξi} used to form

ut, conditional onHt.

• wt
stale = {wt−τt

i }ni=1: Collection of stale models used by clients whose updates contribute
to ut.

• ∇F (wt
stale) = 1

n

∑n
i=1∇Fi(w

t−τt
i): The average true gradient evaluated on the specific

stale model versions wt−τt
i used by the clients.

• ξκi
i : A specific data sample used by client i to generate the gradient that was received and

cached by the server at server iteration κi (where t − τ ti < κi ≤ t), computed on model
wt−τt

i .
• U t

i or U cache
i : The latest available (potentially stale) gradient from client i cached at the

server at iteration t. For ACE, U t
i = ∇fi(wt−τt

i ; ξκi
i).

• F ∗: Lower bound of the global objective function, F (w) ≥ F ∗ > −∞.
• L: Lipschitz constant for the smoothness of local objective functions Fi(w).
• σ2: Bound on the variance of local stochastic gradients, Eξi ||∇fi(w; ξi)−∇Fi(w)||22 ≤ σ2.
• τmax: Bound on the maximum delay, τ ti ≤ τmax.
• ζ2: Bound for Bounded Data Heterogeneity (BDH), ||∇Fi(w)−∇F (w)||2 ≤ ζ2 (mentioned

as an assumption in some other algorithms, but ACE aims to eliminate the need for it by full
aggregation).

• K: Number of local steps (mentioned in context of other algorithms like FedBuff in
Section 4).

• tstart
i : Server iteration when client i obtained the model wtstart

i upon which its currently cached
gradient U cache

i was computed (in ACED).
• τalgo: Maximum allowed delay threshold for gradient inclusion in ACED.
• A(t): Set of active clients in ACED at server iteration t, defined as {i ∈ [n]|t−tstart

i ≤ τalgo}.
• nt = |A(t)|: Number of active clients in A(t) for ACED.
• nmin: Lower bound on nt, i.e., nt ≥ nmin ≥ 1 (for ACED).
• G: Bound on the norm of expected local gradients, ∥∇Fi(w)∥2 ≤ G (Assumption a.7 for

ACED analysis, noted as not strictly necessary but simplifying).
• ∆ = F (w0)− E[F (wT)] or F (w0)− F ∗: Initial suboptimality.

This list covers the primary notations introduced and used in the problem setup and for the analysis
of ACE and related concepts within the specified paper. The paper also refers to notations from
other algorithms (FedBuff, CA2FL, Delay-adaptive ASGD) when making comparisons, which might
have their own specific notations detailed in their respective original publications or the provided
supplementary material.

3

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B PROOFS FOR SECTION 4

All the notations used in this section are detailed in Appendix A. Details of the implementations of
the baseline algorithms (FedBuff (Nguyen et al., 2022), CA2FL (Wang et al., 2024b), Delay-adaptive
ASGD (Koloskova et al., 2022) and Vanilla ASGD (Mishchenko et al., 2022)) can be found in F.

B.1 USEFUL LEMMAS

Lemma a.1. For two arbitrary vectors a, b ∈ Rd, the inner product can be expressed as:

⟨a, b⟩ = 1

2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
.

Proof. Expand ∥a− b∥2:

∥a− b∥2 = ⟨a− b, a− b⟩
= ⟨a, a⟩ − 2⟨a, b⟩+ ⟨b, b⟩
= ∥a∥2 + ∥b∥2 − 2⟨a, b⟩.

Rearranging this gives ⟨a, b⟩ = 1
2 (∥a∥

2 + ∥b∥2 − ∥a− b∥2).

Lemma a.2. For vectors xi ∈ Rd, i = 1, . . . , n:∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

= n

n∑
k=1

∥xk∥2 −
1

2

n∑
i=1

n∑
j=1
j ̸=i

∥xi − xj∥2

Proof. We first prove the following auxiliary identity: For vectors x1, . . . , xn ∈ Rd:

n∑
i=1

n∑
j=1

∥xi − xj∥2 = 2n

n∑
k=1

∥xk∥2 − 2

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

n∑
i=1

n∑
j=1

∥xi − xj∥2 =

n∑
i=1

n∑
j=1

(
∥xi∥2 − 2 ⟨xi, xj⟩+ ∥xj∥2

)
=

n∑
i=1

n∑
j=1

∥xi∥2 +
n∑

i=1

n∑
j=1

∥xj∥2 − 2
n∑

i=1

n∑
j=1

⟨xi, xj⟩

=

n∑
j=1

(
n∑

i=1

∥xi∥2
)

+

n∑
i=1

 n∑
j=1

∥xj∥2
− 2

〈
n∑

i=1

xi,

n∑
j=1

xj

〉

= n

n∑
i=1

∥xi∥2 + n

n∑
j=1

∥xj∥2 − 2

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

= 2n

n∑
k=1

∥xk∥2 − 2

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

.

Note that when i = j, ∥xi − xj∥2 = ∥xi − xi∥2 = ∥0∥2 = 0.
Therefore, the sum

∑n
i=1

∑n
j=1 ∥xi − xj∥2 can be split based on whether i = j or i ̸= j:

n∑
i=1

n∑
j=1

∥xi − xj∥2 =

n∑
i=1

n∑
j=1
j ̸=i

∥xi − xj∥2 +
n∑

i=1

∥xi − xi∥2 =

n∑
i=1

n∑
j=1
j ̸=i

∥xi − xj∥2 + 0

4

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

So,
∑n

i=1

∑n
j=1 ∥xi − xj∥2 =

∑n
i=1

∑n
j=1
j ̸=i
∥xi − xj∥2. Thus, the auxiliary identity can be rewrit-

ten as:
n∑

i=1

n∑
j=1
j ̸=i

∥xi − xj∥2 = 2n

n∑
k=1

∥xk∥2 − 2

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

Rearranging this equation to solve for ∥
∑n

k=1 xk∥
2:

2

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

= 2n

n∑
k=1

∥xk∥2 −
n∑

i=1

n∑
j=1
j ̸=i

∥xi − xj∥2

Dividing both sides by 2 yields the lemma:∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥
2

= n

n∑
k=1

∥xk∥2 −
1

2

n∑
i=1

n∑
j=1
j ̸=i

∥xi − xj∥2

Lemma a.3. For vectors xi ∈ Rd, i = 1, . . . , n:∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

≤ n

n∑
i=1

∥xi∥2.

A special case for two vectors a, b ∈ Rd:

∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2).

Proof. This lemma is a corollary of Lemma a.2, since 1
2

∑n
i=1

∑n
j=1
j ̸=i
∥xi − xj∥2 ≥ 0.

Note: This lemma is very useful for "extracting the summation symbol" in a norm.

Lemma a.4 (Descent Lemma). For an L-smooth function F : Rd → R, for any x, y ∈ Rd:

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩+ L

2
∥y − x∥2.

Proof. By the Fundamental Theorem of Calculus:

F (y)− F (x) =

∫ 1

0

⟨∇F (x+ τ(y − x)), y − x⟩dτ.

Adding and subtracting ⟨∇F (x), y − x⟩:

F (y)− F (x) =

∫ 1

0

⟨∇F (x+ τ(y − x))−∇F (x) +∇F (x), y − x⟩dτ

=

∫ 1

0

⟨∇F (x), y − x⟩dτ +

∫ 1

0

⟨∇F (x+ τ(y − x))−∇F (x), y − x⟩dτ

= ⟨∇F (x), y − x⟩+
∫ 1

0

⟨∇F (x+ τ(y − x))−∇F (x), y − x⟩dτ.

5

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Using Cauchy-Schwarz inequality and L-smoothness (L-gradient Lipschitz property, which states
∥∇F (a)−∇F (b)∥ ≤ L∥a− b∥):∫ 1

0

⟨∇F (x+ τ(y − x))−∇F (x), y − x⟩dτ ≤
∫ 1

0

∥∇F (x+ τ(y − x))−∇F (x)∥∥y − x∥dτ

≤
∫ 1

0

L∥(x+ τ(y − x))− x∥∥y − x∥dτ

=

∫ 1

0

L∥τ(y − x)∥∥y − x∥dτ

=

∫ 1

0

Lτ∥y − x∥2dτ

= L∥y − x∥2
∫ 1

0

τdτ

= L∥y − x∥2
[
τ2

2

]1
0

=
L

2
∥y − x∥2.

Therefore,

F (y)− F (x) ≤ ⟨∇F (x), y − x⟩+ L

2
∥y − x∥2,

which implies the statement of the lemma:

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩+ L

2
∥y − x∥2.

Application to algorithm analysis: This lemma is frequently applied in the analysis of iterative
optimization algorithms. For an algorithm with an update rule of the form wt+1 = wt − ηut, where
wt is the model at iteration t, ut is the update direction (possibly stochastic), and η is the step size,
we can set x = wt and y = wt+1. Then y − x = wt+1 − wt = −ηut. Substituting these into the
lemma:

F (wt+1) ≤ F (wt) + ⟨∇F (wt),−ηut⟩+ L

2
∥ − ηut∥2

F (wt+1) ≤ F (wt)− η⟨∇F (wt), ut⟩+ Lη2

2
∥ut∥2.

If ut involves randomness (e.g., from stochastic gradients or client sampling), we typically take the
total expectation E[·] over all sources of randomness:

E[F (wt+1)] ≤ E[F (wt)]− ηE[⟨∇F (wt), ut⟩] + Lη2

2
E∥ut∥2.

This inequality then forms the basis for analyzing the expected decrease in the objective function per
iteration.

Lemma a.5 ((Reddi et al., 2021), Model Drift from Local Steps). For local learning rate which
satisfying ηl ≤ 1

8KL , the local model difference after k (∀k ∈ {0, 1, . . . ,K − 1}) steps local updates
satisfies

1

n

n∑
i=1

E[∥wt,k
i − wt∥2] ≤ 5Kη2l (σ

2 + 6Kζ2) + 30K2η2l E[∥∇F (wt)∥2]. (a.1)

Proof. The proof of Lemma a.5 is exactly same as the proof of Lemma 3 in (Reddi et al., 2021).

Lemma a.6 (Cross-Iteration Gradient Error Independence). Let δsk = ∇fk(ws−τs
k ; ξ

κk(s)
k) −

∇Fk(w
s−τs

k) denote the stochastic error of the gradient for client k’s contribution at server it-
eration s. The gradient is computed by client k using model ws−τs

k and a data sample ξ
κk(s)
k . This

specific sample ξ
κk(s)
k was used by client k to generate the gradient that was received and cached by

6

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the server at its iteration κk(s), where s− τsk < κk(s) ≤ s. The sample ξ
κk(s)
k was drawn fresh by

client k at the time of its local computation on ws−τs
k .

Under Assumption 3 (Unbiased Stochastic Gradients), for any two distinct server iterations s1 ̸= s2,
the expected inner product of the sum of these errors is zero:

E
[〈
δs1i , δs2j

〉]
= 0 (∀i, j ∈ [n])

Proof. Without loss of generality, assume s1 < s2. Let Fs2−1 be the σ-algebra generated by
all information available up to and including server iteration s2 − 1. By definition, ws1−τ

s1
i and

the sample ξ
κi(s1)
i used to compute δs1i are contained within this information set. Thus, δs1i is

Fs2−1-measurable.

The sample ξκj(s2)
j is drawn fresh by client j for its local computation on model ws2−τ

s2
j . This sample

draw is independent of the history Fs2−1 (conditional on ws2−τ
s2
j). By Assumption 3 (Unbiased

Stochastic Gradients), for a given model ws2−τ
s2
j , the gradient computed using the fresh sample

ξ
κj(s2)
j is unbiased:

E
ξ
κj(s2)

j

[∇fj(ws2−τ
s2
j ; ξ

κj(s2)
j)|ws2−τ

s2
j] = ∇Fj(w

s2−τ
s2
j)

Therefore, the conditional expectation of δs2j given ws2−τ
s2
j is:

E
ξ
κj(s2)

j

[δs2j |w
s2−τ

s2
j] = E

ξ
κj(s2)

j

[∇fj(ws2−τ
s2
j ; ξ

κj(s2)
j)|ws2−τ

s2
j]−∇Fj(w

s2−τ
s2
j) = 0

Now consider the conditional expectation of δs2j with respect to Fs2−1. By the tower property (law of

total expectation), and noting that given ws2−τ
s2
j , the randomness of ξκj(s2)

j is independent of other
information in Fs2−1:

E[δs2j |Fs2−1] = E
[
E[δs2j |w

s2−τ
s2
j ,Fs2−1]|Fs2−1

]
= E

[
E
ξ
κj(s2)

j

[δs2j |w
s2−τ

s2
j]|Fs2−1

]
= E[0|Fs2−1]

= 0

Next, we use the law of total expectation to evaluate E[⟨δs1i , δs2j ⟩]:

E[⟨δs1i , δs2j ⟩] = E
[
E[⟨δs1i , δs2j ⟩|Fs2−1]

]
Since δs1i is Fs2−1-measurable:

E[⟨δs1i , δs2j ⟩] = E
[
⟨δs1i ,E[δs2j |Fs2−1]⟩

]
= E [⟨δs1i , 0⟩] = 0

This holds for all pairs of clients (i, j) when s1 < s2. A symmetric argument applies if s2 < s1.
Therefore, when s1 ̸= s2, all cross-terms E[⟨δs1i , δs2j ⟩] are zero. Consequently,

E
[
⟨δs1i , δs2j ⟩

]
= 0 when s1 ̸= s2

This completes the proof.

7

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.2 MSE CONVERGENCE CONTROL AND THE OPTIMAL LEARNING RATE

Theorem a.1 (MSE controls the AFL convergence). By summing the inequality in the Descent
Lemma a.4 over T iterations and rearranging terms, we derive the following bound. This inequality
bounds the average squared norm of the true gradient, a standard measure of convergence for
non-convex objectives, by terms including the Mean Squared Error (MSE) of our gradient estimates
(constants γ1, γ2 > 0):

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≤ γ1(F (w0)− E[F (wT)])

Tη
+ γ2η

 1

T

T−1∑
t=0

E∥ut −∇F (wt)∥22︸ ︷︷ ︸
MSEt

 (a.2)

Proof. We start from the expected Descent Lemma (Lemma a.4 applied to wt+1 = wt − ηut and
taking expectation):

E[F (wt+1)] ≤ E[F (wt)]− ηE[⟨∇F (wt), ut⟩] + Lη2

2
E∥ut∥2 (a.3)

Rearranging a.3, we get:

ηE[⟨∇F (wt), ut⟩] ≤ E[F (wt)]− E[F (wt+1)] +
Lη2

2
E∥ut∥2 (a.4)

We relate the inner product term to ∥∇F (wt)∥2 and MSEt = E∥ut −∇F (wt)∥22. Consider the term
⟨∇F (wt), ut⟩:

⟨∇F (wt), ut⟩ = ⟨∇F (wt),∇F (wt) + ut −∇F (wt)⟩
= ∥∇F (wt)∥2 + ⟨∇F (wt), ut −∇F (wt)⟩

Taking expectation:

E[⟨∇F (wt), ut⟩] = E[∥∇F (wt)∥2] + E[⟨∇F (wt), ut −∇F (wt)⟩]
Using Young’s inequality ⟨a, b⟩ ≥ −1

2∥a∥
2 − 1

2∥b∥
2 for the second term (by negating it: −⟨a, b⟩ ≤

1
2∥a∥

2 + 1
2∥b∥

2):

E[⟨∇F (wt), ut −∇F (wt)⟩] ≥ −1

2
E[∥∇F (wt)∥2]− 1

2
E[∥ut −∇F (wt)∥2]

So,

E[⟨∇F (wt), ut⟩] ≥ E[∥∇F (wt)∥2]− 1

2
E[∥∇F (wt)∥2]− 1

2
MSEt =

1

2
E[∥∇F (wt)∥2]− 1

2
MSEt

Substitute this back into a.4:

η

(
1

2
E[∥∇F (wt)∥2]− 1

2
MSEt

)
≤ E[F (wt)]− E[F (wt+1)] +

Lη2

2
E∥ut∥2

η

2
E[∥∇F (wt)∥2] ≤ E[F (wt)]− E[F (wt+1)] +

η

2
MSEt +

Lη2

2
E∥ut∥2 (a.5)

We bound E∥ut∥2 using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 (Lemma a.3):

E∥ut∥2 = E∥ut−∇F (wt)+∇F (wt)∥2 ≤ 2E∥ut−∇F (wt)∥2+2E∥∇F (wt)∥2 = 2MSEt+2E∥∇F (wt)∥2

Substitute this into a.5:

η

2
E[∥∇F (wt)∥2] ≤ E[F (wt)]− E[F (wt+1)] +

η

2
MSEt +

Lη2

2
(2MSEt + 2E∥∇F (wt)∥2)

= E[F (wt)]− E[F (wt+1)] +
(η
2
+ Lη2

)
MSEt + Lη2E∥∇F (wt)∥2

Rearranging terms to isolate E[∥∇F (wt)∥2]:(η
2
− Lη2

)
E[∥∇F (wt)∥2] ≤ E[F (wt)]− E[F (wt+1)] + η

(
1

2
+ Lη

)
MSEt

8

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Assume the step size η is chosen such that η ≤ 1
4L . Then 1

2 − Lη ≥ 1
2 −

1
4 = 1

4 . So, η
2 − Lη2 =

η(12 − Lη) ≥ η
4 . Also, 1

2 + Lη ≤ 1
2 + 1

4 = 3
4 . Thus,

η

4
E[∥∇F (wt)∥2] ≤ E[F (wt)]− E[F (wt+1)] +

3η

4
MSEt

Multiplying by 4
η :

E[∥∇F (wt)∥2] ≤ 4

η
(E[F (wt)]− E[F (wt+1)]) + 3η ·MSEt

Summing from t = 0 to T − 1:
T−1∑
t=0

E[∥∇F (wt)∥2] ≤ 4

η

T−1∑
t=0

(E[F (wt)]− E[F (wt+1)]) + 3η

T−1∑
t=0

MSEt

=
4

η
(E[F (w0)]− E[F (wT)]) + 3η

T−1∑
t=0

MSEt (telescoping sum)

Dividing by T :

1

T

T−1∑
t=0

E[∥∇F (wt)∥2] ≤ 4(E[F (w0)]− E[F (wT)])

Tη
+ 3η

(
1

T

T−1∑
t=0

MSEt

)
This matches the desired form with γ1 = 4 and γ2 = 3, under the condition η ≤ 1

4L . Note that
F (wT) is often replaced by F ∗ = minw F (w) since F (wT) ≥ F ∗, which makes the bound looser
but independent of F (wT). The term E[F (w0)] − E[F (wT)] is used for a finite T . If F (wT) is
simply written as F (wT), and expectation is dropped for F (w0) (if w0 is deterministic), then we
have:

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≤ 4(F (w0)− E[F (wT)])

Tη
+ 3η

 1

T

T−1∑
t=0

E∥ut −∇F (wt)∥22︸ ︷︷ ︸
MSEt


The constants γ1, γ2 might differ based on the specific choices made in applying Young’s inequality
(underlined part) or in setting learning rate. Here we only give the existence proof of γ1, γ2 by taking
certain values.

Theorem a.2 (Optimal Learning Rate Scaling for ACE). The optimal learning rate η∗ that minimizes
the convergence upper bound for ACE is proportional to

√
n/T .

Proof. Our goal is to select a learning rate η that minimizes the convergence rate’s upper bound from
Theorem a.1:

R(η) = γ1∆

Tη
+ γ2η

(
1

T

T−1∑
t=0

E||ut −∇F (wt)||22

)
︸ ︷︷ ︸

MSE

It is worth noting that the MSE term can be a function of η. From our MSE decomposition 4, the
error consists of Term A (Noise), Term B (Bias), and Term C (Delay).
For ACE,

• (Appendix B.3) The upper bound of Sampling Noise (Term A) is E∥A∥22 ≤ σ2

n .

• (Appendix B.4) Term B is zero.

• (Appendix B.5) As shown in the analysis of model drift Dt
i , the Delay Error contains a

component that scales with η2:

E||Term C||2 ≤ L2

n

∑
i

Dt
i ≤ η2

L2

n
τmax

(
σ2

n
+ . . .

)

9

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Thus, the full upper boundR(η) contains terms proportional to 1/η, η, and η3:

R(η) ≲ 1

Tη
+ η

(
σ2

n

)
+ η3

(
L2τmaxσ

2

n
+ · · ·

)
(a.6)

For the algorithm to converge, the left-hand side of Bound 2 must approach zero as T → ∞.
Consequently, its upper bound,R(η), must also approach zero. ForR(η)→ 0, the learning rate η
must be a vanishing quantity, i.e., η(T)→ 0 as T →∞. If η were a constant, the terms proportional
to η and η3 would prevent the bound from converging to zero.
Since we have established that η must be a small quantity for large T , higher-order terms in η become
negligible. Specifically, the η3 term diminishes much faster than the η term. Therefore, for the
purpose of finding the optimal scaling rate of the learning rate, the behavior ofR(η) is dominated by
the first two terms. The problem simplifies to minimizing the dominant part of the bound:

Rdom(η) ≲
1

Tη
+

η

n
(a.7)

To find the optimal η that minimizes this simplified expression, we take the derivative with respect to
η and set it to zero, which yields:

(η∗)2 ∝ 1/T

1/n
=⇒ η∗ ∝

√
n

T
(a.8)

This demonstrates that while the exact value of the optimal learning rate depends on multiple constants,
its scaling with respect to n and T is robustly determined by balancing the two dominant terms in
the convergence bound. This justifies our choice of η proportional to

√
n/T to achieve the rate in

Theorem 1.

10

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.3 THEOREM ON SAMPLING NOISE (TERM A)

Theorem a.3 (Sampling Noise Term A = ut − ut). Let ut be the global update at server iteration t,
and ut = E{ξ}[u

t|Ht] be its expectation conditional on all informationHt (including stale models
used for gradient computation) except the fresh data samples {ξ} used to compute the gradients
that form ut. Under Assumptions 3 and 4, the expected squared norm of the sampling noise term
A = ut − ut is bounded as follows for different asynchronous algorithms:

1. Vanilla ASGD(Mishchenko et al., 2022) & Delay-adaptive ASGD(Koloskova et al., 2022):
If the server update ut = ∇fjt(w

t−τt
jt ; ξtjt) is based on the stochastic gradient from a

single client jt (performing K = 1 local step, local learning rate ηl = 1 effectively for the
gradient itself), then

E∥A∥22 ≤ σ2

2. FedBuff(Nguyen et al., 2022): If the server update ut = 1
m

∑
i∈Mt

∆t
i, where ∆t

i =

ηl
∑K−1

k=0 gti,k is derived from K local SGD steps with local learning rate ηl by clients in a

setMt of m clients, and gti,k = ∇fi(w
t−τt

i

i,k ; ξti,k) is the stochastic gradient (computed on

local model wt−τt
i

i,k which is based on global model wt−τt
i), then

E∥A∥22 ≤
Kη2l σ

2

m

3. CA2FL(Wang et al., 2024b) (Cache-Aided Asynchronous Federated Learning): If the
server update is vt = ht + 1

m

∑
i∈St

(∆t
i − ht

i), where ∆t
i = ηl

∑K−1
k=0 gti,k is the model

difference from client i ∈ St (a set of m clients) after K local SGD steps with learning rate
ηl, and ht, ht

i are cached values. The sampling noise A = vt−vt where vt = E{ξti,k}[v
t|Ht]

is bounded by:

E∥A∥22 ≤
Kη2l σ

2

m

(This arises because A = 1
m

∑
i∈St

(∆t
i − E[∆t

i|Ht]).)

4. ACE (Ours): If the server update ut = 1
n

∑n
i=1∇fi(wt−τt

i ; ξκi
i) is an average of the latest

available (potentially stale) stochastic gradients from all n clients (each performing K = 1
step for the gradient computation, with ηl = 1 for the gradient itself), then

E∥A∥22 ≤
σ2

n

Proof. The general structure for Term A is A = ut − ut. We need to calculate E∥A∥22.

1. Vanilla ASGD & Delay-adaptive ASGD:
Here, the update is ut = ∇fjt(w

t−τt
jt ; ξtjt) from a single client jt. The expected update,

conditioned on the stale model wt−τt
jt (which is inHt), is ut = ∇Fjt(w

t−τt
jt). Thus, the

sampling noise is A = ∇fjt(w
t−τt

jt ; ξtjt)−∇Fjt(w
t−τt

jt). Then, its expected squared norm
is:

E∥A∥22 = E
[
∥∇fjt(w

t−τt
jt ; ξtjt)−∇Fjt(w

t−τt
jt)∥22

]
By Assumption 4 (Bounded Sampling Noise), this is directly bounded by σ2.

2. FedBuff:
The update is ut = 1

m

∑
i∈Mt

∆t
i = ηl

m

∑
i∈Mt

∑K−1
k=0 gti,k. The expected update

is ut = ηl

m

∑
i∈Mt

∑K−1
k=0 ∇Fi(w

t−τt
i

i,k). The sampling noise is A = ut − ut =
ηl

m

∑
i∈Mt

∑K−1
k=0 (gti,k −∇Fi(w

t−τt
i

i,k)). Let δti,k = gti,k −∇Fi(w
t−τt

i

i,k). By Assumption 3

11

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(Unbiased Stochastic Gradients), E[δti,k|w
t−τt

i

i,k] = 0. We have:

E∥A∥22 = E

∥∥∥∥∥ ηlm ∑
i∈Mt

K−1∑
k=0

δti,k

∥∥∥∥∥
2

2

Expanding the square:

E∥A∥22 =
η2l
m2

E

 ∑
i∈Mt

K−1∑
k=0

∥δti,k∥22 +
∑

(i,k) ̸=(j,l)
i,j∈Mt

⟨δti,k, δtj,l⟩


The samples ξti,k used to compute gti,k are drawn independently for each client i and each
local step k. Therefore, for (i, k) ̸= (j, l), the terms δti,k and δtj,l are (conditionally)
independent given the respective models they were computed on. Since E[δti,k|Ht

k] = 0

(whereHt
k includes wt−τt

i

i,k), the expectation of the cross terms ⟨δti,k, δtj,l⟩ is zero. Specifically,

E[⟨δti,k, δtj,l⟩] = E[E[⟨δti,k, δtj,l⟩|Ht
kl]] where Ht

kl contains w
t−τt

i

i,k and w
t−τt

j

j,l . If i ̸= j, or
i = j but k ̸= l (implying different samples ξti,k and ξtj,l), then E[δti,k|Ht

kl] and E[δtj,l|Ht
kl]

are zero, making the cross term zero. Thus,

E∥A∥22 =
η2l
m2

∑
i∈Mt

K−1∑
k=0

E∥δti,k∥22

≤ η2l
m2

∑
i∈Mt

K−1∑
k=0

σ2 (by Assumption 4)

=
η2l
m2

(m ·K · σ2) =
Kη2l σ

2

m

3. CA2FL:
The global update is vt = ht + 1

m

∑
i∈St

(∆t
i − ht

i). The randomness from the current
set of samples {ξti,k} for i ∈ St comes from ∆t

i = ηl
∑K−1

k=0 gti,k. The cached terms
ht and ht

i are considered fixed with respect to the expectation over these current fresh
samples (i.e., they are in Ht). Let A = vt − vt. Then vt = E{ξti,k}i∈St

[vt|Ht] = ht +

1
m

∑
i∈St

(E{ξti,k}[∆
t
i|Ht] − ht

i). Let ∆t
i = E{ξti,k}[∆

t
i|Ht] = ηl

∑K−1
k=0 ∇Fi(w

t−τt
i

i,k). So,

A = vt − vt = 1
m

∑
i∈St

(∆t
i −∆t

i). This simplifies to:

A =
1

m

∑
i∈St

ηl

K−1∑
k=0

(gti,k −∇Fi(w
t−τt

i

i,k)).

This expression for A is identical in form to that of FedBuff, with St corresponding toMt

and m = |St|. Thus, the subsequent steps of the proof are the same as for FedBuff, yielding:

E∥A∥22 ≤
Kη2l σ

2

m

4. ACE:
Here ut = 1

n

∑n
i=1∇fi(wt−τt

i ; ξκi
i) and ut = 1

n

∑n
i=1∇Fi(w

t−τt
i). So, A =

1
n

∑n
i=1(∇fi(wt−τt

i ; ξκi
i)−∇Fi(w

t−τt
i)). Let δti = ∇fi(wt−τt

i ; ξκi
i)−∇Fi(w

t−τt
i). By

Assumption 3, E[δti |Ht] = 0. The samples ξκi
i are drawn independently by each client i for

its respective gradient computation, conditional onHt (which includes all wt−τt
j).

E∥A∥22 = E

∥∥∥∥∥ 1n
n∑

i=1

δti

∥∥∥∥∥
2

2

=
1

n2
E

 n∑
i=1

∥δti∥22 +
∑
i̸=j

⟨δti , δtj⟩



12

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

For i ̸= j, δti and δtj are (conditionally) independent given Ht because the samples
ξκi
i and ξ

κj

j are drawn by different clients independently. Thus, E[⟨δti , δtj⟩|Ht] =

⟨E[δti |Ht],E[δtj |Ht]⟩ = ⟨0, 0⟩ = 0. So the cross terms vanish:

E∥A∥22 =
1

n2

n∑
i=1

E∥δti∥22

≤ 1

n2

n∑
i=1

σ2 (by Assumption 4)

=
1

n2
(n · σ2) =

σ2

n

B.4 THEOREM ON BIAS ERROR (TERM B)

Theorem a.4 (Bias Error Term B = ut−∇F (wt
stale)). Let ut be the global update at server iteration

t, ut = E{ξ}[u
t|Ht] its conditional expectation, and ∇F (wt

stale) = 1
n

∑n
i=1∇Fi(w

t−τt
i). The

expected squared norm of the bias error term B is bounded as follows for different asynchronous
algorithms, under relevant assumptions (primarily 2, 3, 4, and bounded data heterogeneity (BDH)
assumption where applicable):

1. Vanilla ASGD(Mishchenko et al., 2022) & Delay-Adaptive ASGD(Koloskova et al.,
2022) & FedBuff(Nguyen et al., 2022): If the server update ut = 1

m

∑
i∈Mt

∆t
i,

where ∆t
i is derived from K ≥ 1 local SGD steps with local learning rate ηl. Then

ut = 1
m

∑
i∈Mt

ηl
∑K−1

k=0 ∇Fi(w
t−τt

i

i,k). The bias B = ut −∇F (wt
stale) arises from both

multiple local steps (K ≥ 1) and partial client participation (m < n). A representative
bound (cf. ACE paper’s analysis of FedBuff) is:

E∥B∥2 ≲

(
(σ2 +Kζ2) +

∑
i∈Mt

E∥∇F (wt−τt
i)∥22

)
+(n−m)

(
ζ2 +

n∑
i=1

E∥∇F (wt−τt
i)∥22

)

The term reflects client drift due to local steps and bias due to averaging over a subset m of
clients.

2. CA2FL(Wang et al., 2024b): The server update is vt = ht + 1
m

∑
i∈St

(∆t
i − ht

i), leading
to vt = ht + 1

m

∑
i∈St

(∆t
i − ht

i). The bias B = vt − ∇F (wt
stale) is reduced by the

calibration mechanism but still affected by local steps and imperfect calibration if m < n.
A representative bound (cf. ACE paper’s analysis of CA2FL) is:

E∥B∥2 ≲
(
1 + (1− m

n
)2
)(

(σ2 +Kζ2) +

n∑
i=1

E∥∇F (wt−τt
i)∥22

)

3. ACE (Ours): The server update ut = 1
n

∑n
i=1∇fi(wt−τt

i ; ξκi
i).

Which leads to
E∥B∥22 = 0.

Proof. The general structure for Term B is B = ut −∇F (wt
stale). We need to calculate E∥B∥22.

1. Vanilla ASGD & Delay-Adaptive ASGD & FedBuff:
Deviation of the sum of true local gradients over K steps from K times the initial true local

13

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

gradient, averaged over participating clients.

B = ut −∇F (wt
stale)

=
1

mK

∑
i∈Mt

K−1∑
k=0

∇Fi(w
t−τt

i

i,k)− 1

n

n∑
i=1

∇Fi(w
t−τt

i)

=

(
1

m
− 1

n

) ∑
i∈Mt

∇Fi(w
t−τt

i)︸ ︷︷ ︸
Part 1

− 1

n

∑
i/∈Mt

∇Fi(w
t−τt

i)︸ ︷︷ ︸
Part 2

+
1

mK

∑
i∈Mt

(
K−1∑
k=0

∇Fi(w
t−τt

i

i,k)−K∇Fi(w
t−τt

i)

)
︸ ︷︷ ︸

Edrift

By Lemma a.3, E∥B∥22 ≤ 3E∥Part 1∥22 + 3E∥Part 2∥22 + 3E∥Edrift∥22
For the partial participation bias Part 1 and 2, the client subset S to determine the sum is
Mt or [n]/Mt

E∥
∑
i∈S
∇Fi(w

t−τt
i)∥22 = E∥

∑
i∈S
∇Fi(w

t−τt
i)−

∑
i∈S
∇F (wt−τt

i) +
∑
i∈S
∇F (wt−τt

i)∥22

≤ 2E∥
∑
i∈S
∇Fi(w

t−τt
i)−

∑
i∈S
∇F (wt−τt

i)∥22︸ ︷︷ ︸
Can be determined by BDH Assumption and Lemma a.3

+ 2E∥
∑
i∈S
∇F (wt−τt

i)∥22 (By Lemma a.3)

≤ 2|S|
∑
i∈S

ζ2 + 2|S|
∑
i∈S

E∥∇F (wt−τt
i)∥22

Therefore,

E∥Part 1∥22 ≤ 2

(
1

m
− 1

n

)2
(
m2ζ2 +m

∑
i∈Mt

E∥∇F (wt−τt
i)∥22

)

E∥Part 2∥22 ≤
2

n2

(n−m)2ζ2 + (n−m)
∑
i/∈Mt

E∥∇F (wt−τt
i)∥22


For the drift error Edrift,

Edrift =
1

mK

∑
i∈Mt

(
K−1∑
k=0

∇Fi(w
t−τt

i

i,k)−K∇Fi(w
t−τt

i)

)
Taking its squared norm and expectation:

E∥Edrift∥22 = E

∥∥∥∥∥ 1

mK

∑
i∈Mt

K−1∑
k=0

(
∇Fi(w

t−τt
i

i,k)−∇Fi(w
t−τt

i)
)∥∥∥∥∥

2

2

≤ 1

mK2

∑
i∈Mt

E

∥∥∥∥∥
K−1∑
k=0

(∇Fi(w
t−τt

i

i,k)−∇Fi(w
t−τt

i))

∥∥∥∥∥
2

2

(by Lemma a.3 for outer sum)

≤ 1

mK

∑
i∈Mt

K−1∑
k=0

E∥∇Fi(w
t−τt

i

i,k)−∇Fi(w
t−τt

i)∥22 (by Lemma a.3 for inner sum)

≤ L2

mK

∑
i∈Mt

K−1∑
k=0

E∥wt−τt
i

i,k − wt−τt
i ∥22 (by L-smoothness Assumption 2)

14

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

By Lemma a.5:

E∥wt−τt
i

i,k′ − wt−τt
i ∥2 ≤ 5Kη2l (σ

2 + 6Kζ2) + 30K2η2l E[∥∇F (wt−τt
i)∥2]

Merging all the pieces. For simplicity of notation, the terms in the partial participation bias
involve E[∥∇F (·)∥2 are merged in an (weighted) average sense:

E∥B∥2 ≲

(
(σ2 +Kζ2) +

∑
i∈Mt

E∥∇F (wt−τt
i)∥22

)
+(n−m)

(
ζ2 +

n∑
i=1

E∥∇F (wt−τt
i)∥22

)

2. CA2FL: The server update is vt = ht + 1
m

∑
i∈St

(∆t
i − ht

i), leading to vt = ht +
1
m

∑
i∈St

(∆t
i − ht

i). The model delay of the non-participating client i at server iteration t is
denoted as ρti, since ζ is used for denoting the BDH assumption bound.

B = ut −∇F (wt
stale)

=
1

mK

∑
i∈St

K−1∑
k=0

[∇Fi(w
t−τt

i

i,k)−∇Fi(w
t−τt

i)] (Denoted as X1)

+

(
1

nK
− 1

mK

)∑
i∈St

K−1∑
k=0

[∇Fi(w
t−ρt

i

i,k)−∇Fi(w
t−ρt

i)] (Denoted as X2)

+
1

nK

∑
i/∈St

K−1∑
k=0

[∇Fi(w
t−ρt

i

i,k)−∇Fi(w
t−ρt

i)] (Denoted as X3)

The core of bounding E∥B∥2 involves:

(a) Using ∥X1 +X2 +X3∥2 ≤ 3(∥X1∥2 + ∥X2∥2 + ∥X3∥2), where X1, X2, X3 are the
three main summations in B.

(b) For each component, say X1 = 1
mK

∑
i∈St

∑K−1
k=0 [∇Fi(w

t−τt
i)−∇Fi(w

t−τt
i

i,k)]:

E∥X1∥2 ≤
1

(mK)2
E

∥∥∥∥∥∑
i∈St

K−1∑
k=0

[∇Fi(w
t−τt

i)−∇Fi(w
t−τt

i

i,k)]

∥∥∥∥∥
2

≤ 1

mK2

∑
i∈St

E

∥∥∥∥∥
K−1∑
k=0

[∇Fi(w
t−τt

i)−∇Fi(w
t−τt

i

i,k)]

∥∥∥∥∥
2

(by Lemma a.3 for outer sum)

≤ 1

mK

∑
i∈St

K−1∑
k=0

E∥∇Fi(w
t−τt

i)−∇Fi(w
t−τt

i

i,k)∥22 (by Lemma a.3 for inner sum)

≤ L2

mK

∑
i∈St

K−1∑
k=0

E∥wt−τt
i − w

t−τt
i

i,k ∥
2
2 (by L-smoothness Assumption 2)

(c) By Lemma a.5 (adapting notation: wstart = wt−τt
i or wt−ρt

i):

E[∥wstart
i,k′ − wstart∥2] ≤ 5Kη2l (σ

2 + 6Kζ2) + 30K2η2l E[∥∇F (wstart)∥2]

Note that

1

m2︸︷︷︸
Coefficient

· m︸︷︷︸
|St|

· m︸︷︷︸
Sum of |St| components

+

(
1

m
− 1

n

)2

·m ·m+
1

m2
· (m− n) · (m− n)

= 1 + 2(1− m

n
)2

15

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

For simplicity of notation, the terms involve E[∥∇F (·)∥2 are merged in an (weighted)
average sense (we treat two sources of delay τ, ρ equivalently):

E∥B∥2 ≲
(
1 + (1− m

n
)2
)
(σ2 +Kζ2) +

1

m

∑
i∈St

E∥∇F (wt−τt
i)∥22

+m

(
1

m
− 1

n

)2 ∑
i∈St

E∥∇F (wt−ρt
i)∥22

+
(n−m)2

m2

∑
i/∈St

E∥∇F (wt−ρt
i)∥22

≲
(
1 + (1− m

n
)2
)(

(σ2 +Kζ2) +

n∑
i=1

E∥∇F (wt−τt
i)∥22

)
3. ACE: The server update ut = 1

n

∑n
i=1∇fi(wt−τt

i ; ξκi
i) (t− τ ti < κi ≤ t).

Thus, ut = 1
n

∑n
i=1∇Fi(w

t−τt
i). Therefore:

B = ut −∇F (wt
stale) =

1

n

n∑
i=1

∇Fi(w
t−τt

i)− 1

n

n∑
i=1

∇Fi(w
t−τt

i) = 0

Which leads to
E∥B∥22 = 0.

B.5 THEOREM ON DELAY ERROR (TERM C)

Theorem a.5 (Delay Error Term C = ∇F (wt
stale) − ∇F (wt))). Let wt be the global model at

server iteration t, and wt
stale = {wt−τt

i }ni=1 be the collection of stale models used by clients, where
τ ti is the information delay for client i. The expected squared norm of the delay error term C is
E∥C∥22 = E∥∇F (wt

stale)−∇F (wt)∥22. Under Assumption 2 (L-Smoothness), this can be bounded in
terms of model drift Dt

i = E∥wt−τt
i − wt∥22:

E∥C∥22 = E

∥∥∥∥∥ 1n
n∑

i=1

(∇Fi(w
t−τt

i)−∇Fi(w
t))

∥∥∥∥∥
2

2

≤ 1

n

n∑
i=1

E∥∇Fi(w
t−τt

i)−∇Fi(w
t)∥22 ≤

L2

n

n∑
i=1

Dt
i

The model drift Dt
i = E∥

∑t−1
s=t−τt

i
ηus∥22 (where us is the server update at step s) is bounded as

follows for different asynchronous algorithms, under relevant assumptions (including Assumption 5
for τmax, and bounded data heterogeneity ζ2 where applicable):

1. Vanilla ASGD(Mishchenko et al., 2022), Delay-Adaptive ASGD(Koloskova et al., 2022),
FedBuff(Nguyen et al., 2022): If the server update us is formed from a subsetMs of m ≤ n
clients, potentially with K ≥ 1 local steps and local learning rate ηl:

Dt
i ≲ τ ti η

2η2l

Kσ2

m
+

1

m

t−1∑
s′=t−τt

i

E∥∇F (ws′

stale)∥22 + (n−m)K2ζ2


The term (n−m)K2ζ2 highlights drift arising from client heterogeneity when m < n.

2. CA2FL(Wang et al., 2024b): If the server update us is from a subset Ms of m clients,
calibrated using all-client history, with K ≥ 1 local steps and local learning rate ηl:

Dt
i ≲ τ ti η

2η2l (1 + (1− m

n
)2)

Kσ2

m
+

t−1∑
s′=t−τt

i

E∥∇F (ws′
stale)∥22


Calibration aims to remove the direct ζ2 term from partial participation bias found in
FedBuff’s drift.

16

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

3. ACE(Ours): If the server update us averages information from all n clients (m = n), with
K = 1 effective local step for the gradient:

Dt
i ≲ τ ti η

2

σ2

n
+

t−1∑
s′=t−τt

i

E∥∇F (ws′

stale)∥22


Here, the ζ2 term from partial participation is absent because us in ACEaverages informa-
tion from all n clients.

Note: The core idea is that the structure of us (full vs. partial aggregation, number of local steps K)
influences the terms within Dt

i , and thus Term C.

Proof. The general structure for Term C is C = ∇F (wt
stale)−∇F (wt). We need to calculate E∥C∥22,

w.r.t. the original definition or w.r.t. the model drift Dt
i .

1. Vanilla ASGD & Delay-Adaptive ASGD & FedBuff:
The update is ut = 1

m

∑
i∈Mt

∆t
i =

ηl

m

∑
i∈Mt

∑K−1
k=0 gti,k. Note that by Lemma a.6, the

sum of the cross-iteration gradient error is zero. The model drift can be calculated as:

Dt
i = E[∥wt − wt−τ l

t∥2] = E


∥∥∥∥∥∥

t−1∑
s=t−τ l

t

(ws+1 − ws)

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥η

t−1∑
s=t−τ l

t

1

m

∑
j∈Ms

K−1∑
k=0

ηlgjs−τs
j ,k

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥η

t−1∑
s=t−τ l

t

1

m

∑
j∈Ms

K−1∑
k=0

ηl(gjs−τs
j ,k
−∇Fj(w

s−τs
j ,k

j) +∇Fj(w
s−τs

j ,k

j))

∥∥∥∥∥∥
2


= 2E



∥∥∥∥∥∥∥∥∥∥∥
η

t−1∑
s=t−τ l

t︸ ︷︷ ︸
Expand by Lemma a.6

1

m

∑
j∈Ms

K−1∑
k=0

ηl(gjs−τs
j ,k
−∇Fj(w

s−τs
j ,k

j))

∥∥∥∥∥∥∥∥∥∥∥

2
+ 2E


∥∥∥∥∥∥η

t−1∑
s=t−τ l

t

1

m

∑
j∈Ms

K−1∑
k=0

ηl∇Fj(w
s−τs

j ,k

j)

∥∥∥∥∥∥
2


≤ 2τ tiKη2η2l
m

σ2 +
2τ ti η

2η2l
m2

t−1∑
s=t−τ l

t

E


∥∥∥∥∥∥
∑

j∈Ms

K−1∑
k=0

∇Fj(w
s−τs

j ,k

j)

∥∥∥∥∥∥
2


Note that we have∥∥∥∥∥
n∑

i=1

K−1∑
k=0

∇Fi(w
t,k
i)

∥∥∥∥∥
2

=

n∑
i=1

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
t,k
i)

∥∥∥∥∥
2

+
∑
i ̸=j

〈
K−1∑
k=0

∇Fi(w
t,k
i),

K−1∑
k=0

∇Fj(w
t,k
j)

〉

=

n∑
i=1

n

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
t,k
i)

∥∥∥∥∥
2

− 1

2

∑
i ̸=j

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
t,k
i)−

K−1∑
k=0

∇Fj(w
t,k
j)

∥∥∥∥∥
2

,

Where the second equation, ∥
∑n

i=1 xi∥
2
=
∑n

i=1 n ∥xi∥2− 1
2

∑
i ̸=j ∥xi − xj∥2, holds due

to Lemma a.2. And ⟨a, b⟩ = 1
2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
, holds due to Lemma a.1

17

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

For simplicity, we assume a uniform partial participation of the clients, i.e. P{i ∈Mt} =
m
n ,P{i, j ∈Mt} = m(m−1)

n(n−1) .

∥∥∥∥∥∥
∑

j∈Ms

K−1∑
k=0

∇Fj(w
s−τs

j ,k

j)

∥∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

K−1∑
k=0

P{i ∈Mt}∇Fi(w
t,k
i)

∥∥∥∥∥
2

=

n∑
i=1

P{i ∈Mt}

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
t,k
i)

∥∥∥∥∥
2

+

n∑
i ̸=j

P{i, j ∈Mt}

〈
K−1∑
k=0

∇Fi(w
t,k
i),

K−1∑
k=0

∇Fj(w
t,k
j)

〉

=
m

n

n∑
i=1

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
t,k
i)

∥∥∥∥∥
2

+
m(m− 1)

n(n− 1)

∑
i ̸=j

〈
K−1∑
k=0

∇Fi(w
t,k
i),

K−1∑
k=0

∇Fj(w
t,k
j)

〉

=
m2

n

n∑
i=1

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
t,k
i)

∥∥∥∥∥
2

− m(m− 1)

2n(n− 1)

∑
i̸=j

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
t,k
i)−

K−1∑
k=0

∇Fj(w
t,k
j)

∥∥∥∥∥
2

=
m(n−m)

n(n− 1)

n∑
i=1

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
t,k
i)

∥∥∥∥∥
2

+
m(m− 1)

n(n− 1)

∥∥∥∥∥
n∑

i=1

K−1∑
k=0

∇Fi(w
t,k
i)

∥∥∥∥∥
2

,

Thus, by Lemma a.5 :

E


∥∥∥∥∥∥
∑

j∈Ms

K−1∑
k=0

∇Fj(w
s−τs

j ,k

j)

∥∥∥∥∥∥
2


=
m(m− 1)

n(n− 1)

n∑
j=1

E

∥∥∥∥∥
K−1∑
k=0

∇Fj(w
s−τs

j ,k

j)

∥∥∥∥∥
2
+

m(m− 1)

n(n− 1)
E


∥∥∥∥∥∥

n∑
j=1

K−1∑
k=0

∇Fj(w
s−τs

j ,k

j)

∥∥∥∥∥∥
2


≤ m(n−m)

n(n− 1)

15nK3η2l (σ
2 + 6Kζ2) + (90K4L2η2l + 3K2)

n∑
j=1

E[∥∇F (ws−τs
j)∥2] + 3nK2ζ2


+

2m(m− 1)

n(n− 1)

n∑
j=1

E

∥∥∥∥∥
K−1∑
k=0

∇Fj(w
s−τs

j ,k

j)−
K−1∑
k=0

∇Fj(w
s−τ l

s,k
j)

∥∥∥∥∥
2


+
2m(m− 1)

n− 1
K2

n∑
j=1

E[∥∇F (ws−τs
j)∥2] (Lemma a.3)

≤ m(n−m)

n(n− 1)

15nK3η2l (σ
2 + 6Kζ2) + (90K4L2η2l + 3K2)

n∑
j=1

E[∥∇F (ws−τs
j)∥2] + 3nK2ζ2


+

2m(m− 1)KL2

n− 1

n∑
j=1

E[∥ws−τs
j ,k

j − w
s−τ l

s,k
j ∥2] (L-smoothness, Assumption 2)

+
2m(m− 1)K2

n− 1

n∑
j=1

E[∥∇F (ws−τs
j)∥2]

≤
[
3m(n−m)

n(n− 1)
+

2nm(m− 1)

n(n− 1)

]5K3L2η2l (σ
2 + 6Kζ2) + (30K4L2η2l +K2)

1

n

n∑
j=1

E[∥∇F (ws−τs
j)∥2]


+

3m(n−m)

n− 1
K2ζ2,

18

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Take back to Dt
i = E

[
∥wt − wt−τt

i ∥2
]
. For the simplicity of notations, the terms are

merged in an (weighted) average sense,

Dt
i = E

[
∥wt − wt−τt

i ∥2
]
≤ 2τ tiKη2η2l

m
σ2 +

2τ ti η
2η2l

m2

t−1∑
s=t−τt

i

{[
3m(n−m)

n− 1
+

2nm(m− 1)

n− 1

]
·
[
5K3L2η2l (σ

2 + 6Kζ2) + (30K4L2η2l +K2)E
[
∥∇F (ws−τs

j)∥2
]]

+
3m(n−m)

n− 1
K2ζ2

}

≲ τ ti η
2η2l

Kσ2

m
+

1

m

t−1∑
s′=t−τt

i

E∥∇F (ws′
stale)∥22 + (n−m)K2ζ2


2. CA2FL:

The server update is vt = ht+ 1
m

∑
i∈St

(∆t
i−ht

i), leading to vt = ht+ 1
m

∑
i∈St

(∆t
i−ht

i).
The model delay of the non-participating client i at server iteration t is denoted as ρti, since
ζ is used for denoting the BDH assumption bound.

vt =
1

n

∑
i/∈St

ht−1
i +

1

n

∑
i∈St

ht−1
i +

1

m

∑
i∈St

(
∆

t−τt
i

i − ht−1
i

)
=

1

n

∑
i/∈St

ht−1
i +

∑
i∈St

[(
1

n
− 1

m

)
ht−1
i +

1

m
∆

t−τt
i

i

]
Take into the definition of E∥C∥2 = E∥∇F (wt

stale)−∇F (wt)∥2,

E

[∥∥∥∥∥ 1

m

∑
i∈St

[∇Fi(w
t)−∇Fi(w

t−τt
i)] +

(
1

n
− 1

m

)∑
i∈St

[∇Fi(w
t)−∇Fi(w

t−ρt
i)]

+
1

n

∑
i/∈St

[∇Fi(w
t)−∇Fi(w

t−ρt
i)]

∥∥∥∥∥
2]

≤ 3

m
E

[∑
i∈St

∥∇Fi(w
t)−∇Fi(w

t−τt
i)∥2

]
+

3(n−m)2

n2m
E

[∑
i∈St

∥∇Fi(w
t)−∇Fi(w

t−ρt
i)∥2

]

+
3(n−m)

n2
E

∑
i/∈St

∥∇Fi(w
t)−∇Fi(w

t−ρt
i)∥2


≤ 3L2

m
E

∑
i∈St

∥∥∥∥∥∥
t−1∑

s=t−τt
i

(ws+1 − ws)

∥∥∥∥∥∥
2
+

3(n−m)2L2

n2m
E

∑
i∈St

∥∥∥∥∥∥
t−1∑

s=t−ρt
i

(ws+1 − ws)

∥∥∥∥∥∥
2


+
3(n−m)L2

n2
E

∑
i/∈St

∥∥∥∥∥∥
t−1∑

s=t−ρt
i

(ws+1 − ws)

∥∥∥∥∥∥
2


Note that
1

m︸︷︷︸
Coefficient

· m︸︷︷︸
|St|

+
(n−m)2

n2m
·m+

n−m

n2
· (n−m) = 1 + 2

(
1− m

n

)2
.

Similar to the above proof for the partial participation methods (Vanilla ASGD & Delay-
Adaptive ASGD & FedBuff); and note that by Lemma a.6, the sum of the cross-iteration

19

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

gradient error is zero:

E


∥∥∥∥∥∥

t−1∑
s=t−τ i

t

(ws+1 − ws)

∥∥∥∥∥∥
2
 = E

[
∥wt − wt−τ i

t ∥2
]

≤ 2τ tiKη2η2l
m

σ2 +
2τ ti η

2η2l
m2

t−1∑
s=t−τ i

t

E

[∥∥∥∥∥∑
j∈Ss

K−1∑
k=0

(
1

m
∇Fi(w

s−τs
j ,k

i)

+

(
1

n
− 1

m

)
∇Fi(w

s−ρs
j ,k

i)

)
1

n

∑
j /∈Ss

K−1∑
k=0

∇Fi(w
s−ρs

j ,k

i)

∥∥∥∥∥
2]

.

Similarly,

E


∥∥∥∥∥∥

t−1∑
s=t−ρt

i

(ws+1 − ws)

∥∥∥∥∥∥
2
 = E

[
∥wt − wt−ρt

i∥2
]

≤ 2ρtiKη2η2l
m

σ2 +
2ρtiη

2η2l
m2

t−1∑
s=t−ρt

i

E

[∥∥∥∥∥∑
j∈Ss

K−1∑
k=0

(
1

m
∇Fi(w

s−τs
j ,k

i)

+

(
1

n
− 1

m

)
∇Fi(w

s−ρs
j ,k

i)

)
1

n

∑
j /∈Ss

K−1∑
k=0

∇Fi(w
s−ρs

j ,k

i)

∥∥∥∥∥
2]

.

Merging all the pieces. For the simplicity of notations, the terms are merged in an (weighted)
average sense (we treat two sources of delay τ, ρ equivalently):

Dt
i ≤ τ ti η

2η2l (1 + (1− m

n
)2)

Kσ2

m
+

t−1∑
s′=t−τt

i

E∥∇F (ws′
stale)∥22


3. ACE (Ours): For E∥wt − wt−τt

i ∥2, it can be decomposed as a telescoping sum:

wt − wt−τt
i =

t−1∑
s=t−τt

i

(ws+1 − ws) =

t−1∑
s=t−τt

i

(−ηus).

E∥wt − wt−τt
i ∥2 = η2E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

us

∥∥∥∥∥∥
2

Decompose us = (us − ūs) + ūs and by Lemma a.3,

η2E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

((us − ūs) + ūs)

∥∥∥∥∥∥
2

≤ 2η2E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

(us − ūs)

∥∥∥∥∥∥
2

+ 2η2E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

ūs

∥∥∥∥∥∥
2

≤ 2η2

n2
E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

n∑
i=1

(∇fi(ws−τs
i , ξκi

i)−∇Fi(w
s−τs

i))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
term I

+
2η2

n2
E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

n∑
i=1

∇Fi(w
s−τs

i)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
term II

20

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

For term I: Let δsi = ∇fi(ws−τs
i , ξκi)−∇Fi(w

s−τs
i).

term I = E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

n∑
i=1

δsi

∥∥∥∥∥∥
2

=

t−1∑
s=t−τt

i

E

∥∥∥∥∥
n∑

i=1

δsi

∥∥∥∥∥
2

+
∑

s1 ̸=s2
t−τt

i≤s1,s2≤t−1

E⟨
∑
i

δs1i ,
∑
j

δs2j ⟩

By Lemma a.6, the sum of these cross-iteration gradient error is zero:

∑
s1 ̸=s2

E

〈 n∑
i=1

δs1i ,

n∑
j=1

δs2j

〉 =
∑

s1 ̸=s2

n∑
i=1

n∑
j=1

E
[
⟨δs1i , δs2j ⟩

]
= 0

Therefore, by Lemma a.3,

term I = E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

n∑
i=1

δsi

∥∥∥∥∥∥
2

=

t−1∑
s=t−τt

i

E∥
n∑

i=1

δsi ∥2 ≤
t−1∑

s=t−τt
i

n

n∑
i=1

E∥δsi ∥2

≤ τ ti n

n∑
i=1

σ2

n
= τ ti nσ

2

For term II:

E∥
t−1∑

s=t−τt
i︸ ︷︷ ︸

τt
i terms

n∑
i=1

∇Fi(w
s−τs

i)∥2 ≤ τ ti

t−1∑
s=t−τt

i

E∥
n∑

i=1

∇Fi(w
s−τs

i)∥2

Therefore, merge term I and term II, we have

E∥wt − wt−τt
i ∥2 ≤ 2

η2

n2
(τ ti nσ

2) + 2
η2

n2
(n2τ ti

t−1∑
s=t−τt

i

E∥ūs∥2)

⇒ E∥wt − wt−τt
i ∥2 ≤ 2η2τ ti

σ2

n
+

t−1∑
s=t−τt

i

E∥ūs∥2


In ACE, ūs = ∇F (ws
stale):

Dt
i = E∥wt − wt−τt

i ∥2 ≲ τ ti η
2

σ2

n
+

t−1∑
s′=t−τt

i

E∥∇F (ws′

stale)∥22

 .

21

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

C CONVERGENCE RATE OF ACE

C.1 PROOF OF THE RATE

Theorem 1 (Convergence Rate of ACE (Alg. 1)). Suppose Assumptions A1-A5 hold. By choosing a
step size η ≤ 1

8Lτmax
, ACE achieves the following convergence rate:

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≤ 2∆

Tη
+

4Lτmaxησ
2

n
+

2L2τ2maxη
2σ2

n

where ∆ = F (w0)− F ∗. Substituting η ≃ 1√
nT

, the RHS converges to 0 as T →∞.

Proof. Start from the Descent Lemma a.4:

E[F (wt+1)]− E[F (wt)] ≤ −ηE⟨∇F (wt), ut⟩+ Lη2

2
E∥ut∥2 (a.9)

We analyze the two terms on the RHS separately to strictly handle the coefficients.

Term 1: The Inner Product. Using the property Eξ[u
t] = ūt, we have E⟨∇F (wt), ut⟩ =

⟨∇F (wt), ūt⟩. Using the identity −⟨a, b⟩ = 1
2∥a− b∥2 − 1

2∥a∥
2 − 1

2∥b∥
2:

−η⟨∇F (wt), ūt⟩ = −η

2
∥∇F (wt)∥2 − η

2
∥ūt∥2 + η

2
∥∇F (wt)− ūt∥2

(Note: By taking the expectation first, the variance term E∥ut − ūt∥2 does not appear here, avoiding
the negative coefficient issue).

Term 2: The Smoothness Term. Using the exact variance decomposition E∥ut∥2 = ∥ūt∥2+E∥ut−
ūt∥2:2

Lη2

2
E∥ut∥2 =

Lη2

2
∥ūt∥2 + Lη2

2
E∥ut − ūt∥2

Combine Term 1 and Term 2: Substituting these back into a.9:

E[F (wt+1)]− E[F (wt)] ≤− η

2
∥∇F (wt)∥2 +

(
Lη2

2
− η

2

)
∥ūt∥2

+
η

2
∥∇F (wt)− ūt∥2 + Lη2

2
E∥ut − ūt∥2

Now, all error terms in the second line of the above inequality have positive coefficients, allowing
for valid upper bound substitutions:

• Noise Term: The coefficient is Lη2

2 > 0. Using Theorem B.3 (E∥ut − ūt∥2 ≤ σ2/n):

Lη2

2
E∥ut − ūt∥2 ≤ Lη2σ2

2n
2The validity of this decomposition depends on the cross-term 2E⟨ut − ūt, ūt⟩ being zero. We prove this

using the Law of Iterated Expectations:

E[⟨ut − ūt, ūt⟩] = EHt

[
⟨Eξ[u

t − ūt | Ht], ūt⟩
]

= EHt

⟨Eξ[u
t | Ht]︸ ︷︷ ︸
ūt

−ūt, ūt⟩

 = EHt [⟨0, ūt⟩] = 0.

Here, we utilize the fact that ūt is measurable with respect to the filtration Ht (history), allowing it to be pulled
out of the inner conditional expectation.

22

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

• Delay Term: The coefficient is η
2 > 0. For ACE, ūt = 1

n

∑
∇Fi(w

t−τt
i).

∥∇F (wt)− ūt∥2 =

∥∥∥∥∥ 1n
n∑

i=1

(∇Fi(w
t)−∇Fi(w

t−τt
i))

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∇Fi(w
t)−∇Fi(w

t−τt
i)∥2 ≤ L2

n

n∑
i=1

∥wt − wt−τt
i ∥2

Substituting these bounds:

E[F (wt+1)]− E[F (wt)] ≤− η

2
E∥∇F (wt)∥2 +

(
Lη2

2
− η

2

)
∥ūt∥2

+
ηL2

2n

n∑
i=1

E∥wt − wt−τt
i ∥2 + Lη2σ2

2n
(a.10)

For E∥wt − wt−τt
i ∥2, it can be decomposed as a telescoping sum:

wt − wt−τt
i =

t−1∑
s=t−τt

i

(ws+1 − ws) =

t−1∑
s=t−τt

i

(−ηus).

E∥wt − wt−τt
i ∥2 = η2E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

us

∥∥∥∥∥∥
2

Decompose us = (us − ūs) + ūs and by Lemma a.3,

η2E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

((us − ūs) + ūs)

∥∥∥∥∥∥
2

≤ 2η2E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

(us − ūs)

∥∥∥∥∥∥
2

+ 2η2E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

ūs

∥∥∥∥∥∥
2

≤ 2η2

n2
E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

n∑
i=1

(∇fi(ws−τs
i , ξκi

i)−∇Fi(w
s−τs

i))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
term I

+
2η2

n2
E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

n∑
i=1

∇Fi(w
s−τs

i)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
term II

For term I: Let δsi = ∇fi(ws−τs
i , ξκi)−∇Fi(w

s−τs
i).

term I = E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

n∑
i=1

δsi

∥∥∥∥∥∥
2

=

t−1∑
s=t−τt

i

E

∥∥∥∥∥
n∑

i=1

δsi

∥∥∥∥∥
2

+
∑

s1 ̸=s2
t−τt

i≤s1,s2≤t−1

E⟨
∑
i

δs1i ,
∑
j

δs2j ⟩

By Lemma a.6, the sum of these cross-iteration gradient error is zero:

∑
s1 ̸=s2

E

〈 n∑
i=1

δs1i ,

n∑
j=1

δs2j

〉 =
∑

s1 ̸=s2

n∑
i=1

n∑
j=1

E
[
⟨δs1i , δs2j ⟩

]
= 0

23

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Therefore, by Lemma a.3,

term I = E

∥∥∥∥∥∥
t−1∑

s=t−τt
i

n∑
i=1

δsi

∥∥∥∥∥∥
2

=

t−1∑
s=t−τt

i

E∥
n∑

i=1

δsi ∥2 ≤
t−1∑

s=t−τt
i

n

n∑
i=1

E∥δsi ∥2

≤ τ ti n

n∑
i=1

σ2

n
= τ ti nσ

2 ≤ τmaxnσ
2

For term II:

E∥
t−1∑

s=t−τt
i︸ ︷︷ ︸

τt
i terms

n∑
i=1

∇Fi(w
s−τs

i)∥2 ≤ τ ti

t−1∑
s=t−τt

i

E∥
n∑

i=1

∇Fi(w
s−τs

i)∥2

≤ τmax

t−1∑
s=t−τmax

E∥
n∑

i=1

∇Fi(w
s−τs

i)∥2

Therefore, merge term I and term II, we have

E∥wt − wt−τt
i ∥2 ≤ 2

η2

n2
(τ ti nσ

2) + 2
η2

n2
(n2τ ti

t−1∑
s=t−τt

i

E∥ūs∥2)

⇒ E∥wt − wt−τt
i ∥2 ≤ 2η2τmax

σ2

n
+

t−1∑
s=t−τt

i

E∥ūs∥2


Substitute this back into the main inequality a.10 for E[F (wt+1)]− E[F (wt)]:

E[F (wt+1)]− E[F (wt)] ≤− η

2
E∥∇F (wt)∥2 + Lη2σ2

2n
+

(
Lη2

2
− η

2

)
∥ūt∥2

+
ηL2

2n
n

2η2τmax

σ2

n
+

t−1∑
s=t−τmax︸ ︷︷ ︸
τmax terms

E∥ūs∥2




≤− η

2
E∥∇F (wt)∥2 +

(
Lη2

2
+ L2η3τmax

)
σ2

n

+

(
Lη2

2
− η

2
+ L2η3τ2max

)
max

t
E∥ūt∥2

≤− η

2
E∥∇F (wt)∥2 +

(
Lη2

2
+ L2η3τmax

)
σ2

n
(a.11)

The last step holds when (Lη2

2 −
η
2 + L2η3τ2max) ≤ 0. This means η(2L2τ2maxη

2 + Lη − 1) ≤ 0.

Since η > 0, we need
f(η) = 2L2τ2maxη

2 + Lη − 1 ≤ 0

The roots of f(η) = 0 are η+,− =
−1±
√

1+8τ2
max

4Lτ2
max

.

So 0 < η ≤ η+ =
−1+
√

1+8τ2
max

4Lτ2
max

.

A looser but simpler condition is by decompsing−η/2 = −η
4 −

η
4 in Lη2

2 −
η
2 +L2η3τ2max and assign

these two −η
4 separately: {

Lη2

2 − η/4 ≤ 0 =⇒ η ≤ 1
2L

L2η3τ2max − η/4 ≤ 0 =⇒ η ≤ 1
2Lτmax

24

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

This leads to η ≤ 1
2Lτmax

(assuming τmax ≥ 1).

If we apply a practical learning rate η = c
√
n/T , then we require T ≥ 4c2L2nτ2max. This is an

implicit relationship between τmax and T . This relationship suggests that in practice, a sufficiently
large total number of server iterations T can mitigate the negative impact on convergence caused by a
delay τmax.

Go back to a.11 (simplified equation after dropping E∥ūt∥2 term):

E[F (wt+1)]− E[F (wt)] ≤ −η

2
E∥∇F (wt)∥2 + (

Lη2

2
+ L2η3τmax)

σ2

n

Sum over t = 0 to T − 1:

E[F (wT)]− F (w0) ≤ −η

2

T−1∑
t=0

E∥∇F (wt)∥2 + T (
Lη2

2
+ L2η3τmax)

σ2

n

Denote F (w0)− E[F (wT)] as ∆.

η

2

T−1∑
t=0

E∥∇F (wt)∥2 ≤ ∆+ Tη(
Lη

2
+ L2η2τmax)

σ2

n

Divide by Tη/2:

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≤ 2∆

Tη
+ (Lη + 2L2η2τmax)

σ2

n

Take η = c
√
n/T :

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≤ 2∆

Tc
√

n/T
+
(
Lc
√
n/T + 2L2c2

n

T
τmax

) σ2

n

=
2∆

c
√
nT

+
cLσ2

√
nT

+
2c2L2τmaxσ

2

T

≲
∆√
nT

+
Lσ2

√
nT

+
L2τmaxσ

2

T

C.1.1 ALTERNATIVE CONVERGENCE ANALYSIS WITH EXPLICIT INDEPENDENCE

In the primary analysis (Appendix C), we utilized the Law of Iterated Expectations to handle the
stochasticity of data sampling conditioned on the filtration of the model history. To address potential
theoretical concerns regarding the subtle statistical dependency between the current model trajectory
wt and the historical data samples embedded in the aggregated update ut, we provide an alternative
proof in this section.

This alternative analysis adopts a stricter "decomposition technique" (Wang et al., 2024a). Instead
of evaluating errors relative to the current iterate wt, we anchor the analysis to the “oldest possible
model” currently influencing the system, denoted as wt−τmax . By definition, all stochastic gradients
involved in the aggregation at iteration t are computed using models generated after wt−τmax was
fixed. This ensures that the specific data batches used for these gradients are statistically independent
of the reference point wt−τmax , thereby eliminating correlation issues without relying on conditional
expectations.

It is worth noting that while this technique offers explicit independence, it treats intermediate updates
as model drift, leading to an accumulation of error terms scaling with τmax. Consequently, this results
in a looser upper bound (with larger constant coefficients) compared to our primary proof. However,
it rigorously serves as a robustness check, confirming that the asymptotic convergence rate order of
ACE remains valid even under this framework.

25

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Proof. Let st := max(0, t − τmax) be the delayed time index used for decoupling. Note that
t− st ≤ τmax for all t. By the L-smoothness of F and the update rule wt+1 = wt − ηut, we have
the descent inequality:

E[F (wt+1)]− E[F (wt)] ≤ −ηE⟨∇F (wt), ut⟩+ Lη2

2
E∥ut∥2 (a.12)

Step 1: Decomposition of the Inner Product. Since wt is coupled with the historical gradients in ut,
we introduce the delayed iterate wst which is independent of the stochastic noise in ut (conditioned
on Fst). We decompose the inner product as:

−ηE⟨∇F (wt), ut⟩ = −ηE⟨∇F (wst), ut⟩ − ηE⟨∇F (wt)−∇F (wst), ut⟩

For the first term, we validly apply the conditional expectation E[ut|Fst] = ūt. Substituting this back
and rearranging terms to recover∇F (wt):

−ηE⟨∇F (wst), ut⟩ = −ηE⟨∇F (wst), ūt⟩

= −ηE⟨∇F (wt), ūt⟩+ ηE⟨∇F (wt)−∇F (wst), ūt⟩

Combining these, we isolate the coupling error term Ecouple:

−ηE⟨∇F (wt), ut⟩ = −ηE⟨∇F (wt), ūt⟩+ ηE⟨∇F (wt)−∇F (wst), ūt − ut⟩︸ ︷︷ ︸
Ecouple

Let δt := ut − ūt. We bound Ecouple using Cauchy-Schwarz and the update rule wt − wst =∑t−st

j=1 (−ηut−j):

Ecouple ≤ ηE[∥∇F (wt)−∇F (wst)∥∥δt∥] ≤ ηLE

∥∥∥∥∥∥
t−st∑
j=1

ηut−j

∥∥∥∥∥∥ ∥δt∥


≤ η2L

τmax∑
j=1

E[∥ut−j∥∥δt∥] (a.13)

Applying Young’s inequality xy ≤ 1
2x

2 + 1
2y

2 to each term in the sum:

Ecouple ≤
η2L

2

τmax∑
j=1

(
E∥ut−j∥2 + E∥δt∥2

)
=

η2L

2

τmax∑
j=1

E∥ut−j∥2 + η2Lτmax

2
E∥δt∥2 (a.14)

For the main descent term, we use the identity −⟨a, b⟩ = 1
2∥a− b∥2 − 1

2∥a∥
2 − 1

2∥b∥
2:

−ηE⟨∇F (wt), ūt⟩ = −η

2
E∥∇F (wt)∥2 − η

2
E∥ūt∥2 + η

2
E∥∇F (wt)− ūt∥2 (a.15)

Step 2: Combining Terms and Variance Bound. Using Young’s inequality for the quadratic term
in (a.12), E∥ut∥2 = E∥ūt + δt∥2 ≤ 2E∥ūt∥2 + 2E∥δt∥2. Substituting (a.14) and (a.15) into (a.12):

E[F (wt+1)]− E[F (wt)] ≤− η

2
E∥∇F (wt)∥2 +

(
Lη2 − η

2

)
E∥ūt∥2

+
η

2
E∥∇F (wt)− ūt∥2︸ ︷︷ ︸

Delay Error

+

(
Lη2 +

η2Lτmax

2

)
E∥δt∥2

+
η2L

2

τmax∑
j=1

E∥ut−j∥2 (Coupling Drift) (a.16)

Step 3: Bounding Specific Terms.

26

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

1. Noise Term: By Theorem B.3, E∥δt∥2 ≤ σ2

n .

2. Delay Error: In ACE, ūt = 1
n

∑n
i=1∇Fi(w

t−τt
i). Since Term B is strictly zero:

E∥∇F (wt)− ūt∥2 = E

∥∥∥∥∥ 1n
n∑

i=1

(∇Fi(w
t)−∇Fi(w

t−τt
i))

∥∥∥∥∥
2

≤ L2

n

n∑
i=1

E∥wt − wt−τt
i ∥2

Using Jensen’s inequality on the update sum, ∥wt − wt−k∥2 = ∥
∑k

j=1 ηu
t−j∥2 ≤

kη2
∑k

j=1 ∥ut−j∥2. Since τ ti ≤ τmax:

E∥∇F (wt)− ūt∥2 ≤ L2τmaxη
2

τmax∑
k=1

E∥ut−k∥2

Step 4: Global Summation and Coefficient Analysis. Summing (a.16) from t = 0 to T − 1 and
substituting the bounds:

F (w0)− F ∗ ≥η

2

T−1∑
t=0

E∥∇F (wt)∥2 −
T−1∑
t=0

(η
2
− Lη2

)
E∥ūt∥2

−
(
Lη2 +

Lτmaxη
2

2

)
Tσ2

n

−
(
η

2
L2τmaxη

2 +
η2L

2

)
︸ ︷︷ ︸

Drift Coeff Cdrift

T−1∑
t=0

τmax∑
k=1

E∥ut−k∥2

We regroup the historical update terms using the property
∑T−1

t=0

∑τmax
k=1 E∥ut−k∥2 ≤

τmax
∑T−1

t=0 E∥ut∥2. Expanding E∥ut∥2 ≤ 2E∥ūt∥2 + 2σ2

n :

Cdrift

T−1∑
t=0

τmax∑
k=1

E∥ut−k∥2 ≤ Cdriftτmax

T−1∑
t=0

(
2E∥ūt∥2 + 2σ2

n

)
Substituting this back, we analyze the total coefficient Cū for the

∑T−1
t=0 E∥ūt∥2 term:

Cū =
(
Lη2 − η

2

)
+ 2τmaxCdrift = Lη2 − η

2
+ L2τ2maxη

3 + Lτmaxη
2

To ensure Cū ≤ 0, we factor out −η/2:

Cū = −η

2

(
1− 2Lη − 2Lτmaxη − 2L2τ2maxη

2
)

By choosing η ≤ 1
8Lτmax

(and assuming τmax ≥ 1), we have 2Lη ≤ 1
4 , 2Lτmaxη ≤ 1

4 , and
2L2τ2maxη

2 ≤ 2(1
64) <

1
4 . The term in parenthesis is ≥ 1 − 0.25 − 0.25 − 0.04 > 0, so Cū ≤ 0.

Thus, we can drop the E∥ūt∥2 terms.

Step 5: Final Rate. We collect all remaining noise terms (all proportional to σ2/n):

Total Noise =
Tσ2

n

(Lη2 + Lτmaxη
2

2

)
︸ ︷︷ ︸

Direct Noise

+2τmaxCdrift︸ ︷︷ ︸
From Drift


=

Tσ2

n

[
Lη2 +

1

2
Lτmaxη

2 + 2τmax

(
1

2
L2τmaxη

3 +
1

2
Lη2

)]
=

Tσ2

n
η2
[
L+

3

2
Lτmax + L2τ2maxη

]
≤ Tσ2

n
η2
[
2Lτmax + L2τ2maxη

]
(using τmax ≥ 2, terms bounded)

27

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Rearranging the main inequality:

η

2

T−1∑
t=0

E∥∇F (wt)∥2 ≤ ∆+
Tσ2

n
η2(2Lτmax + L2τ2maxη)

Multiplying by 2
Tη :

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≤ 2∆

Tη
+

2σ2

n
η(2Lτmax + L2τ2maxη)

=
2∆

Tη
+

4Lτmaxησ
2

n
+

2L2τ2maxη
2σ2

n

All error terms on the RHS contain the factor η. By substituting η ∝ 1/
√
T , the RHS converges to 0

as T →∞.

28

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

D DETAILED DISCUSSION ON THE DELAY-AWARE VARIANT

D.1 PSEUDO-CODE OF ACED

Algorithm a.1 ACE Variant: ACED (All-Client Engagement Bounded Delay-Aware AFL)

Require: Maximum allowed delay τalgo, step size η.
1: Server Initialization: Initialize w0. Server cache stores (U cache

i , tstart
i) for each i. Obtain

u0
i = ∇fi(w0; ξi). Set U cache

i ← u0
i , tstart

i ← 1 for all i. Broadcast w1 = w0 − η 1
n

∑n
i=1 U

cache
i .

2: Server Loop: For t = 1, . . . , T − 1:
3: Receive unew

jt
= ∇fjt(w

tstart
jt ; ξnew

jt
) from client jt.

4: Update: U cache
jt

← unew
jt

.
5: Define active set: A(t) = {i ∈ [n] | t− tstart

i ≤ τalgo}.
6: Compute nt = |A(t)|.
7: If nt > 0: wt+1 = wt − η 1

nt

∑
i∈A(t) U

cache
i . ▷ Direct sum over active set

8: Else: wt+1 = wt. ▷ Skip update if no valid “fresh” gradients
9: Send wt+1 to client jt and update: tstart

jt
← t+ 1.

10: Client i Operation:
11: Initialize: Compute u1

i = ∇fi(w0; ξ1i), send to server.
12: Loop: Receive wreceived, compute unew

i = ∇fi(wreceived; ξnew
i), send to server.

There are some important details to be noticed for the ACED algorithm:

• Active Set Formation: At each server iteration t, the server forms an active set A(t) by
checking a condition for every client.

– If a client’s information is fresh (i.e., the elapsed time since it received its model,
t − tstart

i , is within the τalgo threshold), it is included in the active set for the current
update.

– Otherwise, if the client is too slow and its information becomes stale (t− tstart
i > τalgo),

it is temporarily excluded from the aggregation.

• Rejoin Mechanism: The algorithm enables clients to rejoin after being excluded.

– When any client (even one previously excluded for being too slow) sends its completed
gradient to the server, the server accepts the update.

– Crucially, the server then resets that client’s timestamp to the current time (tstart
i ← t+1).

This action makes the client’s information "fresh" again.
– This reset guarantees the client will be included in the active set in the next iteration,

allowing it to rejoin the training process.

D.2 ASSUMPTIONS FOR ACED

Let n be the total number of clients. The convergence analysis of ACED relies on the following
assumptions, adapted from the main ACE paper and the provided analysis sketch .

Assumption a.1 (Lower Boundedness). The global objective function F (w) = 1
n

∑n
i=1 Fi(w) is

bounded below, i.e., F (w) ≥ F ∗ > −∞ for all w ∈ Rd. Let ∆F = F (w0)− F ∗.

Assumption a.2 (L-Smoothness). Each local objective function Fi(w) is L-smooth for some L ≥ 0.
This implies F (w) is also L-smooth.

∥∇Fi(w)−∇Fi(w
′)∥2 ≤ L∥w − w′∥2, ∀w,w′ ∈ Rd.

Assumption a.3 (Unbiased Stochastic Gradients). For any client i, its cached gradient U cache
i (used

in ut
BDA) was computed based on a model wtstart

i (where tstart
i is the server iteration when client i

obtained this model) and a fresh data sample ξi drawn at the time of computation. Let Ftstart
i

be the
σ-algebra of information up to the point wtstart

i was determined. Then,

E[U cache
i | Ftstart

i
] = ∇Fi(w

tstart
i).

29

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Assumption a.4 (Bounded Sampling Noise). The variance of the stochastic gradients used to form
U cache
i is bounded:

E[∥U cache
i −∇Fi(w

tstart
i)∥22 | Ftstart

i
] ≤ σ2.

Assumption a.5 (Bounded Algorithmic Delay for ACED). The algorithm-defined maximum delay
threshold τalgo is finite and τalgo ≥ 1. For any client i ∈ A(t) (the active set at server iteration t), the
effective delay of its cached gradient U cache

i relative to the current server model wt is δi(t) = t− tstart
i ,

satisfying 0 ≤ δi(t) ≤ τalgo.
Assumption a.6 (Bounded Data Heterogeneity (BDH)). The dissimilarity between local true gradi-
ents and the (ideal) global true gradient is bounded:

∥∇Fi(w)−∇F (w)∥22 ≤ ζ2

for some constant ζ2 ≥ 0.
Assumption a.7 (Bounded Gradients). The expectation of the local gradients are uniformly bounded:
∥∇Fi(w)∥2 ≤ G2 for all i, w. Note that this assumption is NOT necessary, but for the simplicity of
the notations in the proof.
Assumption a.8 (Minimum Participation for ACED). The number of active clients nt = |A(t)| in
any update step t is lower bounded by nmin ≥ 1.

D.3 CONVERGENCE THEOREM FOR ACED

Theorem a.6 (ACED Convergence). Suppose Assumptions A1-A7 hold. If the step size satisfies
ηt = η ≤ 1

12Lτalgo
, then for the ACED algorithm, after T iterations:

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≤ 2∆

Tη
+

12(ζ2 +G2)

T

∑
t:nt<n

(
1− nt

n

)2
+

6Lτalgoησ
2

nmin
+

6L2τ2algoη
2σ2

nmin

where nmin is the lower bound of active clients. Substituting η ≃ 1√
T

, the RHS converges to 0 (plus
the vanishing bias term) as T →∞.

Proof. The proof starts with the Descent Lemma. For simplicity, we denote "bounded delay-aware"
as BDA.

For an update wt+1 = wt − ηtu
t
BDA, where ut

BDA = 1
nt

∑
i∈A(t) U

cache
i , we have:

E[F (wt+1)] ≤ E[F (wt)]− ηtE[⟨∇F (wt), ut
BDA⟩] +

Lη2t
2

E∥ut
BDA∥2 (a.17)

where ut
BDA = Eξ[u

t
BDA|Ft] =

1
nt

∑
i∈A(t)∇Fi(w

tstart
i).

Rearranging a.17:

ηtE[⟨∇F (wt), ut
BDA⟩] ≤ E[F (wt)]− E[F (wt+1)] +

Lη2t
2

E∥ut
BDA∥2 (a.18)

We analyze the two terms on the RHS separately to strictly handle the coefficients.

Term 1: The Inner Product. Using the property Eξ[u
t
BDA] = ut

BDA, we have E[⟨∇F (wt), ut
BDA⟩] =

⟨∇F (wt), ut
BDA⟩. Using the identity −⟨a, b⟩ = 1

2∥a− b∥2 − 1
2∥a∥

2 − 1
2∥b∥

2:

−ηt⟨∇F (wt), ut
BDA⟩ = −

ηt
2
∥∇F (wt)∥2 − ηt

2
∥ut

BDA∥2 +
ηt
2
∥∇F (wt)− ut

BDA∥2

Term 2: The Smoothness Term. Using the exact variance decomposition E∥ut
BDA∥2 = ∥ut

BDA∥2 +
E∥ut

BDA − ut
BDA∥2:

Lη2t
2

E∥ut
BDA∥2 =

Lη2t
2
∥ut

BDA∥2 +
Lη2t
2

E∥ut
BDA − ut

BDA∥2

30

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Combine Term 1 and Term 2: Substituting these back into a.17:

E[F (wt+1)]− E[F (wt)] ≤− ηt
2
∥∇F (wt)∥2 +

(
Lη2t
2
− ηt

2

)
∥ut

BDA∥2

+
ηt
2
∥∇F (wt)− ut

BDA∥2 +
Lη2t
2

E∥ut
BDA − ut

BDA∥2 (a.19)

Now, we bound the key terms:

A. Sampling Noise of ut
BDA:

Following the similar derivation in the proof of Theorem B.3,

E∥ut
BDA − ut

BDA∥22 ≤
σ2

nt
≤ σ2

nmin
(by Assumption a.4, a.8) (P1)

B. Squared Norm of ut
BDA:

Using the variance decomposition and P1:

E∥ut
BDA∥22 = E∥ut

BDA − ut
BDA∥22 + ∥ut

BDA∥22

≤ σ2

nt
+ ∥ut

BDA∥22 (P2)

≤ σ2

nmin
+ ∥ut

BDA∥22

C. Model Drift E∥wt − ws∥22 for s < t:

Let s = tstart
i , δ = t− s ≤ τalgo. The sum of the cross-iteration gradient error is zero::

E∥wt − wtstart
i ∥22 = E∥

t−1∑
k=s

(wk+1 − wk)∥22 = η2t E∥
t−1∑
k=s

uk
BDA∥22

= η2t E∥
t−1∑
k=s

(uk
BDA − uk

BDA) +

t−1∑
k=s

uk
BDA∥22 (Using Lemma a.3)

= 2η2t E∥
t−1∑
k=s

(uk
BDA − uk

BDA)∥22︸ ︷︷ ︸
Using Lemma a.6 and P1

+2η2t E∥
t−1∑
k=s

uk
BDA∥22︸ ︷︷ ︸

Using Lemma a.3

≤ 2η2t τalgo

(
σ2

nt
+

t−1∑
k=s

E∥uk
BDA∥22

)
(P3)

≤ 2η2t τalgo

(
σ2

nmin
+

t−1∑
k=s

E∥uk
BDA∥22

)

31

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

D. Gradient Error E∥∇F (wt)− ut
BDA∥2 := E∥EtBDA∥2:

EtBDA = ut −∇F (wt
stale)

=
1

nt

∑
i∈A(t)

∇Fi(w
s)− 1

n

n∑
i=1

∇Fi(w
t)

=

(
1

nt
− 1

n

) ∑
i∈A(t)

∇Fi(w
t)

︸ ︷︷ ︸
Part 1

− 1

n

∑
i/∈A(t)

∇Fi(w
t)

︸ ︷︷ ︸
Part 2

+
1

nt

∑
i∈A(t)

(
∇Fi(w

s)−∇Fi(w
t)
)

︸ ︷︷ ︸
EDelay

And by Lemma a.3,
E∥EtBDA∥2 ≤ 3E∥Part 1∥22 + 3E∥Part 2∥22 + 3E∥EDelay∥2

Therefore, similar as the proof for Theorem B.4, for the partial participation bias Part 1 and 2, the
client subset S to determine the sum is A(t) or [n]/A(t):

E∥
∑
i∈S
∇Fi(w

t)∥22 = E∥
∑
i∈S
∇Fi(w

t)−
∑
i∈S
∇F (wt) +

∑
i∈S
∇F (wt)∥22

≤ 2E∥
∑
i∈S
∇Fi(w

t)−
∑
i∈S
∇F (wt)∥22︸ ︷︷ ︸

Can be determined by BDH Assumption and Lemma a.3

+2E∥
∑
i∈S
∇F (wt)∥22 (By Lemma a.3)

≤ 2|S|
∑
i∈S

ζ2 + 2|S|
∑
i∈S

E∥∇F (wt)∥22

Given that |A(t)| = nt, |[n]/A(t)| = n− nt:

E∥Part 1∥22 ≤ 2

(
1

nt
− 1

n

)2
n2

t ζ
2 + nt

∑
i∈A(t)

E∥∇F (wt)∥22


E∥Part 2∥22 ≤

2

n2

(n− nt)
2ζ2 + (n− nt)

∑
i/∈A(t)

E∥∇F (wt)∥22


Note that

2

(
1

nt
− 1

n

)2

n2
t +

2

n2
(n− nt)

2 = 4
(
1− nt

n

)2
,

And we can bound the expectation of the global gradient by Assumption a.7:

E∥∇F (wt)∥22 = E∥ 1
n

n∑
i=1

∇Fi(w
t)∥22

≤ 1

n2
· n

n∑
i=1

∥Fi(w
t)∥2 (Lemma a.3)

≤ 1

n2
· n

n∑
i=1

G2 = G, (Assumption a.7)

Therefore,

E∥Part 1∥22 + E∥Part 2∥22 ≤ 4
(
1− nt

n

)2
(ζ2 +G2)

≤ 4
(
1− nmin

n

)2
(ζ2 +G2)

32

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

The delay error EDelay (using P3):

E∥EDelay∥2 = ∥ 1
nt

∑
i∈A(t)

(
∇Fi(w

s)−∇Fi(w
t)
)
∥2

≤ L2

nt

∑
i∈A(t)

E∥wtstart
i − wt∥2 (Lemma a.3)

≤ L2

nt
· nt · 2η2t τalgo(

σ2

nt
+

t−1∑
k=s

E∥uk
BDA∥22) (Using P3)

= 2L2η2t τalgo(
σ2

nt
+

t−1∑
k=s

E∥uk
BDA∥22)

≤ 2L2η2t τalgo(
σ2

nmin
+

t−1∑
k=s

E∥uk
BDA∥22)

Thus,

E∥EtBDA∥2 = E∥∇F (wt)− ut
BDA∥2

≤ 6E∥Part 1∥22 + 6E∥Part 2∥22 + 6E∥EDelay∥2

≤ 24
(
1− nt

n

)2
(ζ2 +G2)

+ 12L2η2t τalgo

(
σ2

nt
+

t−1∑
k=s

E∥uk
BDA∥22

)
(P4)

≤ 24
(
1− nmin

n

)2
(ζ2 +G2)

+ 12L2η2t τalgo

(
σ2

nmin
+

t−1∑
k=s

E∥uk
BDA∥22

)

Substituting P1 and P4 into a.19:

E[F (wt+1)]− E[F (wt)] ≤− ηt
2

E∥∇F (wt)∥2 +
(
Lη2t
2
− ηt

2

)
∥ut

BDA∥2

+
ηt
2

E∥EtBDA∥2 +
Lη2t
2

E∥ut
BDA − ut

BDA∥2

≤ −ηt
2

E∥∇F (wt)∥2 + Lη2t
2

σ2

nt

+
ηt
2

[
24
(
1− nt

n

)2
(ζ2 +G2) + 12L2η2t τalgo

(
σ2

nt
+

t−1∑
k=s

E∥uk
BDA∥22

)]

+

(
Lη2t
2
− ηt

2

)
E∥ut

BDA∥22

≤ −ηt
2

E∥∇F (wt)∥2 + ηt
2
· 24

(
1− nt

n

)2
(ζ2 +G2)

+ (
Lη2t
2

+ 6L2η3t τalgo)
σ2

nt

+ (
Lη2t
2
− ηt

2
+ 6L2η3t τ

2
algo)max

t
E∥ut

BDA∥22 (BD)

Let f(ηt) = 6L2η2t τ
2
algo+Lηt/2−1/2. If f(ηt) ≤ 0, then (Lη2

t

2 −
ηt

2 +6L2η3t τ
2
algo)maxt E∥ut

BDA∥2 ≤
0. A loose condition to derive f(ηt) ≤ 0 is to decompose −1/2 = −1/4 − 1/4 and assign them

33

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

separately:

{
Lηt/2− 1/4 ≤ 0 =⇒ ηt ≤ 1

2L

6η2tL
2τ2algo − 1/4 ≤ 0 =⇒ ηt ≤ 1

2
√
3Lτalgo

=⇒ ηt ≤
1

2
√
3Lτalgo

(Using tighter bound)

With appropriately selected learning rates for each server iteration t, BD further becomes:

ηt
2

E[∥∇F (wt)∥2] ≤ E[F (wt)]− E[F (wt+1)] +
ηt
2
· 24

(
1− nt

n

)2
(ζ2 +G2)

+ (
Lη2t
2

+ 6L2η3t τalgo)
σ2

nt

Multiply 2/ηt on both sides:

E[∥∇F (wt)∥2] ≤ 2

ηt
(E[F (wt)]− E[F (wt+1)]) + 24

(
1− nt

n

)2
(ζ2 +G2)

+ (Lηt + 12L2η2t τalgo)
σ2

nmin

Let {t : nt < n, t ∈ [0, T − 1]} be the set of iterations with partial client participation. The bias term
(in P4) related to (n − nt)

2 is non-zero only for t ∈ {t : nt < n, t ∈ [0, T − 1]}. Summing from
t = 0 to T − 1 and dividing by T :

1

T

T−1∑
t=0

E[||∇F (wt)||2] ≤ 1

T

T−1∑
t=0

2

ηt
(E[F (wt)]− E[F (wt+1)])

+
24(ζ2 +G2)

T

∑
t:nt<n

(1− nt

n
)2

+
1

T

T−1∑
t=0

(Lηt + 12L2η2t τalgo)
σ2

nt

Now, we set a fixed learning rate ηt = c
√

n/T for some constant c > 0. Let’s analyze each term on
the RHS:
1. For the first term, given ∆ = F (w0)− E[F (wT)], we have:

1

T

T−1∑
t=0

2

ηt
(E[F (wt)]− E[F (wt+1)]) =

1

T

T−1∑
t=0

2

c
√
n/T

(E[F (wt)]− E[F (wt+1)])

=
2

c
√
nT

T−1∑
t=0

(E[F (wt)]− E[F (wt+1)])

=
2∆F

c
√
nT

,

2. For the second term, it remains being a sum over only the partial participation iterations:

24(ζ2 +G2)

T

∑
t:nt<n

(1− nt

n
)2

34

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

3. For the third term, we substitute ηt = c
√
n/T :

1

T

T−1∑
t=0

(Lηt + 12L2η2t τalgo)
σ2

nt
=

1

T

T−1∑
t=0

(
Lc

√
n

T
+ 12L2 c

2n

T
τalgo

)
σ2

nt

=
1

T

T−1∑
t=0

(
12L2c2τalgoσ

2

T
n+

Lcσ2

√
T

√
n

)
1

nt

=
12L2c2τalgoσ

2

T
· n · 1

T

T−1∑
t=0

1

nt︸ ︷︷ ︸
:= 1

navg

+
Lcσ2

√
T
·
√
n · 1

T

T−1∑
t=0

1

nt︸ ︷︷ ︸
:= 1

navg

≤
12L2c2τalgoσ

2

T

n

navg
+

Lcσ2

√
T

√
n

navg

Since 1
navg

= 1
T

∑T−1
t=0

1
nt

, it is worth noting that nmin ≤ navg ≤ n.
Combining these terms, we obtain a bound for the convergence rate:

1

T

T−1∑
t=0

E[||∇F (wt)||2] ≤ 2∆

c
√
nT

+
24(ζ2 +G2)

T

∑
t∈TP

(1− nt

n
)2 +

12L2c2τalgoσ
2

T

n

navg
+

Lcσ2

√
T

√
n

navg

≲
∆√
nT

+ (ζ2 +G2)
∑

t:nt<n

(n− nt)
2

T︸ ︷︷ ︸
Vanishes as T increases

+
L2τalgoσ

2

T

n

navg
+

Lσ2

√
T

√
n

navg

D.3.1 ALTERNATIVE CONVERGENCE RATE ANALYSIS FOR ACED

Similar to the alternative proof provided for the conceptual ACE algorithm, we present a supplemen-
tary convergence analysis for ACED that strictly avoids potential correlation issues without relying
on the Law of Iterated Expectations.

This analysis anchors the error estimation to the reference model wt−τalgo . Since the ACED mechanism
explicitly enforces that all gradients contributing to the update ut

BDA are computed on models no older
than τalgo iterations (i.e., t − tstart

i ≤ τalgo), anchoring to wt−τalgo guarantees that the data samples
associated with these gradients were generated after the reference model was fixed. This secures
explicit statistical independence between the reference point and the stochastic noise. While this
technique treats the allowable delay as model drift - resulting in a looser upper bound with larger
constant coefficients - it rigorously confirms that the convergence properties of ACED are robust and
hold independently of the filtration assumptions used in the primary proof.

Proof. Let st := max(0, t − τalgo) be the delayed time index. For any client i ∈ A(t) utilized in
ACED, the delay is bounded by t− tstart

i ≤ τalgo, and the decoupling lag is t− st ≤ τalgo.

By the L-smoothness of F and the update rule wt+1 = wt − ηut
BDA:

E[F (wt+1)]− E[F (wt)] ≤ −ηE⟨∇F (wt), ut
BDA⟩+

Lη2

2
E∥ut

BDA∥2 (a.20)

Step 1: Rigorous Decomposition of Inner Product. To handle the statistical dependency between
wt and the historical gradients in ut

BDA, we decompose the inner product using the independent anchor
wst . Since all gradients in ut

BDA started computation at times ≥ t− τalgo ≥ st, the stochastic noise
in ut

BDA is independent of wst (conditioned on Fst). We split the inner product into a “Decoupled
Term” and a “Coupling Error”:

−ηE⟨∇F (wt), ut
BDA⟩ = −ηE⟨∇F (wst), ut

BDA⟩ − ηE⟨∇F (wt)−∇F (wst), ut
BDA⟩

35

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

For the first term, we apply the conditional expectation E[ut
BDA|Fst] = ūt

BDA, where ūt
BDA =

1
nt

∑
i∈A(t)∇Fi(w

tstart
i). Substituting this back:

−ηE⟨∇F (wst), ūt
BDA⟩ = −ηE⟨∇F (wt), ūt

BDA⟩+ ηE⟨∇F (wt)−∇F (wst), ūt
BDA⟩

Combining these, we isolate the coupling error Ecouple:

−ηE⟨∇F (wt), ut
BDA⟩ = −ηE⟨∇F (wt), ūt

BDA⟩+ ηE⟨∇F (wt)−∇F (wst), ūt
BDA − ut

BDA⟩︸ ︷︷ ︸
Ecouple

Let δt := ut
BDA − ūt

BDA be the zero-mean noise vector. We bound Ecouple using the Cauchy-Schwarz
inequality, L-smoothness, and the update rule wt − wst = −

∑t−st

j=1 ηut−j
BDA:

Ecouple ≤ ηE
[
∥∇F (wt)−∇F (wst)∥∥δt∥

]
≤ ηLE

[
∥wt − wst∥∥δt∥

]
= ηLE

∥∥∥∥∥∥
t−st∑
j=1

ηut−j
BDA

∥∥∥∥∥∥ ∥δt∥
 ≤ η2L

τalgo∑
j=1

E[∥ut−j
BDA∥∥δ

t∥]

Using Young’s Inequality (xy ≤ 1
2x

2 + 1
2y

2) on each term in the sum:

Ecouple ≤
η2L

2

τalgo∑
j=1

(
E∥ut−j

BDA∥
2 + E∥δt∥2

)
=

η2L

2

τalgo∑
j=1

E∥ut−j
BDA∥

2 +
η2Lτalgo

2
E∥δt∥2 (a.21)

For the main descent term, we use the identity −⟨a, b⟩ = 1
2∥a− b∥2 − 1

2∥a∥
2 − 1

2∥b∥
2:

−ηE⟨∇F (wt), ūt
BDA⟩ = −

η

2
E∥∇F (wt)∥2 − η

2
E∥ūt

BDA∥2 +
η

2
E∥∇F (wt)− ūt

BDA∥2 (a.22)

Step 2: Combining Terms with Quadratic Bound. For the quadratic term in (a.20), we use Young’s
Inequality: E∥ut

BDA∥2 = E∥ūt
BDA + δt∥2 ≤ 2E∥ūt

BDA∥2 + 2E∥δt∥2. Substituting (a.21) and (a.22)
into (a.20):

E[F (wt+1)] ≤E[F (wt)]− η

2
E∥∇F (wt)∥2 +

(
Lη2 − η

2

)
E∥ūt

BDA∥2

+
η

2
E∥∇F (wt)− ūt

BDA∥2︸ ︷︷ ︸
Gradient Error

+

(
Lη2 +

Lτalgoη
2

2

)
E∥δt∥2︸ ︷︷ ︸

Noise Terms

+
Lη2

2

τalgo∑
j=1

E∥ut−j
BDA∥

2

︸ ︷︷ ︸
Coupling Drift

(a.23)

Step 3: Three-Part Decomposition of Gradient Error. We rigorously decompose the gradient error
Egrad = ūt

BDA −∇F (wt) into three parts: Participation Bias (Scaling + Missing) and Delay Drift.

Egrad =

(
1

nt
− 1

n

) ∑
i∈A(t)

∇Fi(w
t)

︸ ︷︷ ︸
P1:Scaling

− 1

n

∑
i/∈A(t)

∇Fi(w
t)

︸ ︷︷ ︸
P2:Missing

+
1

nt

∑
i∈A(t)

(∇Fi(w
tstart
i)−∇Fi(w

t))

︸ ︷︷ ︸
P3:Delay

Using the inequality ∥a+ b+ c∥2 ≤ 3∥a∥2 + 3∥b∥2 + 3∥c∥2:

1. P1 (Scaling Bias): Using Assumption a.7 (Bounded Gradients ∥∇Fi∥2 ≤ G2) and Jensen’s
inequality:

E∥P1∥2 ≤
(
n− nt

nnt

)2

nt

∑
i∈A(t)

E∥∇Fi(w
t)∥2

36

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

2. P2 (Missing Data Bias): Similarly:

E∥P2∥2 ≤ 1

n2
(n− nt)

∑
i/∈A(t)

E∥∇Fi(w
t)∥2

Therefore, similar as the proof for Theorem B.4, for the partial participation bias Part 1 and
2, the client subset S to determine the sum is A(t) or [n]/A(t):

E∥
∑
i∈S
∇Fi(w

t)∥22 = E∥
∑
i∈S
∇Fi(w

t)−
∑
i∈S
∇F (wt) +

∑
i∈S
∇F (wt)∥22

≤ 2E∥
∑
i∈S
∇Fi(w

t)−
∑
i∈S
∇F (wt)∥22︸ ︷︷ ︸

Can be determined by BDH Assumption and Lemma a.3

+2E∥
∑
i∈S
∇F (wt)∥22 (By Lemma a.3)

≤ 2|S|
∑
i∈S

ζ2 + 2|S|
∑
i∈S

E∥∇F (wt)∥22

Given that |A(t)| = nt, |[n]/A(t)| = n− nt:

E∥P1∥22 ≤ 2

(
1

nt
− 1

n

)2
n2

t ζ
2 + nt

∑
i∈A(t)

E∥∇F (wt)∥22



E∥P2∥22 ≤
2

n2

(n− nt)
2ζ2 + (n− nt)

∑
i/∈A(t)

E∥∇F (wt)∥22


Note that

2

(
1

nt
− 1

n

)2

n2
t +

2

n2
(n− nt)

2 = 4
(
1− nt

n

)2
,

And we can bound the expectation of the global gradient by Assumption a.7:

E∥∇F (wt)∥22 = E∥ 1
n

n∑
i=1

∇Fi(w
t)∥22

≤ 1

n2
· n

n∑
i=1

∥Fi(w
t)∥2 (Lemma a.3)

≤ 1

n2
· n

n∑
i=1

G2 = G, (Assumption a.7)

Therefore,

E∥Part 1∥22 + E∥Part 2∥22 ≤ 4
(
1− nt

n

)2
(ζ2 +G2)

≤ 4
(
1− nmin

n

)2
(ζ2 +G2)

3. P3 (Delay Drift): Using L-smoothness and Jensen’s inequality:

E∥P3∥2 ≤ 1

nt

∑
i∈A(t)

L2E∥wtstart
i − wt∥2

≤ L2

nt

∑
i∈A(t)

τalgoη
2

τalgo∑
j=1

E∥ut−j
BDA∥

2 = L2τalgoη
2

τalgo∑
j=1

E∥ut−j
BDA∥

2

37

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Substituting back into the gradient error term in (a.23):

η

2
E∥Egrad∥2 ≤ 3∥P1∥2 + 3∥P2∥2 + 3∥P3∥2 (a.24)

≤ η

2

12(1− nt

n

)2
(ζ2 +G2) + 3L2τalgoη

2

τalgo∑
j=1

E∥ut−j
BDA∥

2


= 6η

(
1− nt

n

)2
(ζ2 +G2) +

3

2
L2τalgoη

3

τalgo∑
j=1

E∥ut−j
BDA∥

2 (a.25)

Step 4: Global Summation and Coefficient Analysis. Summing (a.23) from t = 0 to T − 1 and
inserting (a.24):

∆ ≥η

2

T−1∑
t=0

E∥∇F (wt)∥2 −
T−1∑
t=0

(
Lη2 − η

2

)
E∥ūt

BDA∥2

−
T−1∑
t=0

6η
(
1− nt

n

)2
(ζ2 +G2)

−
T−1∑
t=0

(
Lη2 +

Lτalgoη
2

2

)
E∥δt∥2

−
(
Lη2

2
+

3

2
L2τalgoη

3

)
︸ ︷︷ ︸

Cdrift

T−1∑
t=0

τalgo∑
j=1

E∥ut−j
BDA∥

2

We regroup the historical update terms. Note that
∑T−1

t=0

∑τalgo
j=1 E∥ut−j∥2 ≤ τalgo

∑T−1
t=0 E∥ut∥2.

Expanding E∥ut∥2 ≤ 2E∥ūt∥2 + 2E∥δt∥2:

T−1∑
t=0

τalgo∑
j=1

E∥ut−j∥2 ≤ τalgo

T−1∑
t=0

(2E∥ūt
BDA∥2 + 2E∥δt∥2)

We now calculate the total coefficient Cū for
∑T−1

t=0 E∥ūt
BDA∥2:

Cū =
(
Lη2 − η

2

)
+ 2τalgoCdrift

= Lη2 − η

2
+ 2τalgo

(
Lη2

2
+

3

2
L2τalgoη

3

)
= −η

2

(
1− 2Lη − 2Lτalgoη − 6L2τ2algoη

2
)

We require Cū ≤ 0. By choosing η ≤ 1
12Lτalgo

(and assuming τalgo ≥ 1):

• 2Lη ≤ 1
6 ≈ 0.16

• 2Lτalgoη ≤ 1
6 ≈ 0.16

• 6L2τ2algoη
2 ≤ 6 · 1

144 ≈ 0.04

Sum is 0.36 < 1. Thus, the term in parenthesis is positive, so Cū ≤ 0. We can safely drop the
E∥ūt

BDA∥2 terms.

38

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Step 5: Final Rate. We collect all remaining terms involving E∥δt∥2. Recall E∥δt∥2 ≤ σ2

nmin
(upper

bound).

Total Noise Coeff Cδ =

T−1∑
t=0

[(
Lη2 +

Lτalgoη
2

2

)
+ 2τalgoCdrift

]

=

T−1∑
t=0

η2
[
L+

Lτalgo

2
+ Lτalgo + 3L2τ2algoη

]
≤ Tη2

[
3Lτalgo + 3L2τ2algoη

]
(using τalgo ≥ 1)

Rearranging the main inequality:

η

2

T−1∑
t=0

E∥∇F (wt)∥2 ≤ ∆+

T−1∑
t=0

6η
(
1− nt

n

)2
(ζ2 +G2) + Cδ

σ2

nmin

Dividing by Tη/2:

1

T

T−1∑
t=0

E∥∇F (wt)∥2 ≤ 2∆

Tη
+

12(ζ2 +G2)

T

∑
t:nt<n

(
1− nt

n

)2
+

2σ2

nminTη
· Tη2(3Lτalgo + 3L2τ2algoη)

≤ 2∆

Tη
+

12(ζ2 +G2)

T

∑
t∈P

(
1− nt

n

)2
+

6Lτalgoησ
2

nmin
+

6L2τ2algoη
2σ2

nmin

This confirms the rate.

D.4 DISCUSSIONS ON ACED

D.4.1 ALGORITHM BEHAVIOR WITH DROPPED CLIENTS

Let Sdrop be the set of Ndrop clients that permanently stop sending updates after contributing a final
gradient, say Glast

j for client j ∈ Sdrop. Let Sactive be the set of Nactive = n−Ndrop clients that continue
to participate. For iterations t occurring significantly after the dropouts, the aggregated gradient ut

effectively becomes:

gt =
1

n

 ∑
i∈Sactive

Glatest,t
i +

∑
j∈Sdrop

Glast
j


where Glatest,t

i = ∇fi(wt−τt
i ; ξκi

i) is the latest (stochastic) gradient from an active client i, computed
on a (potentially stale) model wt−τt

i . The crucial part is that Glast
j for j ∈ Sdrop are fixed, unchanging

gradient values based on very old (and increasingly stale) model parameters.

The core problem introduced by permanent dropouts is a persistent bias in the aggregated gradient.
Let ut = E[ut|Ft′] for some appropriately chosen history Ft′ (e.g., t′ = t− τmax for active clients).
Taking the expectation over the stochasticity of fresh samples from active clients:

ut ≈ 1

n

∑
i∈Sactive

E[Glatest,t
i |Ft′] +

1

n

∑
j∈Sdrop

Glast
j

Assuming Glatest,t
i are unbiased estimates for∇Fi(w

t−τt
i):

ut ≈ 1

n

∑
i∈Sactive

∇Fi(w
t−τt

i) +
1

n

∑
j∈Sdrop

Glast
j︸ ︷︷ ︸

:=Bdrop

The term Bdrop represents a constant vector that acts as a persistent bias. This bias does not depend
on the current model wt in the same way active client gradients do.

39

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

The bias of the expected update ut relative to the true current gradient∇F (wt) is:

Et = ut −∇F (wt)

Et =
1

n

∑
i∈Sactive

(∇Fi(w
t−τt

i)−∇Fi(w
t))︸ ︷︷ ︸

Delay error from active clients

+ Bdrop −
1

n

∑
j∈Sdrop

∇Fj(w
t)

︸ ︷︷ ︸
Non-vanishing bias from dropped clients

The critical component is Bdrop − 1
n

∑
j∈Sdrop

∇Fj(w
t), which is a non-vanishing bias term. Even

if active clients’ models wt−τt
i were perfectly up-to-date (wt), and even if wt were to converge to

some w∗, the term Bdrop − 1
n

∑
j∈Sdrop

∇Fj(w
∗) would remain, unless Bdrop coincidentally matches

1
n

∑
j∈Sdrop

∇Fj(w
∗).

D.4.2 DISCUSSION OF THE ASSUMPTIONS

Assumption a.6: Managing the Diversity-Staleness Trade-off with the BDH Assumption The
τalgo parameter in ACED provides a direct mechanism to manage the trade-off between client diver-
sity and update staleness, a challenge central to practical AFL. Its primary role is to eliminate the
non-vanishing bias (Bdrop) that arises from permanently dropped or extremely delayed clients, which
would otherwise contribute fixed, outdated gradients (Glast

j). The convergence analysis quantifies
the consequence of this filtering: when the active client set nt is less than the total n, a manageable
participation bias emerges, captured by terms related to (n − nt)

2ζ2. The Bounded Data Hetero-
geneity (BDH) assumption, where ∥∇Fi(w) − ∇F (w)∥22 ≤ ζ2, is used in the analysis to bound
the participation imbalance bias that occurs when the server update is not formed from all clients
(nt < n).
This theoretical insight is validated by experimental results. An excessively small τalgo (e.g., τalgo = 1)
leads to a small nt and significant participation bias, causing ACED’s performance to degrade towards
that of Vanilla ASGD. Conversely, the experiments show that a moderate τalgo (e.g., twice the average
client delay) maintains robust performance. This demonstrates that τalgo is not a limitation but a tool:
it allows the system to be configured to mitigate the more harmful non-vanishing bias from stragglers
while controlling the manageable participation bias to maximize performance, thereby ensuring high
participation (nt ≈ n) in typical scenarios.

Assumption a.7: The Removability of the Bounded Gradients Assumption As explicitly stated,
the Bounded Gradients assumption (Assumption a.7) for the ACED convergence analysis can indeed
be removed, as it is not necessary and serves only for the simplicity of the notations in the proof.
The assumption’s sole purpose is to simplify the bound for the partial participation bias term (when
nt < n) during the derivation in Appendix D. Specifically, in the steps leading to Part 1 and Part 2 of
the bias decomposition, this assumption allows the gradient norm term E||∇F (wt)||22 to be bounded
by a constant G2, resulting in a concise bias upper bound proportional to (ζ2 +G2). Without this
assumption, the bias term would retain its dependency on (ζ2 + E||∇F (wt)||22). This modified term
would then be carried through to the gradient error bound and subsequently into the main single-step
convergence inequality. At that stage, the inequality would contain the term E||∇F (wt)||22 on both
its left and right sides. By applying a simple algebraic rearrangement to collect all instances of
E||∇F (wt)||22 onto the left-hand side, one can proceed with the subsequent summation and analysis
to derive a valid, although more complex, convergence rate. This confirms that the assumption is a
matter of notation convenience rather than a theoretical necessity.

40

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

E RATE COMPARISON WITH OTHER AFL ALGORITHMS

Table a.1: We present the key assumptions of the baseline algorithms, their corresponding convergence
rates in the O-sense, and the number of client-server communication(s) per server iteration.

Algorithm Convergence Rate 1
T

∑T
t=1 E[||∇F (wt)||2] Key Assumptions

Comms.
per

Server
Iteration

Vanilla
ASGD (Mishchenko

et al., 2022)

√
σ2

T
+

n

T
+ ζ2

(with non-vanishing error ζ2 as T increases)

Bounded Sampling Noise (σ2),
Bounded Data Heterogeneity (ζ2). 1

FedBuff (Nguyen
et al., 2022)

√
σ2 +Kζ2

mKT
+

Kτavgτmaxζ
2 + τmaxσ

2

T
(with heterogeneity amplification τζ2)

Bounded Sampling Noise (σ2),
Bounded Data Heterogeneity (ζ2), M

Bounded Delay (τmax, τavg).

Delay-Adaptive
ASGD (Koloskova

et al., 2022)

√
σ2 + ζ2

T
+

3

√
τavg

1
n

∑n
i=1 τ

i
avgζ

2
i

T 2/3

(with heterogeneity amplification τζ2)

Bounded Sampling Noise (σ2),
Bounded Data Heterogeneity
(Global ζ2, local ζ2i),

1

Bounded Delay (τmax, τavg).

CA²FL (Wang
et al., 2024b)

∆+ σ2

√
TKM

+
σ2 +Kζ2

TK
+

(τmax + ρmax)σ
2

T
(No direct τζ2 term due to calibration)

Bounded Sampling Noise (σ2),
Bounded Data Heterogeneity (ζ2), M

Bounded Delay (τmax, ρmax).

ACE (Ours,
Theorem 1)

∆√
nT

+
Lσ2

√
nT

+
L2τmaxσ

2

T
(No heterogeneity amplification)

Bounded Sampling Noise (σ2),
Bounded Delay (τmax). 1

ACED (Ours) ∆√
nT

+
Lσ2

navg√
n

√
T

+
L2τalgoσ

2

T

n

navg

Bounded Sampling Noise (σ2),
Minimum Participation (nmin =
mint |{i ∈ [n] | t− tstart

i ≤ τalgo}|),
1

(Theorem D.3) +(ζ2 +G2)
∑

t:nt<n

(n− nt)
2

T
Bounded Gradient (G).

Based on the convergence rates and communication costs presented in Table a.1:

• Shortcomings of Buffered Methods: Buffered algorithms like FedBuff and CA2FL present
two main drawbacks:

– High Communication Cost per Update and Slower Convergence: These methods
require the server to collect updates from M clients to fill a buffer before performing a
single global model update. This results in a communication cost per server iteration
that is M times higher than for non-buffered approaches. A fair metric for comparing
convergence is the total number of client communications, Ctotal.

* For buffered methods like CA2FL, the convergence rate is dominated by the leading
termO(1√

MKT
), where T is the number of server iterations. Achieving T iterations

requires Ctotal = M · T communications. Substituting T = Ctotal/M , the rate with
respect to total communications becomes O(1√

MK(Ctotal/M)
) = O(1√

K·Ctotal
).

* In contrast, for ACE, each communication triggers a server update, so T = Ctotal.
Its convergence in terms of total communications, is O(1√

n·Ctotal
).

* This shows that for the same communication budget, ACE’s theoretical convergence
is faster by a factor of

√
n/K. Given that experiments are conducted with K = 1

for a fair comparison of aggregation strategies, the speedup factor is
√
n.

– Reliance on Bounded Data Heterogeneity: Both algorithms’ convergence guarantees
depend on the Bounded Data Heterogeneity (BDH) assumption. For FedBuff, this is
due to its partial participation mechanism (M < n). For CA2FL, it originates from
an imbalanced update scaling that gives new updates from the buffer a larger weight
than older, cached updates. In both cases, this imbalance requires the BDH assumption
(ζ2) to bound the resulting bias, making their performance theoretically vulnerable in
settings with high data heterogeneity. See Appendix F.1 for a more detailed discussion.

41

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

• Limitations of Partial Participation Methods: Non-buffered, partial participation al-
gorithms (e.g., Vanilla ASGD, Delay-Adaptive ASGD) are communication-efficient (1
communication per iteration) but can suffer from heterogeneity amplification. This is often
indicated by terms coupling delay and heterogeneity (τζ2) in their convergence rates. Fur-
thermore, some of these methods exhibit a fixed error floor; for instance, the rate for Vanilla
ASGD includes a non-vanishing ζ2 term.

• ACE’s Advantage: ACE is also communication-efficient, requiring only one communica-
tion per iteration. Its all-client aggregation design eliminates the reliance on the Bounded
Data Heterogeneity assumption entirely, thereby mitigating heterogeneity amplification
while maintaining maximal communication efficiency.

• Trade-off in ACED: The convergence rate of ACED reveals a trade-off between client
diversity (participation bias) and update staleness (delay error) in AFL systems. Observing
the convergence rate expression for ACED (Theorem D.3, Table a.1):

· · ·+
L2τalgoσ

2

T

n

navg︸ ︷︷ ︸
Delay Error

+(ζ2 +G2)
∑

t:nt<n

(n− nt)
2

T︸ ︷︷ ︸
Participation Bias

In an AFL system with both high delay (implying some clients may drop out or their local
models become very stale) and high heterogeneity (making it difficult to estimate the global
gradient from a subset of clients, see the explaination for the BDH assumption in Section 3),
a trade-off emerges:

– Discarding updates from clients with extreme delays (by setting a smaller τalgo) intro-

duces participation bias, quantified by the (ζ2 +G2)
∑ (n−nt)

2

T term.
– Including these updates (by setting a larger τalgo) introduces significant delay error due

to their stale models, which is captured by the L2τalgoσ
2

T
n

navg
term.

This dynamic illustrates that these two sources of error cannot be simultaneously eliminated
in practical AFL systems. For typical AFL systems, the design of ACED allows clients
to rejoin the active set once their delay returns to an acceptable level defined by τalgo.
Provided that extreme delays are reasonably handled, setting a moderate τalgo (as shown in
Figure 3 in Section 5) to include as many clients as possible is generally more beneficial for
improving algorithm performance. This strategy better addresses the common challenge
of data heterogeneity (participation bias) in FL and is consistent with the core principle of
ACE, which leverages updates from the maximum number of clients to refine the global
model.

• Equivalence of ACED and ACE under a Sufficiently Large Delay Threshold: The
ACED algorithm becomes functionally identical to the conceptual ACE algorithm under
a specific condition. This occurs when the delay threshold, τalgo, is set to a value greater
than or equal to the maximum possible system delay, τmax. In this scenario, the condition
for a client’s inclusion in the active set, t − tstart

i ≤ τalgo, is always satisfied for all clients
at every iteration. Consequently, the active set A(t) consistently includes all n clients,
making nt = n = navg for all t. The update rule for ACED then simplifies to that of ACE.
This equivalence extends to their theoretical guarantees. The participation bias term in the
convergence rate of ACED, (ζ2 +G2)

∑
t:nt<n

(n−nt)
2

T , vanishes as nt is always equal to
n. The remaining terms in the ACED rate then simplify to precisely match the convergence
rate of ACE in Theorem 1 and Table a.1.

42

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTAL DETAILS

F.1 DETAILED DISCUSSION ON BASELINE METHODS

This section provides an overview of selected asynchronous federated learning algorithms, detailing
their design philosophies and presenting their pseudocode. We focus on FedBuff(Nguyen et al., 2022),
CA2FL(Wang et al., 2024b) (Cache-Aided Asynchronous Federated Learning), and Delay-Adaptive
Asynchronous SGD(Koloskova et al., 2022) (ASGD). Vanilla ASGD (Mishchenko et al., 2022) can
be regarded as a special case of FedBuff when M = 1.

F.1.1 FEDBUFF (FEDERATED LEARNING WITH BUFFERED ASYNCHRONOUS AGGREGATION)

Design Idea FedBuff (Nguyen et al., 2022) is designed to improve the efficiency and scalability
of federated learning by allowing clients to send their model updates to the server asynchronously.
Instead of waiting for all clients in a round to complete their local training (as in synchronous methods
like FedAvg), the server in FedBuff accumulates updates from clients as they arrive. The global
model is updated only after a certain number of client updates (defined by a buffer size, M) have
been received. This approach helps to mitigate the straggler problem, where slow clients can delay
the entire training process. Upon receiving an update from a client, the server can immediately assign
a new task to an available client, thus maintaining a consistent level of client activity (concurrency,
Mc).

Algorithm a.2 FedBuff (without Differential Privacy)

Require: Local step size ηl, global step size η, server concurrency Mc, buffer size M , total number
of clients N .

1: Initialize: Global model update accumulator ∆1 ← 0, update count m← 0.
2: Sample an initial set of Mc active clients to run local SGD updates.
3: repeat
4: if a client update ∆i

t is received from client i then
5: Server accumulates update: ∆t ← ∆t +∆i

t.
6: m← m+ 1.
7: Sample another client j from available clients.
8: Broadcast the current global model wt to client j.
9: Client j runs local SGD updates.

10: end if
11: if m = M then
12: Update global model: wt+1 ← wt + η · (∆t/M).
13: Reset for next aggregation: m← 0, ∆t+1 ← 0, t← t+ 1.
14: end if
15: until Convergence

Partial Participation (M < N): This is the standard operational mode for FedBuff (Nguyen et al.,
2022). The server waits to fill a buffer of size M before updating the global model. As our theoretical
analysis in Section 4 shows, this design inherently introduces partial participation bias, which is the
root cause of heterogeneity amplification when client data is non-IID. Vanilla ASGD (Mishchenko
et al., 2022) represents the extreme case where M = 1, maximizing this bias and the variance of the
global updates.

Full Participation (M = N): In this hypothetical scenario, FedBuff would be forced to wait for
updates from all N clients before performing a single update. This transforms the algorithm into a
synchronous protocol, similar to FedAvg (Li et al., 2020), thereby losing the primary advantage of
AFL in overcoming straggler issues.

Update Frequency and Communication Cost: A critical consequence of FedBuff’s buffered
design is the decoupling of client communication from global model updates. To perform a single
server iteration (one global update), the server must wait for and process M individual client
communications. This introduces a synchronization-like bottleneck, reducing the overall frequency

43

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

of model evolution. This means that the communication cost per learning step is M times higher than
for a non-buffered approach, a crucial factor in evaluating overall system efficiency.

F.1.2 CA²FL (CACHE-AIDED ASYNCHRONOUS FEDERATED LEARNING)

Design Idea CA2FL (Wang et al., 2024b) uses a buffering mechanism similar to FedBuff but adds a
calibration step using a server-side cache of historical updates from all clients. Its behavior changes
drastically depending on the buffer size M . The core idea is for the server to maintain a cache of the
latest model update (or difference) received from each client. These cached updates are then used
to calibrate the global model update. When a client sends its new update ∆i

t, the server calculates
the difference between this new update and the client’s previously cached update hi

t. This calibrated
difference, ∆i

t − hi
t, is then accumulated. The global update vt incorporates the average of these

calibrated differences along with a global cached variable ht (which is the average of all clients’
currently cached updates). This mechanism aims to make the aggregated update more consistent with
the current global model state, especially when dealing with stale updates from delayed clients and
diverse data distributions across clients. CA2FL is designed to achieve these improvements without
imposing additional communication or computation overhead on the clients.

Algorithm a.3 CA2FL (Cache-Aided Asynchronous FL)

Require: Local step size ηl, global step size η, server concurrency Mc, buffer size M , total number
of clients N .

1: Initialize: Global model update accumulator ∆1 ← 0, Cached update for each client i ∈ [N],
hi
1 ← 0, Global cached variable h1 ← 1

N

∑N
i=1 h

i
1, Update count m← 0, set of clients updated

in current buffer St ← ∅.
2: Sample an initial set of Mc active clients to run local SGD updates.
3: repeat
4: if a client update ∆i

t is received from client i then
5: Server accumulates calibrated update: ∆t ← ∆t + (∆i

t − hi
t).

6: Server updates client’s cached variable: hi
t+1 ← ∆i

t.
7: m← m+ 1.
8: St ← St ∪ {i}.
9: Sample another client j from available clients.

10: Broadcast the current global model wt to client j.
11: Client j runs local SGD updates.
12: end if
13: if m = M then
14: for all clients j /∈ St do
15: Server maintains their cached variable: hj

t+1 ← hj
t .

16: end for
17: Calculate calibrated global update: vt ← ht +

1
|St|∆t.

18: Update global model: wt+1 ← wt + η · vt.
19: Initialize global cached variable for next round: ht+1 ← 1

N

∑N
i=1 h

i
t+1.

20: Reset for next aggregation: m← 0, ∆t+1 ← 0, St+1 ← ∅, t← t+ 1.
21: end if
22: until Convergence

The M = N Limit: A Synchronous Algorithm A critical distinction is that setting the buffer
size M = N in CA2FL does not make it equivalent to ACE; it makes it synchronous. The server’s
workflow requires waiting until all N client updates are received to perform a single global update.
During this waiting period, the global model wt remains static. Consequently, all N clients compute
their updates based on the exact same model version and receive the same new model wt+1 for the
next round. In this synchronous workflow, information staleness, becomes trivially zero for all clients
(τ ti = 0), which is fundamentally different from any asynchronous protocol.

The M = 1 Limit: Imbalanced Update Weighting Even in the M = 1 case, where both CA2FL
and ACE update upon every client’s arrival, their mathematical update rules are fundamentally

44

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

different. Let ht =
1
N

∑N
k=1 h

old
k be the average of all cached updates before a new update ∆new

j
arrives from client j.

• The CA2FL update rule becomes:

vt = ht + (∆new
j − hold

j) (a.26)

The global update applies the full, unscaled change from the reporting client to the global average.
This retains a form of partial participation bias, and its convergence rate consequently depends on
the data heterogeneity bound ζ2, as shown in Table a.1.

• The ACE incremental update rule (derived in Section 3.4) is:

ut = ut−1 +
1

N
(∆new

j − hold
j) (a.27)

Here, the change from the reporting client is scaled by 1/N . This scaling is crucial as it ensures
all clients, whether their information is new or old, contribute equally to the final average. This
design choice is what eliminates the dependency on the BDH assumption and removes the ζ2 term
from ACE’s convergence bound.

Update Frequency and Communication Cost: Despite its advanced calibration mechanism,
CA²FL’s reliance on a buffer of size M means it shares the same fundamental limitation as FedBuff
regarding update frequency. A single global model update requires the server to wait for M clients.
This design choice inherently trades higher model evolution frequency for its calibration benefits,
resulting in a communication cost of M client uploads for every server iteration.

F.1.3 DELAY-ADAPTIVE ASYNCHRONOUS SGD (ASGD)

Design Idea Standard Asynchronous SGD (ASGD) allows workers to compute and send gradients
at their own pace without synchronization. This can lead to the server applying "stale" gradients,
which are gradients computed based on older versions of the global model. The convergence rates of
such algorithms often depend on the maximum gradient delay (τmax), a metric that can be overly
pessimistic if significant delays (stragglers) are rare. Delay-Adaptive ASGD (Koloskova et al., 2022)
directly targets the adverse effect of staleness by dynamically adjusting the learning rate ηt based on
the delay τt of each incoming gradient. The core idea is that gradients computed on older models
(i.e., with a large τt) are less reliable and should have a smaller impact on the global model update.

Algorithm a.4 Delay-Adaptive Asynchronous SGD

Require: Initial model w(0), base learning rate parameter η ≤ 1/(4L) (where L is the smoothness
constant of the objective function), total iterations T .

1: Initialize: Server selects an initial set of active workers C0 and sends them w(0).
2: for t = 0, . . . , T − 1 do
3: Active workers Ct compute stochastic gradients g = ∇F (wmodel, ξ) in parallel, based on the

model version wmodel they were assigned.
4: Once a worker jt finishes computation (gradient gt = ∇F (w(t−τt), ξt) for model w(t−τt)

with delay τt), it sends gt to the server.
5: Server determines delay-adaptive step size ηt:
6: if τt ≤ τC then ▷ τC is concurrency or average concurrency
7: ηt ← η.
8: else
9: Choose ηt such that 0 ≤ ηt < min{η, 1/(4Lτt)}. ▷ e.g., drop (ηt = 0) or scale down

10: end if
11: Server updates global model: wt+1 ← wt − ηt · gt.
12: Server selects a subset At of inactive workers (can include jt) and sends them the latest

model wt+1.
13: Update active worker set: Ct+1 ← (Ct \ {jt}) ∪ At.
14: end for

45

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Connection to Delay Error: Our theoretical framework in Section 4 identifies that the Delay
Error (Term C) is amplified by the model drift experienced by a client. This drift is influenced by a
factor proportional to η2τ ti . The inequality below, derived from our analysis of the per-iteration delay
error, highlights this dependency on different algorithm design choices:

E||Delay Error||2 ≲ η2τ ti︸︷︷︸
Learning rate

{
σ2

m︸︷︷︸
Noise

+

t−1∑
s=t−τt

i︸ ︷︷ ︸
Number of server iterations

((N −m)2K2ζ2︸ ︷︷ ︸
Local steps

+ · · ·)

}

A large delay τ ti can cause this error term to dominate, especially when combined with the bias from
partial participation. Delay-Adaptive ASGD mitigates this by ensuring the product η2t τt does not
grow uncontrollably. By setting ηt to be inversely proportional to τt for large delays (e.g., ηt ∝ 1/τt),
the algorithm effectively down-weights the contribution of highly stale gradients, thus suppressing
their negative impact and reducing the magnitude of the overall Delay Error.

Limitations: While this adaptive learning rate strategy effectively reduces the error component
related to staleness, it does not address the Bias Error (Term B) that arises from its single-client
update mechanism (m = 1). The global model is still updated based on the perspective of a single,
potentially unrepresentative client at each step. Therefore, it only partially mitigates the heterogeneity
amplification effect, whereas ACE is designed to eliminate the partial participation bias at its source.

F.1.4 ACE AND ACED: ASYNCHRONOUS FULL AND DYNAMIC PARTICIPATION

Algorithm a.5 ACE Implementation (Incremental Update), in addition to Algorithm 1

1: System Initialization:
2: Server initializes global model w0.
3: For each client i ∈ [n]:
4: Client computes initial gradient g0i ← ∇fi(w0; ξ0i) and sends it to the server.
5: Client stores its gradient locally: gprev

i ← g0i .
6: Server computes initial aggregate update: u← 1

n

∑n
i=1 g

0
i . ▷ O(d) server storage cost

7: Server updates model: w1 ← w0 − ηu.
8: Server makes w1 available to clients.
9: Server Loop: For t = 1, . . . , T − 1:

10: Wait to receive a gradient difference (gnew
i − gprev

i) from some client j.
11: Incrementally update the aggregate: u← u+ (gnew

j − gprev
j)/n.

12: Update global model: wt+1 ← wt − ηu.
13: Server makes wt+1 available to client j.
14: Client i Operation (after initialization):
15: wlocal ← latest model version received from server.
16: Compute new gradient gnew

i ← ∇fi(wlocal; ξ
new
i).

17: Send gradient difference (gnew
i − gprev

i) to server.
18: Update local state for next round: gprev

i ← gnew
i . ▷ O(d) client storage cost

ACE: By design, ACE is an asynchronous algorithm that always leverages information from
m = n clients. However, unlike the synchronous M = N case of CA2FL, it performs a global
update immediately upon the arrival of any single client’s gradient. It averages this freshly
arrived gradient with the stale gradients from other clients. This results in a high frequency of
model updates, where the global model is constantly evolving. This dynamic is the essence of its
asynchronous nature and is precisely what gives rise to the non-trivial staleness values (τ ti > 0) that
our framework analyzes.

ACED: This variant introduces a dynamic participation model where m becomes a variable, nt,
determined by system dynamics and the hyperparameter τalgo. It explicitly navigates the trade-off
discussed in this paper: when nt < n, it accepts a controllable level of partial participation bias in
exchange for robustness against the extreme staleness introduced by stragglers or dropped-out clients.

46

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Update Frequency and Communication Efficiency: A core design principle of ACE is its non-
buffered, immediate update mechanism. This establishes a 1-to-1 relationship between a client’s
arrival and a global model update (one server iteration). Consequently, for a given budget of total
client communications (e.g., 1000 uploads), ACE performs 1000 global updates, whereas a buffered
method with M = 10 would only perform 100. This makes ACE more communication-efficient,
allowing for faster model evolution under the same communication constraints.

47

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

F.2 EXTENDED CONVERGENCE ANALYSIS AND STABILITY VISUALIZATION FOR SECTION 5

0 200 400 600 800 1000
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

ur
ac

y

(a) Dir (0.1)

ACE
CA2FL
Fedbuff
Delay-Adaptive ASGD
Vanilla ASGD

0 200 400 600 800 1000
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

ur
ac

y

(b) Dir (0.3)

ACE
CA2FL
Fedbuff
Delay-Adaptive ASGD
Vanilla ASGD

0 200 400 600 800 1000
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

ur
ac

y

(c) Dir (0.1) - Increased Delay

ACE
CA2FL
Fedbuff
Delay-Adaptive ASGD
Vanilla ASGD

0 200 400 600 800 1000
Server iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

ur
ac

y

(d) Dir (0.3) - Increased Delay

ACE
CA2FL
Fedbuff
Delay-Adaptive ASGD
Vanilla ASGD

Figure a.1: Extended performance comparison of AFL algorithms on CIFAR-10 up to 1000 server
iterations, including stability analysis via error bars. The four subplots correspond to the scenarios
detailed in Section 5: (a) Dir (0.1), (b) Dir (0.3), (c) Dir (0.1) with increased delay, and (d) Dir (0.3)
with increased delay. Shaded regions represent the standard deviation (±σ) of accuracy. The error
bands clearly show that single-client update methods (Vanilla ASGD, Delay-Adaptive ASGD) exhibit
higher variance, while multi-client aggregation methods (FedBuff, CA2FL, and ACE) converge more
stably.

48

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

To provide a more comprehensive view of the algorithms’ long-term behavior, we extend the primary
experiments in Section 5 to 1000 server iterations, with the results presented in Figure a.1. This
extended analysis serves two main purposes. First, it demonstrates that the primary convergence
dynamics and final performance rankings of all algorithms are well-established within the first
450-500 iterations. The subsequent iterations show that the learning curves have reached their
plateaus, validating our choice of T = 500 in the main paper as a sufficient duration for a conclusive
comparison.
Second, the larger format of this appendix figure allows for the inclusion of error bars (visualized
as shaded regions representing one standard deviation, ±σ), which were omitted from the smaller
figures in the main text due to space constraints that would compromise visual clarity. The insights
from these error bars provide strong empirical support for our theoretical framework:

• Stability Correlates with Participation: A clear trend emerges from the visualization: an
algorithm’s stability is directly correlated with the number of clients participating in each
global update.

• High Variance in Single-Client Methods: The single-client update methods, Vanilla ASGD
and Delay-Adaptive ASGD, consistently exhibit the widest and most volatile error bands.
This empirically demonstrates their high update variance, as each step is guided by a single
client’s potentially noisy and biased gradient, leading to a more erratic convergence path.

• Variance Reduction via Aggregation: In contrast, methods that aggregate updates from
multiple clients (FedBuff, CA2FL, and our proposed ACE) show narrower and more stable
error bands. This confirms that aggregating information across a diverse client set effectively
reduces the variance of the global updates, resulting in a more reliable and predictable
training process. Notably, ACE, which leverages information from all clients at every step,
maintains one of the most stable profiles throughout the training, reinforcing the benefits of
its all-client engagement design.

In summary, this extended analysis provides a clear visual confirmation that increased client partici-
pation is crucial not only for final accuracy but also for achieving a more stable training process.

F.3 ADDITIONAL EXPERIMENTS

To further validate the robustness and effectiveness of our proposed ACE algorithm, we conduct
additional experiments across a variety of datasets and task types. These experiments are designed to
assess ACE’s performance under different data distributions, model architectures, and against specific
challenges inherent in federated learning.

F.3.1 RESULTS ON CIFAR-100 DATASET

We simulate an Asynchronous Federated Learning (AFL) environment to evaluate the performance of
various algorithms on the CIFAR-100 (Krizhevsky, 2009) image classification dataset with ResNet-
18(He et al., 2016) models. We deploy n = 100 clients, each holding a non-identically distributed
(non-IID) subset of the data. The non-IID nature is modeled using a Dirichlet distribution, where the
concentration parameter α controls the degree of data heterogeneity across clients. Lower α values
indicate higher heterogeneity (clients’ data distributions are more dissimilar), while higher α values
represent more IID-like data distributions. The α values explored are α ∈ {0.1, 0.3, 1.0, 10.0}.
The delays in AFL are simulated using an exponential distribution with a mean parameter β. Higher
β values signify longer average delays and a greater likelihood of extreme delays (stragglers) in the
system. The β values investigated are β ∈ {1, 5, 20, 30}.
All algorithms are trained for T = 500 server iterations and results are reported as an average of 5 runs.
The primary evaluation metric is the test accuracy achieved by the global model on the CIFAR-100 test
set. The test set remains identical across different levels of heterogeneity across clients and the extent
of delays. The experiments aim to understand how different AFL algorithms perform under varying
data heterogeneity and delay profile, particularly focusing on the phenomenon of "heterogeneity
amplification" where faster clients with specific data distributions can disproportionately influence the
global model in asynchronous settings. The baseline algorithms compared include FedBuff (Nguyen
et al., 2022), CA2FL (Wang et al., 2024b), Delay-adaptive ASGD (Koloskova et al., 2022), Vanilla

49

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

0.1 0.3 1.0 10.0
Non-IIDness (Dirichlet)

1
5

20
30

De
la

y
(E

xp
on

en
tia

l
)

0.50 0.58 0.65 0.69

0.47 0.55 0.62 0.67

0.43 0.50 0.57 0.62

0.40 0.46 0.52 0.56

ACE

0.1 0.3 1.0 10.0
Non-IIDness (Dirichlet)

0.49 0.57 0.64 0.69

0.46 0.54 0.61 0.67

0.44 0.51 0.58 0.63

0.42 0.48 0.54 0.58

ACED (_algo=50)

0.1 0.3 1.0 10.0
Non-IIDness (Dirichlet)

0.47 0.55 0.63 0.68

0.43 0.51 0.59 0.66

0.39 0.46 0.53 0.59

0.35 0.42 0.48 0.53

CA^2FL

0.1 0.3 1.0 10.0
Non-IIDness (Dirichlet)

1
5

20
30

De
la

y
(E

xp
on

en
tia

l
)

0.45 0.52 0.60 0.67

0.38 0.46 0.55 0.62

0.30 0.38 0.47 0.56

0.25 0.32 0.42 0.52

FedBuff

0.1 0.3 1.0 10.0
Non-IIDness (Dirichlet)

0.44 0.50 0.58 0.66

0.37 0.44 0.52 0.59

0.28 0.35 0.44 0.52

0.22 0.29 0.38 0.48

Delay-Adaptive ASGD

0.1 0.3 1.0 10.0
Non-IIDness (Dirichlet)

0.43 0.48 0.56 0.65

0.36 0.41 0.49 0.58

0.27 0.32 0.41 0.50

0.20 0.26 0.36 0.45

Vanilla ASGD

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

Figure a.2: Comparative Performance of Asynchronous Federated Learning Algorithms on
CIFAR-100 under Varying Data Heterogeneity and System Delays. The heatmaps illustrate
the final test accuracy of six AFL algorithms: (a) ACE, (b) ACED (τalgo = 50), (c) CA2FL, (d)
FedBuff, (e) Delay-Adaptive ASGD, and (f) Vanilla ASGD. The x-axis represents the Dirichlet
distribution parameter α controlling client data non-IIDness (lower α indicates higher heterogeneity).
The y-axis represents the mean β of an exponential distribution modeling client delays (higher β
indicates greater system delay and straggler presence). Accuracy values are normalized across all
heatmaps using a common color scale to facilitate direct comparison. Algorithms like ACE and ACED
demonstrate strong performance and robustness, particularly maintaining higher accuracies under
combined high heterogeneity and high delay conditions. In contrast, algorithms such as FedBuff,
Delay-Adaptive ASGD, and Vanilla ASGD show a more pronounced degradation, illustrating the
impact of heterogeneity amplification. ACED’s performance at high delay (e.g., β = 30) relative to
ACE highlights its design for mitigating the impact of extreme stragglers.

ASGD (Mishchenko et al., 2022), alongside the proposed ACE and its practical variant ACED (with
τalgo = 50). The goal is to observe how design choices such as full client gradient aggregation
(ACE) or bounded-delay aggregation (ACED) impact robustness and final performance under these
challenging AFL conditions.

F.3.2 RESULTS ON 20NEWSGROUP TEXT CLASSIFICATION FOR BERT MODELS

20Newsgroup Dataset The 20Newsgroup dataset is a widely used collection of approximately 20k
newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups (Lang, 1995).
Some examples of these newsgroups include topics like computers (e.g., comp.graphics), sci-
ence (e.g., sci.med, sci.space), politics (e.g., talk.politics.misc), and religion (e.g.,
soc.religion.christian). The paper uses this dataset for text classification tasks because
its larger output space (20 labels) is important for studying label-distribution shift scenarios. (Lang,
1995) specifies the training and test set sizes for 20Newsgroup as 11.3k training examples and 7.5k
test examples. To simulate non-IID data, particularly label distribution shift, we partition the dataset
among clients using a Dirichlet distribution Dir(α). We distribute the datasets across n = 100
clients. For the experiments presented in Table a.2, client delays are simulated using an exponential
distribution with a mean parameter β = 5.

Models: DistilBERT and BERT Our experiments primarily utilize Transformer-based architectures.

• BERT (Bidirectional Encoder Representations from Transformers) is a language representa-
tion model pre-trained on a large corpus of text, which can be fine-tuned for a wide range

50

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

of NLP tasks (Devlin et al., 2019). The paper uses BERT-base for comparison, which has
around 110 million parameters.

• DistilBERT is a distilled version of BERT, designed to be smaller, faster, cheaper, and
lighter while retaining a significant portion of BERT’s performance (Sanh et al., 2019). It
achieves this through knowledge distillation during the pre-training phase. DistilBERT has
approximately 67.0 million tunable parameters.

Table a.2: Test accuracy (mean ± 2×std. error over 5 runs, shown as percentages) of AFL algorithms
on 20Newsgroup with DistilBERT and BERT-base under label distribution shift (α) and low system
delay (β = 5).

Algorithm DistilBERT BERT-base
α = 0.1 α = 1.0 α = 10 α = 0.1 α = 1.0 α = 10

Vanilla ASGD (Mishchenko et al., 2022) 49.3± 2.8% 59.1± 2.2% 62.2± 1.8% 54.2± 2.9% 64.3± 2.3% 67.1± 1.9%
Delay-Adaptive ASGD(Koloskova et al., 2022) 52.4± 2.6% 61.8± 2.0% 65.3± 1.6% 57.3± 2.7% 66.8± 2.1% 70.2± 1.7%
FedBuff (Nguyen et al., 2022) 55.7± 2.4% 65.2± 1.8% 68.1± 1.5% 60.4± 2.5% 70.3± 1.9% 73.1± 1.6%
CA2FL (Wang et al., 2024b) 61.6± 2.0% 69.3± 1.5% 71.2± 1.2% 66.2± 2.1% 74.1± 1.6% 76.3± 1.3%

ACED (Ours, τalgo = 50) 63.1± 1.8% 70.7± 1.3% 72.6± 1.1% 68.3± 1.9% 75.7± 1.4% 77.6± 1.1%
ACE (Ours) 63.7 ± 1.7% 71.4 ± 1.2% 73.1 ± 1.0% 68.7 ± 1.8% 76.6 ± 1.3% 78.2 ± 1.0%

Performance on 20Newsgroup The Table a.2 summarizes the accuracy of different AFL algorithms
on the 20Newsgroup dataset using DistilBERT and BERT-base, under varying degrees of label
distribution shift controlled by α, and with a fixed low system delay (β = 5). The accuracies
presented reflect performance after 500 server iterations. Reference accuracies for these models
under a hypothetical synchronous, no-delay federated setup would generally be slightly higher than
the values reported here for β = 5.

51

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

F.3.3 REDUCING THE MEMORY OVERHEAD OF ACE BY COMPRESSION

A key insight from our theoretical and empirical analysis is the positive correlation between an
algorithm’s performance under client heterogeneity and the memory overhead required to manage
all-client state. Algorithms that operate with minimal overhead, such as Vanilla ASGD (Mishchenko
et al., 2022), inherently suffer from heterogeneity amplification because they lack the necessary
information to correct for participation imbalance.
Conversely, state-of-the-art methods that effectively combat this issue, including both CA2FL (Wang
et al., 2024b) and our proposed ACE, rely on caching information from all n clients. CA2FL
requires an O(nd) server-side cache for historical updates (ht

i) to perform its calibration, while ACE
requires an O(nd) cache for the latest gradients to perform its full aggregation.
Therefore, the O(nd) overhead should be viewed as a necessary cost for achieving top-tier perfor-
mance and robustness in challenging AFL environments. The comparison in Table a.3 should be
interpreted through this lens: the increased overhead of ACE and CA2FL directly corresponds to
their superior ability to handle the core challenges of ACE.

Table a.3: Comparison of storage overheads and convergence rates for various AFL algorithms.
The table highlights a fundamental trade-off between memory efficiency and robustness to client
heterogeneity. Algorithms with lower storage overhead, such as Vanilla ASGD, Delay-Adaptive
ASGD, and FedBuff, are susceptible to heterogeneity amplification, as indicated by the presence
of heterogeneity-dependent terms (non-vanishing ζ2 or τζ2 interaction) in their convergence rates.
Conversely, methods like CA2FL and our proposed ACE/ACED achieve superior convergence by
eliminating this amplification effect, but at the cost of a higher total system overhead of O(nd). This
higher cost is necessary to cache state information from all clients, which is used to correct the
participation imbalance bias. Notably, ACE offers implementation flexibility, allowing this O(nd)
overhead to be concentrated on the server (Direct Aggregation) or distributed among the clients
(Incremental Update).

Algorithm Client-Side
Overhead

Server-Side
Overhead

Total Cost Convergence Rate O(·) Notes

Vanilla ASGD
(Mishchenko et al.,
2022)

O(1) O(1) O(n)
√

σ2

T + n
T + ζ2

(with non-vanishing error ζ2 as T in-
creases)

The client and server are state-
less, leading to low overhead
but susceptibility to bias.

Delay-Adaptive
ASGD (Koloskova
et al., 2022)

O(1) O(1) O(n)
√

σ2+ζ2

T +
3
√

τavg
1
n

∑n
i=1 τ i

avgζ
2
i

T 2/3

(with heterogeneity amplification τζ2)
The client and server are state-
less, leading to low overhead
but susceptibility to bias.

FedBuff (Nguyen
et al., 2022)

O(1) O(Md) O(n+Md)
√

σ2+Kζ2

mKT +
Kτavgτmaxζ

2+τmaxσ
2

T

(with heterogeneity amplification τζ2)
The server buffers M updates;
performance is limited by the
τζ2 term.

CA2FL
(Wang et al.,
2024b)

O(1) O(nd) O(nd) ∆+σ2
√
TKM

+ σ2+Kζ2

TK + (τmax+ρmax)σ
2

T

(No heterogeneity amplification τζ2

term due to calibration)

Server caches state for all n
clients to calibrate updates,
mitigating direct amplifica-
tion.

ACE (Direct
Aggregation)

O(1) O(nd) O(nd) ∆√
nT

+ Lσ2
√
nT

+ L2τmaxσ
2

T

(No heterogeneity amplification τζ2)
Server caches the latest gradi-
ent from all n clients, eliminat-
ing the ζ2 term from the rate.

ACE (Incremental
Update)

O(d) O(d) O(nd) ∆√
nT

+ Lσ2
√
nT

+ L2τmaxσ
2

T

(No heterogeneity amplification τζ2)
Reallocates the total O(nd)
system cost, shifting storage
burden from server to clients.

ACED (Ours) O(1) O(nd) O(nd) ...+
L2τalgoσ

2

T
n

navg
+(ζ2+G2)

∑ (n−nt)
2

T

(No heterogeneity amplification τζ2, a
vanishing error term ζ2

T as T increases)

The client is stateless. The
server still needs to cache the
latest gradients from all n
clients to dynamically select
the aggregation subset based
on the delay threshold.

As demonstrated in Table a.3, the total system overhead of ACE is comparable to that of CA2FL.
The choice between our Direct Aggregation (server-heavy) and Incremental Update (client-heavy)
implementations allows for flexibility in deploying this all-client principle, depending on where the
system’s resource capacity lies. In other words, for the two implementations of ACE, the total system
overhead remains the same (Direct Aggregation: client n · O(1) + serverO(nd); Incremental Update:
client n · O(d) + server O(d), for a total system state of O(nd)). The incremental approach merely
reallocates the storage burden between clients and the server, rather than reducing it. Given that this
overhead is a fundamental requirement for high performance, we argue that practical optimization
efforts should focus on reducing the size of individual gradient vectors. To this end, we investigate

52

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

the use of 8-bit quantization as a promising direction to significantly lower the memory overhead
while preserving the performance benefits of our approach.

0 100 200 300 400 500
Server iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

(a) Dir (0.1)

0 100 200 300 400 500
Server iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(b) Dir (0.3)

0 100 200 300 400 500
Server iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(c) Dir (0.1) - Increased Delay

0 100 200 300 400 500
Server iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(d) Dir (0.3) - Increased Delay

Performance of ACE Variants and Baselines on CIFAR-10 (ResNet18)

ACE (FP)
ACE (8-bit)
ACED (8-bit, algo=10)
CA2FL
FedBuff
Delay-Adaptive ASGD
Vanilla ASGD

Figure a.3: Impact of 8-bit server-side gradient quantization on the test accuracy of ACE and ACED
on CIFAR-10 with ResNet18. The 8-bit variations achieve comparable final performance to the
full-precision implementation.

A practical consideration for ACE and its variant ACED is the server-side memory required to
store the latest gradients from all clients for the full aggregation step, especially when dealing with
large-scale models possessing a massive number of trainable parameters. This section is motivated
by the need to address this potential limitation and explore memory-efficient implementations. We
investigate the impact of applying 8-bit quantization to the gradients cached at the server before
they are aggregated. The goal is to determine if a significant reduction in memory overhead can be
achieved while largely preserving the convergence speed and final performance benefits demonstrated
by the full-precision versions of ACE and ACED.

To achieve this, we introduce ACE-8bit and ACED-8bit. The core modification lies in how the
server handles the incoming gradients from clients. Specifically:

• In both ACE-8bit and ACED-8bit, clients compute and transmit their gradients,
∇fi(wt−τt

i ; ξi), using full precision as in the original algorithms.

• Upon receiving a gradient from client i, say U t
i = ∇fi(wt−τt

i ; ξi), the server quantizes this
gradient to an 8-bit representation, denoted as Q(U t

i). This can be achieved using standard
unbiased quantization techniques.

• The server then stores this quantized gradient Q(U t
i) in its cache for client i.

• For the global model update, ACE-8bit computes ut = 1
n

∑n
i=1 Q(U t

i), utilizing the latest
available quantized gradient from all n clients. Similarly, ACED-8bit computes its update
ut

BDA = 1
nt

∑
i∈A(t) Q(U cache

i), using the quantized gradients from the set A(t) of active
clients whose information meets the delay threshold τalgo.

This approach directly reduces the memory overhead on the server for storing the gradient components
from each client. In addition, this approach also illustrates the compatibility of ACE/ACED and
the model compression algorithm, providing the possibility for the practical use of ACE/ACED in a
large-scale federated learning system.

53

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

F.4 HYPER-PARAMETER CONFIGURATIONS

Table a.4: Hyper-parameters for CIFAR-10 Experiments (Section 5, Appendix F.3.3). Total clients
n = 100. T = 500 server iterations.

Hyper-parameter ACE FedBuff CA2FL Vanilla ASGD

Model ResNet-18
Global Learning Rate (η) 0.2

√
n/T 0.2

√
n/T 0.2

√
n/T 0.2

√
n/T

Local Learning Rate (ηl) N/A (K = 1) 5× 10−2 5× 10−2 N/A (K = 1)
Optimizer (Local step) SGD (momentum 0.9) SGD (momentum 0.9) SGD (momentum 0.9) SGD (momentum 0.9)
Batch Size 50 50 50 50
α (Dirichlet) {0.1, 0.3} {0.1, 0.3} {0.1, 0.3} {0.1, 0.3}
β (Mean Exp. Delay Param.) {5, 30} {5, 30} {5, 30} {5, 30}
Buffer Size (M) N/A 10 10 N/A
Concurrency (Mc) N (all clients) 20 20 1 (sequential)

Table a.5: Hyper-parameters for CIFAR-100 Experiments (Appendix F.3.1). Total clients n = 100.
T = 500 server iterations.

Hyper-parameter ACE FedBuff CA2FL Vanilla ASGD

Model ResNet-18
Global Learning Rate (η) 0.2

√
n/T 0.2

√
n/T 0.2

√
n/T 0.2

√
n/T

Local Learning Rate (ηl) N/A (K = 1) 5× 10−2 5× 10−2 N/A (K = 1)
Optimizer (Local step) SGD (momentum 0.9) SGD (momentum 0.9) SGD (momentum 0.9) SGD (momentum 0.9)
Batch Size 50 50 50 50
α (Dirichlet) {0.1, 0.3, 1.0, 10.0} {0.1, 0.3, 1.0, 10.0} {0.1, 0.3, 1.0, 10.0} {0.1, 0.3, 1.0, 10.0}
β (Mean Exp. Delay Param.) {1, 5, 20, 30} {1, 5, 20, 30} {1, 5, 20, 30} {1, 5, 20, 30}
Buffer Size (M) N/A 10 10 N/A
Concurrency (Mc) N (all clients) 20 20 1 (sequential)

Table a.6: Hyper-parameters for 20Newsgroup (BERT fine-tuning) Experiments (Appendix F.3.2).
Total clients n = 20. T = 100 server iterations.

Hyper-parameter ACE FedBuff CA2FL Vanilla ASGD

Model DistilBERT / BERT-base
Global Learning Rate (η) 0.2

√
n/T 0.2

√
n/T 0.2

√
n/T 0.2

√
n/T

Local Learning Rate (ηl) N/A (K = 1) 5× 10−4 5× 10−4 N/A (K = 1)
Optimizer (Local step) AdamW AdamW AdamW AdamW
Batch Size 32 32 32 32
α (Dirichlet) {0.1, 1.0, 10.0} {0.1, 1.0, 10.0} {0.1, 1.0, 10.0} {0.1, 1.0, 10.0}
β (Mean Exp. Delay Param.) 5 5 5 5
Buffer Size (M) N/A 10 10 N/A
Concurrency (Mc) N (all clients) 10 10 1 (sequential)

General Setup To ensure a theoretically consistent comparison that directly aligns with our analyti-
cal framework, the local computational workload for every client across all compared algorithms
was standardized to a single gradient descent step (K = 1) per communication round. This approach
prioritizes a direct test of the different aggregation strategies by eliminating the confounding effects
of local client drift. Specifically:

• For algorithms theoretically based on a single gradient update, such as ACE, Vanilla ASGD,
and Delay-Adaptive ASGD, each client computes a stochastic gradient on one mini-batch of
its local data using the unmodified global model it received. This single gradient is then sent
to the server.

• For algorithms designed to support multiple local steps, namely FedBuff and CA2FL, we
explicitly set their local step parameter to K = 1. This ensures they also perform only a
single mini-batch update before communication, making their update mechanism directly
comparable to the other methods under our theoretical lens.

54

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

This setup provides a clear evaluation of how each aggregation method handles staleness and
participation bias, which is the central focus of our paper. For CIFAR datasets, this single step was
performed using SGD with momentum 0.9. For 20Newsgroup (BERT) experiments, the AdamW
optimizer was used for the local step.

Data heterogeneity across clients is configured using a Dirichlet distribution controlled by parameter
α. For CIFAR-10, α ∈ {0.1, 0.3}. For CIFAR-100, α ∈ {0.1, 0.3, 1.0, 10.0}. For 20Newsgroup,
α ∈ {0.1, 1.0, 10.0}.
Client update delays are generated using an exponential distribution governed by a mean parameter β.
For CIFAR-10, β ∈ {5, 30}. For CIFAR-100, β ∈ {1, 5, 20, 30}. For the 20Newsgroup experiments
detailed in Table a.2, a fixed β = 5 was used. All resulting delays are inherently bounded.

The tables summarize key hyper-parameters. Global learning rates are tuned based on scaling
√

n/T
with parameter c ∈ {10, 5, 2, 1, 0.5, 0.2, 0.1}, and local learning rates are tuned based on grid search.

For the ACED variant, the additional hyper-parameter τalgo is specified depending on the experimental
case/setting.

55

	Introduction
	Related Work
	Preliminaries and Analytical Framework
	Problem Setting and Notations
	Assumptions
	Theoretical Motivation for ACE: An MSE Decomposition
	ACE Algorithm: Conceptual and Practical Variants

	Theoretical Comparison of AFL Algorithms
	Experimental Results
	Conclusion
	Notations
	Problem Setting
	Notations

	Proofs for Section 4
	Useful Lemmas
	MSE Convergence Control and the Optimal Learning Rate
	Theorem on Sampling Noise (Term A)
	Theorem on Bias Error (Term B)
	Theorem on Delay Error (Term C)

	Convergence Rate of ACE
	Proof of the Rate
	Alternative Convergence Analysis with Explicit Independence

	Detailed Discussion on the Delay-Aware Variant
	Pseudo-Code of ACED
	Assumptions for ACED
	Convergence Theorem for ACED
	Alternative Convergence Rate Analysis for ACED

	Discussions on ACED
	Algorithm Behavior with Dropped Clients
	Discussion of the Assumptions

	Rate Comparison with Other AFL Algorithms
	Additional Experimental Details
	Detailed Discussion on Baseline Methods
	FedBuff (Federated Learning with Buffered Asynchronous Aggregation)
	CA²FL (Cache-Aided Asynchronous Federated Learning)
	Delay-Adaptive Asynchronous SGD (ASGD)
	ACE and ACED: Asynchronous Full and Dynamic Participation

	Extended Convergence Analysis and Stability Visualization for Section 5
	Additional Experiments
	Results on CIFAR-100 dataset
	Results on 20Newsgroup Text Classification for BERT models
	Reducing the Memory Overhead of ACE by Compression

	Hyper-parameter Configurations

