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ABSTRACT

In Asynchronous Federated Learning (AFL), the central server immediately up-
dates the global model with each arriving client’s contribution. As a result, clients
perform their local training on different model versions, causing information stale-
ness (delay). In federated environments with non-IID local data distributions, this
asynchronous pattern amplifies the adverse effect of client heterogeneity (due to
different data distribution, local objectives, etc.), as faster clients contribute more
frequent updates, biasing the global model. We term this phenomenon heterogene-
ity amplification. Our work provides a theoretical analysis that maps AFL design
choices to their resulting error sources when heterogeneity amplification occurs.
Guided by our analysis, we propose ACE (All-Client Engagement AFL), which
mitigates participation imbalance through immediate, non-buffered updates that use
the latest information available from all clients. We also introduce a delay-aware
variant, ACED, to balance client diversity against update staleness. Experiments on
different models for different tasks across diverse heterogeneity and delay settings
validate our analysis and demonstrate the robust performance of our approaches.

1 INTRODUCTION

Federated Learning (FL) enables collaborative training of machine learning models across multiple
clients (e.g., mobile devices) holding private data (Kairouz et al.,[2021). In a typical FL process
coordinated by a central server, clients receive the current global model, compute updates based on
their local data, and send these updates back. The server aggregates these updates to refine the global
model for the next round, keeping raw data local. A key challenge in FL is client heterogeneity:
clients often have diverse characteristics, including non-IID local data distributions and potentially
distinct local objectives or update computation processes. These variations can impact training
speed and performance (Li et al.l2020; [Kairouz et al.,[2021). Another challenge is the presence of
stragglers: synchronous FL algorithms, like FedAvg (L1 et al.,2020), wait for a subset of clients to
finish, creating bottlenecks from slower clients.

To address the straggler problem and reduce waiting times, Asynchronous Federated Learning
(AFL) was proposed (Agarwal & Duchi, [2011}Recht et al.,[2011; Nguyen et al.,|2022). In AFL, the
server incorporates each of the client updates immediately upon receipt without waiting. However,
this solution introduces update delays (staleness) because slower clients compute updates locally
based on older versions of the global model received earlier, while the server continues to evolve
using updates from faster clients. This participation imbalance causes the global model to be more
influenced by the data distributions and learning objectives of the faster clients. We formally define
this phenomenon as heterogeneity amplification and provide a theoretical analysis to understand its
impact on asynchronous FL. Specifically, our analysis shows that the challenges of AFL originate
from two interconnected issues:

* AFL Staleness and Dynamics: The asynchronous nature of AFL results in widely varying client-
server communication intervals. This variability leads to information staleness where gradients are
computed on outdated models, introducing errors (Agarwal & Duchi, [2011). Additionally, updates
formed from a subset of clients can introduce participation imbalance bias into the global model.
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Figure 1: Staleness and Heterogeneity Amplification in AFL. Left: Clients compute at varying
speeds (arrow lengths) on their local datasets with heterogeneous data distributions (P;, colors).
Color intensity reflects staleness—the degree to which a client’s model version is outdated due to
infrequent client-server communication. Right: Update sequences (during ¢y to ¢1): ‘Immediate
Update’ applies client updates on arrival; ‘Buffered Update’ waits and aggregates multiple clients’
updates before applying. However, both strategies demonstrate heterogeneity amplification: faster
clients (e.g., Client 3) contribute more frequently, resulting in their imbalanced influence. In contrast,
the ‘All-Client Update’ strategy aims to balance updates (despite staleness) from all the clients and
thereby mitigate heterogeneity amplification.

* Heterogeneity Amplification: The interaction between client heterogeneity (including non-IID
data distributions, different local objectives) and the dynamics of the AFL system (varying commu-
nication frequencies, partial participation) leads to faster and more frequent contributing clients
having a greater influence on the global model, as shown in Figure[I] This affects convergence and
degrades performance (Wang et al.| 2024b; [Koloskova et al., [2022).

Addressing these challenges requires a fundamental understanding of heterogeneity amplification,
which can help mitigate its impact on convergence. To this end, we make the following contributions.

* Theoretical Framework and Algorithm Design (Section [3). We provide a theoretical framework
that analyzes heterogeneity amplification by decomposing the discrepancy between the server’s
aggregated update and the ideal gradient. This connects AFL design choices to the resulting error
and motivates our proposed algorithm, ACE (All-Client Engagement AFL). It realizes an all-
client aggregation through a non-buffered, immediate update to eliminate participation imbalance
bias. We also introduce a practical delay-aware variant ACED, to handle clients with extreme
delays by managing the trade-off between client diversity and update staleness.

+ Comparative Theoretical Analysis (Section[d). Using our framework, we comparatively an-
alyze ACE against recent AFL methods (FedBuff (Nguyen et al.l [2022), CAZFL (Wang et al.,
2024b)), Delay-adaptive ASGD (Koloskova et al., [2022)), Vanilla ASGD (Mishchenko et al., [2022)).
We show how its all-client design eliminates participation imbalance bias and mitigates the
delay-heterogeneity interaction, resulting in a convergence rate robust to arbitrary heterogeneity
(Theorem E]) In parallel, its non-buffered, immediate update mechanism improves communication
efficiency and leads to faster convergence (Appendix [E)).

* Experimental Validation (Section [5|and Appendix [F) We validate our findings through extensive
experiments against the aforementioned baselines. Results across various models and tasks (Fig. 2]
Fig. Table demonstrate ACE’s robustly faster convergence and higher final accuracy,
particularly under the challenging conditions of high client heterogeneity and high delay.

Overall, we provide a novel theoretical framework that provides valuable insights for mitigating biases
in AFL. This guides our ACE algorithm which uses all-client aggregation for robust, communication-
efficient convergence under heterogeneity. Our practical ACED variant manages the trade-off between
client diversity and update staleness, and experiments validate our methods.

2 RELATED WORK

Asynchronous FL and its Challenges. Asynchronous federated learning (AFL) (Agarwal & Duchi,
2011} Recht et al.,2011) enhances training efficiency in large-scale distributed learning by eliminating
costly synchronization steps in synchronous protocols like FedAvg (L1 et al., [2020). While effective
in reducing wall-clock time, especially in the presence of slow or straggling clients, asynchronicity
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changes the learning dynamics and introduces several challenges (Lian et al., 2015). Beyond
foundational FL challenges like client heterogeneity (Kairouz et al., 2021} |[Li et al., [2020) and
stochastic noise (Bottou et al., [2018]), AFL introduces the critical issue of update staleness. This
problem arises as faster clients continuously update the server’s global model, causing slower clients
to compute gradients on outdated model versions. This imbalance in update frequency not only
leads to model staleness but also reduces the influence of slower clients on the global model. When
client data is non-IID, this dynamic gives faster clients a dominant influence, biasing the global
model towards their local data distributions. Prior work(Wang et al.||2024b; Koloskova et al., 2022)
has observed performance degradation in experiments under high heterogeneity and delay, but their
theoretical analyses were derived on an algorithm-specific basis. These analyses reveal that the
convergence guarantees of methods like FedBuff (Nguyen et al., [2022) and CA?FL (Wang et al.,
2024b) depend on the degree of client data heterogeneity, but a theoretical framework to analyze
the delay-heterogeneity interaction and guide algorithm design was missing. We are the first to
formally define this interaction as heterogeneity amplification and provide a theoretical analysis that
identifies its cause in partial client participation, a common design choice in many AFL algorithms.

Mitigation Strategies. Given AFL’s challenges, particularly client heterogeneity amplification,
various mitigation strategies have been explored, focusing on different aspects of the problem.

First, some strategies, often adapted from synchronous FL, target client drift using methods like
regularization (Li et al.| [2020) (Acar et al., 2021))) or control variates (Karimireddy et al., [2020).
However, the full participation assumption of methods such as SCAFFOLD (Karimireddy et al.|
2020) only works in a limited number of scenarios where the server can actively control the queuing
dynamics of the AFL system.

Second, other strategies directly address the impact of model delays (staleness). These include
adaptive step-sizing based on delay magnitude (Koloskova et al.||2022; |Cohen et al., [2021} |Aviv et al.|
2021) and error feedback (Zheng et al., 2017} [Stich & Karimireddy, |2020). While improving stability
with stale updates, reacting primarily to delay magnitude does not always resolve the imbalanced
client influence if heterogeneity amplification causes faster clients to dominate the update.

Third, aggregation strategies involving state caching and buffering have been explored to mitigate
participation variance. One line of work utilizes client state caching to reuse historical gradients, such
as MIFA (Gu et al.| [2021) and FedVARP (Jhunjhunwala et al.,|2022)). While sharing the high-level
concept of state reuse, these methods typically operate within synchronous or round-based protocols
that impose synchronization barriers. Furthermore, their theoretical analysis generally focuses on
proving the sufficiency of a heuristic algorithm, rather than deriving the necessary design conditions
to eliminate bias from first principles. Another direction employs buffering or calibration, as seen in
FedBuff (Nguyen et al.| 2022) and CA%FL (Wang et al | [2024b). While FedBuff simply aggregates
updates from a subset, CA?FL attempts to calibrate a cached all-client state using updates from
a subset (m < n). However, as detailed in Appendix this calibration mechanism imposes
non-uniform weighting on client updates, which structurally retains the participation imbalance bias
and heterogeneity amplification. In contrast, our work establishes a prescriptive framework for truly
asynchronous, non-buffered systems. We derive that aggregating updates from all clients (m = n)
with equal weighting is a necessary condition to eliminate the participation bias term. Guided by this,
our ACE algorithm maintains a server-side cache of the latest gradients from all clients and performs
an immediate global update upon every single client arrival, thereby eliminating bias without reducing
update frequency or enforcing synchronization.

3 PRELIMINARIES AND ANALYTICAL FRAMEWORK

Asynchronous Federated Learning (AFL) is designed to enhance system efficiency by allowing clients
to operate without waiting for slower participants (stragglers). This section establishes the notations,
problem setting, key assumptions for our analysis, and the analytical foundation motivating our
method, ACE. More details can be found in Appendix [A]

3.1 PROBLEM SETTING AND NOTATIONS

We consider n clients orchestrated by a central server, minimizing a global objective F(w) =
LS | Fi(w), where each Fj(w) = E¢,p, [fi(w; &)] is the expected loss over client i’s true local
data distribution P,. Clients compute stochastic gradients V f;(w;¢;) from samples & ~ P; as
approximations to V F;(w). The server maintains the global model w* € R? at server iteration ¢ (up
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to T total iterations). In asynchronous settings, w'*! = w! — nu'. The global update u' typically

uses stale information; a contribution from client ¢ may be based on a model wt_Tf, where Tf >0is
its information staleness (delay) relative to ¢ (in server iterations).

We define: E[-] as the total expectation over all sources of randomness (e.g., client data sampling, 7}
values). F* is the o-algebra of all information up to server iteration ¢ (including w®). E;[-] := E[-|F|
is the conditional expectation given F*. The global update u’ is formed from clients’ stochastic
contributions, where each client 7 uses a fresh data sample &; with its respective stale model (e.g.,
wt=T ). Let H® be the o-algebra containing all information determining ' (including stale models
used and aggregation rules) except the randomness from the set of these fresh data samples {;}
contributing to u*. Then, @' := E¢ 3 [uf|H"] is the expected update over these fresh samples.

3.2 ASSUMPTIONS

Our subsequent theoretical analysis relies on several standard assumptions common in the optimiza-
tion literature (Stich & Karimireddy, |2020; [Wang et al., 2024b; Nguyen et al., 2022)), particularly for
stochastic and asynchronous methods. We assume the following hold throughout the paper unless
otherwise stated:

Assumption 1 (Lower Boundedness). The global objective function F'(w) (an expectation over true
local distributions) is bounded below, i.e., F(w) > F* > —oo forall w € R<,

Assumption 2 (L-Smoothness). Each local objective function F;(w) (an expectation) is L-smooth
Sfor some L > 0, implying ||V F;(w) — VF;(w')||2 < L|jw — w'||2 for all w,w’. This also implies
F(w) is L-smooth.

Assumption 3 (Unbiased Stochastic Gradients). Givent < to < t3, let §f3 withi € [n] and t3 > 1
be data sample drawn from P;, and F, be the o-algebra representing all information available up to
server iteration to, then E [V f;(w'; £°) | ] = VFi(wt).

Assumption 4 (Bounded Sampling Noise). The sampling noise of the local stochastic gradients is
uniformly bounded: Eg, ||V f;(w; &) — VF;(w)|3 < o2 for some o > 0.

Assumption 5 (Bounded Delay). Vi,t : 'rit < Timax, Where Timax bounds the maximum interval
between server iterations for any two consecutive global model updates triggered by any client 1.

Assumptions characterize the optimization problem, and Assumption [5] constrains staleness.
Beyond these, some analyses for algorithms with partial client participation (e.g., FedBuff (Nguyen
et al.,|2022)) or single-client updates (e.g., Vanilla ASGD (Mishchenko et al., [2022))) also assume
Bounded Data Heterogeneity (BDH) , i.e., | VF;(w) — VF(w)]|* < ¢* < oo, which bounds how
much any single client’s local gradient can diverge from the true global gradient. This bound is
required to analyze convergence in partial participation settings, as it controls the bias from averaging
over a non-representative subset of clients. Our method, ACE, by employing full aggregation, is de-
signed to eliminate the participation imbalance bias (see Section [3.3) from partial client participation,
thereby eliminating the need for the BDH assumption in its convergence analysis.

3.3 THEORETICAL MOTIVATION FOR ACE: AN MSE DECOMPOSITION

In AFL, clients compute updates based on stale model versions. Client ¢ might use wi=T (where
Tf > 0 is its information delay relative to server iteration ¢), while the server is at w’. We denote the

collection of stale models used by clients as w,;, = {wt_’f }7_,. This presents a critical challenge:
since the latest model versions available to clients for their local computations are at best these stale
versions, any global gradient estimate u* (formed from their contributions) is inherently based on
this outdated information when aiming to approximate V F'(w'). This creates a gap between the
information used for client updates and the ideal current gradient at the server.

Our analysis starts from the standard descent lemma (details in Appendix [B.T) for L-smooth functions
(Assumption[2)). For an update w'*! = w’ — nu?, this lemma bounds the change in the objective as:

E[F(w'™)] < E[F(w")] — nE[(VF (w'), u)] + LTUZEWHQ M

By summing this inequality over 7" iterations and rearranging terms, we derive the following bound (2).
This inequality bounds the average squared norm of the true gradient, a standard measure of conver-
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gence for non-convex objectives, by terms including the Mean Squared Error (MSE) of our gradient
estimates (details of the constants 1,2 > 0 are in Appendix [B.2):

W0 — T T—1

t=0

MSE,

Bound (2) is important because its left-hand side, the average squared gradient norm, diminishes
as an algorithm converges to a stationary point in non-convex optimization (Wang et al., |2024bj
Mishchenko et al., 2022 Nguyen et al.,[2022). It indicates that this convergence metric is upper-
bounded by the average MSE;. Therefore, controlling MSE; of the gradient estimates is key to
improving the convergence guarantee, motivating its detailed analysis for algorithmic design.

Decomposing the MSE, term. To analyze the error sources contributing to MSE,, we decompose
the error u* — VF(w?). We introduce %! (the expectation of u! over data sampling randomness, as
defined in Section ) and VF(w!y.) = 13" V F;(w'™") (the average true gradient on the
latest stale models actually used by clients). With a telescoping sum, the error is decomposed as{ﬂ

ut - VF(wf) = (ut —u ) (u - VF( slale)) (VF( stale) VF(wt>) (3)
—_———
:=A, Noise :=B, Bias :=C, Delay

Using the inequality ||z + y + 2|2 < 3(||z[|> + [ly]|*> + [|2]|?) (an application of Lemmaa.3|in
Appendix [B.T)), we bound MSE; with the decomposition:

MSE, = E||u’ — VF(w')||3 < 3E[|A|3 + 3E[|B||3 + 3E[C|3 )

Now let’s analyze each error component (further discussions can be found in Section [):

e Term A (Sampling Noise): A = u! — @', represents the stochastic error from using mini-batch
gradient approximations (see Assumption [). It depends on factors like the number of participating
clients and the structure of u?.

* Term B (Blas Error): B = u' — VF(w!,,), quantifies the deviation of the expected gradient

estimate %’ from the true average gradient evaluated at the specific stale states w7 used by the
clients. This bias can arise from partial client participation in forming u¢ or from local training
steps if the clients optimize local objectives.

* Term C (Delay Error): C = VF (w!,.) — VF(w"), captures the discrepancy between the average
gradient on stale models and the gradient on the current server model. It generally grows with
longer delays 7.

This specific structure (A: Noise, B: Bias, C: Delay) helps isolate error sources relevant to AFL
algorithm design. Noise (Term A) and Delay (Term C) are inherent to asynchronous optimization. In
contrast, Bias Error (Term B), arises from a specific design choice: partial client participation. We
therefore target Term B for complete elimination. The condition B = 0 mathematically necessitates
an all-client aggregation scheme. This principled design not only eliminates the primary source of
heterogeneity amplification but also maximally reduces Noise (Term A) and helps contain Delay
(Term C) by preventing bias accumulation in model drift (quantified in Section ).

Algorithm Desngn To achieve B = 0 (Bias Error ehmmatlon) it requires @' = VF(w stale) =
LS VF(w! ™). Our all-client aggregation design for u' is u' := LS Vii(w'™ e,
Here, for each client 7 in the sum, wt=" is the stale model version upon which its currently cached
gradient was computed. The superscript ; on the sample £ signifies that this specific sample
was used by client ¢ to generate the gradient that was received and cached by the server at server
iteration x; (where t — 7/ < k; < t). This sample £ was drawn by client ¢ at the time of its local
computation on w!="! . Given Assumption 3 l taking the expectation of u® over these respective fresh
samples {€/} yields @' = L " | VF;(w'™") = VF(w!y,).

!This framework is extensible to other scenarios. For instance, by applying further telescoping sums, the
Bias term B can be decomposed to isolate adversarial bias (e.g., @' — iif o) in Byzantine settings, or the Noise
term A can be expanded to model errors from gradient compression.
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This leads to our ACE (All-Client Engagement AFL) algorithm’s core update principle Eq.
where this Bias Error (Term B) is eliminated:

1« :
Bias Error (Term B) = 0 <= u!:= = Z V(w7 ) o)
i

By employing full aggregation, ACE aims to directly eliminate a key component of heterogeneity
amplification related to imbalanced client influence from partial updates, potentially leading to a
tighter convergence bound.

3.4 ACE ALGORITHM: CONCEPTUAL AND PRACTICAL VARIANTS

(1) ACE Conceptual Implementation. (Algorithm[I) The ACE algorithm primarily targets the
Bias Error (Term B in InEq. [3)) via a full aggregation strategy. In its main conceptual form (direct
aggregation), the server computes the global update u' by averaging the latest available gradients U}
from all n clients:

1< '
b= =) Ul eR? wh Ul =V (w75 6
wim g D ULERY where Uf=Vfi(w ) (©)

Here, U}/ is the most recent gradient from client 4, computed on its stale model wi=T using a fresh
data sample ;. To eliminate the participation bias from our analysis in Section[3.3] this method stores
all n gradients for an immediate update on each arrival. This offers higher communication efficiency
than buffered methods (Nguyen et al., [ 2022; Wang et al.,[2024b)), which require similar storage but
must wait for a buffer to fill. An alternative, efficient computation of u* for ACE uses an incremental

rule (Algorithm fa.5), u® = u'~! + (u™ — u}™") /n, and can reduce the server’s cost from O(nd) to

O(d) by distributing the overhead to clients. Appendix [F.3.3|further explores a compression scheme
to reduce the fotal system cost. For clarity, Algorithm (1| details only the direct aggregation method.

Algorithm 1 Conceptual ACE (Direct Aggregation, Incremental Rule see Algorithm [a.5))

1: Server Initialization:

2: Initialize global model w°.
3:  Foreachclienti € [n]: USM® « Vf;(w®€?). > Initial gradients based on w?, forming u°
4 Ul % S Ugache,

5wl w’— nuo.

6:  Server makes w! available to clients.

7: Server Loop: Fort =1,...,T — 1: > To compute v and model w!*?
8:  Wait to receive a gradient g; from some client j. > g; = ij(wt’TJt’ ; f;), where w7 is the

model client j used and 5; is its fresh sample for this contribution to u!.

9:  Update server’s cache for client j: Uf‘“he — gj-
10:  Compute global update: u’ < % Yoy UfaChe. > Uses latest g;, cached UM from others
11:  Update global model: w!*! < w! — nut.
12:  Server makes w'*! available (e.g., to client j).
13: Client : Operation (runs continuously):
14:  wWieeal < latest model version received from server.

15:  Compute gradient g; = V f; (Wiocar; E7V). > &MV is a fresh sample
16:  Send g; to server.

(2) Practical Variant: ACED (All-Client Engagement Bounded Delay-Aware AFL). The concep-
tual ACE assumes bounded delays (Assumption[5) and active participation from all clients to ensure
Term B elimination. However, this strict assumption becomes impractical in real-world scenarios
with client dropouts or extreme delays.

To address this, ACED enforces a delay threshold 7,14, for including gradients in aggregation. The
server caches the latest gradient U™ from each client and its model’s dispatch time %, At
iteration ¢, the active set A(t) = {i € [n] | t — t{" < Tago} includes clients with sufficiently fresh
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information. If A(¢) is non-empty (n; = |A(t)| > 0), the server does a bounded delay-aware update:

1
Ubpa = — > UP, where  A(t) = {i € [n] [t — " < Tug} (7
i€ A(t)

The model update is w'*! = w' — pulgp. This allows clients to rejoin A(t) upon providing fresh
updates. Algorithm[a.I](see Appendix [D) details this. However, it is worth noting that if n; < n,
Term B may not be fully eliminated, and this variant needs separate convergence analysis. Due to the
limited space, further discussion on ACED can be found in Appendix D}

4 THEORETICAL COMPARISON OF AFL ALGORITHMS

We apply our MSE decomposition (InEq. from Section [3) to analyze the Sampling Noise (E|| A[?),
Bias Error (E|| B||?), and Delay Error (E]|C/||?) for representative AFL algorithms (details for these
baseline algorithms can be found in Appendix [F.T). This analysis relies on Assumptions in Section
Key notation includes ¢? for bounded data heterogeneity (if an algorithm assumes it), the set
of participating clients M, of size m = | M|, the number of local steps K, and local learning rate
m. We denote a weighted sum of {X;}7, as ), X; (detailed weights omitted), and X <Y + Z to
signify X < aY + bZ for some constants a,b > 0.

Term A: Sampling Noise Analysis (E| A||? = E||u’ — @'||3): This term reflects the variance from
stochastic gradient estimation using mini-batches. Aggregation over more clients reduces this noise,
while multiple local steps can accumulate it. (Details in Appendix [B.3])

* Vanilla ASGD(Mishchenko et al., 2022) & Delay-Adaptive ASGD(Koloskova et al.,
2022) (single client update, m = 1, K = 1): E||A||? < 0. With m = 1, there is no noise
reduction from aggregation.

+ FedBuff(Nguyen et al.,2022) & CA?FL(Wang et al., 2024b) (subset m < n clients, local
steps K > 1):E| 4|2 < 1%1202. Noise variance is reduced by averaging over m clients but
scales with local steps K and the local learning rate 7;.

¢ ACE (Ours) (full aggregation over n clients, K = 1): E[|A[|? < "Tf This achieves maximal
sampling noise reduction by averaging across all n clients.

Term B: Bias Error Analysis (E| B||?> = E||a’ — VF(w,)|3): This term measures the systematic
deviation of the conditionally expected update a* = E¢[u'|H;| from VF(wl,), the ideal average
gradient on the actual stale models clients used. Such bias primarily arises if u? is constructed using
only a subset of clients (m < n) or involves multiple local steps (K > 1) that optimize divergent
local objectives. (Details in Appendix [B.4])

e Vanilla ASGD(Mishchenko et al., 2022) & Delay-Adaptive ASGD(Koloskova et al.,
2022) & FedBuff(Nguyen et al.,[2022) (m < n, K > 1):

EllBI* < ((02 +EG) + Y EIVF('U/'”"‘)@) +(n—m) <C2 +y EIVF(w”fN%)

PEM;y i=1

This suffers from both local steps (K > 1) and partial client participation (m < n).
» CA?FL(Wang et al., 2024b) (m < n, K > 1):

BB < (1+(1-2)2) (w? TG+ E|VF<w”f)|§) :
) i=1

Calibration reduces the partial participation component of bias, but bias related to the number
of local steps (K) and imperfect calibration (m < n) persists.

» ACE (Ours) (n clients, K = 1): By its design u! = % > Vfi(wt*ﬂ‘t ;€51), Assumption
irnplies a' = LS VE(w'™™) = VF(w!y,). Therefore, E|B||> = 0. This design
eliminates this bias term by ensuring full aggregation and K = 1.

Term C: Delay Error Analysis (E||C||? = E||VF(wly.) — VF(w")||3): This term captures the
error from using stale model versions. It is bounded by the average model drift clients experience,
D! := E||w'~™ — w||2, which measures how much the global model w’ has changed during client
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i’s effective delay interval 7. Using Assumption and Lemmain Appendix

EllC|* =E

n
1
n
i=1

S(VE ') - VE(u')

2
1¢ o r?
< =D EIVE@'™) - VE@)|F< -3 DI
2 i=1 )

n

i=1

The bound on model drift D! = E|| ZZ;—TF nu®||3 (where u® is the server update at iteration s)
highlights how different algorithm designs influence this drift: (Details in Appendix [B.5])

 Vanilla ASGD(Mishchenko et al., 2022), Delay-Adaptive ASGD(Koloskova et al., 2022),
FedBuff(Nguyen et al.,[2022) (u! from subset M, of size m < n, local steps K > 1):

Ko? 1
DESTMZU?( 7

t—1

Y EIVF (gl + (n - m)KQCQ> :

o —f—rt
s'=t—T;

—_ =
m m

The term (n — m)K?(? represents a per-iteration bias arising from partial participation
(m < n), local steps (K), and client heterogeneity (¢?). Its multiplication by 7! illus-
trates how this bias accumulates. This 7¢? interaction term is the direct mathematical
representation of heterogeneity amplification.

. CAZFL(Wang et al.,2024b) (u! from subset M, local steps K > 1):

m. o Ko? = T s
IR =+ Y EIVE@i IR -

N
s'=t—T;

Dt < rhnn? (1 +(1

i~ D

Calibration aims to remove the direct ¢? term from partial participation bias found in
FedBuff’s drift, though effects of K and incomplete calibration (m < n) remain.
» ACE (Ours) (u! averages over all n clients, K = 1):

5 t—1
o o
Dz 5 7-’;772 (n + § EIVF(wstalcN%) .

gt
s'=t—T;

Here, the (? term from partial participation is absent because u! in ACE averages information
from all n clients, inherently balancing expected contributions during the drift calculation.

Comparative Insights. The impact of algorithmic design choices on the error terms is summarized
in Table[T] (Green text indicates a positive impact, red a negative one). This comparison highlights:

* The number of participating clients m affects Noise (Term A, reduced by larger m) and Bias (Term
B, introduced if m < n).

* Eliminating Term B bias and mitigating the delay-heterogeneity interaction (often appearing in
Term C analysis) necessitates using information from all n clients, via full aggregation (ACE) or
careful calibration (CA%FL).

* Multiple local steps () > 1) increase the bounds of all error components by accumulating sampling
noise and multiplicatively amplifying the bias and delay errors.

* Adaptive learning rates mitigate the error accumulation captured by per-iteration model drift D} by
down-weighting updates with large 7/ delays.

Table 1: Impact of Algorithmic Elements on Error Terms (A: Noise, B: Bias, C: Delay)
Algorithm Bias, E[[a" — VF(wl)[3 Delay, E[[VF (wl.) — VF(wh)[3

Sampling Noise, E[|u’ — @' ||

Vanilla ASGD
(Mishchenko et al.|[2022)

Not Reduced (due tom = 1)

Contains bias from K > 1 and
partial participation m = 1.

Contains 7(° interaction (from
m=1).
>

Delay-adapt ASGD
(Koloskova et al.|[2022)

Not Reduced (due tom = 1)

Contains bias from K > 1 and
partial participation m = 1.

Contains 7(~ interaction (from
m = 1); Adaptive LR (smaller 1)

may reduce reduce delay error.

FedBuff
(Nguyen et al.|[2022)

Reduced by m, but increased by
local steps K > 1.

Contains bias from K > 1 and
partial participation m < n.

Contains 7(~ interaction; Error in-
creased by K > 1.

CA“FL
(Wang et al.|2024b)

Reduced by m, but increased by
local steps K > 1.

Contains bias from K > 1 and
partial participation m < n.

No 7(” interaction (Calibration);
Error increased by K > 1.

“ACE (Ours)

Max. Reduction (by m = n).

Eliminated (by m =n, K = 1).

No 7¢~ interaction (by m = n).

Convergence rate. Plugging the bounds for ACE’s MSE; components into the general convergence
rate expression (Bound [2) indicates a key benefit of full aggregation. The resulting rate’s upper
bound is independent of the Bounded Data Heterogeneity (BDH) parameter (2, demonstrating ACE’s
theoretical robustness to arbitrarily high client heterogeneity. This rate is achieved by selecting an
optimal practical learning rate n o< \/n/T (see Appendix , leading to Theorem
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Theorem 1 (Convergence Rate of ACE (Alg.[I). Suppose Assumptions AI-A5 hold. By choosing

an appropriate global step size 1) proportional to \/n /T, ACE (Algorithm 1) achieves the following
convergence rate for smooth non-convex objectives:

T-1

1 A Lo?  L?7,u0°
=Y EIVF")|? S —+
7 2 BV S 2 T+

where A = F(w®) — F(wT). (Proof can be found in Appendix @

5 EXPERIMENTAL RESULTS

Experimental Setup. We simulate Asynchronous Federated Learning (AFL) on CIFAR-10
dataset(Krizhevskyl, 2009) with N = 100 clients. Non-IID conditions are created using a Dirichlet
distribution (varying «), and client delays follow an exponential distribution (varying mean (3). We
chose this synthetic heterogeneity setup specifically to independently control heterogeneity (o)) and
delay (), allowing us to isolate and verify the multiplicative “heterogeneity amplification” effect pre-
dicted by our theory. We compare our ACE algorithm against FedBuff (Nguyen et al.,[2022), CAFL
(Wang et al., 2024b)), Delay-adaptive ASGD (Koloskova et al., 2022} and Vanilla ASGD (Mishchenko
et al.,[2022), measuring over 7" = 500 server iterations. Appendix [F-3| provides additional results on
more models and tasks, including image classification across more heterogeneities and delay settings
and Natural Language Processing (NLP) tasks with BERT(Sanh et al., 2019; |Devlin et al., [2019)
models.

1. Impact of Non-IID Data (Client Heterogeneity). Comparing Figure [[a) with (b), or (c) with
(d), increasing data heterogeneity (lower «) typically degrades performance. ACE and CAZFL
consistently achieve higher final accuracy and converge faster, especially under high heterogeneity
(o = 0.1). This aligns with our theory that mitigating aggregation bias (Term B in our analysis), as
ACE does via its full participation logic, enhances robustness to client heterogeneity.

2. Impact of Delay and Heterogeneity Amplification. Increased system delay generally leads to a
decline in accuracy for all methods due to larger model drift (as it scales with growing Tax), as seen
when comparing scenarios with higher delay and lower delay (Fig. Ekc) vs. (a) , or (d) vs. (b)).

(a) Dir (0.1) (b) Dir (0.3) 0(3() Dir (0.1) - Increased Delay D(Q) Dir (0.3) - Increased Delay

0.8
0.7
—— ACE
—— CA%FL

Fedbuff
—— Delay-Adaptive ASGD
'''''' Vanilla ASGD

06
05
0.4
4 03

02
014

100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500 100 200 300 400 500
Server iteration Server iteration Server iteration Server iteration

Figure 2: Impact of data heterogeneity (Dirichlet ) and client delay (Exponential mean ) on
CIFAR-10 test accuracy over 500 server iterations. (a) a = 0.1, low delay (8 = 5). (b) a = 0.3,
low delay. (c) @ = 0.1, increased delay (8 = 30). (d) @« = 0.3, increased delay. ACE demonstrates
robust performance toward various heterogeneity and delay. Extended results are in Appendix@

Algorithms with partial client participation (e.g., FedBuff, Vanilla ASGD, Delay-adaptive ASGD),
according to our theory (Section EI), are more vulnerable to the 7¢? interaction within their Delay
Error (Term C). Specifically, for these methods, the performance degradation caused by increased
delay is more evident when data heterogeneity is high (accuracy difference between Fig. 2Ja) and
(c)) compared to when heterogeneity is lower (accuracy difference between Fig. |Zkb) and (d)). This
greater performance drop, along with the slower convergence of the baseline methods, illustrates the
heterogeneity amplification effect. In contrast, the superior performance of ACE, supports our insight
in Section ] that all client participation mitigates heterogeneity amplification.

3. Ablation Study on Local Steps (K). To validate our choice of K = 1, we conducted an ablation
study varying K € {1,5,10} (Table . While theoretically increasing K can help reduce the initial
suboptimality error term (related to A) faster as 7" increases (as indicated in Table , our results
demonstrate that this benefit is overwhelmed by the amplified local model drift in the asynchronous
setting. As detailed in our analysis (Section ] and Appendix [B:3), delay 7 interacts with K in a
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Table 2: Comprehensive Ablation Study on Local Steps (K) across Varying Heterogeneity (o) and
Delay (/3). We report the final test accuracy (%) at T' = 500 server iterations. The K = 1 column
corresponds to the main results in Figure 2. Data for K’ = 5 and K = 10 demonstrates that increasing
local steps consistently degrades performance in AFL due to drift amplification. ACE shows superior
robustness, whereas single-client methods (Vanilla/Delay-Adaptive ASGD) and buffered methods
(FedBuff) suffer significant drops, particularly under high delay conditions.

(a) High Het., Low Delay | (b) Mod. Het., Low Delay | (c) High Het., High Delay | (d) Mod. Het., High Delay

Algorithm (@=0.1,8=5) (a=0.3,=5) (a=0.1,5 = 30) (o= 03,5 = 30)
|K=1 K=5 K=10|K=1 K=5 K=10|K=1 K=5 K=10|K=1 K=5 K=10
ACE (Ours) 762 755 748 | 835 830 824 | 715 702 691 | 778 771 762
CAZFL(Wang et al.]2024b] 705 681 654 | 792 775 753 | 632 585 531 | 715 682 649
FedBuff(Nguyen et al.|[2022] 638 602 565 | 758 732 698 | 515 458 395 | 665 621 574
Delay-Adaptive ASGD(Koloskova et al|2022) | 64.0 615 578 | 780 754 721 | 550 495 428 | 680 635 582
Vanilla ASGD(Mishchenko et al.|[2022] 450 412 365 | 750 715 670 | 305 248 185 | 585 524 468

multiplicative, harmful way. For instance, the drift error bound for FedBuff(Nguyen et al., [2022)
scales with O(7 - (n — m)K?2(?), and for CA2FL(Wang et al., 2024b) it involves terms scaling with
O((1 + & (n —m)?)7 - Ko?). Consequently, increasing K causes clients to accumulate larger
deviation vectors based on outdated information. Empirically, this leads to consistent performance
degradation for all algorithms as K increases. Notably, ACE exhibits the greatest robustness, as its
full aggregation (m = n) eliminates the (n — m) multiplier, thereby minimizing this multiplicative
drift error.

Ogé ) Algorithm Comparison under Client Dropou*% (b) Ablation on 7,4, for ACED

°

°

—+— ACED (Tago = 10)
—=— Conceptual ACE
055{ —— CA’FL

- Vanilla ASGD

Final Test Accuracy
o

[ 10 60 70 [ 60 70

20 30 40 50 o 20 SN 50
Client Dropout Percentage (%) Client Dropout Percentage (%)

Figure 3: Final test accuracy (I' = 500, Dir(e = 0.3), 8 = 5) vs. client dropout. (a) ACED
(Taigo = 10) shows superior dropout robustness compared to Conceptual ACE, CAZFL, and Vanilla
ASGD. (b) Ablation on ACED’s Ty4,: performance suffers if 7,4, is too small (partial participation
bias) or too large (staleness error), but is stable across moderate 7,4, values.

Delay-aware Aggregation under Client Dropouts. We investigate ACED’s robustness to client
dropouts (from 0% to 70%) under Dir(ov = 0.3) and 5 = 5, starting at ¢t = T'/2 = 250, as shown in
Figure@ Compared to other methods, ACED (using T,g, = 10 = 2/3) exhibits enhanced resilience,
highlighting the role of 7,4, in managing a trade-off between two error sources. Our ablation study
quantifies this trade-off: an excessively small 7, (e.g., 1, resembling Vanilla ASGD) minimizes
staleness but incurs high participation bias. Conversely, a very large 7,4, (e.g., > 100 = 7'/5)
includes too many stale updates, leading to model drift. Therefore, since ACED allows dropped or
delayed clients to contribute again once their delay recovers (Algorithm , selecting Ty1g0 Within
a wide moderate range ([10, 50]) proves effective. This strategy maximizes participation to better
address the common challenge of heterogeneity in AFL and reduce the impact of participation bias.

6 CONCLUSION

Our work introduces a general theoretical framework to analyze Asynchronous Federated Learning
(AFL) algorithms by decomposing the total error. Our analysis using this framework identifies
that client participation imbalance bias is the root cause of heterogeneity amplification. Based
on this insight, we propose ACE; its immediate, non-buffered aggregation of all clients eliminates
participation bias and ensures robust, communication-efficient convergence under high heterogeneity.
For practical challenges like extreme delays, the delay-aware variant ACED uses a staleness threshold
to manage the trade-off between maximizing client diversity (to reduce bias) and minimizing error
from stale gradients (to reduce delay error). Experiments confirm our methods achieve more stable
performance, particularly in challenging settings with high data heterogeneity and system delays.

10
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A NOTATIONS
This section outlines the notation used and details the problem setup as presented in the paper.

A.1 PROBLEM SETTING

The paper considers an Asynchronous Federated Learning (AFL) system with n clients and a central
server. The objective is to minimize a global function F'(w), which is an average of local client

objectives F;(w):
D Fi(w)
i=1

Each local objective F;(w) is the expected loss over client ¢’s true local data distribution P;:
Fi(w) = Eg,op, [fi(w; &)]

Here, w € RY represents the model parameters, and f;(w; &;) is the loss for a data sample &; from
client ¢’s distribution. Clients compute stochastic gradients V f;(w; ;) as approximations to the true
local gradients V F; (w).

F(w) =

S|

The server maintains the global model w! at server iteration ¢ (up to T total iterations). In the
asynchronous setting, the global model is updated, for example, via w'*! = w’ — nu'. The crucial

aspect is that the global update u! is formed using potentially stale information. A contribution

from client 4 to u* might be based on a model version wtTi it received earlier, where Tit > 0 1is the

information staleness (or delay) of that client’s information relative to the current server iteration ¢.

A.2 NOTATIONS
The following notations are used:

* n: Total number of clients.

» w' € R%: Global model parameters at server iteration ¢.

* d: Dimensionality of the model parameters.

 T': Total number of server iterations.

* F(w): Global objective function.

* F;(w): Local objective function for client :.

e P;: True local data distribution for client 7.

* fi(w;&;): Loss function for client 7 on data sample &;.

* VF(w): True gradient of the global objective function.

* VF,;(w): True gradient of the local objective function for client 4.
» Vfi(w;&;): Stochastic gradient computed by client ¢ from sample &; based on model w.
* 7: Server-side learning rate (step size).

* 7;: Client-side local learning rate (mentioned in context of other algorithms like FedBuff in
Section [)).

* u': Global update vector applied by the server at iteration ¢.

o 7}, pt: Information staleness (delay) for client ’s contribution to the update at server iteration
t. This is the difference in server iterations between when client ¢ received the model it used
for computation and the current server iteration ¢. p! is specified for the delay of the models
in the cache in CAZFL (Wang et al.| [2024b).

* E[]: Total expectation over all sources of randomness.
o F*: The o-algebra of all information available up to server iteration ¢ (including w?).

e E¢[-] or E[-|F!]: Conditional expectation given F*.
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¢ H!: The o-algebra containing all information determining u (including stale models used
and aggregation rules) except the randomness from the set of fresh data samples {¢;}
contributing to u!.

* @' := Ey¢,3[u’|H']: Expected global update over the fresh data samples {£; } used to form
ut, conditional on H?.

o whye = {wt_”t }7_,: Collection of stale models used by clients whose updates contribute
to u’.

* VF(wle) = + 30, VF;(w'=™): The average true gradient evaluated on the specific

stale model versions w!~ "¢ used by the clients.

» &7 A specific data sample used by client 7 to generate the gradient that was received and
cached by the server at server iteration «; (where ¢t — Tf < ki < t), computed on model
Wt

* U} or Uf*he: The latest available (potentially stale) gradient from client i cached at the
server at iteration t. For ACE, U} = V f(w'~7i; €.

» F*: Lower bound of the global objective function, F'(w) > F* > —oc.

* L: Lipschitz constant for the smoothness of local objective functions F;(w).

« o%: Bound on the variance of local stochastic gradients, E¢, ||V f; (w; &) — VF;(w)]|3 < o2

* Tmax: Bound on the maximum delay, 7} < Tiax-

* (2: Bound for Bounded Data Heterogeneity (BDH), ||V F; (w)—V F(w)||? < ¢? (mentioned
as an assumption in some other algorithms, but ACE aims to eliminate the need for it by full
aggregation).

e K: Number of local steps (mentioned in context of other algorithms like FedBuff in
Section [).

* 3 Server iteration when client ¢ obtained the model wh" upon which its currently cached
gradient U{"‘Che was computed (in ACED).

* Talgo: Maximum allowed delay threshold for gradient inclusion in ACED.

* A(t): Set of active clients in ACED at server iteration ¢, defined as {i € [n][t — 3" < Ty}

* ny = |A(t)|: Number of active clients in A(t) for ACED.

* Nmin: Lower bound on ny, i.e., ny > ngin > 1 (for ACED).

* G: Bound on the norm of expected local gradients, ||V F;(w)||2 < G (Assumption a.7 for
ACED analysis, noted as not strictly necessary but simplifying).

o A =F(uw’) — E[F(wT)] or F(w®) — F*: Initial suboptimality.

This list covers the primary notations introduced and used in the problem setup and for the analysis
of ACE and related concepts within the specified paper. The paper also refers to notations from
other algorithms (FedBuff, CA%FL, Delay-adaptive ASGD) when making comparisons, which might
have their own specific notations detailed in their respective original publications or the provided
supplementary material.
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B PROOFS FOR SECTION [4]

All the notations used in this section are detailed in Appendix [A] Details of the implementations of
the baseline algorithms (FedBuff (Nguyen et al., 2022), CA?FL (Wang et al., [2024b), Delay-adaptive
ASGD (Koloskova et al.|[2022)) and Vanilla ASGD (Mishchenko et al., [2022)) can be found in[F

B.1 USEFUL LEMMAS

Lemma a.1. For two arbitrary vectors a,b € R, the inner product can be expressed as:

1
(a,b) = 5 (llall* + Ib]* = fla = ]%) .

Proof. Expand ||a — b||%:
Hafb”2 (a — b,a — b)
= <a7a> - <a7 b> =+ <b7 b>
= [lall® + [b]l* — 2(a, b).

Rearranging this gives (a,b) = 3 (|[al|* + [|b]|*> — [|a — b]|?). O
Lemma a.2. For vectors x; € Rd, i=1,...,n:
> k| = nZ [EAR fZZ i = a5
k=1 i=1 j=1
JFi
Proof. We first prove the following auxiliary identity: For vectors 1, ..., x, € R%:
2
ZZH%—%H —2nZIkaII Z
=1 j=1 k=1

SOl = 305 (el — 2 i ) + s )

i=1 j=1 i=1 j=1
n n n n n n
2 2
=2 2wl 3 P =230 Y i)
i=1 j=1 i=1 j=1 i=1 j=1

=3 (lein) A D gl _2<in723§j>
j=1 \i=1 i=1 \j=1 i=1  j=1
n n n 2
=Y el + 0 gl = 2>
i=1 j=1 k=1

n
=20y fa]® -
k=1

Note that when i = j, ||z; — 2| = ||z; — z]|* = ||0]|> = 0.
Therefore, the sum > 7 377, ||l — 5 |* can be split based on whether i = j or i # j:

n

ZZIIM—%HQ*ZZIIL LR +Z”$z_l'z” ZZII%—%H2+0

i=1 j=1 i=1 j=1 i=1 j=1
J#i J#i
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So, Yoy >y i — ;1> = S0 2y || — a4]|%. Thus, the auxiliary identity can be rewrit-
J#i

ten as:

n n n 2
> llei—ail” —Z”ZH%” 2|2
k=1

|
=1 j=1
J#i

Rearranging this equation to solve for ||>_7_, zx HQ:

2 n n n
2 2
=2y lzl® =D 0D Nl —
k=1

i=1 j=1
J#i

Dividing both sides by 2 yields the lemma:

—nZIImkH - *ZZII% z;]”

n

DL

k=1 i=1 j=1
J#
O
Lemma a.3. Forvectorsz; €R% i=1,... n:
2 n
<03l
i=1
A special case for two vectors a,b € R%:
lla +0]1* < 2(/lall* + [1B]).
. . 2
Proof. This lemma is a corollary of Lemma | since 130, ZJ ! |lei — ;]| > 0. O

Note: This lemma is very useful for "extracting the summation symbol" in a norm.

Lemma a.4 (Descent Lemma). For an L-smooth function F : R* — R, for any x,y € R%:

Fly) < Fla) + (VF(),y — ) + ¢y — >

Proof. By the Fundamental Theorem of Calculus:
1
Fly) = Fa) = [ (VP(a+ 7y = o).y o)
Adding and subtracting (VF'(z),y — ):
1
F(y)— F(z) = / (VF(x+71(y —x)) = VF(x)+ VF(x),y — z)dr
0
1 1
= / (VF(z),y — z)dr + / (VF(x+71(y —2)) — VF(x),y — z)dr
0 0

= (VF(z),y —z) + /0 (VF(x+71(y —x)) — VF(x),y — z)dr.
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Using Cauchy-Schwarz inequality and L-smoothness (L-gradient Lipschitz property, which states
IVF(a) = VE(®)|| < Llla — bl)):

/0 (VF(z +7(y — 2)) - VF(x),y — a)dr < / IVF( + r(y — 2)) — VF@)| |y  zlldr
< / Ll + 7y — 2)) — 2|lly - zlldr
1
- / Llir(y - 2)ly — lldr
0
:/ Lt|y — x|/*dr
0

1
~Lly - al}* | rdr
0
210 1
=Llly—z|?|=| ==|y—=z|>
ly—al? || = Fl—al
Therefore,

Fly) ~ F(x) < (VF(@),y — ) + ¢y~ >

which implies the statement of the lemma:
L
Fy) < F(x) + (VF(@),y = 2) + Sy — 2l

Application to algorithm analysis: This lemma is frequently applied in the analysis of iterative
optimization algorithms. For an algorithm with an update rule of the form w*! = w? — nu?, where
w? is the model at iteration ¢, u’ is the update direction (possibly stochastic), and 7 is the step size,
we can set z = w' and y = w't!. Then y — x = w't! — w! = —nu'. Substituting these into the
lemma:

L
F(w™) < F(w') + (VF(w'), —nu’) + Sl = nu||?
t+1 t ty ot L772 2
Fw™) < F(w') =n(VF ("), u’) + —=lu’]".

If u! involves randomness (e.g., from stochastic gradients or client sampling), we typically take the
total expectation E[-] over all sources of randomness:

t+1 t ty ot Ly? )2
E[F(w™)] < E[F(w)] = nE[(VEF(w"), u’)] + ——Elu[|".

This inequality then forms the basis for analyzing the expected decrease in the objective function per
iteration. O

Lemma a.5 ((Reddi et al.l [2021)), Model Drift from Local Steps). For local learning rate which
satisfying 1 < g1, the local model difference after k (Vk € {0,1,..., K —1}) steps local updates
satisfies

1 n
- Y Ellwi® — wt|?] < 5Kw7 (0 + 6K¢?) + 30K n7E[|VE (w')||?). (a.1)
i=1

Proof. The proof of Lemmala.5]is exactly same as the proof of Lemma 3 in (Reddi et al} 2021). [

Lemma a.6 (Cross-Iteration Gradient Error Independence). Let 67 = V fi(w* "k ;5,’:’“(5)) -
VF, k(ws_“f ) denote the stochastic error of the gradient for client k’s contribution at server it-
eration s. The gradient is computed by client k using model w*~"* and a data sample E,':k(s). This

specific sample f,':’“(s) was used by client k to generate the gradient that was received and cached by
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the server at its iteration Ky (s), where s — 7}, < Iik( ) < s. The sample fk ) was drawn fresh by
client k at the time of its local computation on w®™ .

Under Assumption 3| (Unbiased Stochastic Gradients), for any two distinct server iterations s1 # Sa,
the expected inner product of the sum of these errors is zero:

E[(07,07)] =0 (Vi,j € [n])

Proof. Without loss of generality, assume s; < s3. Let F5,_1 be the o-algebra generated by

all information available up to and including server iteration sy — 1. By definition, w®* =" " and

Ki(s1)

the sample £ used to compute §;* are contained within this information set. Thus, ;' is

Fs,—1-measurable.

The sample §;j (#2) i3 drawn fresh by client j for its local computation on model w™""" ., This sample

draw is independent of the history F5,_; (conditional on W ). By Assumption (3| (Unbiased

So—T,

Stochastic Gradients), for a given model w i , the gradient computed using the fresh sample

6’{1‘(52)

g is unbiased:

2 Kj(s So—T52 So—T;
EKM[WJ( e w2 = VE (w )

. . . —ro2
Therefore, the conditional expectation of 5;2 given w27 is:

52

Esﬁj<sz>[5;2|w82”;2]:Egmm[ij(w””;z;ff”'(‘”))lwsg - VEwT) =0

Now consider the conditional expectation of 552 with respect to F,,_1. By the tower property (law of

total expectation), and noting that given w® -7 , the randomness of f w3 (52) 4 independent of other

information in Fs, _1:

L6 1 Fop1] = B [0 0", Fop i) Foa |

o

= E[0|Fs, 1]
=0

Next, we use the law of total expectation to evaluate E[(0;", 7%)]:

E[(07", 07%)) = E [E[(6*, 632) | Fap 1]

i Vg t 7]

Since 5,?1 is Fs,_1-measurable:

E[(6;*,07%)] = E[(07" E[07*| Fay1])] = E[(57",0)] =0

1 77
This holds for all pairs of clients (i,j) when s1 < s2. A symmetric argument applies if so < 7.
Therefore, when s1 # s, all cross-terms E[(5;", §7*)] are zero. Consequently,

E[(6:,652)] =0 when sy # so

(]

This completes the proof. O
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B.2 MSE CONVERGENCE CONTROL AND THE OPTIMAL LEARNING RATE

Theorem a.1 (MSE controls the AFL convergence). By summing the inequality in the Descent
Lemmala4|over T iterations and rearranging terms, we derive the following bound. This inequality
bounds the average squared norm of the true gradient, a standard measure of convergence for
non-convex objectives, by terms including the Mean Squared Error (MSE) of our gradient estimates
(constants y1,7v2 > 0):

F(uw®) — E[F(w” 1 —
7ZE||VF ||2 71 (F(w )Tn[ (w )])_"_7277 T;EHUt—VF(wt)H% (a.2)

MSE}

Proof. We start from the expected Descent Lemma (Lemmaa.4 applied to w*! = w! — nut and
taking expectation):

E[F(w'™)] < E[F(w')] = nE[VF(w'),u")] + LTUEWHQ (a.3)
Rearranging[a.3] we get:
NE[(VF(w'), u")] < E[F(w')] — E[F(w"™)] + LTWEWH2 (a.4)

We relate the inner product term to |V F(w?)||? and MSE; = E|[u! — VF (w!)||2. Consider the term
(VF(wh),ut):

(VE(w'),u'y = (VF(w"), VF(w') + u' — VF(w'))
= [VFw)|? + (VF(w'),u' = VF(u'"))
Taking expectation:
E(VF(w'),u")] = E[|VF(w")|*] + E{VF (w), u’ = VF(w"))]

Using Young’s inequality (a, b) > —|al|* — 5|b||? for the second term (by negating it: —(a, b) <
2
sllall® + 3[1611):

EVE(w'), u' ~ VEw)] > —EIVF@")?] - SE[Ju’ ~ VF(u')|]

So,

t t t 2 1 t\ (12 1 1 t\ (|12 1
E(VE(w),u’)] 2 E[[VE()"] = SE[IVE()I"] = 5MSE: = SE[[VE(w)[7] — ;MSE;
Substitute this back into [a.4}

2
o (FENVF @O - GMSE) < EF(w)] - ElF( )] + 57-Elu|?

gE[IIVF(wt)IIQ] < E[F(w")] - E[F(w'™ )] + MSEt + 7EH ‘I (a.5)

We bound E|[u!||? using [|a + b]|? < 2||a||? + 2[|b]|* (Lemmala.3):
Elluf|? = E||lu’ =V F(w')+VEF(w"||* < 2E|u’ —VF(w)||*+2E||VF (w)||* = 2MSE,+2E||V F (w")]?
Substitute this into[a.3t

TE[VF ()] < EIF ()] ~ E[F(w' )] + TMSE, + “- (2MSE, + 28] VF(u!)
— E[F(w")] ~ E[F (™)) + (3 + Ln®) MSEq + Ln*El|VF (u')

Rearranging terms to isolate E[|VF (w?)]?]:

(3 — Lo?) ENIVF @] < E[F ()] - E[F ()] +7 (; + Ln) MSE;
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Assume the step size 1) is chosen such thatn < ;-. Then § — Ln > 1 — 1 = 1,80, 1 — Ln? =
n(3—Ln)>1 Also, 2 +Ln<i+1i=3 Thus
3
TENIVF(")]?) < E[F (")) - E[F(w"*))] + JMSE,
Multiplying by 7
4
E[|VE(w")]?] < 5( [F(w")] = E[F(w'™)]) + 31 - MSE,
Summing from¢ =0to T — 1:
T—1 = T-1
E[IVF(w")|?] < = > (E[F(w")] — E[F(w™)]) +3n )  MSE,
t=0 =0 t=0
4 T—1
= T—I(E[F(wo)] —E[F(wh)]) + 37 Z MSE; (telescoping sum)
t=0
Dividing by T*:
T—
A(E[F(w")] — E[F(wT)])
TZ (IVF(w")|?] < T +377 ZMSEt
t=0
This matches the desired form with v; = 4 and 2 = 3, under the condition < +=. Note that

F(wT) is often replaced by F* = min,, F(w) since F(w’) > F*, which makes the bound looser
but independent of F(w”). The term E[F(w®)] — E[F(wT)] is used for a finite T. If F(wT) is
simply written as F'(w’'), and expectation is dropped for F'(w®) (if w° is deterministic), then we
have:

W°) — wT)))
fZEHVF j2 < 2D ZEF@D) | g ZEHu—VF N2

MSE;

The constants 1, 2 might differ based on the specific choices made in applying Young’s inequality
(underlined part) or in setting learning rate. Here we only give the existence proof of 1, y2 by taking
certain values. O

Theorem a.2 (Optimal Learning Rate Scaling for ACE). The optimal learning rate n* that minimizes
the convergence upper bound for ACE is proportional to \/n/T.

Proof. Our goal is to select a learning rate 7 that minimizes the convergence rate’s upper bound from
Theorem [Tt

WA =
1 t t\||2
Rn) =T+ 2n<TZE|u —VF<w>|2>

t=0

MSE

It is worth noting that the MSE term can be a function of 7. From our MSE decomposition El, the
error consists of Term A (Noise), Term B (Bias), and Term C (Delay).
For ACE,

* (Appendix D The upper bound of Sampling Noise (Term A) is E||A||3 < Caly

— n

* (Appendix [B.4) Term B is zero.

* (Appendix E B.5)) As shown i 1n the analysis of model drift D}, the Delay Error contains a
component that scales with 7?:

L2 L2 2
E|[Term C||? < — E D! < n® ~Tax <U+...>
n n n
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Thus, the full upper bound R(n) contains terms proportional to 1/, 1, and n3:

1 o2 L2705 02
R(U)ST??+n(n>+n3<n +> (a.6)

For the algorithm to converge, the left-hand side of Bound [2| must approach zero as T' — oo.
Consequently, its upper bound, R (), must also approach zero. For R(n) — 0, the learning rate 7
must be a vanishing quantity, i.e., n(T") — 0 as T' — oo. If 1 were a constant, the terms proportional
to 7 and 17 would prevent the bound from converging to zero.

Since we have established that 1 must be a small quantity for large 7', higher-order terms in 17 become
negligible. Specifically, the 7 term diminishes much faster than the 1 term. Therefore, for the
purpose of finding the optimal scaling rate of the learning rate, the behavior of R(n) is dominated by
the first two terms. The problem simplifies to minimizing the dominant part of the bound:

L n
lom < — - 7
Raom(n) S Tn +o (a.7)

To find the optimal 7 that minimizes this simplified expression, we take the derivative with respect to
7 and set it to zero, which yields:

1T
(n*)? o 1//n = 7' x \/g (a.8)

This demonstrates that while the exact value of the optimal learning rate depends on multiple constants,
its scaling with respect to n and 7" is robustly determined by balancing the two dominant terms in

the convergence bound. This justifies our choice of 1 proportional to y/n/T to achieve the rate in
Theorem 11 O

10
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B.3 THEOREM ON SAMPLING NOISE (TERM A)

Theorem a.3 (Sampling Noise Term A = u’ — @'). Let u' be the global update at server iteration t,
and u' = = Ey¢y [u'|H'] be its expectation conditional on all information H' (including stale models
used for gradlent computation) except the fresh data samples {£} used to compute the gradients
that form ut. Under Assumptions Iand l 4l the expected squared norm of the sampling noise term
A = ut — @t is bounded as follows for different asynchronous algorithms:

1. Vanilla ASGD(Mishchenko et al.| 2022) & Delay-adaptive ASGD(Koloskova et al., 2022):

If the server update ut = V fﬁ( Tie ; ft ) is based on the stochastic gradient from a
single client j; (performing K = 1 local step, local learning rate m; = 1 effectively for the
gradient itself), then

E[| A3 < o

2. FedBuff(Nguyen et al.| 2022): If the server update u' = L Y iem, Al where A} =
m ZkK:_Ol gf i, 18 derived from K local SGD steps with local learning rate m; by clients in a

t
set My of m clients, and ngc = Vfi(wﬁ” ; Efk) is the stochastic gradient (computed on

local model wf;ﬁ which is based on global model wtTi ), then

Kn?o?
a3 < L7

3. CA’FL(Wang et al., 2024b) ( Cache-Aided Asynchronous Federated Learning): If the
server update is v' = h' + =57 o (Al — hl), where Al =1 St 9i 1, is the model
difference from client i € S; ( a set of m cllents) after K local SGD steps with learning rate
m, and ht, h are cached values. The sampling noise A = v' —vt where vt = Eer ) [v'|H!]
is bounded by:

Kn20.2
Ef A7 < ——

(This arises because A = =57, s (Al — [At|’Ht])

4. ACE (Ours): If the server update u' = L 3"\ V f; (w745 €5 is an average of the latest
available (potentially stale) stochastic gradients from all n clients (each performing K =1
step for the gradient computation, with m; = 1 for the gradient itself), then

2

o
E||lAl2 < =—
<2

Proof. The general structure for Term A is A = u’ — u'. We need to calculate E|| A||2.

1. Vanilla ASGD & Delay-adaptive ASGD:
Here, the update is u* = V f;, (w'™ 7¢; ¢!,) from a single client j;. The expected update,
conditioned on the stale model w'~ 7 (which is in H*), is @ = VF}, (wt_T;t ). Thus, the
sampling noise is A = V f;, (wt”;t ;&) =V, (wt”;t ). Then, its expected squared norm
is:
E[lAl; = E [IIijt (W' &,) = VEF (w' ™) |3
By Assumption E] (Bounded Sampling Noise), this is directly bounded by o2.

2. FedBuff:
The update is u' = =3\ Af IS e, S 9 - The expected update

t
e =t M K-1 )
is u' = L), 2k—o VEi(w; "

t t
S ent, S (gl — VEwl 7). Let 8ty = g, — VE,(w!;™). By Assumption[3

). The sampling noise is A = u! —u' =

11
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(Unbiased Stochastic Gradients), E[5} k|w§;ﬁ ] = 0. We have:

. K-1 2
¢
ped) DR DR

i€EMy k=0

E|lAI3 =E

2
Expanding the square:

n
EflAll3 = - 5E > Z AN R R ()
i€My k=0 (i,k)#(5,0)
i,JEMy
The samples 5; & used to compute g; & are drawn independently for each client 7 and each
local step k. Therefore, for (i,k) # (j,1), the terms &}, and o’ are (conditionally)

independent given the respective models they were computed on. Since E[df} RHE =0
(where H}, includes w:? ), the expectation of the cross terms <5f k> 6; 0 is zero. Specifically,
E[(0} 1,0 )] = E[E[(0} 1, 0" ;)| H},]] where Hj,; contains w; kTi and w L7 i #£ jor

i = j but k # I (implying different samples &} , and 8D then E[0 ,k\"H ] and E[0% ,[H},]
are zero, making the cross term zero. Thus

Ui
ElAl=-5 > ZEII5 I3

ZeMt k=0
2 K—-1
< % Z Z o (by Assumption[d))
€M, k=0
2 2
771 Knjo
= K-
m?2 (m K%)= m
3. CA’FL:
The global update is v* = h' + L 3" s, (A} — hf). The randomness from the current

set of samples {¢f .} for i € S; comes from At mY ey g; - The cached terms

h' and h! are considered fixed with respect to the expectation over these current fresh

samples (i.e., they are in H*). Let A = v! — v’. Then vf = Efet yies, VR = 1" +
t—rt

% Ziest(E{éﬁyk}[AﬂHq - hﬁ) Let A§ = E{&Z)k}[AﬂHt] =m Zk:o VFz‘(w@k ! ) So,

A=of —vt = L3 o (Al — Al). This simpliﬁes to:

Zmz (g — VE(w!)).

’LGS’f k=0
This expression for A is identical in form to that of FedBuff, with S; corresponding to M
and m = |S¢|. Thus, the subsequent steps of the proof are the same as for FedBuff, yielding:

Kn?o?
el < K17
4. ACE:
Here u! = %Z? 1Vfl-( wiT ) and @ = 137 VE(w'"T). So, A =
S (Vi) — ( =), Let 6} = Vfi(w! =75 €%) — VF(w!~™). By

Assumption E[o! |7—lt] =0. The samples ¢ are drawn independently by each client ¢ for
its respective gradient computation, conditional on H? (which includes all Wt ).

2
171
-\ st
L |
ffEZM%+Z£ﬁ

i#g

E[lAI3 = E

12
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For i # j, 8! and (5;5- are (conditionally) independent given H! because the samples
&' and &7 are drawn by different clients independently. Thus, E[(5},0%)|[H!] =

% i Yj

(E[07[H"], E[6%|H"]) = (0,0) = 0. So the cross terms vanish:

1 n
EllAIE = = > EldI3
i=1

1 n
< 3 Z o?  (by Assumption[d])
i=1

0_2

1 2
o) =

B.4 THEOREM ON BIAS ERROR (TERM B)

Theorem a.4 (Bias Error Term B = u' — VF (w!,.)). Let u' be the global update at server iteration
t, u' = Eqgy[u’|H' its conditional expectation, and VF(w!,,) = > VE(w'™™). The

expected squared norm of the bias error term B is bounded as follows 1}‘01’ different asynchronous
algorithms, under relevant assumptions (primarily 2} and bounded data heterogeneity (BDH)

assumption where applicable):

1. Vanilla ASGD(Mishchenko et al.| 2022) & Delay-Adaptive ASGD(Koloskova et al.,

2022) & FedBuff(Nguyen et al.| 2022): If the server update u' = -3 .\ Al
where Al is derived from K > 1 local SGD steps with local learning rate . Then
==Y e, M ZkK:_Ol VFl(wf;T) The bias B = u" — VF(w!,,) arises from both
multiple local steps (K > 1) and partial client participation (m < n). A representative
bound (cf. ACE paper’s analysis of FedBuff) is:

E|B|* < <(02+KC2)+ > EIVF')
1EMy

|§> +(n—m) <C2 +y EIIVF(w”f)II%>

i=1

The term reflects client drift due to local steps and bias due to averaging over a subset m of
clients.

2. CA’FL(Wang et al., 2024b): The server update is v = h* + L Y ies,(Af = hi), leading

m
to vt = h' + L3 (Al — hl). The bias B = vt — VF(wl,,) is reduced by the
calibration mechanism but still affected by local steps and imperfect calibration if m < n.
A representative bound (cf. ACE paper’s analysis of CA2FL) is:

EIBI? S (1+(1-22) <<o2 + KC?) + ZEIIVF(w”?)H%)
i=1

3. ACE (Ours): The server update u' = £ 3" | V(w7 €50,
Which leads to
E|l B3 = 0.

Proof. The general structure for Term B is B = u' — VF(w!,,.). We need to calculate E|| B||3.

1. Vanilla ASGD & Delay-Adaptive ASGD & FedBuff:
Deviation of the sum of true local gradients over K steps from K times the initial true local

13
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gradient, averaged over participating clients.
B_u _VF( stale)

:i 3 ZVF —lzn:vm(wt*n‘)
mK iEMy k=0 n i=1
1 ) t—rt 1 t—7}
— (== VE ™) == 3 VE W)
<m ZGZMf n igz./\/lt
Part 1 Part 2
5 (52 vty - wenw)
K iEM¢ \ k=0

Eaift

By Lemma[a.3] E|| B||3 < 3E||Part 1|3 + 3E|[Part 2||2 + 3E||Egir||3

For the partial participation bias Part 1 and 2, the client subset S to determine the sum is

Mt or [n]//\/lt
E| Y VE@ ™) =E|Y_ VE@ ™)=Y VF@ ")+ VFw )3
i€S i€S i€S i€S
< 2B Y VE W' ™) = Y VFw! )3
i€S €S
Can be determined by BDH Assumption and Lemma
+2E| Y VF(w' )3 (By Lemmafa3)
€S
<2|8]) ¢ +28) E|VFw )3
i€S €S
Therefore,

1 1\? gt
cipunig <2 (L - 1) <m2<2+m S EfvEQ ,.,)”3>

€M,y

2 e
E|[Part 2|3 < | (- m)?¢? + (n—m) Y E[VF(w' )3
ig M,

For the drift error gy,

Earitt = —7 K > <Z VFi(w; ") = KVF;(w' ))

iEM;y

Taking its squared norm and expectation:

2
EllEainll5 = |mK > Z (VF — VF;(w' ))
1EM;: k=0 2
1 K—1 . 2
<5 Z E Z (VFL(wf;T ) — VE(w'™ ")) (by Lemmala.3]for outer sum)
iEM,y k=0 2
1 K-
< _ (o t=TEY |2 :
< Z Z E|VF;(w ) VF;(w*~")||3 (by Lemmala.3|for inner sum)
€My k=0
L? _rt t .
< mi Z ||wfk " —w' T3 (by L-smoothness Assumption 2)
eM,

14
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By Lemma

Ellw; o — w'™™ > < 5K5(0? + 6K¢?) + 30K *n?E[||VF (w' ™™ )|

Merging all the pieces. For simplicity of notation, the terms in the partial participation bias
involve E[||VF(-)||? are merged in an (weighted) average sense:

2) +(n—m) <42 +y EIIVF(w”f)H%)

=1

EllB|* < ((02 +KC)+ Y EIVF(w' ™)
i€EMy

2. CA®FL: The server update is o' = h' + =37 (Al — hl), leading to v = h +

Ly ies, (Aﬁ — ht). The model delay of the non-participating client 7 at server iteration ¢ is

denoted as pﬁ, since ( is used for denoting the BDH assumption bound.

B= VF( Qtale)
I Z Z [VEi(w — VE;(w' )] (Denoted as X)
zGSt k=0
— = —= = p1 (o t— P
" <nK mK) g; ’;) [VEi(w — VE;(w' )] (Denoted as X»)

—|— — Z Z [VF;(w!, p‘ VFi(wt*pz)] (Denoted as X3)
l¢$t k=0

The core of bounding E|| B||? involves:

(a) Using || X1 + X2 + X3||* < 3([| X1]]? + || X2]|? + | X3]|?), where X1, X2, X3 are the
three main summations in B.

(b) For each component, say X1 = == > cq, St IVE(wT) — VE (wf?f)]

2
_ ot
E||X1||2 > Z Z [VE;(w t=ri VFi(’wlt-)k )
ZESf k=0
K—1 ) 2
< mK2 Z E Z 1) - VFi(wf;cTi )] (by Lemmafor outer sum)
i€St k=0
1 K-1
- t—rt t—‘rit 2 .
= mK Z Z EIVE,(w'™™) = VFi(w; " )|5 (by Lemmafa3|for inner sum)
i€S; k=0
S Z Eflw™ — IUZ e % (by L-smoothness Assumption [2)
zeSt k=0

¢) By Lemmala.5|(adapting notation: ws& = o'~ or w! P
y pling

Efl|wit} — w*™|*] < 5Knf (0% + 6K¢?) + 30K, E[IIVF(w“a“)IIQ]

Note that
1 11\’ 1
— -m - m +|——=) m-m+—-(m—n)-(m—n)
m2 =~ ~~ m n m2
|S¢|  Sum of |S;| components
Coefficient
m
=14+2(1-—)2
-2

15
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For simplicity of notation, the terms involve E[||V F'(-)||? are merged in an (weighted)
average sense (we treat two sources of delay 7, p equivalently):

1 t
EIBI? S (1+ (1= ) (02 + KC*) + — > E|VF(w' ™)}

1E€ESy

1 1\? :
+m(——=) 3 EVF(w )3

2
1ES,

2
n—m _,t
+ U S R w3

¢S,
m TSP Ty
S(rea-m2) (w? K+ Y EVF@ >||§>
i=1
3. ACE: The server update u’ = 1 S 'V f; (w70 €5) (t — 7} < wy <),
Thus, @ = 1 327" | VF;(w'~""). Therefore:

1 -t 1 - —7!
B = VF( stale):ﬁZVFi(wt 1)*%ZVFZ(’wt 1)
2 i=1

Which leads to
2
E||B||2 = 0.

B.5 THEOREM ON DELAY ERROR (TERM C)

Theorem a.5 (Delay Error Term C = VF(wl,.) — VF(w"))). Let w' be the global model at

server iteration t, and wt,,, = {w'™ & }" 1 be the collection of stale models used by clients, where
7! is the information delay for client i. The expected squared norm of the delay error term C'is
E||C'||2 =E|VF(wl,,) — VF(w )H2 UnderAssumptzonI(L Smoothness), this can be bounded in

terms of model drift Dt = E|lw'™" — w!|2:

n

%Z(Vﬂ-(w ™) — VE(w

=1

E|ICI3 =E

L2
E F t— ‘r };\2 t\]12 < = Dt
Z vV H=VE W)z = — Z:: i

The model drift D! = E|| ES P nu||3 (where u® is the server update at step s) is bounded as

follows for different asynchronous algorlthms, under relevant assumptions (including Assumption 3]
for Tyax, and bounded data heterogeneity (? where applicable):

1. Vanilla ASGD(Mishchenko et al., 2022), Delay-Adaptive ASGD(Koloskova et al.| 12022),
FedBuff(Nguyen et al.} 2022): If the server update u® is formed from a subset Mz of m < n
clients, potentially with K > 1 local steps and local learning rate n;:

Dt<t22K02 l E|VE( K202
i~ T m + Z H stale)H2 ( m) C

s’ t— T
The term (n — m)K?2(? highlights drift arising from client heterogeneity when m < n.

2. CA’FL(Wang et al., 2024b): If the server update u® is from a subset M of m clients,
calibrated using all-client history, with K > 1 local steps and local learning rate n;:

m Ko? e —
D Srinnf(1+ (1 - 2)2) o + E[[VF (w3

I
s'=t ‘ri

Calibration aims to remove the direct (? term from partial participation bias found in
FedBuff’s drift.
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3. ACE(Ours): If the server update u® averages information from all n clients (m = n), with
K =1 effective local step for the gradient:

2 t—1

g s’
Df 5 Tith ? + Z EHVF(wstale)”%

J—p_ ot
s'=t—r;

Here, the (2 term from partial participation is absent because u® in ACEaverages informa-
tion from all n clients.

Note: The core idea is that the structure of u® (full vs. partial aggregation, number of local steps K )
influences the terms within D}, and thus Term C.

Proof. The general structure for Term C is C' = VF(w!,,.) — VF (w'). We need to calculate E||C||3,
w.r.t. the original definition or w.r.t. the model drift D!.

1. Vanilla ASGD & Delay Adaptive ASGD & FedBuff

1
The update is u’ = - Zze/\/lt =1 ZzeM Zk o 9% ,. Note that by Lemma | the
sum of the cross-iteration gradlent error is zero. The model drift can be calculated as:

2

t—1
D! =Efw' —w' | =E || > (! —w)
9:t—‘rtl
r 2
=1 K-1
l
=Bl Z m g
S:t—TtL jEMs k=0
r 2
=1 1 Kl ; s—13.k s—1i.k
=El|n > ~ nl(gg_ijkaFj(wj I + VEF(w; k)
s=t—T/ JEMs k=0
. 2
t—1 1 K—1 i
1 s—T75,
=2E |||n — N'(gl_ro i = VEj(w; 7))
9=t—7't] jEMS k=0
——
Expand by Lemmala.6]
2
ek
vl S LS S wvn
s=t— ‘r JGM k=0
t—1 K—1 2
2rIKn*n? 5 21in®n? < — s—73k
R A el W= Z > VE(w; )
s=t—7} JEM;s k=0
Note that we have
n K-1 n [|K-1 2 K—1 K—1
33 vro| =3[ wron| e (5 v, 5 vnn)
i=1 k=0 =1 || k=0 i#j \ k=0 k=0
n K—1 2 1 K-1 K—1 2
t.k t.k t,k
S| S vr| 15[ vRwi - Y vrwh
i=1 || k=0 i#j || k=0 k=0

Where the second equation, || 7, 2| = 337, n [l * — 52 iy i — 2%, holds due
to Lemma And (a,b) = 3 (||a]|* + ||b]|* — ||a — b]|?), holds due to Lemma
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For simplicity, we assume a uniform partial participation of the clients, i.e. P{i € M;} =
P{i,j € M} = mm=L)

n’ n(n—1) °
N ? n K—1 2
> Z VE; (w0 >3 Pli e Mi}VE(wl")
JEM, k=0 i=1 k=0
n K-1 — K—1
=Y Plie My} ) +ZP{@]€M}<ZVF tk,ZVFj(w?k)>
=1 = i#£] k=0 k=0
n [|K—1 2 K- K-1
_m t,k m(m )
- Z B+ Uy Z ,Z VEj(w
n — n(n—l T\ =
2 n mim K— K-1 2
Fyw'™)| - 4 Fi(
Z Zv 2n(n—1§ kz k:OV]
i —m) 53 et i
— V Ey(wi") VE;(w
ZIEDR PR STy >
Thus, by Lemmala.3]:
2
E Z Z VF s 75 k:
JEM, k=0
2 2
Z ZVF s—7; k m(m—l)E zn:K_lvF( S—T. k)
n(n—1) nin —1) ; I
=1 = j=1 k=0
< TZ((Z:U) 150 K07 (02 + 6K(?) + (90K Ln? +3K2) S E[|VF (™™ )||?] + 3nK*¢?
j=1
1 L Kl . 2
n—l ZE wj )7ZVFJ(JT7)
k=0 k=0
2 -1) s
%KQZEWFW-MHQ] (Lemma i)
j=1
TZEZ: )) 150K 02 (0% + 6KC2) + (00K L2} + 3K2) S E[|VF(w*™)[?] + 3nk¢?
j=1
2m(m — 1)KL2 2 s—75.k s—1l k9 .
— V3 Efflw; —w; ] (L-smoothness, Assumption [2))
j=1

2mm = DI S g =i 2

n—1 ,
j=1
3m(n—m)  2nm(m —1) 319 9, 9 2 472, 2 N 2
< K°L K K*L K=°)— E[||VF(w
[n(n—l) T | N (0% + 6K (%) + (30K L} + n; [IVEF(w*=7)|]
3m(n B m) K2<-27
n—1

18
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Take back to D! = E [Hwt — T 2] For the simplicity of notations, the terms are

merged in an (weighted) average sense,

. t 2 9 t—1 _ _
tiT{HQ} < 217 Kn U 27’ n*n? Z 3m(n —m) n 2nm(m — 1)
m m? —. n—1 n—1

D! =E ||w' —w

il

: {5K3L2m2(a2 +6KC?) + (30K L2 + K2)E [||VF(w3_Tf )

n 3m(n—m)K2<2}
n—1

rtn2n? Ko? 1 &= .
i | ==+ — Y EIVE(wil3 + (n—m)K*C

=4
s'=t 7—7‘,

2. CA’FL:
The server update is v* = hf+ = 37, (Al —hl), leadingto v? = hi4+ L3, o (AL—hi).
The model delay of the non-participating cllent 1 at server iteration t is denoted as pt, since
¢ is used for denoting the BDH assumption bound.

L TR L S (A )

¢S, i€S, i€S,
S (G ]
z&S €St m

Take into the definition of E||C||? = E||VF (w!,.) — VF(w")|?,

. Y IVE(w') - VF (w7 + ( - m) Y [VE(w') - VF;(w!'=*0)]

El —
m - 4
i€S 1€S

+ % Z [VE;(w') — VE;(w'™#")]

¢S,
3 ¢ 3 ¢
2 [Z V) - VE@ |+ 2 | S R - V@)
m :
1€St S
+ 20 | ST VR W) - VR
n2
¢St
2 2

t—1

t—1
eIy Y wrt | |+ 2 e | S S et )
s=t—1}

2
m n
1€Sy 1€S ||s=t—p?

2

3 _ L2 t—1
+ (n m) E Z Z (ws+1 _ ws)
iZ St t—p!

n2
iE St ||s=t—p}
Note that

1 (n —m)? n—m my 2
- AL n=—m)=1+2 (1 — 7) .
m \n}/—i— n2m me n? (n=m) + n

~~ | St |

Coefficient

Similar to the above proof for the partial participation methods (Vanilla ASGD & Delay-
Adaptive ASGD & FedBuff); and note that by Lemmala.6] the sum of the cross-iteration
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gradient error is zero:

2
t—1

E Z (ws+1 _ ws) —E {Hwt _ ,wtfer2:|

— i
s=t—T/

t 1
< 27’}[(77277[202 N 27! 77 771 l

Z ( s ‘r]'?,k:)
s k=

m
s=t— 'r,
K—1 2
11 =iy | 1 s—plk
+<n—m>VF( )nz VF;(w ) ]
Jj¢Ss k=0
Similarly,
2
t—1 .
E Z (wt — w®) :E{Hwtfwt*pi' 2}
s=t—p!
_ 2piKp? 2ptn2n? 24 K17 otk
pz nn 2+ /’1772771 Z E Z Z 7VF7,(wZ j )
m m : m
s:tfpt. JjESs k=0
2
+<1—1>VF Jmek ) 3 ZVF et ]
n m '
j¢Ss k=0

Merging all the pieces. For the simplicity of notations, the terms are merged in an (weighted)
average sense (we treat two sources of delay 7, p equivalently):

Ko?

m
D! < i1+ (1 - )2)

stale ) | |

’t‘r

3. ACE (Ours): For E||w! — wi=Ti ||2, it can be decomposed as a telescoping sum:

t—1 t—1
wt — wt—ri‘ _ Z (ws+1 _ ws) _ (_nus).
s=t—rf s=t—7}
t—1
Ellwt _ wt—ri‘HQ _ 772E Z u®
s=t—rt

i

Decompose u® = (u® — @) + @° and by Lemmala.3]

2 2 2
t—1 t—1 t—1
PE| Y (v —w)+at)|| <2’E| Y (v —w)|| +29°E|| > @’
s=t—r} s=t—T} s=t—r}
2 t—1 n

<E| Y S (VAW@TT,E) - VR )

2
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For term I: Let 6§ = V fi(w*™ ", &F) — VFy(w*™ ™).
2

+ > EQ e e

s17#82 i J
t—T1l<s1,82<t—1

2
t—1 n t—1

termI = E Z Zéf = Z E

ot gt
s=t—7} i=1 s=t—r}

n

P

i=1

By Lemmala.6] the sum of these cross-iteration gradient error is zero:

> e|(Sa 3o )| - T 33 el -

S17#82 =1 j=1 s1#s2 t=1 j=1
Therefore, by Lemma [a.3]
t—1 n t—1 n
S > DILTED WS
s=t—r} i=1 s=t—7} s=t—rf =1
<THZ —T’H,O’
For term 11:
t—1 n
ol S YRR <A By vRwe P
S:t—T. i=1 s=t— T
H,_/
7} terms

Therefore, merge term I and term II, we have

Eflw' — wtT

772 772 t—1
2 g2ﬁ(ﬁn02)+2ﬁ(n2¢; Z El|a*||?)

4t
s=t—1;

= E[jw’ —w'™ T

2 -
PPl (4 Y El@)?

s=t—rf
In ACE, @° = VF(w,.):

2 t—1
(o) ’
<ot (T Y EIVF@i

/I —4__~t
s'=t—r;

D! = E|jw" — wtTi
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C CONVERGENCE RATE OF ACE

C.1 PROOF OF THE RATE

Theorem 1 (Convergence Rate of ACE (Alg.[1)). Suppose Assumptions AI-A5 hold. By choosing a

step sizen < 3 Lr,m ACE achieves the following convergence rate:

2A ALy, 2 2L272 n?0?
LS v < 2 4 e 2Lt
T77 n n

where A = F(w®) — F*. Substituting 1 ~ \/% the RHS converges to 0 as T — oc.

Proof. Start from the Descent Lemma [a.4}
t+1 t N 2/
[P ()] — EIF(w')] < —nE(VF(u!).u!) + ZLEu| @9)

We analyze the two terms on the RHS separately to strictly handle the coefficients.
Term 1: The Inner Product. Using the property E¢[u'] = @', we have E(VF(w'),u') =
(VE(w'),u'). Using the identity —(a,b) = 3[la — b]|> — 3|la]|® — 3|/6/*:
_ n _
—n{VF(w'), ") = =5 [VF")]|* - 5 lat(® + IIVF(wt) —a'?
(Note: By taking the expectation first, the variance term E|lu? — !||?
the negative coefficient issue).

does not appear here, avoiding

Term:E|2: The Smoothness Term. Using the exact variance decomposition E||u?(|? = ||a'||? + E|ju’ —
at ||2

L772 L772 B L772 _
TEHUt”Q = THUtHQ + TE”Ut —u'?

Combine Term 1 and Term 2: Substituting these back into [a.9

2
ElF ()] ~ ElF(w)] < - JIVF@OP+ (5 - 1) ot

7 _ Ln? _
+ §||VF(U’t) —a'|* + TEHUt —a|?

Now, all error terms in the second line of the above inequality have positive coefficients, allowing
for valid upper bound substitutions:

* Noise Term: The coefficient is LTnz > 0. Using Theorem(EHu —at||? < o?/n):

L 2 L 2 2
lEHut _ atHQ < gna-

*The validity of this decomposition depends on the cross-term 2E(u’ — @', @") being zero. We prove this
using the Law of Iterated Expectations:

E[(u’ — @', a")] = Ege [(Ee[u’ — @’ | H'],a")]

=Eqt [(Eg[ut | 1] —ut,ut>] = Eg¢[(0,@")] = 0.

at

Here, we utilize the fact that @' is measurable with respect to the filtration ¢ (history), allowing it to be pulled
out of the inner conditional expectation.
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* Delay Term: The coefficient is > 0. For ACE, @’ = 1 3~ VF;(w'~™).

n 2

LY (VR - VR )

i=1

IVF(w') —a'|* =

1 & , 2> t
< 5 2 IVF) = VE@ TP < 55 3 ' - w T
=1 i=1

Substituting these bounds:

2
ElF (0] ~ ElF(u)] < - JEIVF)P + (5 - ”) )

Ln?0?
+—ZE||w — w2 4 ” (2.10)

t . .
For E|lw® — w!~"i ||?, it can be decomposed as a telescoping sum:

t—1 t—1

’lU f Z 5+1 s — (_nus).
s=t—rf s=t—r}
2
t—1
Ellw® — w' 2=n’E Z u’
s=t—7}
Decompose u*® = (u* — @) 4+ @* and by Lemmala.3]
2 2 2
t—1 t—1 t—1
PE| > (W —w)+a%)| <2’E| Y (w—at)| +29°E| Y @’
s=t—r} s=t—7} s=t—7}
2
2772 t—1

n? : Z Z(vf"(wkﬁ:f?) — VE;(w™7))

For term I: Let 6§ = V fi(w*™ " ,&F) — VFy(w®™ 7).

2
n t—1

t—1
term I = E Z Z&f = Z

s=t—r} i=1 s=t—rf

+ > EQ e e

81#£82 i J
t—T,L-tSsl,sQSt—l

By Lemmal(a.6] the sum of these cross-iteration gradient error is zero:

> E <i5f%i6§2> ZZZE (#5,85)] =

S1#82 i=1 j=1 s1#£s2 t=1 j=1
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Therefore, by Lemma

t—1 n 2 t—1 n t—1 n
term [ = E Z Z(S = Z E||Z5f||2ﬁ Z nZEH(Sf”Q
5:15,7-‘ i=1 5:1577'?f =1 Sztf’rf =1
Z = T no> < TmaxnUQ
For term II:
n t—1

Z ZVF’L <T Z E”iVFi(wsiT:) 2
i=1

s=t—r} i=1 s=t—7}
——

7} terms

< Tonax Z E||ZVF |12

S=1—Tmax
Therefore, merge term I and term II, we have
"72 772 t—1
it _
Ellw! — w7 | < ZE(Tfnaz) + 2ﬁ(n27f Z Ell@(]?)
s=t—r}

) _
t—rt 2 2 g =s||2
ilF <2 —+ E E

t

= E|lw' —w
s=t—T]

Substitute this back into the main inequality [a. 10| for E[F (w'*1)] — E[F(w?)]:

el ()] - ElF(w)] < - JEIVF@ + 225+ (5 - 1)

2 2
L? o? = .
+ 772—71 20 Tnax | — + Z E||a®|?
n n
S=t—Tmax
Tmax terms

n NIE Ln? 2 3 o’
*7E F Ta L max |~
TE[VE(wh) +( L+ L2 )n

Ln? 1
(5 - B 2P, ) mpEla

L . 2
Ty r) R+ (K5 4 1) & all)
2 2 n
The last step holds when (L;’ — 2+ L*p72,,) < 0. This means n(2L*r2,n? + Ln — 1) < 0.
Since n > 0, we need
fn) = 2L, + Ln =1 <0
The roots of f(n) =0aren; _ = %.
So0<n<n, = w
A looser but simpler condition is by decompsing —1/2 = —7 — 7 in L—Z 2+ L?n?72,, and assign
these two — 7 separately:

P72, —n/4<0 = 1< o7t

{L” 17/4<O:>77§ﬁ
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This leads to < 57— (assummg Tmax = 1).

If we apply a practical learning rate n = cy/n/T, then we require T > 4c?L?n72,,. This is an
implicit relationship between 7,,,x and T'. This relationship suggests that in practice, a sufficiently
large total number of server iterations 7' can mitigate the negative impact on convergence caused by a
delay Timax-

Go back to (simplified equation after dropping E||u!||? term):

ELF (™)) ~ E[F ()] < ~TEITF@) + (0 + L) -

Sumovert =0to 71 — 1:

’ﬂ

2

L o
— EIVEOI? + T+ L) -

ELP(u)] - F(u”) < - ;

l\D\S

H
I
=3

Denote F(w°) — E[F(w™)] as A.

’ﬂ

2
g

2,2
L 77 7-max)i
n

N3

L
eV Ew) <A+ Ty

“
i
=

Divide by Tn/2:
2A 2
ijmVF n2<—~umﬁaﬁnmm2

Take n = ¢y/n/T:
2 2A 2 2774 g
- § E[VF(w))|? < (LcW+2L c fmax)

n

2

T c\/n
_2A N cLo? N 262 L2 Tiax 02
cvnT  vnT T
A Lo? L2 Tax 02

< + +
vnl  /nT T

C.1.1 ALTERNATIVE CONVERGENCE ANALYSIS WITH EXPLICIT INDEPENDENCE

In the primary analysis (Appendix [C), we utilized the Law of Iterated Expectations to handle the
stochasticity of data sampling conditioned on the filtration of the model history. To address potential
theoretical concerns regarding the subtle statistical dependency between the current model trajectory
w? and the historical data samples embedded in the aggregated update u?, we provide an alternative
proof in this section.

This alternative analysis adopts a stricter "decomposition technique" (Wang et al.| [2024al). Instead
of evaluating errors relative to the current iterate w?, we anchor the analysis to the “oldest possible
model” currently influencing the system, denoted as w’~"m=x, By definition, all stochastic gradients
involved in the aggregation at iteration ¢ are computed using models generated after w!~™=2x was
fixed. This ensures that the specific data batches used for these gradients are statistically independent
of the reference point w?~"max, thereby eliminating correlation issues without relying on conditional
expectations.

It is worth noting that while this technique offers explicit independence, it treats intermediate updates
as model drift, leading to an accumulation of error terms scaling with 7,,,x. Consequently, this results
in a looser upper bound (with larger constant coefficients) compared to our primary proof. However,
it rigorously serves as a robustness check, confirming that the asymptotic convergence rate order of
ACE remains valid even under this framework.
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Proof. Let st := max(0,t — Tyax) be the delayed time index used for decoupling. Note that
t — st < Tyax for all . By the L-smoothness of F' and the update rule w'™! = w' — nut, we have
the descent inequality:

E[F(w™)] - E[F(w")] < —nE(VF(w'),u’) + LTWQEIWIIQ (a.12)

Step 1: Decomposition of the Inner Product. Since w? is coupled with the historical gradients in u?,

we introduce the delayed iterate w*" which is independent of the stochastic noise in u! (conditioned
on Fgt). We decompose the inner product as:

—E(VF(w'),ut) = —nE(VF(w* ), u’) — nE(VF(w') — VF(w* ), u’)

For the first term, we validly apply the conditional expectation E[u|F,:] = u'. Substituting this back
and rearranging terms to recover VF(w?):

—nE(VE(w),ut) = —pE(VF(w"), @)
= —E(VF(w'), @) + nE(VF(uw') = VF(w),a")
Combining these, we isolate the coupling error term Ecoypie:

—nE(VF(w'),u') = —nE(VF(w'), @) + nE(VF (w') = VF(w"),a' —u')

Ecouple

Let 6 := u' — u'. We bound E.oypie using Cauchy-Schwarz and the update rule w' — w' =
gt .
ST (—nutta):

t—st
Ecoupte < NE[|VF(w') = VF(w*)[[16°]] < nLE | [ > nu'~7||[|6°]
j=1

Tmax

<nPLY E[[jut 18] (a.13)

j=1

Applying Young’s inequality zy < $2? + Zy? to each term in the sum:

2L Tmax i 2L Tmax iy 2L7_m «
Ecoupte < 5= 3 (Ellu' 7| + EJS?) = 57 DBl P+ TES @)
j=1 j=1

For the main descent term, we use the identity —(a, b) = %|ja — b||? — ||a||* — 1 ||b]|*:

—nE(VF ('), @) = —JE|VF(w")|? - JE[a|? + JE|VF(’) —a|?  (a.15)

Step 2: Combining Terms and Variance Bound. Using Young’s inequality for the quadratic term
in (a.12), E|ju?||? = E||a? + §*||* < 2E|a*||? + 2E||6*||?. Substituting (a.14) and (a.15)) into (a.12):

E[F(w'™)] — E[F(w!)] < - JEIVF(!)|? + (Ln* - 3) Ella’|?

n g E|[VEF(wt) — |

Delay Error
2L
+ (Ln2 + 7727‘“> E[|¢ )12
772L Trmax i
= . .
+ Eh 2:1 E|lu'~7||* (Coupling Drift) (a.16)
J=

Step 3: Bounding Specific Terms.
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1. Noise Term: By Theorem E||6?)% < "72

2. Delay Error: In ACE, @' = L 3" | VF;(w'~™). Since Term B is strictly zero:

n 2

LS (VEw) - VEw!T)

i=1

EIVF(u') —a'|* =E

2

L n
< — E ot

Using Jensen’s inequality on the update sum, |lwt — wi=F|2 = | Z?:l nut=7)? <

ke? 325 [lut=7|[2. Since 7§ < Ty

E|VF(w') — @' < L*man® Y Ellu' ")
k=1
Step 4: Global Summation and Coefficient Analysis. Summing (a.16)) from¢ =0to 7 — 1 and
substituting the bounds:
T-1

F(u ZZ E|VF)2 =Y (3 - Lo?) Ella’|?

t=0

Ldexn To?
n

T—1 T,
L ‘max
( L2Tmax77 + 772 ) EHut—k”2

Drift Coeff Clrif

We regroup the historical update terms using the property Z ZT‘““ Ellut=%|2 <
Tmax Soro El[u*[|>. Expanding Eju’||? < 2E||a*||? + 2

T—1 s . T—1 L 202
Cait ; ];Eﬂu 12 < Cuiti Tmax ; <2E||u I + n)
Substituting this back, we analyze the total coefficient Cy for the E||ut ||? term:
Cy = (Ln — g) + 27maxCarire = Ln* — 5 + LQT,?MXU + LTt
To ensure Cz < 0, we factor out —n / 2:
Ca = =3 (1= 2Ly — 2LTmex) — 2L772,7%)

By choosing 1 < 8Limax (and assuming Tmex > 1), we have 2Ly < I, 2L7nun < 1, and
2L%72,m* < 2(g;) < 7. The term in parenthesis is > 1 — 0.25 — 0.25 — 0.04 > 0, so Cz < 0.

Thus, we can drop the EHut |? terms.

Step 5: Final Rate. We collect all remaining noise terms (all proportional to o2 /n):

To? L 2
Total Noise = Ta (LU2 + Tn;"”) + 2Tmax Carift
From Drift
L Direct Noise
To? [ 1 1 1
= TU L772 + iLTmaxn2 + 27—max <2L27_max7/3 + 2L772):|
To? 3
=27 2 {L + = L7nax + L%fmxn}
n 2
TO'

[ /\

0? [2L7max + L?730m]  (using Tmax > 2, terms bounded)
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Rearranging the main inequality:
n Z 2 To? 2,2
EHVF || < A + n (2LTIHHX + L Tmaxn)

Multiplying by Tln:

T-1
E|VF(w
t=0

Tn

2A  ALTmano?  2L%72, n%0?
—+ -
Tn n n

2A  20?
VP < Fo o S n(2L s+ LTa)

IN

All error terms on the RHS contain the factor . By substituting 7 o< 1/ VT, the RHS converges to 0
as T" — oo. O
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D DETAILED DISCUSSION ON THE DELAY-AWARE VARIANT

D.1 PsSeubpo-CoODE OF ACED

Algorithm a.1 ACE Variant: ACED (All-Client Engagement Bounded Delay-Aware AFL)

Require: Maximum allowed delay 7,,, step size 7.
1: Server Initialization: Initialize w®. Server cache stores (U7 ¢54) for each i. Obtain
ud = Vfi(w® &). Set UFMe « uf, 89 « 1 for all i. Broadcast w! = w® — = 371 | Ugache,
2: Server Loop: Fort=1,...,7 — 1:
3:  Receive uji™ =V f;, (whi ;f;fw) from client j;.
4:  Update: U ;fChe —ug.
5:  Define active set: A(t) = {i € [n] | t — t{" < Tuigo }-
6.
7
8

Compute n; = |A(¢)].
Ifn, > 0:w™h =w —nL 37,0 ) UP™. > Direct sum over active set
. Else: w't! = . > Skip update if no valid “fresh” gradients
9:  Send w'*! to client j; and update: ¢5*" < ¢ + 1.
10: Client ;: Operation:
11:  Initialize: Compute u} = V f;(w; &}), send to server.

12:  Loop: Receive w™™e"d compute ul®" = V f; (wreeeived; £1eW) "gend to server.

There are some important details to be noticed for the ACED algorithm:

* Active Set Formation: At each server iteration ¢, the server forms an active set A(t) by
checking a condition for every client.

— If a client’s information is fresh (i.e., the elapsed time since it received its model,
t — 3", is within the Talgo threshold), it is included in the active set for the current
update.

— Otherwise, if the client is too slow and its information becomes stale (¢t — ¢§*" > Talgo)s
it is temporarily excluded from the aggregation.
* Rejoin Mechanism: The algorithm enables clients to rejoin after being excluded.
— When any client (even one previously excluded for being too slow) sends its completed
gradient to the server, the server accepts the update.

— Crucially, the server then resets that client’s timestamp to the current time (¢ < ¢+1).
This action makes the client’s information "fresh" again.

— This reset guarantees the client will be included in the active set in the next iteration,
allowing it to rejoin the training process.

D.2 ASSUMPTIONS FOR ACED

Let n be the total number of clients. The convergence analysis of ACED relies on the following
assumptions, adapted from the main ACE paper and the provided analysis sketch .

Assumption a.1 (Lower Boundedness). The global objective function F(w) = L 3" | Fi(w) is

bounded below, i.e., F(w) > F* > —oo for allw € R Let Ap = F(w°) — F*.

Assumption a.2 (L-Smoothness). Each local objective function F;(w) is L-smooth for some L > 0.
This implies F(w) is also L-smooth.

IVEi(w) = VE ()2 < Liw - /||, Vw,w' € R,

Assumption a.3 (Unbiased Stochastic Gradients). For any client i, its cached gradient U™ (used

in ulby,,) was computed based on a model w''" (where " is the server iteration when client i
obtained this model) and a fresh data sample &; drawn at the time of computation. Let Fysan be the

o-algebra of information up to the point w'"" was determined. Then,

start

E[U" | Fyon] = VF(w'").
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Assumption a.4 (Bounded Sampling Noise). The variance of the stochastic gradients used to form
Ugache is bounded:

¢start

(U5 — VE ()3 | Fowr] < o

Assumption a.5 (Bounded Algorithmic Delay for ACED). The algorithm-defined maximum delay
threshold Ty, is finite and Ty, > 1. For any client i € A(t) (the active set at server iteration t), the
effective delay of its cached gradient Umhe relative to the current server model w' is §;(t) = t —
satisfying 0 < §;(t) < Tajgo.

Assumption a.6 (Bounded Data Heterogeneity (BDH)). The dissimilarity between local true gradi-
ents and the (ideal) global true gradient is bounded:

IVFi(w) = VF(w)|l < ¢*

start
",

for some constant % > 0.

Assumption a.7 (Bounded Gradients). The expectation of the local gradients are uniformly bounded:
|V F;(w)||* < G? for all i, w. Note that this assumption is NOT necessary, but for the simplicity of
the notations in the proof.

Assumption a.8 (Minimum Participation for ACED). The number of active clients ny = |A(t)| in
any update step t is lower bounded by n,,;, > 1.

D.3 CONVERGENCE THEOREM FOR ACED

Theorem a.6 (ACED Convergence). Suppose Assumptions AI-A7 hold. If the step size satisfies
n=n< m;ﬁ then for the ACED algorithm, after T iterations:

2A  12(¢? + G?) ne\ 2
—ZEHVF N2 < mtT 3 (1—#)

timg<n

+ 6L7—alg0770 6L 7, lgon U

Tomin Tomin
where N, is the lower bound of active clients. Substituting 1 ~ %, the RHS converges to 0 (plus
the vanishing bias term) as T — oo.

Proof. The proof starts with the Descent Lemma. For simplicity, we denote "bounded delay-aware"
as BDA.

For an update w'™ = w' — nupp,, where upp, = o= 37 44y U™, we have:

2
E[F (™)) < E[F(w)] ~ nEVF ("), uhon)] + T2 E s @17)

ptart

where Tgps = E¢[ugpa|Ft] = n% ZzEA(t) VFi(w'™).
Rearranging[a.17;

E[(VF(w'), uppa)] < E[F(w")] — E[F(w"™*)] + L%EHUEDAHz (a.18)

We analyze the two terms on the RHS separately to strictly handle the coefficients.
Term 1: The Inner Product. Using the property E¢[ubp,] = Thpa, we have E[(VF (w?), ubp)] =
(VF(w'), uhpy). Using the identity —(a,b) = $|la — b||* — 3 la]|® — 3|b]|*:

n Nt n
—n(VF(w ) uBDA> EtHVF(wt)HQ : || BDAH2 + éHVF(w ) — UBDA”

Term 2: The Smoothness Term. Using the exact variance decomposition E|ubp,||? = ||[uhpall® +
Elluspa — Thpall*:

Ln? Ln? _ Ln? _

TtEHU]t;DAH2 = — " l[agpall® + TtE”ufBDA — Uppa?
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Combine Term 1 and Term 2: Substituting these back into

Ln;
ElF ()] - EIF ()] < - SIVFQOIP + (55 - % ) Inhoal?
L 2
+ D IVE @) = Ty I? + T Ellubor — Thoal®  @19)

Now, we bound the key terms:
A. Sampling Noise of ulp,:
Following the similar derivation in the proof of Theorem B3]

o? o2

Ellubpa — Uhpall3 < — <
N

(by Assumption (P1)

min

B. Squared Norm of uly,,:

Using the variance decomposition and [PT}

Ellubipalls = Ellugpa — Tapall3 + [[Thpall3
o2
JF |Tpall3 (P2)

2

| /\

IN

—+ [ Tpall>
min

C. Model Drift E||w! — w®||3 for s < t:

Lets =" d=t—s< Talgo- The sum of the cross-iteration gradient error is zero::

t—1
s.ll.\l‘l k
Ellw! —w' |2 = E| Z(w 1 — w3 —ﬂtEHZuBDAH2

= 17E| Z UBpA — Tspa) + Z Ugpall3  (Using Lemmafa3)

t—1 t—1
= 27 E|| Z(UEDA — Tgpa) |13 +207 E|| ZEEDA”%

k=s k=s
—— ———
Using Lemma-a.ndllifl Using Lemmala 3|

< 21 Tulgo < + Z E||“BDA|2> (P3)
o — e

< 21} Tugo <n + Z E||U1§DA||§>
min k—s
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D. Gradient Error E||VF(w') — wbp,||? := E||Efpall*:
Egpa = T — VF (wgy,)

— Z VE(w —%ZH:VFi(wf

zEA (t)
:(—) > VF(w') - = Z V Fy(w
1€A(t) ZQA t)
Part 1 Part 2
1 s t
oo 2 (VR@) - VR (")
1€EA(L)
EDelay

And by Lemmalfa.3]
El[€5pall* < 3E||Part 1[5 + 3E||Part 2/[3 + 3E | Epeny |

Therefore, similar as the proof for Theorem [B.4] for the partial participation bias Part 1 and 2, the
client subset S to determine the sum is A(t) or [n]/A(t):

E| Y VE@w)|3=E|Y VFw) ) VFw")+Y VFu|;

€S €S €S €S
< 2E|> VE(w') =Y VFW"|3 +2E|> VF@")|; (ByLemmaf3)
€S €S €S

Can be determined by BDH Assumption and Lemmafa3]

<2S|) ¢ +2IS Y EIVF(w)l3
€S i€S
Given that |[A(t)| = ny, |[n]/A(t)| = n — nyg:

1 1)\?
2 2,2 t\1]12
E||Part 1]2 < 2 (m - n) n7¢*+ne Y E[VF(w)|3

IEA(t)

2
EllPart 2[5 < 55 | (n—n)*¢C* + (n—mi) Y E[VF(")[3
ig A(t)

2
1 1 2 N 2
2(— =) mi+ -n)?=4(1-2)
(nt n) " +n2(n ) n/’
And we can bound the expectation of the global gradient by Assumption|[a.7}

E[|VF(w")||3 = EII*ZVF 3

Note that

1
nZHF B2 (Lemmal[a.3)

A
|

A
|

1
5" Z G? =G, (Assumption[a.7))
n ;

Therefore,

2
E|[Part 1])2 + E||Part 2|2 < 4 (1 - E) (C% + G?)
n

<a(1-"m) (@ g )

32



Under review as a conference paper at ICLR 2026

The delay error Epelay (using E[):

1
Ellépay|* = | — > (VE(w*) = VE (") |

e A(t)
L2 ~l.xrl
< — E[lw' —w!|? (Lemmala.3)
M Ea
L? .
< " ¢+ 207 Talgo Z El[@5pall3) (Using [P3)

=2L7 77t lego + Z E||UBDA||

<2r? 77t 7'algo + ZEH BDAH

Thus,
Ell&pall® = E[[VEF(w') — Ugpa l®
< GE||Part 1]|2 + 6E|[Part 2|2 + 6E||Epelay||>

AR 2

< _

<2 (1 n) (2 +G?)

+12L2777527alg0< +ZEUBDAH2> (P4)
-

< _ Mmin 2 2

_24(1 T) (€% + G?)

2 t—1
+ 12020 Tago < + ZEHUBDA|2>
ml

k=s

Substituting [PT] and [P4] into

B[]~ EF(w)] < - LENVR@ + (L - 1) fai

Nt L772 _
+ EEHE;};DAH2 + TtE”utBDA — Thpa |l

Ui N2 L7715202
_tEIVF i1 Tl
5 EIVF()? + =57

n 2
24 (1 - ;t) (€% + G?) + 1202 Tgo ( + Z E| BDA||2>]

Lo me\ g
+(;—2 E 7o

< DEIVE@OI+ %01 (1- 1) (2 4 6?)

77t

Ln? o?

+( 275 +6L2nt7'dlgo) "

+(—L"t 61212, max El[hpal13 (BD
B 9 Mt Talgo mtax Uppall2 )

2
Let f () = 6L2n3 7350+ Lne/2—1/2. 1f f(n,) < 0, then (225 — 2 +-6L2pPr3,,) max; E[[@hps [ <
0. A loose condition to derive f(n;) < 0 is to decompose —1/2 = —1/4 — 1/4 and assign them
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separately:

= 1 < (Using tighter bound)

692 L273, —1/4<0 = m < A "= 230

Tal g0

{Lm/21/4<0 = 1 <

With appropriately selected learning rates for each server iteration ¢,[BD]further becomes:

PR ] < EF ()] - B[R] + 220 (1- ) (2 4 0?)

L77t
2

2

+ (555 + 6L Tago) —

g
ny
Multiply 2/, on both sides:

2 Tt 2
ENIVE @) < - (EF @]~ EF@ ) +24 (1= 70) (2 + 6

2
g
+ (Lnt + 12L2777527—alg0)7

'min

Let {t : ny <n,t € [0,T — 1]} be the set of iterations with partial client participation. The bias term
(in [P4) related to (n — ny)? is non-zero only for t € {t : n; < n,t € [0, — 1]}. Summing from
t =0toT — 1 and dividing by T":

— 1 T-—1 ,
7 g IIVE@h?) < = g - — E[F ("))
24 24(¢* +G?)
D DR

timg<n

Z Ly + 12L%77 Talgo)—
t=0

Now, we set a fixed learning rate 1, = cy/n/T for some constant ¢ > 0. Let’s analyze each term on
the RHS:
1. For the first term, given A = F(w®) — E[F(w™)], we have:

1= 2 + 141 1 2 t t+1
! ; E(E[F(w )~ P ) = 1 > n/T(E[F(w )] — E[F(w')))
2 f t t+1
- = t:O(E[F(w )] — E[F(w"™)])
_ 2Ap
"~ eV/nT’

2. For the second term, it remains being a sum over only the partial participation iterations:

24(¢% + G?) Z (17%)2

T
ting<n
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3. For the third term, we substitute 1, = cv/n/T":

_ T-1 2
/n o
T E Lﬂt =+ ].2L ’I’]t Talgo nt < —|— 12L2 Talgo) 7nt

12022 Ta1g00' Leo? 1
-7 Z < TV

M

B

1202270002 1 <=~ 1  Leo® 1 1
=T " i;;ﬁ VT,
1 1
::Wvg ::navg
1202?0002 1m0 Leo? \/n
S -
T Navg \/T TNavg
Since —0 T 3701 = it is worth noting that npin < Naye < N.
Comblmng these terms, we obtain a bound for the convergence rate:
T—1
1 2A 24(¢? + G? n 1202?9002 n Leo? /n
2 S EIVE@ < o G 5 My, PUC T 0 R0 v
T =0 cvnT T teT n T Navg \/T TNavg
= P
A (n —ny)?
S — A+ (C+C mo )
—+( )t;n -

Vanishes as T" increases
N L?Tyg00% 1m0 Lo? /n
T Navg Vv T Navg

D.3.1 ALTERNATIVE CONVERGENCE RATE ANALYSIS FOR ACED

Similar to the alternative proof provided for the conceptual ACE algorithm, we present a supplemen-
tary convergence analysis for ACED that strictly avoids potential correlation issues without relying
on the Law of Iterated Expectations.

This analysis anchors the error estimation to the reference model w! == Since the ACED mechanism
explicitly enforces that all gradients contributing to the update ujy,, are computed on models no older
than 7., iterations (i.e., t — gt < Talgo)» anchoring to w!~ T guarantees that the data samples
associated with these gradients were generated after the reference model was fixed. This secures
explicit statistical independence between the reference point and the stochastic noise. While this
technique treats the allowable delay as model drift - resulting in a looser upper bound with larger
constant coefficients - it rigorously confirms that the convergence properties of ACED are robust and
hold independently of the filtration assumptions used in the primary proof.

Proof. Let s' := max(0,t — Tago) be the delayed time index. For any client ¢ € A(t) utilized in
ACED, the delay is bounded by ¢ — " < 7,4, and the decoupling lag is t — s* < Tygo.

By the L-smoothness of F' and the update rule w'™! = w! — nubp,:
Ln?
E[F (w'*)] - E[F(w")] < —7E(VE(w'), upr) + —5Eluhpa (2.20)

Step 1: Rigorous Decomposition of Inner Product. To handle the statistical dependency between
w' and the historical gradients in u4p,, we decompose the inner product using the independent anchor

w*'. Since all gradients in ugD A Started computation at times >t — Tyjgo > st, the stochastic noise
in ujp, is independent of w® (conditioned on Fg:). We split the inner product into a “Decoupled
Term” and a “Coupling Error™:

—nE(VEF(w'), ubps) = —nE(VE(W® ), ubps) — 1E(VE(w') — VE(w* ), ubp,)
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For the first term, we apply the conditional expectation ElubpalFst] = Uhps. where uhp, =
e Yicaw VFi(w'). Substituting this back:

—NE(VF(w* ), ugpa) = —nE(VF (w"), ugps) + nE(VF(w') = VF(w® ), tigps)
Combining these, we isolate the coupling error Ecoypie:

—nE(VF(w ) UBDA> = —nE(VF(wt), ﬂgDA> + nE(VF(wt) - VF(wSt)» ﬂ1t3DA - “tBDA>

gcouple

Let 6 := ufp, — Uhp, be the zero-mean noise vector. We bound Ecouple using the Cauchy-Schwarz

inequality, L-smoothness, and the update rule w — ws = — Zj si nugg A

Ecoupte < 1E [IIVF(wt) = VF(w)[6"]] < nLE [flw’ - w [l6")

Talgo

=nLE ZnuBDA I8*]] <n2LZEHuBDA||||6tm

Using Young’s Inequality (zy < %x2 + %yQ) on each term in the sum:

2 Talgo 7'450
n°L Ly
Ecourte < 1= 3 (Elluph 2 +E[10"[2) = ZEH w2+ e @)
j=1

For the main descent term, we use the identity —(a, b) = |ja — b||? — 1||a||* — |||

- n M- n _
—nE(VEF(w"), ugpa) = —5E[VE(W")|* = JElluppall” + SEIVF (@) — appal”  (@22)
Step 2: Combining Terms with Quadratic Bound. For the quadratic term in ( we use Young’s

Inequality: E|jubpa||? = Elliihpa + 0°]|% < 2E|abp, ||* + 2E[|5%]|%. Substltutlng a.21) and (a.22)
into (a.20):

E[F(u'*)] <E[F(u!)] - JEIVF @) + (L = 3 ) Elabpa

n _
+ JEIVF(w!) - ao

Gradient Error

2 Talgo

2 LTalgon2 t)12 4 2
(L + =5 ) EllY1” + ZEH uppal (a.23)

Noise Terms

Coupling Drift

Step 3: Three-Part Decomposition of Gradient Error. We rigorously decompose the gradient error
Egrad = Uspa — VF(w') into three parts: Participation Bias (Scaling + Missing) and Delay Drift.

Egrad = (—) > VFw') - = Z V Fy(w Z (VE (™) VE (')

ICA() " igam A

P1:Scaling P2:Missing P3:Delay

Using the inequality ||a + b+ c||? < 3]|al|* + 3]|b]|? + 3||c/|*:

1. P1 (Scaling Bias): Using Assumption a.7 (Bounded Gradients | VF; > < G?) and Jensen’s
inequality:

2
n—mn
E||P1||2§< mtt> ne Y E[VEwh)?

1€A(L)
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2. P2 (Missing Data Bias): Similarly:

1
E[lP2]* < —a(n—mne) > EIVE @)
igA()

Therefore, similar as the proof for Theorem [B.4] for the partial participation bias Part 1 and
2, the client subset S to determine the sum is A(¢) or [n]/A(¢):

E| Y VE ()3 =E|)Y_ VE (")~ VFw)+) VFw);

1€ES €S €S €S
< 2E|> VE@w') =Y VFW|3 +2E|> VFw")|3 (ByLemmafa3)
€S €S €S

Can be determined by BDH Assumption and Lemmal[a.3]

< 28> ¢ +2(8> E|VF (w3

€S 1ES

Given that | A(t)| = ny, |[n]/A(t)] = n — ny:

2
1 1
E|P1||§<2(nt—n> W tn S EIVEW3

i€A(L)

2
EHP2||§§§ (n—n)*C+(n—ny) Y E[VF@w")3
i A(t)

2
11 2 ng\ 2
2(— =) ni+ -n)?=4(1-2)
(nt n) Ty + n2 (n ’I’Lt) n ’

And we can bound the expectation of the global gradient by Assumption

Note that

E||VF(w' \IQ—EII*ZVF 3

< = nZHF B2 (Lemma[a.3)

A
|

1
5N Z G? =G, (Assumption[a.7))
n —

Therefore,
2
E|[Part 1[3 + E[[Part 2] < 4 (1 %) (¢* + 6?)

n
Nmin \ 2 2 2
<a(1-"m) "¢ 46

n

3. P3 (Delay Drift): Using L-smoothness and Jensen’s inequality:

]. \lArl
EIP3|* < — > LE[w"™ —w'||”

tieA()
Talgo Talgo
Z Talgo) ZE||uBDA||2 LTagen® Y Ellupphll?
zeA(t) J=1
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Substituting back into the gradient error term in (a.23):

"
2El€graal® < 3|IP1I* + 3] P2]* + 3| P3||*

(a.24)
Talgo
g 12 (1 - ;) (CQ + GQ) + 3L27a1g077 z; EHUBDA”2
ﬁ\lgo‘7
— 61 (1 - ;) (€2 +G?) + L Tago” Y _ Ellugpall? (a.25)
j=1

Step 4: Global Summation and Coefficient Analysis. Summing (a.23) from¢ = 0to 7 — 1 and

inserting (a.24):

A
E||VF III* - E L — 5 ) Ellagpa®
2

t=0

A>D
2

?EM“

—

- 67](1—;> 4+ 6%

-3 (o g

=0

qu*
,_.o

~+

L 2 3 T—1 Tago
- (B + S ) Yl

t=0 j=1

Carift

We regroup the historical update terms. Note that 3, ' S Efut 1 < Tago Z

=0 o Ellu'?.
Expanding E||u!||? < 2E|at||? + 2E||6%||*:

T—1 Tago T-1

DD ENu T < Tugo (2| @hpall* + 2E(16°)1%)

=0 j=1 =0

We now calculate the total coefficient Cy for Zt " E||atp, ||

Cu= (Ln2 - g) + 27—algocvdrift

Ln? 3
=Ln*— g + 2Tulgo (;7 + 2L27a1g0773)

—g (1 — 2L77 2L7—alg077 6L 1g077 )

We require Cy < 0. By choosing n < 157— (and assuming Tago > 1):

Sum is 0.36 < 1. Thus, the term in parenthesis is positive, so Cz; < 0. We can safely drop the
E|labpall* terms.

38



Under review as a conference paper at ICLR 2026

Step 5: Final Rate. We collect all remaining terms involving E||6*||%. Recall E||6||* < 72— (upper
bound).

T-1
L 2
Total Noise Coeff Cs = Z [(LnQ + Tal;()n) + 27, algoCdrift:|

t=0
= 2 LTalgo 2 9
= Z n L+ + LTalgO +3L 7—algon
t=0
< T 2 [SLTalgO + 3L Talgon] (USing Talgo > 1)

Rearranging the main inequality:

T-1 o2
n 2 2
E|[VF(wh)|? < A 6 (1 - —) G2+ C
Z [ Bl +tz; n *+G)+ énmm
Dividing by T'n/2:
(C2 + G?) ny 2
—ZEHVF )2 < T +7T 3 (1—;)
ting<n
202
o] ST (3LTa]g0—|—3L 1go77)
2 2
< QA N 12(¢% + G?) Z (1 B E)Q n 6 LTag0m0> 6L Talgon a
T77 T ep n Tmin Tmin
This confirms the rate. O

D.4 DiscussioNs oN ACED
D.4.1 ALGORITHM BEHAVIOR WITH DROPPED CLIENTS

Let Sarop be the set of Ngrop clients that permanently stop sending updates after contributing a final
gradient, say G;?‘S‘ for client j € Sgrop. Let Sycive be the set of Nyciive = 1 — Nyrop clients that continue
to participate. For iterations ¢ occurring significantly after the dropouts, the aggregated gradient u?
effectively becomes:

3|~

gt == Z Gliatest,t + Z Gljast

i€ Sacuve ] S sdmp

where G — ¥ f; (w!~7i ; £€7) is the latest (stochastic) gradient from an active client 4, computed
on a (potentially stale) model w'="i . The crucial part is that G]jaSt for j € Sqrop are fixed, unchanging
gradient values based on very old (and increasingly stale) model parameters.

The core problem introduced by permanent dropouts is a persistent bias in the aggregated gradient.
Let u' = E[u?|F/] for some appropriately chosen history F (e.g., t' =t — Tynq. for active clients).
Taking the expectation over the stochasticity of fresh samples from active clients:

—t

~ 1 latest,t 1 last
@ Y EGEF S Y G

1€ Sactive jesdmp

latest,t . . it
"**5" are unbiased estimates for VF; (w!~7):

> el Y o

1S S. active ,] S S, drop

———
::Bdrop

Assuming G

The term By, represents a constant vector that acts as a persistent bias. This bias does not depend
on the current model w! in the same way active client gradients do.
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The bias of the expected update u" relative to the true current gradient V F (w?) is:
515 = Ut - VF(wt)
1 it 1
E = — Z (VFl(wt 1) — VFl(wt)) + Bdrop - E Z VFj(wt)

S Saclive J [S Sdmp

Delay error from active clients Non-vanishing bias from dropped clients

The critical component is Byrop — % > € Suep VF;(w"), which is a non-vanishing bias term. Even
; ; ; > t—r} t e ot

if active clients’ models w*~": were perfectly up-to-date (w"), and even if w" were to converge to
some w*, the term Brop — % > V F; (w*) would remain, unless Byrop coincidentally matches

% Zjesdmp VF;(w*).

J € Srop

D.4.2 DISCUSSION OF THE ASSUMPTIONS

Assumption [a.6f Managing the Diversity-Staleness Trade-off with the BDH Assumption The
Talgo Parameter in ACED provides a direct mechanism to manage the trade-off between client diver-
sity and update staleness, a challenge central to practical AFL. Its primary role is to eliminate the
non-vanishing bias (Byrop) that arises from permanently dropped or extremely delayed clients, which
would otherwise contribute fixed, outdated gradients (Gljas‘). The convergence analysis quantifies
the consequence of this filtering: when the active client set n, is less than the total n, a manageable
participation bias emerges, captured by terms related to (n — n;)2¢?. The Bounded Data Hetero-
geneity (BDH) assumption, where ||V F;(w) — VF(w)||3 < (2, is used in the analysis to bound
the participation imbalance bias that occurs when the server update is not formed from all clients
(ny < n).

This theoretical insight is validated by experimental results. An excessively small 7,jg0 (€.8., Talgo = 1)
leads to a small n; and significant participation bias, causing ACED’s performance to degrade towards
that of Vanilla ASGD. Conversely, the experiments show that a moderate 7, (€.g., twice the average
client delay) maintains robust performance. This demonstrates that 7,1, is not a limitation but a tool:
it allows the system to be configured to mitigate the more harmful non-vanishing bias from stragglers
while controlling the manageable participation bias to maximize performance, thereby ensuring high
participation (n; ~ n) in typical scenarios.

Assumption The Removability of the Bounded Gradients Assumption As explicitly stated,
the Bounded Gradients assumption (Assumption for the ACED convergence analysis can indeed
be removed, as it is not necessary and serves only for the simplicity of the notations in the proof.
The assumption’s sole purpose is to simplify the bound for the partial participation bias term (when
n; < n) during the derivation in Appendix[D] Specifically, in the steps leading to Part 1 and Part 2 of
the bias decomposition, this assumption allows the gradient norm term E||V F(w?)||3 to be bounded
by a constant G2, resulting in a concise bias upper bound proportional to (¢? + G?). Without this
assumption, the bias term would retain its dependency on (¢ + E||VF(w?)||3). This modified term
would then be carried through to the gradient error bound and subsequently into the main single-step
convergence inequality. At that stage, the inequality would contain the term E||V F'(w?)||3 on both
its left and right sides. By applying a simple algebraic rearrangement to collect all instances of
E||VF(w")]|3 onto the left-hand side, one can proceed with the subsequent summation and analysis
to derive a valid, although more complex, convergence rate. This confirms that the assumption is a
matter of notation convenience rather than a theoretical necessity.
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E RATE COMPARISON WITH OTHER AFL ALGORITHMS

Table a.1: We present the key assumptions of the baseline algorithms, their corresponding convergence
rates in the O-sense, and the number of client-server communication(s) per server iteration.

Comms.
. T . per
Algorithm Convergence Rate ~ >, E[|[VF(w?)||’] Key Assumptions Server
Iteration
Vanilla o2 n ) . . 5
ASGD (Mishchenko |/ 7= + 7 + ¢ pounded Sampling Noise ((gi’))’ 1
et al.| 2022| (with non-vanishing error ¢? as T increases) ounde ata Heterogenetty :
— 2 2
FedBuff (Nguyen \/”2 + K¢ + K Tavg Tnax ¢+ Tinax@ Bounded Sampling Noise (0?), M
et al.][2022) ~ mKT T Bounded Data Heterogeneity (¢2),
(with heterogeneity amplification 7¢ <)
Bounded Delay (Timax, Tavg)-
Delay-Adaptive o2+ (2 {/ Tae S04 ThaC? Bounded Sampling Noise (02),
ASGD (Koloskovg 1/ T + T2/3 Bounded Data Heterogeneity 1
etal. 2022' (with heterogeneity amplification 7¢*) (GIObal CZ’ local <12)’
Bounded Delay (7imax, Tavg)-
) 2 7 2
CAZFL (Wang Ato o” + K¢ + (Tinax + max) Bounded Sampling Noise (02), M
et al.|[2024b) VIKM TK o T Bounded Data Heterogeneity (¢2),
(No direct 7¢~ term due to calibration)
Bounded Delay (Timax, Pmax)-
2 2 2
ACE (Ours, AT + LLT L% Bounded Sampling Noise (02), )
Theoremm (Nﬂleterogengty amplification) Bounded Delay (Tmax)~
) 5 ) Bounded Sampling Noise (0?),
ACED (Ours) A + Lo L Tago0” n Minimum Participation (ny,, = 1
vnT %\/T T nay ming |{i € [n] | t =" < Tugo }]),
(Theorem 4GP Z (n —mn)? Bounded Gradient (G).
T

ting<n

Based on the convergence rates and communication costs presented in Table

* Shortcomings of Buffered Methods: Buffered algorithms like FedBuff and CA%FL present
two main drawbacks:

High Communication Cost per Update and Slower Convergence: These methods
require the server to collect updates from M clients to fill a buffer before performing a
single global model update. This results in a communication cost per server iteration
that is M times higher than for non-buffered approaches. A fair metric for comparing
convergence is the total number of client communications, Ciy)-

x For buffered methods like CA%FL, the convergence rate is dominated by the leading

term O( Ml = ), where T is the number of server iterations. Achieving 7T iterations

requires Ciora = M - T communications. Substituting 7' = Cioa1 /M, the rate with
respect to total communications becomes O( TG ) TR )

% In contrast, for ACE, each communication triggers a server update, so 7" = Clga.

Its convergence in terms of total communications, is O(ﬁ)
L+ Utotal

+ This shows that for the same communication budget, ACE’s theoretical convergence
is faster by a factor of y/n /K. Given that experiments are conducted with K = 1
for a fair comparison of aggregation strategies, the speedup factor is /7.

Reliance on Bounded Data Heterogeneity: Both algorithms’ convergence guarantees
depend on the Bounded Data Heterogeneity (BDH) assumption. For FedBuff, this is
due to its partial participation mechanism (M < n). For CA%FL, it originates from
an imbalanced update scaling that gives new updates from the buffer a larger weight
than older, cached updates. In both cases, this imbalance requires the BDH assumption
(¢?) to bound the resulting bias, making their performance theoretically vulnerable in
settings with high data heterogeneity. See Appendix |F.I|for a more detailed discussion.
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* Limitations of Partial Participation Methods: Non-buffered, partial participation al-
gorithms (e.g., Vanilla ASGD, Delay-Adaptive ASGD) are communication-efficient (1
communication per iteration) but can suffer from heterogeneity amplification. This is often
indicated by terms coupling delay and heterogeneity (7(?) in their convergence rates. Fur-
thermore, some of these methods exhibit a fixed error floor; for instance, the rate for Vanilla
ASGD includes a non-vanishing (2 term.

* ACE’s Advantage: ACE is also communication-efficient, requiring only one communica-
tion per iteration. Its all-client aggregation design eliminates the reliance on the Bounded
Data Heterogeneity assumption entirely, thereby mitigating heterogeneity amplification
while maintaining maximal communication efficiency.

* Trade-off in ACED: The convergence rate of ACED reveals a trade-off between client
diversity (participation bias) and update staleness (delay error) in AFL systems. Observing
the convergence rate expression for ACED (Theorem [D.3] Table|a.T)):

L7002 n 5 (n—ny)?
algo GQ
T e TG Y.
—_———
Delay Error

timg<n

Participation Bias

In an AFL system with both high delay (implying some clients may drop out or their local
models become very stale) and high heterogeneity (making it difficult to estimate the global
gradient from a subset of clients, see the explaination for the BDH assumption in Section [3)),
a trade-off emerges:

— Discarding updates from clients with extreme delays (by setting a smaller 7,j4,) intro-

duces participation bias, quantified by the (¢? + G?) Y % term.
— Including these updates (by setting a larger T,4,) introduces significant delay error due

2 2
L Talgo O

to their stale models, which is captured by the ni term.
avg

This dynamic illustrates that these two sources of error cannot be simultaneously eliminated
in practical AFL systems. For typical AFL systems, the design of ACED allows clients
to rejoin the active set once their delay returns to an acceptable level defined by 7;g.
Provided that extreme delays are reasonably handled, setting a moderate 7,g, (as shown in
Figure [3]in Section[5) to include as many clients as possible is generally more beneficial for
improving algorithm performance. This strategy better addresses the common challenge
of data heterogeneity (participation bias) in FL and is consistent with the core principle of
ACE, which leverages updates from the maximum number of clients to refine the global
model.

* Equivalence of ACED and ACE under a Sufficiently Large Delay Threshold: The
ACED algorithm becomes functionally identical to the conceptual ACE algorithm under
a specific condition. This occurs when the delay threshold, 7., is set to a value greater
than or equal to the maximum possible system delay, 7.« In this scenario, the condition
for a client’s inclusion in the active set, ¢ — tﬁta" < Talgo 18 always satisfied for all clients
at every iteration. Consequently, the active set A(¢) consistently includes all n clients,
making n; = n = N,y for all t. The update rule for ACED then simplifies to that of ACE.
This equivalence extends to their theoretical guarantees. The participation bias term in the

convergence rate of ACED, (¢* +G?) Y, ("_T’f ’5)2, vanishes as n; is always equal to
n. The remaining terms in the ACED rate then simplify to precisely match the convergence
rate of ACE in Theorem [I]and Table[a.1]
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F ADDITIONAL EXPERIMENTAL DETAILS

F.1 DETAILED DISCUSSION ON BASELINE METHODS

This section provides an overview of selected asynchronous federated learning algorithms, detailing
their design philosophies and presenting their pseudocode. We focus on FedBuff(Nguyen et al., 2022),
CA?FL(Wang et al.,[2024b) (Cache-Aided Asynchronous Federated Learning), and Delay-Adaptive
Asynchronous SGD(Koloskova et al.,[2022) (ASGD). Vanilla ASGD (Mishchenko et al.,[2022) can
be regarded as a special case of FedBuff when M = 1.

F.1.1 FEDBUFF (FEDERATED LEARNING WITH BUFFERED ASYNCHRONOUS AGGREGATION)

Design Idea FedBuff (Nguyen et al., [2022)) is designed to improve the efficiency and scalability
of federated learning by allowing clients to send their model updates to the server asynchronously.
Instead of waiting for all clients in a round to complete their local training (as in synchronous methods
like FedAvg), the server in FedBuff accumulates updates from clients as they arrive. The global
model is updated only after a certain number of client updates (defined by a buffer size, M) have
been received. This approach helps to mitigate the straggler problem, where slow clients can delay
the entire training process. Upon receiving an update from a client, the server can immediately assign
a new task to an available client, thus maintaining a consistent level of client activity (concurrency,
M,).

Algorithm a.2 FedBuff (without Differential Privacy)

Require: Local step size 7;, global step size 7, server concurrency M., buffer size M, total number
of clients N.

1: Initialize: Global model update accumulator A; < 0, update count m < 0.
2: Sample an initial set of M, active clients to run local SGD updates.
3: repeat

4: if a client update A is received from client i then

5: Server accumulates update: A; < A; + AL

6: m < m+ 1.

7: Sample another client j from available clients.

8: Broadcast the current global model w; to client j.

9: Client j runs local SGD updates.
10: end if
11: if m = M then
12: Update global model: wii1 < wy + 1 - (Ar/M).
13: Reset for next aggregation: m < 0, A1 < 0,8 <t + 1.
14: end if

15: until Convergence

Partial Participation (M/ < N): This is the standard operational mode for FedBuff (Nguyen et al.|
2022)). The server waits to fill a buffer of size M before updating the global model. As our theoretical
analysis in Section 4|shows, this design inherently introduces partial participation bias, which is the
root cause of heterogeneity amplification when client data is non-IID. Vanilla ASGD (Mishchenko
et al.| [2022) represents the extreme case where M = 1, maximizing this bias and the variance of the
global updates.

Full Participation (M = N): In this hypothetical scenario, FedBuff would be forced to wait for
updates from all N clients before performing a single update. This transforms the algorithm into a
synchronous protocol, similar to FedAvg (L1 et al.,[2020), thereby losing the primary advantage of
AFL in overcoming straggler issues.

Update Frequency and Communication Cost: A critical consequence of FedBuff’s buffered
design is the decoupling of client communication from global model updates. To perform a single
server iteration (one global update), the server must wait for and process M individual client
communications. This introduces a synchronization-like bottleneck, reducing the overall frequency

43



Under review as a conference paper at ICLR 2026

of model evolution. This means that the communication cost per learning step is M times higher than
for a non-buffered approach, a crucial factor in evaluating overall system efficiency.

F.1.2 CA?FL (CACHE-AIDED ASYNCHRONOUS FEDERATED LEARNING)

Design Idea CAZFL (Wang et al.| [2024b)) uses a buffering mechanism similar to FedBuff but adds a
calibration step using a server-side cache of historical updates from all clients. Its behavior changes
drastically depending on the buffer size M. The core idea is for the server to maintain a cache of the
latest model update (or difference) received from each client. These cached updates are then used
to calibrate the global model update. When a client sends its new update A%, the server calculates
the difference between this new update and the client’s previously cached update h:. This calibrated
difference, Al — hi, is then accumulated. The global update v; incorporates the average of these
calibrated differences along with a global cached variable h; (which is the average of all clients’
currently cached updates). This mechanism aims to make the aggregated update more consistent with
the current global model state, especially when dealing with stale updates from delayed clients and
diverse data distributions across clients. CA?FL is designed to achieve these improvements without
imposing additional communication or computation overhead on the clients.

Algorithm a.3 CA%FL (Cache-Aided Asynchronous FL)

Require: Local step size 7;, global step size 7, server concurrency M., buffer size M, total number
of clients V.
1: Initialize: Global model update accumulator A; <+ 0, Cached update for each client i € [N],
h§ < 0, Global cached variable h; <+ % vazl ,i, Update count m < 0, set of clients updated
in current buffer S; < 0.

2: Sample an initial set of M, active clients to run local SGD updates.
3: repeat
4: if a client update A! is received from client i then
5: Server accumulates calibrated update: A; < Ay + (A! — hi).
6: Server updates client’s cached variable: hf , < Al
7: m < m+ 1.
8: St — St U {Z}
9: Sample another client j from available clients.
10: Broadcast the current global model w; to client j.
11: Client j runs local SGD updates.
12: end if
13: if m = M then
14: for all clients j ¢ S; do
15: Server maintains their cached variable: h{, , < hj.
16: end for
17: Calculate calibrated global update: vy < hy + ﬁAt.
18: Update global model: wyy1 < w; + 1 - v;.
19: Initialize global cached variable for next round: hsy; < % Zfil hi, .
20: Reset for next aggregation: m < 0, Ayy1 < 0,1 0,6 ¢+ 1.
21: end if

22: until Convergence

The M = N Limit: A Synchronous Algorithm A critical distinction is that setting the buffer
size M = N in CAZFL does not make it equivalent to ACE; it makes it synchronous. The server’s
workflow requires waiting until all N client updates are received to perform a single global update.
During this waiting period, the global model w® remains static. Consequently, all N clients compute
their updates based on the exact same model version and receive the same new model w'*! for the
next round. In this synchronous workflow, information staleness, becomes trivially zero for all clients
(! = 0), which is fundamentally different from any asynchronous protocol.

The M = 1 Limit: Imbalanced Update Weighting Even in the M = 1 case, where both CA’FL
and ACE update upon every client’s arrival, their mathematical update rules are fundamentally
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different. Let hy = % Z,iv:l R be the average of all cached updates before a new update ARV
arrives from client j.

* The CA*FL update rule becomes:
vy = hy + (AIY — B9 (a.26)

The global update applies the full, unscaled change from the reporting client to the global average.
This retains a form of partial participation bias, and its convergence rate consequently depends on
the data heterogeneity bound (2, as shown in Table

* The ACE incremental update rule (derived in Section|3.4)) is:
— 1 new o)
ut =Tl (AR =BG (@.27)

Here, the change from the reporting client is scaled by 1/N. This scaling is crucial as it ensures
all clients, whether their information is new or old, contribute equally to the final average. This
design choice is what eliminates the dependency on the BDH assumption and removes the ¢? term
from ACE’s convergence bound.

Update Frequency and Communication Cost: Despite its advanced calibration mechanism,
CAZ?FL’s reliance on a buffer of size M means it shares the same fundamental limitation as FedBuff
regarding update frequency. A single global model update requires the server to wait for M clients.
This design choice inherently trades higher model evolution frequency for its calibration benefits,
resulting in a communication cost of M client uploads for every server iteration.

F.1.3 DELAY-ADAPTIVE ASYNCHRONOUS SGD (ASGD)

Design Idea Standard Asynchronous SGD (ASGD) allows workers to compute and send gradients
at their own pace without synchronization. This can lead to the server applying "stale" gradients,
which are gradients computed based on older versions of the global model. The convergence rates of
such algorithms often depend on the maximum gradient delay (7,,,4;), @ metric that can be overly
pessimistic if significant delays (stragglers) are rare. Delay-Adaptive ASGD (Koloskova et al., [2022)
directly targets the adverse effect of staleness by dynamically adjusting the learning rate 7, based on
the delay 7 of each incoming gradient. The core idea is that gradients computed on older models
(i.e., with a large 7) are less reliable and should have a smaller impact on the global model update.

Algorithm a.4 Delay-Adaptive Asynchronous SGD

Require: Initial model w(®), base learning rate parameter < 1/(4L) (where L is the smoothness
constant of the objective function), total iterations 7.
1: Initialize: Server selects an initial set of active workers Cy and sends them w(©).
2: fort=0,...,T—1do

3: Active workers C; compute stochastic gradients g = VF(Wmodel, §) in parallel, based on the
model version wmgel they were assigned.
4: Once a worker j; finishes computation (gradient g; = VF (w(t*”)7 &;) for model wt=7)

with delay 7), it sends g; to the server.

5 Server determines delay-adaptive step size 7;:
6: if 7, < 7¢ then > T¢ 1S concurrency or average concurrency
7 N < 1.
8: else
9: Choose 7; such that 0 < 7, < min{n,1/(4L7)}. b>e.g., drop (n; = 0) or scale down
10: end if
11: Server updates global model: w;41 < wy — 0 - g¢.
12: Server selects a subset A; of inactive workers (can include j;) and sends them the latest
model wit?!.
13: Update active worker set: Ci11 < (Ci \ {j:}) U As.
14: end for
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Connection to Delay Error: Our theoretical framework in Section [4] identifies that the Delay
Error (Term C) is amplified by the model drift experienced by a client. This drift is influenced by a
factor proportional to ;. The inequality below, derived from our analysis of the per-iteration delay
error, highlights this dependency on different algorithm design choices:

2 t—1
E|[Delay Error||* < 1?7/ { 4 > <<N—m>2K2<2+-~->}
N~~~ m . N—————
Learning rate E){; s=t—T; Local steps

Number of server iterations

A large delay 7} can cause this error term to dominate, especially when combined with the bias from
partial participation. Delay-Adaptive ASGD mitigates this by ensuring the product n?7; does not
grow uncontrollably. By setting 7, to be inversely proportional to 7; for large delays (e.g., n; < 1/7),
the algorithm effectively down-weights the contribution of highly stale gradients, thus suppressing
their negative impact and reducing the magnitude of the overall Delay Error.

Limitations: While this adaptive learning rate strategy effectively reduces the error component
related to staleness, it does not address the Bias Error (Term B) that arises from its single-client
update mechanism (m = 1). The global model is still updated based on the perspective of a single,
potentially unrepresentative client at each step. Therefore, it only partially mitigates the heterogeneity
amplification effect, whereas ACE is designed to eliminate the partial participation bias at its source.

F.1.4 ACE AND ACED: ASYNCHRONOUS FULL AND DYNAMIC PARTICIPATION

Algorithm a.5 ACE Implementation (Incremental Update), in addition to Algorithm [I]

1: System Initialization:

2:  Server initializes global model w°.

3:  Foreachclienti € [n]:

4: Client computes initial gradient ¢? < V f;(w?; £7) and sends it to the server.

5: Client stores its gradient locally: g7 < ¢Y.

6:  Server computes initial aggregate update: u <— % S gd. > O(d) server storage cost
7:  Server updates model: w' <+ w® — nu.

8:  Server makes w? available to clients.

9: Server Loop: Fort=1,..., T —1:

10:  Wait to receive a gradlent difference (greV — gP") from some client j.
11:  Incrementally update the aggregate u—u+ (g = g5 ) /n.

12:  Update global model: w!*! < w® — nu.

13:  Server makes w'*t! available to client j.

14: Client ;: Operation (after initialization):

15:  wieeal < latest model version received from server.

16:  Compute new gradient ¢!V <— V f; (wigcar; EFV).

17:  Send gradient difference (¥ — gprev) to server.

18:  Update local state for next round: g7 < ghev. > O(d) client storage cost

ACE: By design, ACE is an asynchronous algorithm that always leverages information from
m = n clients. However, unlike the synchronous M = N case of CA’FL, it performs a global
update immediately upon the arrival of any single client’s gradient. It averages this freshly
arrived gradient with the stale gradients from other clients. This results in a high frequency of
model updates, where the global model is constantly evolving. This dynamic is the essence of its
asynchronous nature and is precisely what gives rise to the non-trivial staleness values (7} > 0) that
our framework analyzes.

ACED: This variant introduces a dynamic participation model where m becomes a variable, n;,
determined by system dynamics and the hyperparameter 7.,,. It explicitly navigates the trade-off
discussed in this paper: when n; < n, it accepts a controllable level of partial participation bias in
exchange for robustness against the extreme staleness introduced by stragglers or dropped-out clients.
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Update Frequency and Communication Efficiency: A core design principle of ACE is its non-
buffered, immediate update mechanism. This establishes a 1-to-1 relationship between a client’s
arrival and a global model update (one server iteration). Consequently, for a given budget of total
client communications (e.g., 1000 uploads), ACE performs 1000 global updates, whereas a buffered
method with M = 10 would only perform 100. This makes ACE more communication-efficient,
allowing for faster model evolution under the same communication constraints.
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F.2 EXTENDED CONVERGENCE ANALYSIS AND STABILITY VISUALIZATION FOR SECTION
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Figure a.1: Extended performance comparison of AFL algorithms on CIFAR-10 up to 1000 server
iterations, including stability analysis via error bars. The four subplots correspond to the scenarios
detailed in Section@ (a) Dir (0.1), (b) Dir (0.3), (c) Dir (0.1) with increased delay, and (d) Dir (0.3)
with increased delay. Shaded regions represent the standard deviation (+¢) of accuracy. The error
bands clearly show that single-client update methods (Vanilla ASGD, Delay-Adaptive ASGD) exhibit
higher variance, while multi-client aggregation methods (FedBuff, CA?FL, and ACE) converge more

stably.
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To provide a more comprehensive view of the algorithms’ long-term behavior, we extend the primary
experiments in Section [5|to 1000 server iterations, with the results presented in Figure This
extended analysis serves two main purposes. First, it demonstrates that the primary convergence
dynamics and final performance rankings of all algorithms are well-established within the first
450-500 iterations. The subsequent iterations show that the learning curves have reached their
plateaus, validating our choice of 7" = 500 in the main paper as a sufficient duration for a conclusive
comparison.

Second, the larger format of this appendix figure allows for the inclusion of error bars (visualized
as shaded regions representing one standard deviation, £0), which were omitted from the smaller
figures in the main text due to space constraints that would compromise visual clarity. The insights
from these error bars provide strong empirical support for our theoretical framework:

 Stability Correlates with Participation: A clear trend emerges from the visualization: an
algorithm’s stability is directly correlated with the number of clients participating in each
global update.

» High Variance in Single-Client Methods: The single-client update methods, Vanilla ASGD
and Delay-Adaptive ASGD, consistently exhibit the widest and most volatile error bands.
This empirically demonstrates their high update variance, as each step is guided by a single
client’s potentially noisy and biased gradient, leading to a more erratic convergence path.

* Variance Reduction via Aggregation: In contrast, methods that aggregate updates from
multiple clients (FedBuff, CA?FL, and our proposed ACE) show narrower and more stable
error bands. This confirms that aggregating information across a diverse client set effectively
reduces the variance of the global updates, resulting in a more reliable and predictable
training process. Notably, ACE, which leverages information from all clients at every step,
maintains one of the most stable profiles throughout the training, reinforcing the benefits of
its all-client engagement design.

In summary, this extended analysis provides a clear visual confirmation that increased client partici-
pation is crucial not only for final accuracy but also for achieving a more stable training process.

F.3 ADDITIONAL EXPERIMENTS

To further validate the robustness and effectiveness of our proposed ACE algorithm, we conduct
additional experiments across a variety of datasets and task types. These experiments are designed to
assess ACE’s performance under different data distributions, model architectures, and against specific
challenges inherent in federated learning.

F.3.1 RESULTS ON CIFAR-100 DATASET

We simulate an Asynchronous Federated Learning (AFL) environment to evaluate the performance of
various algorithms on the CIFAR-100 (Krizhevsky, 2009) image classification dataset with ResNet-
18(He et al., [2016) models. We deploy n = 100 clients, each holding a non-identically distributed
(non-IID) subset of the data. The non-IID nature is modeled using a Dirichlet distribution, where the
concentration parameter « controls the degree of data heterogeneity across clients. Lower « values
indicate higher heterogeneity (clients’ data distributions are more dissimilar), while higher a values
represent more [ID-like data distributions. The « values explored are o € {0.1,0.3,1.0,10.0}.

The delays in AFL are simulated using an exponential distribution with a mean parameter /3. Higher
[ values signify longer average delays and a greater likelihood of extreme delays (stragglers) in the
system. The [ values investigated are 5 € {1, 5, 20, 30}.

All algorithms are trained for 7' = 500 server iterations and results are reported as an average of 5 runs.
The primary evaluation metric is the test accuracy achieved by the global model on the CIFAR-100 test
set. The test set remains identical across different levels of heterogeneity across clients and the extent
of delays. The experiments aim to understand how different AFL algorithms perform under varying
data heterogeneity and delay profile, particularly focusing on the phenomenon of "heterogeneity
amplification” where faster clients with specific data distributions can disproportionately influence the
global model in asynchronous settings. The baseline algorithms compared include FedBuff (Nguyen
et al, 2022), CA2FL (Wang et al., [2024b)), Delay-adaptive ASGD (Koloskova et al.,[2022), Vanilla
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Figure a.2: Comparative Performance of Asynchronous Federated Learning Algorithms on
CIFAR-100 under Varying Data Heterogeneity and System Delays. The heatmaps illustrate
the final test accuracy of six AFL algorithms: (a) ACE, (b) ACED (7ag = 50), (¢) CAZFL, (d)
FedBuff, (e) Delay-Adaptive ASGD, and (f) Vanilla ASGD. The x-axis represents the Dirichlet
distribution parameter « controlling client data non-IIDness (lower « indicates higher heterogeneity).
The y-axis represents the mean 3 of an exponential distribution modeling client delays (higher /3
indicates greater system delay and straggler presence). Accuracy values are normalized across all
heatmaps using a common color scale to facilitate direct comparison. Algorithms like ACE and ACED
demonstrate strong performance and robustness, particularly maintaining higher accuracies under
combined high heterogeneity and high delay conditions. In contrast, algorithms such as FedBuff,
Delay-Adaptive ASGD, and Vanilla ASGD show a more pronounced degradation, illustrating the
impact of heterogeneity amplification. ACED’s performance at high delay (e.g., 5 = 30) relative to
ACE highlights its design for mitigating the impact of extreme stragglers.

ASGD (Mishchenko et al}[2022)), alongside the proposed ACE and its practical variant ACED (with
Taigo = 90). The goal is to observe how design choices such as full client gradient aggregation
(ACE) or bounded-delay aggregation (ACED) impact robustness and final performance under these
challenging AFL conditions.

F.3.2 RESULTS ON 20NEWSGROUP TEXT CLASSIFICATION FOR BERT MODELS

20Newsgroup Dataset The 20Newsgroup dataset is a widely used collection of approximately 20k
newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups [1995).
Some examples of these newsgroups include topics like computers (e.g., comp . graphics), sci-
ence (e.g., sci.med, sci.space), politics (e.g., talk.politics.misc), and religion (e.g.,
soc.religion.christian). The paper uses this dataset for text classification tasks because
its larger output space (20 labels) is important for studying label-distribution shift scenarios.
specifies the training and test set sizes for 20Newsgroup as 11.3k training examples and 7.5k
test examples. To simulate non-IID data, particularly label distribution shift, we partition the dataset
among clients using a Dirichlet distribution Dir(«). We distribute the datasets across n = 100
clients. For the experiments presented in Table[a.2} client delays are simulated using an exponential
distribution with a mean parameter § = 5.

Models: DistilBERT and BERT Our experiments primarily utilize Transformer-based architectures.

* BERT (Bidirectional Encoder Representations from Transformers) is a language representa-
tion model pre-trained on a large corpus of text, which can be fine-tuned for a wide range
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of NLP tasks (Devlin et al.| 2019). The paper uses BERT-base for comparison, which has
around 110 million parameters.

* DistilBERT is a distilled version of BERT, designed to be smaller, faster, cheaper, and
lighter while retaining a significant portion of BERT’s performance (Sanh et al.,|2019). It
achieves this through knowledge distillation during the pre-training phase. DistilBERT has
approximately 67.0 million tunable parameters.

Table a.2: Test accuracy (mean £ 2xstd. error over 5 runs, shown as percentages) of AFL algorithms
on 20Newsgroup with DistilBERT and BERT-base under label distribution shift (o) and low system

delay (8 = 5).

. | DistilBERT | BERT-base
Algorithm
| a=01 a=1.0 a=10 | a=01 a=1.0 a=10

Vanilla ASGD  (Mishchenko et al./[2022) 49.3+28% 59.1+22% 622+1.8% | 542+2.9% 64.3+23% 67.1+1.9%
Delay-Adaptive ASGD(Koloskova et al.[[2022) | 52.4 +£2.6% 61.8 £2.0% 65.3+1.6% | 57.3£2.7% 668 +2.1% 70.2+1.7%
FedBuff (Nguyen et al.[[2022) 55.7+24% 65.2+1.8% 68.1+1.5% | 60.4+25% 703+1.9% 73.1+1.6%
CA?FL (Wang et al.[[2024b} 61.6+2.0% 69.3+1.5% 71.2+1.2% | 662+21% 741+1.6% 76.3+1.3%
ACED (Ours, Tugo = 50) 63.1+1.8% 70.7+1.3% T726+1.1% | 68.3+1.9% 75.7+1.4% 77.6+1.1%
ACE (Ours) 63.7+17% 71.4+12% 731+1.0% | 68.7+18% 76.6+13% 782+ 1.0%

Performance on 20Newsgroup The Table [a.2] summarizes the accuracy of different AFL algorithms
on the 20Newsgroup dataset using DistilBERT and BERT-base, under varying degrees of label
distribution shift controlled by «, and with a fixed low system delay (3 = 5). The accuracies
presented reflect performance after 500 server iterations. Reference accuracies for these models
under a hypothetical synchronous, no-delay federated setup would generally be slightly higher than
the values reported here for 3 = 5.
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F.3.3 REDUCING THE MEMORY OVERHEAD OF ACE BY COMPRESSION

A key insight from our theoretical and empirical analysis is the positive correlation between an
algorithm’s performance under client heterogeneity and the memory overhead required to manage
all-client state. Algorithms that operate with minimal overhead, such as Vanilla ASGD (Mishchenko
et al.l [2022), inherently suffer from heterogeneity amplification because they lack the necessary
information to correct for participation imbalance.

Conversely, state-of-the-art methods that effectively combat this issue, including both CA2FL (Wang
et al., [2024b) and our proposed ACE, rely on caching information from all n clients. CA®FL
requires an O(nd) server-side cache for historical updates (h!) to perform its calibration, while ACE
requires an O(nd) cache for the latest gradients to perform its full aggregation.

Therefore, the O(nd) overhead should be viewed as a necessary cost for achieving top-tier perfor-
mance and robustness in challenging AFL environments. The comparison in Table [a.3|should be
interpreted through this lens: the increased overhead of ACE and CA2FL directly corresponds to
their superior ability to handle the core challenges of ACE.

Table a.3: Comparison of storage overheads and convergence rates for various AFL algorithms.
The table highlights a fundamental trade-off between memory efficiency and robustness to client
heterogeneity. Algorithms with lower storage overhead, such as Vanilla ASGD, Delay-Adaptive
ASGD, and FedBulff, are susceptible to heterogeneity amplification, as indicated by the presence
of heterogeneity-dependent terms (non-vanishing (2 or 7¢? interaction) in their convergence rates.
Conversely, methods like CA%FL and our proposed ACE/ACED achieve superior convergence by
eliminating this amplification effect, but at the cost of a higher total system overhead of O(nd). This
higher cost is necessary to cache state information from all clients, which is used to correct the
participation imbalance bias. Notably, ACE offers implementation flexibility, allowing this O(nd)
overhead to be concentrated on the server (Direct Aggregation) or distributed among the clients
(Incremental Update).

Algorithm Client-Side | Server-Side | Total Cost Convergence Rate O(+) Notes
Overhead Overhead
Vanilla ASGD oO(1) oO(1) O(n) ”72 +24+¢ The client and server are state-
(Mishchenko et al.| (with non-vanishing error <-,> as T in- less, leading to low overhead
2022) creases) but susceptibility to bias.
3 I n Ti 2 .
Delay-Adaptive (1) (1) O(n) ”27;42 + \/T'*”Tzzi/f‘“ The client and server are state-
ASGD (Koloskoval (with heterogeneity amplification 7¢?) less, leading to low overhead
et al.|[2022) but susceptibility to bias.
FedBuff (Nguyen| | O(1) O(Md) O(n + Md) \/”:;Zfl 4 K ";Jr'”" o The server buffers M updates;
et al.|[2022) (with heterogeneity amplification 7¢?) performance is limited by the
7¢? term.
CA?FL o(1) O(nd) O(nd) \/A;T"i[ +Z ;1’::<J + (T‘”“\Jrq’i“"“)” Server caches state for all n
(Wang et al. (No l;eterogeneity amplification 72 clients to calibrate updates,
2024b) term due to calibration) mitigating direct amplifica-
tion.
ACE (Direct o(1) O(nd) O(nd) \/% + 5:7 4 Lt Server caches the latest gradi-
Aggregation) (No heterogeneity amplification 7(2) | €t from all n2 clients, eliminat-
ing the ¢? term from the rate.
ACE (Incremental | O(d) O(d) O(nd) —\/% + 5% L Reallocates the total O(nd)
Update) (No heterogeneity amplification 7¢2) | System cost, shifting storage
burden from server to clients.
ACED (Ours) o) O(nd) O(nd) ..‘+LT+“°&+(QZ+G2) > ("’IJ The client is stateless. The
(No heterogeneity amplification 72, a | Server still needs to cache the
anishine term & as T increases) latest gradients from all n
vanishing error term % as T increases) | cjionis'to dynamically select
the aggregation subset based
on the delay threshold.

As demonstrated in Table the total system overhead of ACE is comparable to that of CA%FL.
The choice between our Direct Aggregation (server-heavy) and Incremental Update (client-heavy)
implementations allows for flexibility in deploying this all-client principle, depending on where the
system’s resource capacity lies. In other words, for the two implementations of ACE, the total system
overhead remains the same (Direct Aggregation: client n - O(1) + server O(nd); Incremental Update:
client n - O(d) + server O(d), for a total system state of O(nd)). The incremental approach merely
reallocates the storage burden between clients and the server, rather than reducing it. Given that this
overhead is a fundamental requirement for high performance, we argue that practical optimization
efforts should focus on reducing the size of individual gradient vectors. To this end, we investigate
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the use of 8-bit quantization as a promising direction to significantly lower the memory overhead
while preserving the performance benefits of our approach.

Performance of ACE Variants and Baselines on CIFAR-10 (ResNet18)
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Figure a.3: Impact of 8-bit server-side gradient quantization on the test accuracy of ACE and ACED
on CIFAR-10 with ResNet18. The 8-bit variations achieve comparable final performance to the
full-precision implementation.

A practical consideration for ACE and its variant ACED is the server-side memory required to
store the latest gradients from all clients for the full aggregation step, especially when dealing with
large-scale models possessing a massive number of trainable parameters. This section is motivated
by the need to address this potential limitation and explore memory-efficient implementations. We
investigate the impact of applying 8-bit quantization to the gradients cached at the server before
they are aggregated. The goal is to determine if a significant reduction in memory overhead can be
achieved while largely preserving the convergence speed and final performance benefits demonstrated
by the full-precision versions of ACE and ACED.

To achieve this, we introduce ACE-8bit and ACED-8bit. The core modification lies in how the
server handles the incoming gradients from clients. Specifically:

* In both ACE-8bit and ACED-8bit, clients compute and transmit their gradients,
V f;(w'=™; &), using full precision as in the original algorithms.

« Upon receiving a gradient from client 4, say U} = V fz-(wt_ﬂ‘t ; &), the server quantizes this
gradient to an 8-bit representation, denoted as Q(U}). This can be achieved using standard
unbiased quantization techniques.

* The server then stores this quantized gradient Q(U/) in its cache for client i.

« For the global model update, ACE-8bit computes u' = 1 3" Q(U}), utilizing the latest
available quantized gradient from all n clients. Similarly, ACED-8bit computes its update
ubpa = n% DicA() Q(US™he)  using the quantized gradients from the set A(t) of active
clients whose information meets the delay threshold 7;g,.

This approach directly reduces the memory overhead on the server for storing the gradient components
from each client. In addition, this approach also illustrates the compatibility of ACE/ACED and
the model compression algorithm, providing the possibility for the practical use of ACE/ACED in a
large-scale federated learning system.
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F.4 HYPER-PARAMETER CONFIGURATIONS

Table a.4: Hyper-parameters for CIFAR-10 Experiments (Section Appendix [F.3.3). Total clients
n = 100. T' = 500 server iterations.

Hyper-parameter ACE FedBuff CA’FL Vanilla ASGD
Model ResNet-18

Global Learning Rate (1) 0.2y/n/T 0.24/n/T 0.2y/n/T 0.2y/n/T
Local Learning Rate (77;) N/A(K =1) 5x 1072 5x 1072 N/A(K =1)
Optimizer (Local step) SGD (momentum 0.9)  SGD (momentum 0.9) SGD (momentum 0.9) SGD (momentum 0.9)
Batch Size 50 50 50 50

« (Dirichlet) {0.1, 0.3} {0.1, 0.3} {0.1, 0.3} {0.1, 0.3}

8 (Mean Exp. Delay Param.) {5, 30} {5, 30} {5, 30} {5, 30}

Buffer Size (M) N/A 10 10 N/A
Concurrency (M) N (all clients) 20 20 1 (sequential)

Table a.5: Hyper-parameters for CIFAR-100 Experiments (Appendix [F.3.1)). Total clients n = 100.
T = 500 server iterations.

Hyper-parameter ACE FedBuff CA’FL Vanilla ASGD
Model ResNet-18

Global Learning Rate (1) 0.2y/n/T 0.24/n/T 0.2y/n/T 0.2y/n/T
Local Learning Rate (77;) N/A(K=1) 5x 1072 5x 1072 N/A(K =1)
Optimizer (Local step) SGD (momentum 0.9) SGD (momentum 0.9) SGD (momentum 0.9) SGD (momentum 0.9)
Batch Size 50 50 50 50

« (Dirichlet) {0.1,0.3, 1.0, 10.0} {0.1,0.3, 1.0, 10.0} {0.1,0.3, 1.0, 10.0} {0.1,0.3, 1.0, 10.0}
8 (Mean Exp. Delay Param.) {1, 5,20, 30} {1,5,20,30} {1,5,20,30} {1,5,20,30}
Buffer Size (M) N/A 10 10 N/A
Concurrency (M) N (all clients) 20 20 1 (sequential)

Table a.6: Hyper-parameters for 20Newsgroup (BERT fine-tuning) Experiments (Appendix [F.3.2).
Total clients n = 20. T' = 100 server iterations.

Hyper-parameter ACE FedBuff CAZFL Vanilla ASGD
Model DistilBERT / BERT-base

Global Learning Rate (1)) 0.24/n/T 0.24/n/T 0.24/n/T 0.24/n/T
Local Learning Rate (1) N/A (K =1) 5x 107 5x 1074 N/A (K =1)
Optimizer (Local step) AdamW AdamW AdamW AdamW
Batch Size 32 32 32 32

« (Dirichlet) {o.1, 1.0, 10.0}  {0.1, 1.0, 10.0} {0.1,1.0,10.0} {O.1, 1.0, 10.0}
B (Mean Exp. Delay Param.) 5 5 5 5
Buffer Size (M) N/A 10 10 N/A
Concurrency (M.) N (all clients) 10 10 1 (sequential)

General Setup To ensure a theoretically consistent comparison that directly aligns with our analyti-
cal framework, the local computational workload for every client across all compared algorithms
was standardized to a single gradient descent step (X' = 1) per communication round. This approach
prioritizes a direct test of the different aggregation strategies by eliminating the confounding effects
of local client drift. Specifically:

* For algorithms theoretically based on a single gradient update, such as ACE, Vanilla ASGD,
and Delay-Adaptive ASGD, each client computes a stochastic gradient on one mini-batch of
its local data using the unmodified global model it received. This single gradient is then sent
to the server.

» For algorithms designed to support multiple local steps, namely FedBuff and CA2FL, we
explicitly set their local step parameter to K = 1. This ensures they also perform only a
single mini-batch update before communication, making their update mechanism directly
comparable to the other methods under our theoretical lens.
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This setup provides a clear evaluation of how each aggregation method handles staleness and
participation bias, which is the central focus of our paper. For CIFAR datasets, this single step was
performed using SGD with momentum 0.9. For 20Newsgroup (BERT) experiments, the AdamW
optimizer was used for the local step.

Data heterogeneity across clients is configured using a Dirichlet distribution controlled by parameter
a. For CIFAR-10, o € {0.1,0.3}. For CIFAR-100, o € {0.1,0.3,1.0,10.0}. For 20Newsgroup,
a € {0.1,1.0,10.0}.

Client update delays are generated using an exponential distribution governed by a mean parameter 3.
For CIFAR-10, 5 € {5, 30}. For CIFAR-100, 8 € {1, 5, 20, 30}. For the 20Newsgroup experiments
detailed in Table[a.2] a fixed 8 = 5 was used. All resulting delays are inherently bounded.

The tables summarize key hyper-parameters. Global learning rates are tuned based on scaling y/n/T
with parameter ¢ € {10, 5,2,1,0.5,0.2,0.1}, and local learning rates are tuned based on grid search.

For the ACED variant, the additional hyper-parameter 7,4, is specified depending on the experimental
case/setting.
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