

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MITIGATING PARTICIPATION IMBALANCE BIAS IN ASYNCHRONOUS FEDERATED LEARNING UNDER CLIENT HETEROGENEITY

Anonymous authors

Paper under double-blind review

ABSTRACT

In Asynchronous Federated Learning (AFL), the central server immediately updates the global model with each arriving client’s contribution. As a result, clients perform their local training on different model versions, causing information staleness (delay). In federated environments with non-IID local data distributions, this asynchronous pattern amplifies the adverse effect of client heterogeneity (due to different data distribution, local objectives, etc.), as faster clients contribute more frequent updates, biasing the global model. We term this phenomenon **heterogeneity amplification**. Our work provides a theoretical analysis that maps AFL design choices to their resulting error sources when heterogeneity amplification occurs. Guided by our analysis, we propose **ACE** (All-Client Engagement AFL), which mitigates participation imbalance through immediate, non-buffered updates that use the latest information available from *all* clients. We also introduce a delay-aware variant, **ACED**, to balance client diversity against update staleness. Experiments on different models for different tasks across diverse heterogeneity and delay settings validate our analysis and demonstrate the robust performance of our approaches.

1 INTRODUCTION

Federated Learning (FL) enables collaborative training of machine learning models across multiple clients (e.g., mobile devices) holding private data (Kairouz et al., 2021). In a typical FL process coordinated by a central server, clients receive the current global model, compute updates based on their local data, and send these updates back. The server aggregates these updates to refine the global model for the next round, keeping raw data local. A key challenge in FL is **client heterogeneity**: clients often have diverse characteristics, including non-IID local data distributions and potentially distinct local objectives or update computation processes. These variations can impact training speed and performance (Li et al., 2020; Kairouz et al., 2021). Another challenge is the presence of **stragglers**: synchronous FL algorithms, like FedAvg (Li et al., 2020), wait for a subset of clients to finish, creating bottlenecks from slower clients.

To address the straggler problem and reduce waiting times, **Asynchronous Federated Learning (AFL)** was proposed (Agarwal & Duchi, 2011; Recht et al., 2011; Nguyen et al., 2022). In AFL, the server incorporates each of the client updates immediately upon receipt without waiting. However, this solution introduces **update delays (staleness)** because slower clients compute updates locally based on older versions of the global model received earlier, while the server continues to evolve using updates from faster clients. This participation imbalance causes the global model to be *more* influenced by the data distributions and learning objectives of the faster clients. We formally define this phenomenon as **heterogeneity amplification** and provide a theoretical analysis to understand its impact on asynchronous FL. Specifically, our analysis shows that the challenges of AFL originate from two interconnected issues:

- **AFL Staleness and Dynamics:** The asynchronous nature of AFL results in widely varying client-server communication intervals. This variability leads to information staleness where gradients are computed on outdated models, introducing errors (Agarwal & Duchi, 2011). Additionally, updates formed from a subset of clients can introduce participation imbalance bias into the global model.

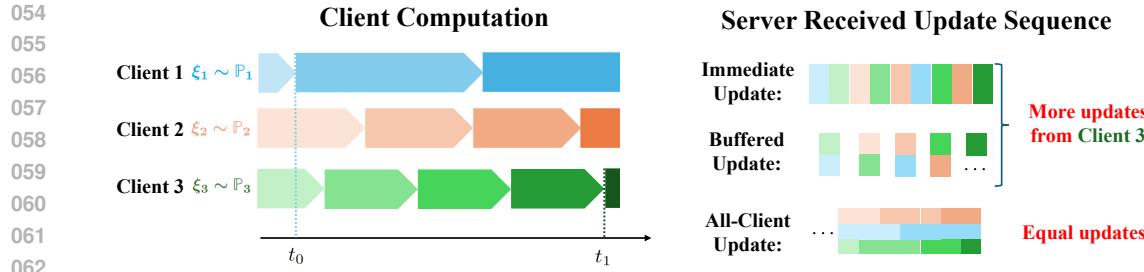


Figure 1: Staleness and Heterogeneity Amplification in AFL. **Left:** Clients compute at varying speeds (arrow lengths) on their local datasets with heterogeneous data distributions (\mathbb{P}_i , colors). Color intensity reflects staleness—the degree to which a client’s model version is outdated due to infrequent client-server communication. **Right:** Update sequences (during t_0 to t_1): ‘Immediate Update’ applies client updates on arrival; ‘Buffered Update’ waits and aggregates multiple clients’ updates before applying. However, both strategies demonstrate **heterogeneity amplification**: faster clients (e.g., Client 3) contribute more frequently, resulting in their imbalanced influence. In contrast, the ‘All-Client Update’ strategy aims to balance updates (despite staleness) from all the clients and thereby mitigate heterogeneity amplification.

- **Heterogeneity Amplification:** The interaction between client heterogeneity (including non-IID data distributions, different local objectives) and the dynamics of the AFL system (varying communication frequencies, partial participation) leads to faster and more frequent contributing clients having a greater influence on the global model, as shown in Figure 1. This affects convergence and degrades performance (Wang et al., 2024b; Koloskova et al., 2022).

Addressing these challenges requires a fundamental understanding of heterogeneity amplification, which can help mitigate its impact on convergence. To this end, we make the following contributions.

- **Theoretical Framework and Algorithm Design (Section 3).** We provide a theoretical framework that analyzes heterogeneity amplification by decomposing the *discrepancy between the server’s aggregated update and the ideal gradient*. This connects AFL design choices to the resulting error and motivates our proposed algorithm, **ACE (All-Client Engagement AFL)**. It realizes an *all-client* aggregation through a *non-buffered, immediate update* to eliminate participation imbalance bias. We also introduce a practical delay-aware variant ACED, to handle clients with extreme delays by managing the trade-off between client diversity and update staleness.
- **Comparative Theoretical Analysis (Section 4).** Using our framework, we comparatively analyze ACE against recent AFL methods (FedBuff (Nguyen et al., 2022), CA²FL (Wang et al., 2024b), Delay-adaptive ASGD (Koloskova et al., 2022), Vanilla ASGD (Mishchenko et al., 2022)). We show how its *all-client* design eliminates participation imbalance bias and mitigates the delay-heterogeneity interaction, resulting in a convergence rate robust to arbitrary heterogeneity (Theorem 1). In parallel, its *non-buffered, immediate update* mechanism improves communication efficiency and leads to faster convergence (Appendix E).
- **Experimental Validation (Section 5 and Appendix F)** We validate our findings through extensive experiments against the aforementioned baselines. Results across various models and tasks (Fig. 2, Fig. a.2, Table a.2) demonstrate ACE’s robustly faster convergence and higher final accuracy, particularly under the challenging conditions of high client heterogeneity and high delay.

Overall, we provide a novel theoretical framework that provides valuable insights for mitigating biases in AFL. This guides our ACE algorithm which uses all-client aggregation for robust, communication-efficient convergence under heterogeneity. Our practical ACED variant manages the trade-off between client diversity and update staleness, and experiments validate our methods.

2 RELATED WORK

Asynchronous FL and its Challenges. Asynchronous federated learning (AFL) (Agarwal & Duchi, 2011; Recht et al., 2011) enhances training efficiency in large-scale distributed learning by eliminating costly synchronization steps in synchronous protocols like FedAvg (Li et al., 2020). While effective in reducing wall-clock time, especially in the presence of slow or straggling clients, asynchronicity

108 changes the learning dynamics and introduces several challenges (Lian et al., 2015). Beyond
 109 foundational FL challenges like *client heterogeneity* (Kairouz et al., 2021; Li et al., 2020) and
 110 *stochastic noise* (Bottou et al., 2018), AFL introduces the critical issue of *update staleness*. This
 111 problem arises as faster clients continuously update the server’s global model, causing slower clients
 112 to compute gradients on outdated model versions. This imbalance in update frequency not only
 113 leads to *model staleness* but also reduces the influence of slower clients on the global model. When
 114 client data is non-IID, this dynamic gives faster clients a dominant influence, biasing the global
 115 model towards their local data distributions. Prior work(Wang et al., 2024b; Koloskova et al., 2022)
 116 has observed performance degradation in experiments under high heterogeneity and delay, but their
 117 theoretical analyses were derived on an algorithm-specific basis. These analyses reveal that the
 118 convergence guarantees of methods like FedBuff (Nguyen et al., 2022) and CA²FL (Wang et al.,
 119 2024b) depend on the degree of client data heterogeneity, but a theoretical framework to analyze
 120 the delay-heterogeneity interaction and guide algorithm design was missing. We are the first to
 121 formally define this interaction as **heterogeneity amplification** and provide a theoretical analysis that
 122 identifies its cause in *partial client participation*, a common design choice in many AFL algorithms.
 123

Mitigation Strategies. Given AFL’s challenges, particularly client heterogeneity amplification,
 124 various mitigation strategies have been explored, focusing on different aspects of the problem.

125 First, some strategies, often adapted from synchronous FL, target client drift using methods like
 126 regularization (Li et al., 2020) (Acar et al., 2021) or control variates (Karimireddy et al., 2020).
 127 However, the full participation assumption of methods such as SCAFFOLD (Karimireddy et al.,
 128 2020) only works in a limited number of scenarios where the server can actively control the queuing
 129 dynamics of the AFL system.

130 Second, other strategies directly address the impact of *model delays (staleness)*. These include
 131 adaptive step-sizing based on delay magnitude (Koloskova et al., 2022; Cohen et al., 2021; Aviv et al.,
 132 2021) and error feedback (Zheng et al., 2017; Stich & Karimireddy, 2020). While improving stability
 133 with stale updates, reacting primarily to delay magnitude does not always resolve the imbalanced
 134 client influence if heterogeneity amplification causes faster clients to dominate the update.

135 Third, aggregation strategies involving *state caching* and *buffering* have been explored to mitigate
 136 participation variance. One line of work utilizes client state caching to reuse historical gradients, such
 137 as MIFA (Gu et al., 2021) and FedVARP (Jhunjhunwala et al., 2022). While sharing the high-level
 138 concept of state reuse, these methods typically operate within synchronous or round-based protocols
 139 that impose synchronization barriers. Furthermore, their theoretical analysis generally focuses on
 140 proving the sufficiency of a heuristic algorithm, rather than deriving the necessary design conditions
 141 to eliminate bias from first principles. Another direction employs buffering or calibration, as seen in
 142 FedBuff (Nguyen et al., 2022) and CA²FL (Wang et al., 2024b). While FedBuff simply aggregates
 143 updates from a subset, CA²FL attempts to calibrate a cached all-client state using updates from
 144 a subset ($m < n$). However, as detailed in Appendix F.1.2, this calibration mechanism imposes
 145 non-uniform weighting on client updates, which structurally retains the participation imbalance bias
 146 and heterogeneity amplification. In contrast, our work establishes a prescriptive framework for truly
 147 asynchronous, non-buffered systems. We derive that aggregating updates from all clients ($m = n$)
 148 with equal weighting is a necessary condition to eliminate the participation bias term. Guided by this,
 149 our ACE algorithm maintains a server-side cache of the latest gradients from all clients and performs
 150 an immediate global update upon every single client arrival, thereby eliminating bias without reducing
 update frequency or enforcing synchronization.

151 3 PRELIMINARIES AND ANALYTICAL FRAMEWORK

153 Asynchronous Federated Learning (AFL) is designed to enhance system efficiency by allowing clients
 154 to operate without waiting for slower participants (stragglers). This section establishes the notations,
 155 problem setting, key assumptions for our analysis, and the analytical foundation motivating our
 156 method, ACE. More details can be found in Appendix A.

157 3.1 PROBLEM SETTING AND NOTATIONS

159 We consider n clients orchestrated by a central server, minimizing a global objective $F(w) =$
 160 $\frac{1}{n} \sum_{i=1}^n F_i(w)$, where each $F_i(w) = \mathbb{E}_{\xi_i \sim \mathbb{P}_i} [f_i(w; \xi_i)]$ is the expected loss over client i ’s true local
 161 data distribution \mathbb{P}_i . Clients compute stochastic gradients $\nabla f_i(w; \xi_i)$ from samples $\xi_i \sim \mathbb{P}_i$ as
 approximations to $\nabla F_i(w)$. The server maintains the global model $w^t \in \mathbb{R}^d$ at server iteration t (up

162 to T total iterations). In asynchronous settings, $w^{t+1} = w^t - \eta u^t$. The global update u^t typically
 163 uses stale information; a contribution from client i may be based on a model $w^{t-\tau_i^t}$, where $\tau_i^t \geq 0$ is
 164 its information staleness (delay) relative to t (in server iterations).

165 We define: $\mathbb{E}[\cdot]$ as the total expectation over all sources of randomness (e.g., client data sampling, τ_i^t
 166 values). \mathcal{F}^t is the σ -algebra of all information up to server iteration t (including w^t). $\mathbb{E}_t[\cdot] := \mathbb{E}[\cdot | \mathcal{F}^t]$
 167 is the conditional expectation given \mathcal{F}^t . The global update u^t is formed from clients' stochastic
 168 contributions, where each client i uses a fresh data sample ξ_i with its respective stale model (e.g.,
 169 $w^{t-\tau_i^t}$). Let \mathcal{H}^t be the σ -algebra containing all information determining u^t (including stale models
 170 used and aggregation rules) except the randomness from the set of these fresh data samples $\{\xi_i\}$
 171 contributing to u^t . Then, $\bar{u}^t := \mathbb{E}_{\{\xi_i\}}[u^t | \mathcal{H}^t]$ is the expected update over these fresh samples.

173 3.2 ASSUMPTIONS

175 Our subsequent theoretical analysis relies on several standard assumptions common in the optimization
 176 literature (Stich & Karimireddy, 2020; Wang et al., 2024b; Nguyen et al., 2022), particularly for
 177 stochastic and asynchronous methods. We assume the following hold throughout the paper unless
 178 otherwise stated:

179 **Assumption 1** (Lower Boundedness). *The global objective function $F(w)$ (an expectation over true
 180 local distributions) is bounded below, i.e., $F(w) \geq F^* > -\infty$ for all $w \in \mathbb{R}^d$.*

181 **Assumption 2** (L-Smoothness). *Each local objective function $F_i(w)$ (an expectation) is L -smooth
 182 for some $L \geq 0$, implying $\|\nabla F_i(w) - \nabla F_i(w')\|_2 \leq L\|w - w'\|_2$ for all w, w' . This also implies
 183 $F(w)$ is L -smooth.*

184 **Assumption 3** (Unbiased Stochastic Gradients). *Given $t \leq t_2 < t_3$, let $\xi_i^{t_3}$ with $i \in [n]$ and $t_3 \geq 1$
 185 be data sample drawn from \mathbb{P}_i , and \mathcal{F}_{t_2} be the σ -algebra representing all information available up to
 186 server iteration t_2 , then $\mathbb{E}[\nabla f_i(w; \xi_i^{t_3}) | \mathcal{F}_{t_2}] = \nabla F_i(w)$.*

187 **Assumption 4** (Bounded Sampling Noise). *The sampling noise of the local stochastic gradients is
 188 uniformly bounded: $\mathbb{E}_{\xi_i} \|\nabla f_i(w; \xi_i) - \nabla F_i(w)\|_2^2 \leq \sigma^2$ for some $\sigma \geq 0$.*

189 **Assumption 5** (Bounded Delay). *$\forall i, t : \tau_i^t \leq \tau_{\max}$, where τ_{\max} bounds the maximum interval
 190 between server iterations for any two consecutive global model updates triggered by any client i .*

192 Assumptions 1-4 characterize the optimization problem, and Assumption 5 constrains staleness.
 193 Beyond these, some analyses for algorithms with partial client participation (e.g., FedBuff (Nguyen
 194 et al., 2022)) or single-client updates (e.g., Vanilla ASGD (Mishchenko et al., 2022)) also assume
 195 **Bounded Data Heterogeneity (BDH)**, i.e., $\|\nabla F_i(w) - \nabla F(w)\|^2 \leq \zeta^2 < \infty$, which bounds how
 196 much any single client's local gradient can diverge from the true global gradient. This bound is
 197 required to analyze convergence in partial participation settings, as it controls the bias from averaging
 198 over a non-representative subset of clients. Our method, ACE, by employing full aggregation, is de-
 199 signed to eliminate the participation imbalance bias (see Section 3.3) from partial client participation,
 200 thereby eliminating the need for the BDH assumption in its convergence analysis.

201 3.3 THEORETICAL MOTIVATION FOR ACE: AN MSE DECOMPOSITION

203 In AFL, clients compute updates based on stale model versions. Client i might use $w^{t-\tau_i^t}$ (where
 204 $\tau_i^t \geq 0$ is its information delay relative to server iteration t), while the server is at w^t . We denote the
 205 collection of stale models used by clients as $w_{\text{stale}}^t = \{w^{t-\tau_i^t}\}_{i=1}^n$. This presents a critical challenge:
 206 since the latest model versions available to clients for their local computations are at best these stale
 207 versions, any global gradient estimate u^t (formed from their contributions) is inherently based on
 208 this outdated information when aiming to approximate $\nabla F(w^t)$. This creates a gap between the
 209 information used for client updates and the ideal current gradient at the server.

210 Our analysis starts from the standard descent lemma (details in Appendix B.1) for L -smooth functions
 211 (Assumption 2)). For an update $w^{t+1} = w^t - \eta u^t$, this lemma bounds the change in the objective as:

$$213 \mathbb{E}[F(w^{t+1})] \leq \mathbb{E}[F(w^t)] - \eta \mathbb{E}[\langle \nabla F(w^t), u^t \rangle] + \frac{L\eta^2}{2} \mathbb{E}\|u^t\|^2 \quad (1)$$

215 By summing this inequality over T iterations and rearranging terms, we derive the following bound (2).
 This inequality bounds the average squared norm of the true gradient, a standard measure of conver-

216 gence for non-convex objectives, by terms including the Mean Squared Error (MSE) of our gradient
 217 estimates (details of the constants $\gamma_1, \gamma_2 > 0$ are in Appendix B.2):
 218

$$219 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla F(w^t)\|^2 \leq \frac{\gamma_1(F(w^0) - \mathbb{E}[F(w^T)])}{T\eta} + \gamma_2 \eta \left(\frac{1}{T} \sum_{t=0}^{T-1} \underbrace{\mathbb{E} \|u^t - \nabla F(w^t)\|_2^2}_{\text{MSE}_t} \right) \quad (2)$$

223 Bound (2) is important because its left-hand side, the average squared gradient norm, diminishes
 224 as an algorithm converges to a stationary point in non-convex optimization (Wang et al., 2024b;
 225 Mishchenko et al., 2022; Nguyen et al., 2022). It indicates that this convergence metric is upper-
 226 bounded by the average MSE_t . Therefore, controlling MSE_t of the gradient estimates is key to
 227 improving the convergence guarantee, motivating its detailed analysis for algorithmic design.

228 **Decomposing the MSE_t term.** To analyze the error sources contributing to MSE_t , we decompose
 229 the error $u^t - \nabla F(w^t)$. We introduce \bar{u}^t (the expectation of u^t over data sampling randomness, as
 230 defined in Section 3.1) and $\nabla F(w_{\text{stale}}^t) = \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t})$ (the average true gradient on the
 231 latest stale models actually used by clients). With a telescoping sum, the error is decomposed as¹:

$$233 \quad u^t - \nabla F(w^t) = \underbrace{(u^t - \bar{u}^t)}_{:=A, \text{ Noise}} + \underbrace{(\bar{u}^t - \nabla F(w_{\text{stale}}^t))}_{:=B, \text{ Bias}} + \underbrace{(\nabla F(w_{\text{stale}}^t) - \nabla F(w^t))}_{:=C, \text{ Delay}} \quad (3)$$

236 Using the inequality $\|x + y + z\|^2 \leq 3(\|x\|^2 + \|y\|^2 + \|z\|^2)$ (an application of Lemma a.3 in
 237 Appendix B.1), we bound MSE_t with the decomposition:

$$238 \quad \text{MSE}_t = \mathbb{E} \|u^t - \nabla F(w^t)\|_2^2 \leq 3\mathbb{E}\|A\|_2^2 + 3\mathbb{E}\|B\|_2^2 + 3\mathbb{E}\|C\|_2^2 \quad (4)$$

240 Now let's analyze each error component (further discussions can be found in Section 4):
 241

- 242 • **Term A (Sampling Noise):** $A = u^t - \bar{u}^t$, represents the stochastic error from using mini-batch
 243 gradient approximations (see Assumption 4). It depends on factors like the number of participating
 244 clients and the structure of u^t .
- 245 • **Term B (Bias Error):** $B = \bar{u}^t - \nabla F(w_{\text{stale}}^t)$, quantifies the deviation of the expected gradient
 246 estimate \bar{u}^t from the true average gradient evaluated at the specific stale states $w^{t-\tau_i^t}$ used by the
 247 clients. This bias can arise from partial client participation in forming u^t or from local training
 248 steps if the clients optimize local objectives.
- 249 • **Term C (Delay Error):** $C = \nabla F(w_{\text{stale}}^t) - \nabla F(w^t)$, captures the discrepancy between the average
 250 gradient on stale models and the gradient on the current server model. It generally grows with
 251 longer delays τ_i^t .

252 This specific structure (A: Noise, B: Bias, C: Delay) helps isolate error sources relevant to AFL
 253 algorithm design. Noise (Term A) and Delay (Term C) are inherent to asynchronous optimization. In
 254 contrast, Bias Error (Term B), arises from a specific design choice: partial client participation. We
 255 therefore target Term B for complete elimination. The condition $B \equiv 0$ mathematically necessitates
 256 an **all-client aggregation** scheme. This principled design not only eliminates the primary source of
 257 heterogeneity amplification but also maximally reduces Noise (Term A) and helps contain Delay
 258 (Term C) by preventing bias accumulation in model drift (quantified in Section 4).

259 **Algorithm Design.** To achieve $B \equiv 0$ (Bias Error elimination), it requires $\bar{u}^t \equiv \nabla F(w_{\text{stale}}^t) =$
 260 $\frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t})$. Our *all-client aggregation* design for u^t is $u^t := \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i})$.
 261 Here, for each client i in the sum, $w^{t-\tau_i^t}$ is the stale model version upon which its currently cached
 262 gradient was computed. The superscript κ_i on the sample $\xi_i^{\kappa_i}$ signifies that this specific sample
 263 was used by client i to generate the gradient that was received and cached by the server at server
 264 iteration κ_i (where $t - \tau_i^t < \kappa_i \leq t$). This sample $\xi_i^{\kappa_i}$ was drawn by client i at the time of its local
 265 computation on $w^{t-\tau_i^t}$. Given Assumption 3, taking the expectation of u^t over these respective fresh
 266 samples $\{\xi_i^{\kappa_i}\}$ yields $\bar{u}^t = \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t}) = \nabla F(w_{\text{stale}}^t)$.

267
 268 ¹This framework is extensible to other scenarios. For instance, by applying further telescoping sums, the
 269 Bias term B can be decomposed to isolate *adversarial bias* (e.g., $\bar{u}^t - \bar{u}_{\text{honest}}^t$) in Byzantine settings, or the Noise
 term A can be expanded to model errors from gradient compression.

270 This leads to our **ACE (All-Client Engagement AFL)** algorithm’s core update principle Eq. 5,
 271 where this Bias Error (Term B) is eliminated:
 272

$$273 \quad \text{Bias Error (Term B)} = 0 \iff u^t := \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i}) \quad (5)$$

276 By employing full aggregation, ACE aims to directly eliminate a key component of heterogeneity
 277 amplification related to imbalanced client influence from partial updates, potentially leading to a
 278 tighter convergence bound.
 279

280 3.4 ACE ALGORITHM: CONCEPTUAL AND PRACTICAL VARIANTS

282 **(1) ACE Conceptual Implementation. (Algorithm 1)** The ACE algorithm primarily targets the
 283 Bias Error (Term B in InEq. 3) via a *full aggregation* strategy. In its main conceptual form (direct
 284 aggregation), the server computes the global update u^t by averaging the latest available gradients U_i^t
 285 from all n clients:

$$286 \quad u^t := \frac{1}{n} \sum_{i=1}^n U_i^t \in \mathbb{R}^d, \quad \text{where} \quad U_i^t = \nabla f_i(w^{t-\tau_i^t}; \xi_i) \quad (6)$$

289 Here, U_i^t is the most recent gradient from client i , computed on its stale model $w^{t-\tau_i^t}$ using a fresh
 290 data sample ξ_i . To eliminate the participation bias from our analysis in Section 3.3, this method stores
 291 all n gradients for an immediate update on each arrival. This offers higher communication efficiency
 292 than buffered methods (Nguyen et al., 2022; Wang et al., 2024b), which require similar storage but
 293 must wait for a buffer to fill. An alternative, efficient computation of u^t for ACE uses an incremental
 294 rule (Algorithm a.5), $u^t = u^{t-1} + (u_{j_t}^{\text{new}} - u_{j_t}^{\text{prev}})/n$, and can reduce the server’s cost from $\mathcal{O}(nd)$ to
 295 $\mathcal{O}(d)$ by distributing the overhead to clients. Appendix F.3.3 further explores a compression scheme
 296 to reduce the *total* system cost. For clarity, Algorithm 1 details only the direct aggregation method.
 297

298 **Algorithm 1** Conceptual ACE (Direct Aggregation, Incremental Rule see Algorithm a.5)

300 1: **Server Initialization:**
 301 2: Initialize global model w^0 .
 302 3: For each client $i \in [n]$: $U_i^{\text{cache}} \leftarrow \nabla f_i(w^0; \xi_i^0)$. \triangleright Initial gradients based on w^0 , forming u^0
 303 4: $u^0 \leftarrow \frac{1}{n} \sum_{i=1}^n U_i^{\text{cache}}$.
 304 5: $w^1 \leftarrow w^0 - \eta u^0$.
 305 6: Server makes w^1 available to clients.
 306 7: **Server Loop:** For $t = 1, \dots, T-1$: \triangleright To compute u^t and model w^{t+1}
 307 8: Wait to receive a gradient g_j from some client j . $\triangleright g_j = \nabla f_j(w^{t-\tau_j^t}; \xi_j^t)$, where $w^{t-\tau_j^t}$ is the
 308 model client j used and ξ_j^t is its fresh sample for this contribution to u^t .
 309 9: Update server’s cache for client j : $U_j^{\text{cache}} \leftarrow g_j$.
 310 10: Compute global update: $u^t \leftarrow \frac{1}{n} \sum_{i=1}^n U_i^{\text{cache}}$. \triangleright Uses latest g_j , cached U_i^{cache} from others
 311 11: Update global model: $w^{t+1} \leftarrow w^t - \eta u^t$.
 312 12: Server makes w^{t+1} available (e.g., to client j).
 313 13: **Client i Operation (runs continuously):**
 314 14: $w_{\text{local}} \leftarrow$ latest model version received from server.
 315 15: Compute gradient $g_i = \nabla f_i(w_{\text{local}}; \xi_i^{\text{new}})$. $\triangleright \xi_i^{\text{new}}$ is a fresh sample
 316 16: Send g_i to server.

317 **(2) Practical Variant: ACED (All-Client Engagement Bounded Delay-Aware AFL).** The conceptual
 318 ACE assumes bounded delays (Assumption 5) and active participation from all clients to ensure
 319 Term B elimination. However, this strict assumption becomes impractical in real-world scenarios
 320 with client dropouts or extreme delays.
 321

322 To address this, ACED enforces a delay threshold τ_{algo} for including gradients in aggregation. The
 323 server caches the latest gradient U_i^{cache} from each client and its model’s dispatch time t_i^{start} . At
 iteration t , the active set $A(t) = \{i \in [n] \mid t - t_i^{\text{start}} \leq \tau_{\text{algo}}\}$ includes clients with sufficiently fresh

324 information. If $A(t)$ is non-empty ($n_t = |A(t)| > 0$), the server does a *bounded delay-aware* update:

$$326 \quad u_{\text{BDA}}^t := \frac{1}{n_t} \sum_{i \in A(t)} U_i^{\text{cache}}, \quad \text{where} \quad A(t) = \{i \in [n] \mid t - t_i^{\text{start}} \leq \tau_{\text{algo}}\} \quad (7)$$

329 The model update is $w^{t+1} = w^t - \eta u_{\text{ACED}}^t$. This allows clients to rejoin $A(t)$ upon providing fresh
330 updates. Algorithm a.1 (see Appendix D) details this. However, it is worth noting that if $n_t < n$,
331 Term B may not be fully eliminated, and this variant needs separate convergence analysis. Due to the
332 limited space, further discussion on ACED can be found in Appendix D.

334 4 THEORETICAL COMPARISON OF AFL ALGORITHMS

336 We apply our MSE decomposition (InEq. 4 from Section 3) to analyze the **Sampling Noise** ($\mathbb{E}\|A\|^2$),
337 **Bias Error** ($\mathbb{E}\|B\|^2$), and **Delay Error** ($\mathbb{E}\|C\|^2$) for representative AFL algorithms (details for these
338 baseline algorithms can be found in Appendix F.1). This analysis relies on Assumptions in Section
339 3.2. Key notation includes ζ^2 for bounded data heterogeneity (if an algorithm assumes it), the set
340 of participating clients \mathcal{M}_t of size $m = |\mathcal{M}_t|$, the number of local steps K , and local learning rate
341 η_l . We denote a weighted sum of $\{X_i\}_{i=1}^n$ as $\sum_i \overline{X}_i$ (detailed weights omitted), and $X \lesssim Y + Z$ to
342 signify $X \leq aY + bZ$ for some constants $a, b > 0$.

343 **Term A: Sampling Noise Analysis** ($\mathbb{E}\|A\|^2 = \mathbb{E}\|u^t - \bar{u}^t\|_2^2$): This term reflects the variance from
344 stochastic gradient estimation using mini-batches. Aggregation over more clients reduces this noise,
345 while multiple local steps can accumulate it. (Details in Appendix B.3.)

- 346 • **Vanilla ASGD**(Mishchenko et al., 2022) & **Delay-Adaptive ASGD**(Koloskova et al.,
347 2022) (single client update, $m = 1, K = 1$): $\mathbb{E}\|A\|^2 \leq \sigma^2$. With $m = 1$, there is no noise
348 reduction from aggregation.
- 349 • **FedBuff**(Nguyen et al., 2022) & **CA²FL**(Wang et al., 2024b) (subset $m < n$ clients, local
350 steps $K \geq 1$): $\mathbb{E}\|A\|^2 \lesssim \frac{K\eta_l^2}{m}\sigma^2$. Noise variance is reduced by averaging over m clients but
351 scales with local steps K and the local learning rate η_l .
- 352 • **ACE (Ours)** (full aggregation over n clients, $K = 1$): $\mathbb{E}\|A\|^2 \leq \frac{\sigma^2}{n}$. This achieves maximal
353 sampling noise reduction by averaging across all n clients.

355 **Term B: Bias Error Analysis** ($\mathbb{E}\|B\|^2 = \mathbb{E}\|\bar{u}^t - \nabla F(w_{\text{stale}}^t)\|_2^2$): This term measures the systematic
356 deviation of the conditionally expected update $\bar{u}^t = \mathbb{E}_{\xi}[\bar{u}^t | \mathcal{H}_t]$ from $\nabla F(w_{\text{stale}}^t)$, the ideal average
357 gradient on the actual stale models clients used. Such bias primarily arises if \bar{u}^t is constructed using
358 only a subset of clients ($m < n$) or involves multiple local steps ($K \geq 1$) that optimize divergent
359 local objectives. (Details in Appendix B.4.)

- 360 • **Vanilla ASGD**(Mishchenko et al., 2022) & **Delay-Adaptive ASGD**(Koloskova et al.,
361 2022) & **FedBuff**(Nguyen et al., 2022) ($m < n, K \geq 1$):

$$362 \quad \mathbb{E}\|B\|^2 \lesssim \left((\sigma^2 + K\zeta^2) + \sum_{i \in \mathcal{M}_t} \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right) + (n-m) \left(\zeta^2 + \sum_{i=1}^n \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right)$$

365 This suffers from both local steps ($K \geq 1$) and partial client participation ($m < n$).

- 366 • **CA²FL**(Wang et al., 2024b) ($m < n, K \geq 1$):

$$368 \quad \mathbb{E}\|B\|^2 \lesssim \left(1 + \left(1 - \frac{m}{n} \right)^2 \right) \left((\sigma^2 + K\zeta^2) + \sum_{i=1}^n \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right).$$

370 Calibration reduces the partial participation component of bias, but bias related to the number
371 of local steps (K) and imperfect calibration ($m < n$) persists.

- 372 • **ACE (Ours)** (n clients, $K = 1$): By its design $u^t = \frac{1}{n} \sum \nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i})$, Assumption
373 3 implies $\bar{u}^t = \frac{1}{n} \sum \nabla F_i(w^{t-\tau_i^t}) = \nabla F(w_{\text{stale}}^t)$. Therefore, $\mathbb{E}\|B\|^2 = 0$. This design
374 eliminates this bias term by ensuring full aggregation and $K = 1$.

376 **Term C: Delay Error Analysis** ($\mathbb{E}\|C\|^2 = \mathbb{E}\|\nabla F(w_{\text{stale}}^t) - \nabla F(w^t)\|_2^2$): This term captures the
377 error from using stale model versions. It is bounded by the average model drift clients experience,
378 $D_i^t := \mathbb{E}\|w^{t-\tau_i^t} - w^t\|_2^2$, which measures how much the global model w^t has changed during client

378 i 's effective delay interval τ_i^t . Using Assumption 2 and Lemma a.3 in Appendix B.1:

$$380 \quad \mathbb{E}\|C\|^2 = \mathbb{E}\left\|\frac{1}{n} \sum_{i=1}^n (\nabla F_i(w^{t-\tau_i^t}) - \nabla F_i(w^t))\right\|_2^2 \leq \frac{1}{n} \sum_{i=1}^n \mathbb{E}\|\nabla F_i(w^{t-\tau_i^t}) - \nabla F_i(w^t)\|_2^2 \leq \frac{L^2}{n} \sum_{i=1}^n D_i^t.$$

382 The bound on model drift $D_i^t = \mathbb{E}\|\sum_{s=t-\tau_i^t}^{t-1} \eta u^s\|_2^2$ (where u^s is the server update at iteration s)
383 highlights how different algorithm designs influence this drift: (Details in Appendix B.5.)
384

- 385 **Vanilla ASGD**(Mishchenko et al., 2022), **Delay-Adaptive ASGD**(Koloskova et al., 2022),
386 **FedBuff**(Nguyen et al., 2022) (u^t from subset \mathcal{M}_t of size $m \leq n$, local steps $K \geq 1$):

$$387 \quad 388 \quad 389 \quad D_i^t \lesssim \tau_i^t \eta^2 \eta_l^2 \left(\frac{K\sigma^2}{m} + \frac{1}{m} \sum_{s'=t-\tau_i^t}^{t-1} \mathbb{E}\|\nabla F(w_{\text{stale}}^{s'})\|_2^2 + (n-m)K^2\zeta^2 \right).$$

390 The term $(n-m)K^2\zeta^2$ represents a per-iteration bias arising from partial participation
391 ($m < n$), local steps (K), and client heterogeneity (ζ^2). Its multiplication by τ_i^t illus-
392 trates how this bias accumulates. This $\tau\zeta^2$ interaction term is the direct mathematical
393 representation of **heterogeneity amplification**.

- 394 **CA²FL**(Wang et al., 2024b) (u^t from subset \mathcal{M}_s , local steps $K \geq 1$):

$$395 \quad 396 \quad 397 \quad D_i^t \lesssim \tau_i^t \eta^2 \eta_l^2 \left(1 + \left(1 - \frac{m}{n}\right)^2 \right) \left(\frac{K\sigma^2}{m} + \sum_{s'=t-\tau_i^t}^{t-1} \mathbb{E}\|\nabla F(w_{\text{stale}}^{s'})\|_2^2 \right).$$

398 Calibration aims to remove the direct ζ^2 term from partial participation bias found in
399 FedBuff's drift, though effects of K and incomplete calibration ($m < n$) remain.

- 400 **ACE (Ours)** (u^t averages over all n clients, $K = 1$):

$$401 \quad 402 \quad 403 \quad D_i^t \lesssim \tau_i^t \eta^2 \left(\frac{\sigma^2}{n} + \sum_{s'=t-\tau_i^t}^{t-1} \mathbb{E}\|\nabla F(w_{\text{stale}}^{s'})\|_2^2 \right).$$

404 Here, the ζ^2 term from partial participation is absent because u^t in ACE averages information
405 from all n clients, inherently balancing expected contributions during the drift calculation.

407 **Comparative Insights.** The impact of algorithmic design choices on the error terms is summarized
408 in Table 1. (Green text indicates a positive impact, red a negative one). This comparison highlights:

- 409 The number of participating clients m affects Noise (Term A, reduced by larger m) and Bias (Term
410 B, introduced if $m < n$).
- 411 Eliminating Term B bias and mitigating the delay-heterogeneity interaction (often appearing in
412 Term C analysis) necessitates using information from all n clients, via full aggregation (ACE) or
413 careful calibration (CA²FL).
- 414 **Multiple local steps ($K > 1$) increase the bounds of all error components by accumulating sampling
415 noise and multiplicatively amplifying the bias and delay errors.**
- 416 Adaptive learning rates mitigate the error accumulation captured by per-iteration model drift D_i^t by
417 down-weighting updates with large τ_i^t delays.

418 Table 1: Impact of Algorithmic Elements on Error Terms (A: Noise, B: Bias, C: Delay)

419 Algorithm	420 Sampling Noise , $\mathbb{E}\ u^t - \bar{u}^t\ _2^2$	421 Bias , $\mathbb{E}\ \bar{u}^t - \nabla F(w_{\text{stale}}^t)\ _2^2$	422 Delay , $\mathbb{E}\ \nabla F(w_{\text{stale}}^t) - \nabla F(w^t)\ _2^2$
423 Vanilla ASGD (Mishchenko et al., 2022)	424 Not Reduced (due to $m = 1$)	425 Contains bias from $K \geq 1$ and 426 partial participation $m = 1$.	427 Contains $\tau\zeta^2$ interaction (from 428 $m = 1$).
429 Delay-adapt ASGD (Koloskova et al., 2022)	430 Not Reduced (due to $m = 1$)	431 Contains bias from $K \geq 1$ and 432 partial participation $m = 1$.	433 Contains $\tau\zeta^2$ interaction (from 434 $m = 1$); Adaptive LR (smaller η) 435 may reduce reduce delay error .
436 FedBuff (Nguyen et al., 2022)	437 Reduced by m , but increased by 438 local steps $K \geq 1$.	439 Contains bias from $K \geq 1$ and 440 partial participation $m < n$.	441 Contains $\tau\zeta^2$ interaction ; Error in- 442 creased by $K \geq 1$.
443 CA²FL (Wang et al., 2024b)	444 Reduced by m , but increased by 445 local steps $K \geq 1$.	446 Contains bias from $K \geq 1$ and 447 partial participation $m < n$.	448 No $\tau\zeta^2$ interaction (Calibration); 449 Error increased by $K \geq 1$.
450 ACE (Ours)	451 Max. Reduction (by $m = n$).	452 Eliminated (by $m = n, K = 1$).	453 No $\tau\zeta^2$ interaction (by $m = n$).

477 **Convergence rate.** Plugging the bounds for ACE's MSE_t components into the general convergence
478 rate expression (Bound 2) indicates a key benefit of full aggregation. The resulting rate's upper
479 bound is independent of the Bounded Data Heterogeneity (BDH) parameter ζ^2 , demonstrating ACE's
480 theoretical robustness to arbitrarily high client heterogeneity. This rate is achieved by selecting an
481 optimal practical learning rate $\eta \propto \sqrt{n/T}$ (see Appendix B.2), leading to Theorem 1:

432
 433 **Theorem 1** (Convergence Rate of ACE (Alg. 1)). *Suppose Assumptions A1-A5 hold. By choosing*
 434 *an appropriate global step size η proportional to $\sqrt{n/T}$, ACE (Algorithm 1) achieves the following*
 435 *convergence rate for smooth non-convex objectives:*

$$436 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla F(w^t)\|^2 \lesssim \frac{\Delta}{\sqrt{nT}} + \frac{L\sigma^2}{\sqrt{nT}} + \frac{L^2\tau_{\max}\sigma^2}{T}$$

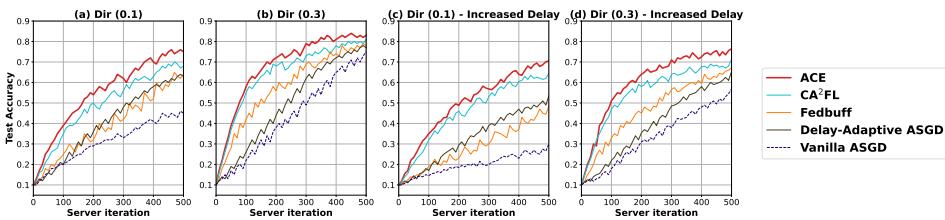
438 where $\Delta = F(w^0) - F(w^T)$. (Proof can be found in Appendix C).

440 5 EXPERIMENTAL RESULTS

441 **Experimental Setup.** We simulate Asynchronous Federated Learning (AFL) on CIFAR-10
 442 dataset(Krizhevsky, 2009) with $N = 100$ clients. Non-IID conditions are created using a Dirichlet
 443 distribution (varying α), and client delays follow an exponential distribution (varying mean β). We
 444 choose this synthetic heterogeneity setup specifically to independently control heterogeneity (α) and
 445 delay (β), allowing us to isolate and verify the multiplicative “heterogeneity amplification” effect pre-
 446 dicted by our theory. We compare our ACE algorithm against FedBuff (Nguyen et al., 2022), CA²FL
 447 (Wang et al., 2024b), Delay-adaptive ASGD (Koloskova et al., 2022) and Vanilla ASGD (Mishchenko
 448 et al., 2022), measuring over $T = 500$ server iterations. Appendix F.3 provides additional results on
 449 more models and tasks, including image classification across more heterogeneities and delay settings
 450 and Natural Language Processing (NLP) tasks with BERT(Sanh et al., 2019; Devlin et al., 2019)
 451 models.

452 **1. Impact of Non-IID Data (Client Heterogeneity).** Comparing Figure 2(a) with (b), or (c) with
 453 (d), increasing data heterogeneity (lower α) typically degrades performance. ACE and CA²FL
 454 consistently achieve higher final accuracy and converge faster, especially under high heterogeneity
 455 ($\alpha = 0.1$). This aligns with our theory that mitigating aggregation bias (Term B in our analysis), as
 456 ACE does via its full participation logic, enhances robustness to client heterogeneity.

457 **2. Impact of Delay and Heterogeneity Amplification.** Increased system delay generally leads to a
 458 decline in accuracy for all methods due to larger model drift (as it scales with growing τ_{\max}), as seen
 459 when comparing scenarios with higher delay and lower delay (Fig. 2(c) vs. (a) , or (d) vs. (b)).



460 Figure 2: Impact of data heterogeneity (Dirichlet α) and client delay (Exponential mean β) on
 461 CIFAR-10 test accuracy over 500 server iterations. (a) $\alpha = 0.1$, low delay ($\beta = 5$). (b) $\alpha = 0.3$,
 462 low delay. (c) $\alpha = 0.1$, increased delay ($\beta = 30$). (d) $\alpha = 0.3$, increased delay. ACE demonstrates
 463 robust performance toward various heterogeneity and delay. Extended results are in Appendix F.2.

464 Algorithms with partial client participation (e.g., FedBuff, Vanilla ASGD, Delay-adaptive ASGD),
 465 according to our theory (Section 4), are more vulnerable to the $\tau\zeta^2$ interaction within their Delay
 466 Error (Term C). Specifically, for these methods, the performance degradation caused by increased
 467 delay is more evident when data heterogeneity is high (accuracy difference between Fig. 2(a) and
 468 (c)) compared to when heterogeneity is lower (accuracy difference between Fig. 2(b) and (d)). This
 469 greater performance drop, along with the slower convergence of the baseline methods, illustrates the
 470 heterogeneity amplification effect. In contrast, the superior performance of ACE, supports our insight
 471 in Section 4 that all client participation mitigates heterogeneity amplification.

472 **3. Ablation Study on Local Steps (K).** To validate our choice of $K = 1$, we conducted an ablation
 473 study varying $K \in \{1, 5, 10\}$ (Table 2). While theoretically increasing K can help reduce the initial
 474 suboptimality error term (related to Δ) faster as T increases (as indicated in Table a.1), our results
 475 demonstrate that this benefit is overwhelmed by the amplified local model drift in the asynchronous
 476 setting. As detailed in our analysis (Section 4 and Appendix B.5), delay τ interacts with K in a

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 2: **Comprehensive Ablation Study on Local Steps (K) across Varying Heterogeneity (α) and Delay (β).** We report the final test accuracy (%) at $T = 500$ server iterations. The $K = 1$ column corresponds to the main results in Figure 2. Data for $K = 5$ and $K = 10$ demonstrates that increasing local steps consistently degrades performance in AFL due to drift amplification. ACE shows superior robustness, whereas single-client methods (Vanilla/Delay-Adaptive ASGD) and buffered methods (FedBuff) suffer significant drops, particularly under high delay conditions.

Algorithm	(a) High Het., Low Delay ($\alpha = 0.1, \beta = 5$)			(b) Mod. Het., Low Delay ($\alpha = 0.3, \beta = 5$)			(c) High Het., High Delay ($\alpha = 0.1, \beta = 30$)			(d) Mod. Het., High Delay ($\alpha = 0.3, \beta = 30$)		
	$K = 1$	$K = 5$	$K = 10$	$K = 1$	$K = 5$	$K = 10$	$K = 1$	$K = 5$	$K = 10$	$K = 1$	$K = 5$	$K = 10$
ACE (Ours)	76.2	75.5	74.8	83.5	83.0	82.4	71.5	70.2	69.1	77.8	77.1	76.2
CA ² FL(Wang et al., 2024b)	70.5	68.1	65.4	79.2	77.5	75.3	63.2	58.5	53.1	71.5	68.2	64.9
FedBuff(Nguyen et al., 2022)	63.8	60.2	56.5	75.8	73.2	69.8	51.5	45.8	39.5	66.5	62.1	57.4
Delay-Adaptive ASGD(Koloskova et al., 2022)	64.0	61.5	57.8	78.0	75.4	72.1	55.0	49.5	42.8	68.0	63.5	58.2
Vanilla ASGD(Mishchenko et al., 2022)	45.0	41.2	36.5	75.0	71.5	67.0	30.5	24.8	18.5	58.5	52.4	46.8

multiplicative, harmful way. For instance, the drift error bound for FedBuff(Nguyen et al., 2022) scales with $\mathcal{O}(\tau \cdot (n - m)K^2\zeta^2)$, and for CA²FL(Wang et al., 2024b) it involves terms scaling with $\mathcal{O}((1 + \frac{1}{n^2}(n - m)^2)\tau \cdot K\sigma^2)$. Consequently, increasing K causes clients to accumulate larger deviation vectors based on outdated information. Empirically, this leads to consistent performance degradation for all algorithms as K increases. Notably, ACE exhibits the greatest robustness, as its full aggregation ($m = n$) eliminates the $(n - m)$ multiplier, thereby minimizing this multiplicative drift error.

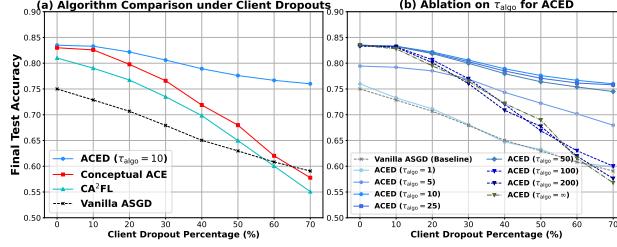


Figure 3: Final test accuracy ($T = 500$, $\text{Dir}(\alpha = 0.3)$, $\beta = 5$) vs. client dropout. (a) ACED ($\tau_{\text{algo}} = 10$) shows superior dropout robustness compared to Conceptual ACE, CA²FL, and Vanilla ASGD. (b) Ablation on ACED’s τ_{algo} : performance suffers if τ_{algo} is too small (partial participation bias) or too large (staleness error), but is stable across moderate τ_{algo} values.

Delay-aware Aggregation under Client Dropouts. We investigate ACED’s robustness to client dropouts (from 0% to 70%) under $\text{Dir}(\alpha = 0.3)$ and $\beta = 5$, starting at $t = T/2 = 250$, as shown in Figure 3. Compared to other methods, ACED (using $\tau_{\text{algo}} = 10 = 2\beta$) exhibits enhanced resilience, highlighting the role of τ_{algo} in managing a trade-off between two error sources. Our ablation study quantifies this trade-off: an excessively small τ_{algo} (e.g., 1, resembling Vanilla ASGD) minimizes staleness but incurs high participation bias. Conversely, a very large τ_{algo} (e.g., $\geq 100 = T/5$) includes too many stale updates, leading to model drift. Therefore, since ACED allows dropped or delayed clients to contribute again once their delay recovers (Algorithm a.1), selecting τ_{algo} within a wide moderate range ([10, 50]) proves effective. This strategy maximizes participation to better address the common challenge of heterogeneity in AFL and reduce the impact of participation bias.

6 CONCLUSION

Our work introduces a general theoretical framework to analyze Asynchronous Federated Learning (AFL) algorithms by decomposing the total error. Our analysis using this framework identifies that client participation imbalance bias is the root cause of **heterogeneity amplification**. Based on this insight, we propose ACE; its immediate, non-buffered aggregation of all clients eliminates participation bias and ensures robust, communication-efficient convergence under high heterogeneity. For practical challenges like extreme delays, the delay-aware variant ACED uses a staleness threshold to manage the trade-off between maximizing client diversity (to reduce bias) and minimizing error from stale gradients (to reduce delay error). Experiments confirm our methods achieve more stable performance, particularly in challenging settings with high data heterogeneity and system delays.

540 REFERENCES
541

542 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh
543 Saligrama. Federated learning based on dynamic regularization. In *International Conference on*
544 *Learning Representations (ICLR)*, 2021.

545 Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In *Advances in*
546 *Neural Information Processing Systems*, volume 24, pp. 873–881, 2011.

547 Rotem Zamir Aviv, Ido Hakimi, Assaf Schuster, and Kfir Yehuda Levy. Learning under delayed
548 feedback: Implicitly adapting to gradient delays. In *International Conference on Machine Learning*
549 (*ICML*), pp. 376–386. PMLR, 2021.

550 Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
551 learning. *SIAM Review*, 60(2):223–311, 2018.

552 Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
553 optimization robust to arbitrary delays. In *Advances in Neural Information Processing Systems*,
554 volume 34, pp. 9024–9035, 2021.

555 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
556 bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of*
557 *the North American Chapter of the Association for Computational Linguistics: Human Language*
558 *Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, 2019.
559 Association for Computational Linguistics.

560 Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast federated learning in the
561 presence of arbitrary device unavailability. *Advances in Neural Information Processing Systems*,
562 34:12052–12064, 2021.

563 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
564 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
565 pp. 770–778, 2016.

566 Divyansh Jhunjhunwala, Pranay Sharma, Aushim Nagarkatti, and Gauri Joshi. Fedvarp: Tackling
567 the variance due to partial client participation in federated learning. In *Uncertainty in Artificial*
568 *Intelligence*, pp. 906–916. PMLR, 2022.

569 Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
570 Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
571 and open problems in federated learning. *Foundations and Trends® in Machine Learning*, 14(1–2):
572 1–210, 2021.

573 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
574 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
575 *International Conference on Machine Learning (ICML)*, pp. 5132–5143. PMLR, 2020.

576 Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Sharper convergence guarantees for
577 asynchronous sgd for distributed and federated learning. In *Advances in Neural Information*
578 *Processing Systems*, volume 35, pp. 17202–17215, 2022.

579 Alex Krizhevsky. Learning multiple layers of features from tiny images. *Toronto, ON, Canada*, 2009.

580 Ken Lang. Newsweeder: Learning to filter netnews. In Armand Prieditis and Stuart Russell (eds.),
581 *Proceedings of the Twelfth International Conference on Machine Learning (ICML 1995)*, pp.
582 331–339. Morgan Kaufmann, 1995.

583 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
584 Federated optimization in heterogeneous networks. In *Proceedings of Machine learning and*
585 *systems 2 (MLSys)*, volume 3, 2020.

586 Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient
587 for nonconvex optimization. In *Advances in Neural Information Processing Systems*, volume 28,
588 2015.

594 Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous sgd
 595 beats minibatch sgd under arbitrary delays. In *Advances in Neural Information Processing Systems*,
 596 volume 35, pp. 420–433, 2022.

597

598 John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
 599 Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In *Proceedings of The*
 600 *25th International Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 151 of
 601 *Proceedings of Machine Learning Research*, pp. 3581–3607. PMLR, 2022.

602 Benjamin Recht, Christopher Re, Stephen J. Wright, and Feng Niu. Hogwild!: A lock-free approach
 603 to parallelizing stochastic gradient descent. In *Advances in Neural Information Processing Systems*,
 604 volume 24, pp. 693–701, 2011.

605

606 Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
 607 Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In *International*
 608 *Conference on Learning Representations (ICLR)*, 2021.

609

610 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 611 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.

612

613 Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Sgd with delayed
 614 gradients. *Journal of Machine Learning Research*, 21(237):1–36, 2020.

615

616 Xiaolu Wang, Yuchang Sun, Hoi-To Wai, and Jun Zhang. Dual-delayed asynchronous sgd for
 617 arbitrarily heterogeneous data. *arXiv preprint arXiv:2405.16966*, 2024a.

618

619 Yujia Wang, Yuanpu Cao, Jingcheng Wu, Ruoyu Chen, and Jinghui Chen. Tackling the data
 620 heterogeneity in asynchronous federated learning with cached update calibration. In *International*
 621 *Conference on Learning Representations (ICLR)*, 2024b.

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

Appendix Contents	
A Notations	2
A.1 Problem Setting	2
A.2 Notations	2
B Proofs for Section 4	4
B.1 Useful Lemmas	4
B.2 MSE Convergence Control and the Optimal Learning Rate	8
B.3 Theorem on Sampling Noise (Term A)	11
B.4 Theorem on Bias Error (Term B)	13
B.5 Theorem on Delay Error (Term C)	16
C Convergence Rate of ACE	22
C.1 Proof of the Rate	22
C.1.1 Alternative Convergence Analysis with Explicit Independence	25
D Detailed Discussion on the Delay-Aware Variant	29
D.1 Pseudo-Code of ACED	29
D.2 Assumptions for ACED	29
D.3 Convergence Theorem for ACED	30
D.3.1 Alternative Convergence Rate Analysis for ACED	35
D.4 Discussions on ACED	39
D.4.1 Algorithm Behavior with Dropped Clients	39
D.4.2 Discussion of the Assumptions	40
E Rate Comparison with Other AFL Algorithms	41
F Additional Experimental Details	43
F.1 Detailed Discussion on Baseline Methods	43
F.1.1 FedBuff (Federated Learning with Buffered Asynchronous Aggregation) .	43
F.1.2 CA ² FL (Cache-Aided Asynchronous Federated Learning)	44
F.1.3 Delay-Adaptive Asynchronous SGD (ASGD)	45
F.1.4 ACE and ACED: Asynchronous Full and Dynamic Participation	46
F.2 Extended Convergence Analysis and Stability Visualization for Section 5	48
F.3 Additional Experiments	49
F.3.1 Results on CIFAR-100 dataset	49
F.3.2 Results on 20Newsgroup Text Classification for BERT models	50
F.3.3 Reducing the Memory Overhead of ACE by Compression	52
F.4 Hyper-parameter Configurations	54

702

A NOTATIONS

703
704 This section outlines the notation used and details the problem setup as presented in the paper.
705706

A.1 PROBLEM SETTING

707 The paper considers an Asynchronous Federated Learning (AFL) system with n clients and a central
708 server. The objective is to minimize a global function $F(w)$, which is an average of local client
709 objectives $F_i(w)$:

710
711
$$F(w) = \frac{1}{n} \sum_{i=1}^n F_i(w)$$

712
713

714 Each local objective $F_i(w)$ is the expected loss over client i 's true local data distribution \mathbb{P}_i :

715
$$F_i(w) = \mathbb{E}_{\xi_i \sim \mathbb{P}_i} [f_i(w; \xi_i)]$$

716

717 Here, $w \in \mathbb{R}^d$ represents the model parameters, and $f_i(w; \xi_i)$ is the loss for a data sample ξ_i from
718 client i 's distribution. Clients compute stochastic gradients $\nabla f_i(w; \xi_i)$ as approximations to the true
719 local gradients $\nabla F_i(w)$.720 The server maintains the global model w^t at server iteration t (up to T total iterations). In the
721 asynchronous setting, the global model is updated, for example, via $w^{t+1} = w^t - \eta u^t$. The crucial
722 aspect is that the global update u^t is formed using potentially stale information. A contribution
723 from client i to u^t might be based on a model version $w^{t-\tau_i^t}$ it received earlier, where $\tau_i^t \geq 0$ is the
724 information staleness (or delay) of that client's information relative to the current server iteration t .
725726

A.2 NOTATIONS

727 The following notations are used:
728

- n : Total number of clients.
- $w^t \in \mathbb{R}^d$: Global model parameters at server iteration t .
- d : Dimensionality of the model parameters.
- T : Total number of server iterations.
- $F(w)$: Global objective function.
- $F_i(w)$: Local objective function for client i .
- \mathbb{P}_i : True local data distribution for client i .
- $f_i(w; \xi_i)$: Loss function for client i on data sample ξ_i .
- $\nabla F(w)$: True gradient of the global objective function.
- $\nabla F_i(w)$: True gradient of the local objective function for client i .
- $\nabla f_i(w; \xi_i)$: Stochastic gradient computed by client i from sample ξ_i based on model w .
- η : Server-side learning rate (step size).
- η_l : Client-side local learning rate (mentioned in context of other algorithms like FedBuff in Section 4).
- u^t : Global update vector applied by the server at iteration t .
- τ_i^t, ρ_i^t : Information staleness (delay) for client i 's contribution to the update at server iteration t . This is the difference in server iterations between when client i received the model it used for computation and the current server iteration t . ρ_i^t is specified for the delay of the models in the cache in CA²FL (Wang et al., 2024b).
- $\mathbb{E}[\cdot]$: Total expectation over all sources of randomness.
- \mathcal{F}^t : The σ -algebra of all information available up to server iteration t (including w^t).
- $\mathbb{E}_t[\cdot]$ or $\mathbb{E}[\cdot | \mathcal{F}^t]$: Conditional expectation given \mathcal{F}^t .

- 756 • \mathcal{H}^t : The σ -algebra containing all information determining u^t (including stale models used
757 and aggregation rules) except the randomness from the set of fresh data samples $\{\xi_i\}$
758 contributing to u^t .
- 759 • $\bar{u}^t := \mathbb{E}_{\{\xi_i\}}[u^t | \mathcal{H}^t]$: Expected global update over the fresh data samples $\{\xi_i\}$ used to form
760 u^t , conditional on \mathcal{H}^t .
- 761 • $w_{\text{stale}}^t = \{w^{t-\tau_i^t}\}_{i=1}^n$: Collection of stale models used by clients whose updates contribute
762 to u^t .
- 763 • $\nabla F(w_{\text{stale}}^t) = \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t})$: The average true gradient evaluated on the specific
764 stale model versions $w^{t-\tau_i^t}$ used by the clients.
- 765 • $\xi_i^{\kappa_i}$: A specific data sample used by client i to generate the gradient that was received and
766 cached by the server at server iteration κ_i (where $t - \tau_i^t < \kappa_i \leq t$), computed on model
767 $w^{t-\tau_i^t}$.
- 768 • U_i^t or U_i^{cache} : The latest available (potentially stale) gradient from client i cached at the
769 server at iteration t . For ACE, $U_i^t = \nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i})$.
- 770 • F^* : Lower bound of the global objective function, $F(w) \geq F^* > -\infty$.
- 771 • L : Lipschitz constant for the smoothness of local objective functions $F_i(w)$.
- 772 • σ^2 : Bound on the variance of local stochastic gradients, $\mathbb{E}_{\xi_i} \|\nabla f_i(w; \xi_i) - \nabla F_i(w)\|_2^2 \leq \sigma^2$.
- 773 • τ_{max} : Bound on the maximum delay, $\tau_i^t \leq \tau_{\text{max}}$.
- 774 • ζ^2 : Bound for Bounded Data Heterogeneity (BDH), $\|\nabla F_i(w) - \nabla F(w)\|^2 \leq \zeta^2$ (mentioned
775 as an assumption in some other algorithms, but ACE aims to eliminate the need for it by full
776 aggregation).
- 777 • K : Number of local steps (mentioned in context of other algorithms like FedBuff in
778 Section 4).
- 779 • t_i^{start} : Server iteration when client i obtained the model $w^{t_i^{\text{start}}}$ upon which its currently cached
780 gradient U_i^{cache} was computed (in ACED).
- 781 • τ_{algo} : Maximum allowed delay threshold for gradient inclusion in ACED.
- 782 • $A(t)$: Set of active clients in ACED at server iteration t , defined as $\{i \in [n] | t - t_i^{\text{start}} \leq \tau_{\text{algo}}\}$.
- 783 • $n_t = |A(t)|$: Number of active clients in $A(t)$ for ACED.
- 784 • n_{\min} : Lower bound on n_t , i.e., $n_t \geq n_{\min} \geq 1$ (for ACED).
- 785 • G : Bound on the norm of expected local gradients, $\|\nabla F_i(w)\|_2 \leq G$ (Assumption a.7 for
786 ACED analysis, noted as not strictly necessary but simplifying).
- 787 • $\Delta = F(w^0) - \mathbb{E}[F(w^T)]$ or $F(w^0) - F^*$: Initial suboptimality.

793 This list covers the primary notations introduced and used in the problem setup and for the analysis
794 of ACE and related concepts within the specified paper. The paper also refers to notations from
795 other algorithms (FedBuff, CA²FL, Delay-adaptive ASGD) when making comparisons, which might
796 have their own specific notations detailed in their respective original publications or the provided
797 supplementary material.

798
799
800
801
802
803
804
805
806
807
808
809

810 B PROOFS FOR SECTION 4

811
 812 All the notations used in this section are detailed in Appendix A. Details of the implementations of
 813 the baseline algorithms (FedBuff (Nguyen et al., 2022), CA²FL (Wang et al., 2024b), Delay-adaptive
 814 ASGD (Koloskova et al., 2022) and Vanilla ASGD (Mishchenko et al., 2022)) can be found in F.
 815

816 B.1 USEFUL LEMMAS

817
 818 **Lemma a.1.** For two arbitrary vectors $a, b \in \mathbb{R}^d$, the inner product can be expressed as:

$$819 \quad \langle a, b \rangle = \frac{1}{2} (\|a\|^2 + \|b\|^2 - \|a - b\|^2).$$

820
 821 *Proof.* Expand $\|a - b\|^2$:

$$822 \quad \begin{aligned} \|a - b\|^2 &= \langle a - b, a - b \rangle \\ &= \langle a, a \rangle - 2\langle a, b \rangle + \langle b, b \rangle \\ &= \|a\|^2 + \|b\|^2 - 2\langle a, b \rangle. \end{aligned}$$

823
 824 Rearranging this gives $\langle a, b \rangle = \frac{1}{2}(\|a\|^2 + \|b\|^2 - \|a - b\|^2)$. \square

825
 826 **Lemma a.2.** For vectors $x_i \in \mathbb{R}^d$, $i = 1, \dots, n$:

$$827 \quad \left\| \sum_{k=1}^n x_k \right\|^2 = n \sum_{k=1}^n \|x_k\|^2 - \frac{1}{2} \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \|x_i - x_j\|^2$$

828
 829 *Proof.* We first prove the following auxiliary identity: For vectors $x_1, \dots, x_n \in \mathbb{R}^d$:

$$830 \quad \sum_{i=1}^n \sum_{j=1}^n \|x_i - x_j\|^2 = 2n \sum_{k=1}^n \|x_k\|^2 - 2 \left\| \sum_{k=1}^n x_k \right\|^2$$

$$831 \quad \begin{aligned} \sum_{i=1}^n \sum_{j=1}^n \|x_i - x_j\|^2 &= \sum_{i=1}^n \sum_{j=1}^n (\|x_i\|^2 - 2\langle x_i, x_j \rangle + \|x_j\|^2) \\ &= \sum_{i=1}^n \sum_{j=1}^n \|x_i\|^2 + \sum_{i=1}^n \sum_{j=1}^n \|x_j\|^2 - 2 \sum_{i=1}^n \sum_{j=1}^n \langle x_i, x_j \rangle \\ &= \sum_{j=1}^n \left(\sum_{i=1}^n \|x_i\|^2 \right) + \sum_{i=1}^n \left(\sum_{j=1}^n \|x_j\|^2 \right) - 2 \left\langle \sum_{i=1}^n x_i, \sum_{j=1}^n x_j \right\rangle \\ &= n \sum_{i=1}^n \|x_i\|^2 + n \sum_{j=1}^n \|x_j\|^2 - 2 \left\| \sum_{k=1}^n x_k \right\|^2 \\ &= 2n \sum_{k=1}^n \|x_k\|^2 - 2 \left\| \sum_{k=1}^n x_k \right\|^2. \end{aligned}$$

832
 833 Note that when $i = j$, $\|x_i - x_j\|^2 = \|x_i - x_i\|^2 = \|\mathbf{0}\|^2 = 0$.

834
 835 Therefore, the sum $\sum_{i=1}^n \sum_{j=1}^n \|x_i - x_j\|^2$ can be split based on whether $i = j$ or $i \neq j$:

$$836 \quad \sum_{i=1}^n \sum_{j=1}^n \|x_i - x_j\|^2 = \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \|x_i - x_j\|^2 + \sum_{i=1}^n \|x_i - x_i\|^2 = \sum_{i=1}^n \sum_{j=1}^n \|x_i - x_j\|^2 + 0$$

864 So, $\sum_{i=1}^n \sum_{j=1}^n \|x_i - x_j\|^2 = \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \|x_i - x_j\|^2$. Thus, the auxiliary identity can be rewritten as:

$$867 \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \|x_i - x_j\|^2 = 2n \sum_{k=1}^n \|x_k\|^2 - 2 \left\| \sum_{k=1}^n x_k \right\|^2$$

871 Rearranging this equation to solve for $\|\sum_{k=1}^n x_k\|^2$:

$$873 2 \left\| \sum_{k=1}^n x_k \right\|^2 = 2n \sum_{k=1}^n \|x_k\|^2 - \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \|x_i - x_j\|^2$$

877 Dividing both sides by 2 yields the lemma:

$$879 880 881 882 \left\| \sum_{k=1}^n x_k \right\|^2 = n \sum_{k=1}^n \|x_k\|^2 - \frac{1}{2} \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \|x_i - x_j\|^2$$

□

885 **Lemma a.3.** For vectors $x_i \in \mathbb{R}^d$, $i = 1, \dots, n$:

$$887 888 889 \left\| \sum_{i=1}^n x_i \right\|^2 \leq n \sum_{i=1}^n \|x_i\|^2.$$

890 A special case for two vectors $a, b \in \mathbb{R}^d$:

$$892 893 \|\mathbf{a} + \mathbf{b}\|^2 \leq 2(\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2).$$

895 *Proof.* This lemma is a corollary of Lemma a.2, since $\frac{1}{2} \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \|x_i - x_j\|^2 \geq 0$. □

898 *Note:* This lemma is very useful for "extracting the summation symbol" in a norm.

900 **Lemma a.4** (Descent Lemma). For an L -smooth function $F : \mathbb{R}^d \rightarrow \mathbb{R}$, for any $x, y \in \mathbb{R}^d$:

$$901 902 903 F(y) \leq F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2} \|y - x\|^2.$$

905 *Proof.* By the Fundamental Theorem of Calculus:

$$907 908 F(y) - F(x) = \int_0^1 \langle \nabla F(x + \tau(y - x)), y - x \rangle d\tau.$$

910 Adding and subtracting $\langle \nabla F(x), y - x \rangle$:

$$911 912 913 914 915 916 917 F(y) - F(x) = \int_0^1 \langle \nabla F(x + \tau(y - x)) - \nabla F(x) + \nabla F(x), y - x \rangle d\tau \\ = \int_0^1 \langle \nabla F(x), y - x \rangle d\tau + \int_0^1 \langle \nabla F(x + \tau(y - x)) - \nabla F(x), y - x \rangle d\tau \\ = \langle \nabla F(x), y - x \rangle + \int_0^1 \langle \nabla F(x + \tau(y - x)) - \nabla F(x), y - x \rangle d\tau.$$

918 Using Cauchy-Schwarz inequality and L -smoothness (L -gradient Lipschitz property, which states
 919 $\|\nabla F(a) - \nabla F(b)\| \leq L\|a - b\|$):
 920

$$\begin{aligned}
 921 \int_0^1 \langle \nabla F(x + \tau(y - x)) - \nabla F(x), y - x \rangle d\tau &\leq \int_0^1 \|\nabla F(x + \tau(y - x)) - \nabla F(x)\| \|y - x\| d\tau \\
 922 &\leq \int_0^1 L\|(x + \tau(y - x)) - x\| \|y - x\| d\tau \\
 923 &= \int_0^1 L\|\tau(y - x)\| \|y - x\| d\tau \\
 924 &= \int_0^1 L\tau\|y - x\|^2 d\tau \\
 925 &= L\|y - x\|^2 \int_0^1 \tau d\tau \\
 926 &= L\|y - x\|^2 \left[\frac{\tau^2}{2} \right]_0^1 = \frac{L}{2}\|y - x\|^2.
 \end{aligned}$$

927 Therefore,

$$928 F(y) - F(x) \leq \langle \nabla F(x), y - x \rangle + \frac{L}{2}\|y - x\|^2,$$

929 which implies the statement of the lemma:

$$930 F(y) \leq F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2}\|y - x\|^2.$$

931 *Application to algorithm analysis:* This lemma is frequently applied in the analysis of iterative
 932 optimization algorithms. For an algorithm with an update rule of the form $w^{t+1} = w^t - \eta u^t$, where
 933 w^t is the model at iteration t , u^t is the update direction (possibly stochastic), and η is the step size,
 934 we can set $x = w^t$ and $y = w^{t+1}$. Then $y - x = w^{t+1} - w^t = -\eta u^t$. Substituting these into the
 935 lemma:

$$\begin{aligned}
 936 F(w^{t+1}) &\leq F(w^t) + \langle \nabla F(w^t), -\eta u^t \rangle + \frac{L}{2}\|-\eta u^t\|^2 \\
 937 F(w^{t+1}) &\leq F(w^t) - \eta \langle \nabla F(w^t), u^t \rangle + \frac{L\eta^2}{2}\|u^t\|^2.
 \end{aligned}$$

938 If u^t involves randomness (e.g., from stochastic gradients or client sampling), we typically take the
 939 total expectation $\mathbb{E}[\cdot]$ over all sources of randomness:

$$940 \mathbb{E}[F(w^{t+1})] \leq \mathbb{E}[F(w^t)] - \eta \mathbb{E}[\langle \nabla F(w^t), u^t \rangle] + \frac{L\eta^2}{2}\mathbb{E}\|u^t\|^2.$$

941 This inequality then forms the basis for analyzing the expected decrease in the objective function per
 942 iteration. \square

943 **Lemma a.5** (Reddi et al., 2021), Model Drift from Local Steps). *For local learning rate which
 944 satisfying $\eta_l \leq \frac{1}{8KL}$, the local model difference after k ($\forall k \in \{0, 1, \dots, K-1\}$) steps local updates
 945 satisfies*

$$946 \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\|w_i^{t,k} - w^t\|^2] \leq 5K\eta_l^2(\sigma^2 + 6K\zeta^2) + 30K^2\eta_l^2\mathbb{E}[\|\nabla F(w^t)\|^2]. \quad (a.1)$$

947 *Proof.* The proof of Lemma a.5 is exactly same as the proof of Lemma 3 in (Reddi et al., 2021). \square

948 **Lemma a.6** (Cross-Iteration Gradient Error Independence). *Let $\delta_k^s = \nabla f_k(w^{s-\tau_k^s}; \xi_k^{\kappa_k(s)}) -$
 949 $\nabla F_k(w^{s-\tau_k^s})$ denote the stochastic error of the gradient for client k 's contribution at server it-
 950 eration s . The gradient is computed by client k using model $w^{s-\tau_k^s}$ and a data sample $\xi_k^{\kappa_k(s)}$. This
 951 specific sample $\xi_k^{\kappa_k(s)}$ was used by client k to generate the gradient that was received and cached by*

972 the server at its iteration $\kappa_k(s)$, where $s - \tau_k^s < \kappa_k(s) \leq s$. The sample $\xi_k^{\kappa_k(s)}$ was drawn fresh by
 973 client k at the time of its local computation on $w^{s-\tau_k^s}$.
 974

975 Under Assumption 3 (Unbiased Stochastic Gradients), for any two distinct server iterations $s_1 \neq s_2$,
 976 the expected inner product of the sum of these errors is zero:

$$977 \mathbb{E} [\langle \delta_i^{s_1}, \delta_j^{s_2} \rangle] = 0 \quad (\forall i, j \in [n])$$

979 *Proof.* Without loss of generality, assume $s_1 < s_2$. Let \mathcal{F}_{s_2-1} be the σ -algebra generated by
 980 all information available up to and including server iteration $s_2 - 1$. By definition, $w^{s_1-\tau_i^{s_1}}$ and
 981 the sample $\xi_i^{\kappa_i(s_1)}$ used to compute $\delta_i^{s_1}$ are contained within this information set. Thus, $\delta_i^{s_1}$ is
 982 \mathcal{F}_{s_2-1} -measurable.
 983

984 The sample $\xi_j^{\kappa_j(s_2)}$ is drawn fresh by client j for its local computation on model $w^{s_2-\tau_j^{s_2}}$. This sample
 985 draw is independent of the history \mathcal{F}_{s_2-1} (conditional on $w^{s_2-\tau_j^{s_2}}$). By Assumption 3 (Unbiased
 986 Stochastic Gradients), for a given model $w^{s_2-\tau_j^{s_2}}$, the gradient computed using the fresh sample
 987 $\xi_j^{\kappa_j(s_2)}$ is unbiased:
 988

$$989 \mathbb{E}_{\xi_j^{\kappa_j(s_2)}} [\nabla f_j(w^{s_2-\tau_j^{s_2}}; \xi_j^{\kappa_j(s_2)}) | w^{s_2-\tau_j^{s_2}}] = \nabla F_j(w^{s_2-\tau_j^{s_2}})$$

990 Therefore, the conditional expectation of $\delta_j^{s_2}$ given $w^{s_2-\tau_j^{s_2}}$ is:
 991

$$992 \mathbb{E}_{\xi_j^{\kappa_j(s_2)}} [\delta_j^{s_2} | w^{s_2-\tau_j^{s_2}}] = \mathbb{E}_{\xi_j^{\kappa_j(s_2)}} [\nabla f_j(w^{s_2-\tau_j^{s_2}}; \xi_j^{\kappa_j(s_2)}) | w^{s_2-\tau_j^{s_2}}] - \nabla F_j(w^{s_2-\tau_j^{s_2}}) = 0$$

993 Now consider the conditional expectation of $\delta_j^{s_2}$ with respect to \mathcal{F}_{s_2-1} . By the tower property (law of
 994 total expectation), and noting that given $w^{s_2-\tau_j^{s_2}}$, the randomness of $\xi_j^{\kappa_j(s_2)}$ is independent of other
 995 information in \mathcal{F}_{s_2-1} :

$$996 \begin{aligned} \mathbb{E}[\delta_j^{s_2} | \mathcal{F}_{s_2-1}] &= \mathbb{E} [\mathbb{E}[\delta_j^{s_2} | w^{s_2-\tau_j^{s_2}}, \mathcal{F}_{s_2-1}] | \mathcal{F}_{s_2-1}] \\ 997 &= \mathbb{E} [\mathbb{E}_{\xi_j^{\kappa_j(s_2)}} [\delta_j^{s_2} | w^{s_2-\tau_j^{s_2}}] | \mathcal{F}_{s_2-1}] \\ 998 &= \mathbb{E}[0 | \mathcal{F}_{s_2-1}] \\ 999 &= 0 \end{aligned}$$

1000 Next, we use the law of total expectation to evaluate $\mathbb{E}[\langle \delta_i^{s_1}, \delta_j^{s_2} \rangle]$:
 1001

$$1002 \mathbb{E}[\langle \delta_i^{s_1}, \delta_j^{s_2} \rangle] = \mathbb{E} [\mathbb{E}[\langle \delta_i^{s_1}, \delta_j^{s_2} \rangle | \mathcal{F}_{s_2-1}]]$$

1003 Since $\delta_i^{s_1}$ is \mathcal{F}_{s_2-1} -measurable:
 1004

$$1005 \mathbb{E}[\langle \delta_i^{s_1}, \delta_j^{s_2} \rangle] = \mathbb{E} [\langle \delta_i^{s_1}, \mathbb{E}[\delta_j^{s_2} | \mathcal{F}_{s_2-1}] \rangle] = \mathbb{E} [\langle \delta_i^{s_1}, 0 \rangle] = 0$$

1006 This holds for all pairs of clients (i, j) when $s_1 < s_2$. A symmetric argument applies if $s_2 < s_1$.
 1007 Therefore, when $s_1 \neq s_2$, all cross-terms $\mathbb{E}[\langle \delta_i^{s_1}, \delta_j^{s_2} \rangle]$ are zero. Consequently,
 1008

$$1009 \mathbb{E} [\langle \delta_i^{s_1}, \delta_j^{s_2} \rangle] = 0 \quad \text{when } s_1 \neq s_2$$

1010 This completes the proof. □
 1011

1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026
1027

B.2 MSE CONVERGENCE CONTROL AND THE OPTIMAL LEARNING RATE

1028
1029
1030
1031
1032

Theorem a.1 (MSE controls the AFL convergence). *By summing the inequality in the Descent Lemma a.4 over T iterations and rearranging terms, we derive the following bound. This inequality bounds the average squared norm of the true gradient, a standard measure of convergence for non-convex objectives, by terms including the Mean Squared Error (MSE) of our gradient estimates (constants $\gamma_1, \gamma_2 > 0$):*

1033
1034
1035
1036

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla F(w^t)\|^2 \leq \frac{\gamma_1 (F(w^0) - \mathbb{E}[F(w^T)])}{T\eta} + \gamma_2 \eta \left(\frac{1}{T} \sum_{t=0}^{T-1} \underbrace{\mathbb{E} \|u^t - \nabla F(w^t)\|_2^2}_{\text{MSE}_t} \right) \quad (\text{a.2})$$

1037
1038
1039

Proof. We start from the expected Descent Lemma (Lemma a.4 applied to $w^{t+1} = w^t - \eta u^t$ and taking expectation):

1040
1041

$$\mathbb{E}[F(w^{t+1})] \leq \mathbb{E}[F(w^t)] - \eta \mathbb{E}[\langle \nabla F(w^t), u^t \rangle] + \frac{L\eta^2}{2} \mathbb{E} \|u^t\|^2 \quad (\text{a.3})$$

1042
1043

Rearranging a.3, we get:

1044
1045

$$\eta \mathbb{E}[\langle \nabla F(w^t), u^t \rangle] \leq \mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})] + \frac{L\eta^2}{2} \mathbb{E} \|u^t\|^2 \quad (\text{a.4})$$

1046
1047

We relate the inner product term to $\|\nabla F(w^t)\|^2$ and $\text{MSE}_t = \mathbb{E} \|u^t - \nabla F(w^t)\|_2^2$. Consider the term $\langle \nabla F(w^t), u^t \rangle$:

1048
1049
1050

$$\begin{aligned} \langle \nabla F(w^t), u^t \rangle &= \langle \nabla F(w^t), \nabla F(w^t) + u^t - \nabla F(w^t) \rangle \\ &= \|\nabla F(w^t)\|^2 + \langle \nabla F(w^t), u^t - \nabla F(w^t) \rangle \end{aligned}$$

1051
1052
1053

Taking expectation:

$$\mathbb{E}[\langle \nabla F(w^t), u^t \rangle] = \mathbb{E}[\|\nabla F(w^t)\|^2] + \mathbb{E}[\langle \nabla F(w^t), u^t - \nabla F(w^t) \rangle]$$

1054
1055
1056
1057
1058

Using Young's inequality $\langle a, b \rangle \geq -\frac{1}{2} \|a\|^2 - \frac{1}{2} \|b\|^2$ for the second term (by negating it: $-\langle a, b \rangle \leq \frac{1}{2} \|a\|^2 + \frac{1}{2} \|b\|^2$):

$$\mathbb{E}[\langle \nabla F(w^t), u^t - \nabla F(w^t) \rangle] \geq -\frac{1}{2} \mathbb{E}[\|\nabla F(w^t)\|^2] - \frac{1}{2} \mathbb{E}[\|u^t - \nabla F(w^t)\|^2]$$

1059

So,

1060
1061

$$\mathbb{E}[\langle \nabla F(w^t), u^t \rangle] \geq \mathbb{E}[\|\nabla F(w^t)\|^2] - \frac{1}{2} \mathbb{E}[\|\nabla F(w^t)\|^2] - \frac{1}{2} \text{MSE}_t = \frac{1}{2} \mathbb{E}[\|\nabla F(w^t)\|^2] - \frac{1}{2} \text{MSE}_t$$

1062
1063

Substitute this back into a.4:

1064
1065

$$\eta \left(\frac{1}{2} \mathbb{E}[\|\nabla F(w^t)\|^2] - \frac{1}{2} \text{MSE}_t \right) \leq \mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})] + \frac{L\eta^2}{2} \mathbb{E} \|u^t\|^2$$

1066
1067
1068

$$\frac{\eta}{2} \mathbb{E}[\|\nabla F(w^t)\|^2] \leq \mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})] + \frac{\eta}{2} \text{MSE}_t + \frac{L\eta^2}{2} \mathbb{E} \|u^t\|^2 \quad (\text{a.5})$$

1069

We bound $\mathbb{E} \|u^t\|^2$ using $\|a + b\|^2 \leq 2\|a\|^2 + 2\|b\|^2$ (Lemma a.3):

1070
1071
1072

$$\mathbb{E} \|u^t\|^2 = \mathbb{E} \|u^t - \nabla F(w^t) + \nabla F(w^t)\|^2 \leq 2\mathbb{E} \|u^t - \nabla F(w^t)\|^2 + 2\mathbb{E} \|\nabla F(w^t)\|^2 = 2\text{MSE}_t + 2\mathbb{E} \|\nabla F(w^t)\|^2$$

Substitute this into a.5:

1073
1074
1075
1076

$$\begin{aligned} \frac{\eta}{2} \mathbb{E}[\|\nabla F(w^t)\|^2] &\leq \mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})] + \frac{\eta}{2} \text{MSE}_t + \frac{L\eta^2}{2} (2\text{MSE}_t + 2\mathbb{E} \|\nabla F(w^t)\|^2) \\ &= \mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})] + \left(\frac{\eta}{2} + L\eta^2 \right) \text{MSE}_t + L\eta^2 \mathbb{E} \|\nabla F(w^t)\|^2 \end{aligned}$$

1077
1078

Rearranging terms to isolate $\mathbb{E}[\|\nabla F(w^t)\|^2]$:

1079

$$\left(\frac{\eta}{2} - L\eta^2 \right) \mathbb{E}[\|\nabla F(w^t)\|^2] \leq \mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})] + \eta \left(\frac{1}{2} + L\eta \right) \text{MSE}_t$$

1080 Assume the step size η is chosen such that $\eta \leq \frac{1}{4L}$. Then $\frac{1}{2} - L\eta \geq \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$. So, $\frac{\eta}{2} - L\eta^2 = \eta(\frac{1}{2} - L\eta) \geq \frac{\eta}{4}$. Also, $\frac{1}{2} + L\eta \leq \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$. Thus,

$$1083 \quad \frac{\eta}{4} \mathbb{E}[\|\nabla F(w^t)\|^2] \leq \mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})] + \frac{3\eta}{4} \text{MSE}_t$$

1085 Multiplying by $\frac{4}{\eta}$:

$$1087 \quad \mathbb{E}[\|\nabla F(w^t)\|^2] \leq \frac{4}{\eta}(\mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})]) + 3\eta \cdot \text{MSE}_t$$

1089 Summing from $t = 0$ to $T - 1$:

$$1091 \quad \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F(w^t)\|^2] \leq \frac{4}{\eta} \sum_{t=0}^{T-1} (\mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})]) + 3\eta \sum_{t=0}^{T-1} \text{MSE}_t$$

$$1094 \quad = \frac{4}{\eta}(\mathbb{E}[F(w^0)] - \mathbb{E}[F(w^T)]) + 3\eta \sum_{t=0}^{T-1} \text{MSE}_t \quad (\text{telescoping sum})$$

1096 Dividing by T :

$$1098 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F(w^t)\|^2] \leq \frac{4(\mathbb{E}[F(w^0)] - \mathbb{E}[F(w^T)])}{T\eta} + 3\eta \left(\frac{1}{T} \sum_{t=0}^{T-1} \text{MSE}_t \right)$$

1101 This matches the desired form with $\gamma_1 = 4$ and $\gamma_2 = 3$, under the condition $\eta \leq \frac{1}{4L}$. Note that
1102 $F(w^T)$ is often replaced by $F^* = \min_w F(w)$ since $F(w^T) \geq F^*$, which makes the bound looser
1103 but independent of $F(w^T)$. The term $\mathbb{E}[F(w^0)] - \mathbb{E}[F(w^T)]$ is used for a finite T . If $F(w^T)$ is
1104 simply written as $F(w^T)$, and expectation is dropped for $F(w^0)$ (if w^0 is deterministic), then we
1105 have:

$$1107 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F(w^t)\|^2] \leq \frac{4(F(w^0) - \mathbb{E}[F(w^T)])}{T\eta} + 3\eta \left(\frac{1}{T} \sum_{t=0}^{T-1} \underbrace{\mathbb{E}\|u^t - \nabla F(w^t)\|_2^2}_{\text{MSE}_t} \right)$$

1110 The constants γ_1, γ_2 might differ based on the specific choices made in applying Young's inequality
1111 (underlined part) or in setting learning rate. Here we only give the existence proof of γ_1, γ_2 by taking
1112 certain values. \square

1113 **Theorem a.2** (Optimal Learning Rate Scaling for ACE). *The optimal learning rate η^* that minimizes
1114 the convergence upper bound for ACE is proportional to $\sqrt{n/T}$.*

1116 *Proof.* Our goal is to select a learning rate η that minimizes the convergence rate's upper bound from
1117 Theorem a.1:

$$1119 \quad \mathcal{R}(\eta) = \frac{\gamma_1 \Delta}{T\eta} + \gamma_2 \eta \underbrace{\left(\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|u^t - \nabla F(w^t)\|_2^2 \right)}_{\text{MSE}}$$

1123 It is worth noting that the $\overline{\text{MSE}}$ term can be a function of η . From our MSE decomposition 4, the
1124 error consists of Term A (Noise), Term B (Bias), and Term C (Delay).

1125 For ACE,

- 1127 • (Appendix B.3) The upper bound of Sampling Noise (Term A) is $\mathbb{E}\|A\|_2^2 \leq \frac{\sigma^2}{n}$.
- 1128 • (Appendix B.4) Term B is zero.
- 1129 • (Appendix B.5) As shown in the analysis of model drift D_i^t , the Delay Error contains a
1130 component that scales with η^2 :

$$1132 \quad \mathbb{E}\|\text{Term C}\|^2 \leq \frac{L^2}{n} \sum_i D_i^t \leq \eta^2 \frac{L^2}{n} \tau_{\max} \left(\frac{\sigma^2}{n} + \dots \right)$$

1134 Thus, the full upper bound $\mathcal{R}(\eta)$ contains terms proportional to $1/\eta$, η , and η^3 :
 1135

$$1136 \mathcal{R}(\eta) \lesssim \frac{1}{T\eta} + \eta \left(\frac{\sigma^2}{n} \right) + \eta^3 \left(\frac{L^2 \tau_{\max} \sigma^2}{n} + \dots \right) \quad (a.6)$$

1138 For the algorithm to converge, the left-hand side of Bound 2 must approach zero as $T \rightarrow \infty$.
 1139 Consequently, its upper bound, $\mathcal{R}(\eta)$, must also approach zero. For $\mathcal{R}(\eta) \rightarrow 0$, the learning rate η
 1140 must be a vanishing quantity, i.e., $\eta(T) \rightarrow 0$ as $T \rightarrow \infty$. If η were a constant, the terms proportional
 1141 to η and η^3 would prevent the bound from converging to zero.

1142 Since we have established that η must be a small quantity for large T , higher-order terms in η become
 1143 negligible. Specifically, the η^3 term diminishes much faster than the η term. Therefore, for the
 1144 purpose of finding the optimal *scaling rate* of the learning rate, the behavior of $\mathcal{R}(\eta)$ is dominated by
 1145 the first two terms. The problem simplifies to minimizing the dominant part of the bound:

$$1146 \mathcal{R}_{\text{dom}}(\eta) \lesssim \frac{1}{T\eta} + \frac{\eta}{n} \quad (a.7)$$

1147 To find the optimal η that minimizes this simplified expression, we take the derivative with respect to
 1148 η and set it to zero, which yields:

$$1151 (\eta^*)^2 \propto \frac{1/T}{1/n} \implies \eta^* \propto \sqrt{\frac{n}{T}} \quad (a.8)$$

1152 This demonstrates that while the exact value of the optimal learning rate depends on multiple constants,
 1153 its scaling with respect to n and T is robustly determined by balancing the two dominant terms in
 1154 the convergence bound. This justifies our choice of η proportional to $\sqrt{n/T}$ to achieve the rate in
 1155 Theorem 1. \square

1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
1189

B.3 THEOREM ON SAMPLING NOISE (TERM A)

1190
1191
1192
1193
1194

Theorem a.3 (Sampling Noise Term $A = u^t - \bar{u}^t$). Let u^t be the global update at server iteration t , and $\bar{u}^t = \mathbb{E}_{\{\xi\}}[u^t | \mathcal{H}^t]$ be its expectation conditional on all information \mathcal{H}^t (including stale models used for gradient computation) except the fresh data samples $\{\xi\}$ used to compute the gradients that form u^t . Under Assumptions 3 and 4, the expected squared norm of the sampling noise term $A = u^t - \bar{u}^t$ is bounded as follows for different asynchronous algorithms:

1195
1196
1197
1198
11991. **Vanilla ASGD**(Mishchenko et al., 2022) & **Delay-adaptive ASGD**(Koloskova et al., 2022):

If the server update $u^t = \nabla f_{j_t}(w^{t-\tau_{j_t}^t}; \xi_{j_t}^t)$ is based on the stochastic gradient from a single client j_t (performing $K = 1$ local step, local learning rate $\eta_l = 1$ effectively for the gradient itself), then

$$\mathbb{E}\|A\|_2^2 \leq \sigma^2$$

1200
1201
1202
1203
1204
1205
1206

2. **FedBuff**(Nguyen et al., 2022): If the server update $u^t = \frac{1}{m} \sum_{i \in \mathcal{M}_t} \Delta_i^t$, where $\Delta_i^t = \eta_l \sum_{k=0}^{K-1} g_{i,k}^t$ is derived from K local SGD steps with local learning rate η_l by clients in a set \mathcal{M}_t of m clients, and $g_{i,k}^t = \nabla f_i(w_{i,k}^{t-\tau_i^t}; \xi_{i,k}^t)$ is the stochastic gradient (computed on local model $w_{i,k}^{t-\tau_i^t}$ which is based on global model $w^{t-\tau_i^t}$), then

$$\mathbb{E}\|A\|_2^2 \leq \frac{K \eta_l^2 \sigma^2}{m}$$

1207
1208
1209
1210
1211
1212
1213
1214
1215

3. **CA²FL**(Wang et al., 2024b) (**Cache-Aided Asynchronous Federated Learning**): If the server update is $v^t = h^t + \frac{1}{m} \sum_{i \in \mathcal{S}_t} (\Delta_i^t - h_i^t)$, where $\Delta_i^t = \eta_l \sum_{k=0}^{K-1} g_{i,k}^t$ is the model difference from client $i \in \mathcal{S}_t$ (a set of m clients) after K local SGD steps with learning rate η_l , and h^t, h_i^t are cached values. The sampling noise $A = v^t - \bar{v}^t$ where $\bar{v}^t = \mathbb{E}_{\{\xi_{i,k}^t\}}[v^t | \mathcal{H}^t]$ is bounded by:

$$\mathbb{E}\|A\|_2^2 \leq \frac{K \eta_l^2 \sigma^2}{m}$$

1216
1217

(This arises because $A = \frac{1}{m} \sum_{i \in \mathcal{S}_t} (\Delta_i^t - \mathbb{E}[\Delta_i^t | \mathcal{H}^t])$.)

1218
1219
1220
1221
1222
1223
1224
1225

4. **ACE (Ours)**: If the server update $u^t = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i})$ is an average of the latest available (potentially stale) stochastic gradients from all n clients (each performing $K = 1$ step for the gradient computation, with $\eta_l = 1$ for the gradient itself), then

$$\mathbb{E}\|A\|_2^2 \leq \frac{\sigma^2}{n}$$

1226
1227

Proof. The general structure for Term A is $A = u^t - \bar{u}^t$. We need to calculate $\mathbb{E}\|A\|_2^2$.

1228

1. **Vanilla ASGD & Delay-adaptive ASGD:**1229
1230
1231
1232
1233
1234
1235

Here, the update is $u^t = \nabla f_{j_t}(w^{t-\tau_{j_t}^t}; \xi_{j_t}^t)$ from a single client j_t . The expected update, conditioned on the stale model $w^{t-\tau_{j_t}^t}$ (which is in \mathcal{H}^t), is $\bar{u}^t = \nabla F_{j_t}(w^{t-\tau_{j_t}^t})$. Thus, the sampling noise is $A = \nabla f_{j_t}(w^{t-\tau_{j_t}^t}; \xi_{j_t}^t) - \nabla F_{j_t}(w^{t-\tau_{j_t}^t})$. Then, its expected squared norm is:

$$\mathbb{E}\|A\|_2^2 = \mathbb{E} \left[\|\nabla f_{j_t}(w^{t-\tau_{j_t}^t}; \xi_{j_t}^t) - \nabla F_{j_t}(w^{t-\tau_{j_t}^t})\|_2^2 \right]$$

1236
1237

By Assumption 4 (Bounded Sampling Noise), this is directly bounded by σ^2 .

1238
1239
1240
12412. **FedBuff**:

The update is $u^t = \frac{1}{m} \sum_{i \in \mathcal{M}_t} \Delta_i^t = \frac{\eta_l}{m} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} g_{i,k}^t$. The expected update is $\bar{u}^t = \frac{\eta_l}{m} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} \nabla F_i(w_{i,k}^{t-\tau_i^t})$. The sampling noise is $A = u^t - \bar{u}^t = \frac{\eta_l}{m} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} (g_{i,k}^t - \nabla F_i(w_{i,k}^{t-\tau_i^t}))$. Let $\delta_{i,k}^t = g_{i,k}^t - \nabla F_i(w_{i,k}^{t-\tau_i^t})$. By Assumption 3

1242 (Unbiased Stochastic Gradients), $\mathbb{E}[\delta_{i,k}^t | w_{i,k}^{t-\tau_i^t}] = 0$. We have:

$$1244 \mathbb{E}\|A\|_2^2 = \mathbb{E}\left\|\frac{\eta_l}{m} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} \delta_{i,k}^t\right\|_2^2$$

1247 Expanding the square:

$$1248 \mathbb{E}\|A\|_2^2 = \frac{\eta_l^2}{m^2} \mathbb{E}\left[\sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} \|\delta_{i,k}^t\|_2^2 + \sum_{\substack{(i,k) \neq (j,l) \\ i,j \in \mathcal{M}_t}} \langle \delta_{i,k}^t, \delta_{j,l}^t \rangle\right]$$

1252 The samples $\xi_{i,k}^t$ used to compute $g_{i,k}^t$ are drawn independently for each client i and each
1253 local step k . Therefore, for $(i,k) \neq (j,l)$, the terms $\delta_{i,k}^t$ and $\delta_{j,l}^t$ are (conditionally)
1254 independent given the respective models they were computed on. Since $\mathbb{E}[\delta_{i,k}^t | \mathcal{H}_k^t] = 0$
1255 (where \mathcal{H}_k^t includes $w_{i,k}^{t-\tau_i^t}$), the expectation of the cross terms $\langle \delta_{i,k}^t, \delta_{j,l}^t \rangle$ is zero. Specifically,
1256 $\mathbb{E}[\langle \delta_{i,k}^t, \delta_{j,l}^t \rangle] = \mathbb{E}[\mathbb{E}[\langle \delta_{i,k}^t, \delta_{j,l}^t \rangle | \mathcal{H}_{kl}^t]]$ where \mathcal{H}_{kl}^t contains $w_{i,k}^{t-\tau_i^t}$ and $w_{j,l}^{t-\tau_j^t}$. If $i \neq j$, or
1257 $i = j$ but $k \neq l$ (implying different samples $\xi_{i,k}^t$ and $\xi_{j,l}^t$), then $\mathbb{E}[\delta_{i,k}^t | \mathcal{H}_{kl}^t]$ and $\mathbb{E}[\delta_{j,l}^t | \mathcal{H}_{kl}^t]$
1258 are zero, making the cross term zero. Thus,

$$1261 \mathbb{E}\|A\|_2^2 = \frac{\eta_l^2}{m^2} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} \mathbb{E}\|\delta_{i,k}^t\|_2^2$$

$$1262 \leq \frac{\eta_l^2}{m^2} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} \sigma^2 \quad (\text{by Assumption 4})$$

$$1263 = \frac{\eta_l^2}{m^2} (m \cdot K \cdot \sigma^2) = \frac{K \eta_l^2 \sigma^2}{m}$$

1269 3. CA²FL:

1270 The global update is $v^t = h^t + \frac{1}{m} \sum_{i \in \mathcal{S}_t} (\Delta_i^t - h_i^t)$. The randomness from the current
1271 set of samples $\{\xi_{i,k}^t\}$ for $i \in \mathcal{S}_t$ comes from $\Delta_i^t = \eta_l \sum_{k=0}^{K-1} g_{i,k}^t$. The cached terms
1272 h^t and h_i^t are considered fixed with respect to the expectation over these current fresh
1273 samples (i.e., they are in \mathcal{H}^t). Let $A = v^t - \bar{v}^t$. Then $\bar{v}^t = \mathbb{E}_{\{\xi_{i,k}^t\} \in \mathcal{S}_t} [v^t | \mathcal{H}^t] = h^t +$
1274 $\frac{1}{m} \sum_{i \in \mathcal{S}_t} (\mathbb{E}_{\{\xi_{i,k}^t\}} [\Delta_i^t | \mathcal{H}^t] - h_i^t)$. Let $\bar{\Delta}_i^t = \mathbb{E}_{\{\xi_{i,k}^t\}} [\Delta_i^t | \mathcal{H}^t] = \eta_l \sum_{k=0}^{K-1} \nabla F_i(w_{i,k}^{t-\tau_i^t})$. So,
1275 $A = v^t - \bar{v}^t = \frac{1}{m} \sum_{i \in \mathcal{S}_t} (\Delta_i^t - \bar{\Delta}_i^t)$. This simplifies to:

$$1276 A = \frac{1}{m} \sum_{i \in \mathcal{S}_t} \eta_l \sum_{k=0}^{K-1} (g_{i,k}^t - \nabla F_i(w_{i,k}^{t-\tau_i^t})).$$

1277 This expression for A is identical in form to that of FedBuff, with \mathcal{S}_t corresponding to \mathcal{M}_t
1278 and $m = |\mathcal{S}_t|$. Thus, the subsequent steps of the proof are the same as for FedBuff, yielding:

$$1279 \mathbb{E}\|A\|_2^2 \leq \frac{K \eta_l^2 \sigma^2}{m}$$

1285 4. ACE:

1286 Here $u^t = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i})$ and $\bar{u}^t = \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t})$. So, $A =$
1287 $\frac{1}{n} \sum_{i=1}^n (\nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i}) - \nabla F_i(w^{t-\tau_i^t}))$. Let $\delta_i^t = \nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i}) - \nabla F_i(w^{t-\tau_i^t})$. By
1288 Assumption 3, $\mathbb{E}[\delta_i^t | \mathcal{H}^t] = 0$. The samples $\xi_i^{\kappa_i}$ are drawn independently by each client i for
1289 its respective gradient computation, conditional on \mathcal{H}^t (which includes all $w^{t-\tau_j^t}$).

$$1290 \mathbb{E}\|A\|_2^2 = \mathbb{E}\left\|\frac{1}{n} \sum_{i=1}^n \delta_i^t\right\|_2^2$$

$$1291 = \frac{1}{n^2} \mathbb{E}\left[\sum_{i=1}^n \|\delta_i^t\|_2^2 + \sum_{i \neq j} \langle \delta_i^t, \delta_j^t \rangle\right]$$

1296 For $i \neq j$, δ_i^t and δ_j^t are (conditionally) independent given \mathcal{H}^t because the samples
 1297 $\xi_i^{\kappa_i}$ and $\xi_j^{\kappa_j}$ are drawn by different clients independently. Thus, $\mathbb{E}[\langle \delta_i^t, \delta_j^t \rangle | \mathcal{H}^t] =$
 1298 $\langle \mathbb{E}[\delta_i^t | \mathcal{H}^t], \mathbb{E}[\delta_j^t | \mathcal{H}^t] \rangle = \langle 0, 0 \rangle = 0$. So the cross terms vanish:
 1299

$$\begin{aligned} \mathbb{E}\|A\|_2^2 &= \frac{1}{n^2} \sum_{i=1}^n \mathbb{E}\|\delta_i^t\|_2^2 \\ &\leq \frac{1}{n^2} \sum_{i=1}^n \sigma^2 \quad (\text{by Assumption 4}) \\ &= \frac{1}{n^2} (n \cdot \sigma^2) = \frac{\sigma^2}{n} \end{aligned}$$

□

B.4 THEOREM ON BIAS ERROR (TERM B)

1313 **Theorem a.4** (Bias Error Term $B = \bar{u}^t - \nabla F(w_{\text{stale}}^t)$). Let u^t be the global update at server iteration
 1314 t , $\bar{u}^t = \mathbb{E}_{\{\xi\}}[u^t | \mathcal{H}^t]$ its conditional expectation, and $\nabla F(w_{\text{stale}}^t) = \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t})$. The
 1315 expected squared norm of the bias error term B is bounded as follows for different asynchronous
 1316 algorithms, under relevant assumptions (primarily 2, 3, 4, and bounded data heterogeneity (BDH)
 1317 assumption where applicable):
 1318

1. **Vanilla ASGD**(Mishchenko et al., 2022) & **Delay-Adaptive ASGD**(Koloskova et al., 2022) & **FedBuff**(Nguyen et al., 2022): If the server update $u^t = \frac{1}{m} \sum_{i \in \mathcal{M}_t} \Delta_i^t$, where Δ_i^t is derived from $K \geq 1$ local SGD steps with local learning rate η_l . Then $\bar{u}^t = \frac{1}{m} \sum_{i \in \mathcal{M}_t} \eta_l \sum_{k=0}^{K-1} \nabla F_i(w_{i,k}^{t-\tau_i^t})$. The bias $B = \bar{u}^t - \nabla F(w_{\text{stale}}^t)$ arises from both multiple local steps ($K \geq 1$) and partial client participation ($m < n$). A representative bound (cf. ACE paper's analysis of FedBuff) is:

$$\mathbb{E}\|B\|^2 \lesssim \left((\sigma^2 + K\zeta^2) + \sum_{i \in \mathcal{M}_t} \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right) + (n-m) \left(\zeta^2 + \sum_{i=1}^n \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right)$$

1329 The term reflects client drift due to local steps and bias due to averaging over a subset m of
 1330 clients.
 1331

2. **CA²FL**(Wang et al., 2024b): The server update is $v^t = h^t + \frac{1}{m} \sum_{i \in \mathcal{S}_t} (\Delta_i^t - h_i^t)$, leading to $\bar{v}^t = h^t + \frac{1}{m} \sum_{i \in \mathcal{S}_t} (\bar{\Delta}_i^t - h_i^t)$. The bias $B = \bar{v}^t - \nabla F(w_{\text{stale}}^t)$ is reduced by the calibration mechanism but still affected by local steps and imperfect calibration if $m < n$. A representative bound (cf. ACE paper's analysis of CA²FL) is:

$$\mathbb{E}\|B\|^2 \lesssim \left(1 + \left(1 - \frac{m}{n} \right)^2 \right) \left((\sigma^2 + K\zeta^2) + \sum_{i=1}^n \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right)$$

3. **ACE (Ours)**: The server update $u^t = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i})$.

1340 Which leads to
 1341

$$\mathbb{E}\|B\|_2^2 = 0.$$

1342 *Proof.* The general structure for Term B is $B = \bar{u}^t - \nabla F(w_{\text{stale}}^t)$. We need to calculate $\mathbb{E}\|B\|_2^2$.
 1343

1. **Vanilla ASGD & Delay-Adaptive ASGD & FedBuff**:

1344 Deviation of the sum of true local gradients over K steps from K times the initial true local
 1345

gradient, averaged over participating clients.

$$\begin{aligned}
1351 \quad B &= \bar{u}^t - \nabla F(w_{\text{state}}^t) \\
1352 \\
1353 \quad &= \frac{1}{mK} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} \nabla F_i(w_{i,k}^{t-\tau_i^t}) - \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t}) \\
1354 \\
1355 \quad &= \underbrace{\left(\frac{1}{m} - \frac{1}{n} \right) \sum_{i \in \mathcal{M}_t} \nabla F_i(w^{t-\tau_i^t})}_{\text{Part 1}} - \underbrace{\frac{1}{n} \sum_{i \notin \mathcal{M}_t} \nabla F_i(w^{t-\tau_i^t})}_{\text{Part 2}} \\
1356 \\
1357 \quad &+ \underbrace{\frac{1}{mK} \sum_{i \in \mathcal{M}_t} \left(\sum_{k=0}^{K-1} \nabla F_i(w_{i,k}^{t-\tau_i^t}) - K \nabla F_i(w^{t-\tau_i^t}) \right)}_{\mathcal{E}_{\text{drift}}}
\end{aligned}$$

1364 By Lemma a.3, $\mathbb{E}\|B\|_2^2 \leq 3\mathbb{E}\|\text{Part 1}\|_2^2 + 3\mathbb{E}\|\text{Part 2}\|_2^2 + 3\mathbb{E}\|\mathcal{E}_{\text{drift}}\|_2^2$

For the *partial participation bias* Part 1 and 2, the client subset \mathcal{S} to determine the sum is \mathcal{M}_t or $[n]/\mathcal{M}_t$

$$\begin{aligned}
1368 \quad & \mathbb{E} \left\| \sum_{i \in \mathcal{S}} \nabla F_i(w^{t-\tau_i^t}) \right\|_2^2 = \mathbb{E} \left\| \sum_{i \in \mathcal{S}} \nabla F_i(w^{t-\tau_i^t}) - \sum_{i \in \mathcal{S}} \nabla F(w^{t-\tau_i^t}) + \sum_{i \in \mathcal{S}} \nabla F(w^{t-\tau_i^t}) \right\|_2^2 \\
1369 \quad & \leq 2 \mathbb{E} \underbrace{\left\| \sum_{i \in \mathcal{S}} \nabla F_i(w^{t-\tau_i^t}) - \sum_{i \in \mathcal{S}} \nabla F(w^{t-\tau_i^t}) \right\|_2^2}_{\text{Can be determined by BDH Assumption and Lemma a.3}} \\
1370 \quad & \quad + 2 \mathbb{E} \left\| \sum_{i \in \mathcal{S}} \nabla F(w^{t-\tau_i^t}) \right\|_2^2 \quad (\text{By Lemma a.3}) \\
1371 \quad & \leq 2|\mathcal{S}| \sum_{i \in \mathcal{S}} \zeta^2 + 2|\mathcal{S}| \sum_{i \in \mathcal{S}} \mathbb{E} \left\| \nabla F(w^{t-\tau_i^t}) \right\|_2^2
\end{aligned}$$

Therefore,

$$\begin{aligned} 1380 \quad & \mathbb{E}\|\text{Part 1}\|_2^2 \leq 2 \left(\frac{1}{m} - \frac{1}{n} \right)^2 \left(m^2 \zeta^2 + m \sum_{i \in \mathcal{M}_t} \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right) \\ 1381 \\ 1382 \\ 1383 \\ 1384 \quad & \mathbb{E}\|\text{Part 2}\|_2^2 \leq \frac{2}{n^2} \left((n-m)^2 \zeta^2 + (n-m) \sum_{i \notin \mathcal{M}_t} \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right) \\ 1385 \\ 1386 \end{aligned}$$

1387 For the drift error $\mathcal{E}_{\text{drift}}$,

$$\mathcal{E}_{\text{drift}} = \frac{1}{mK} \sum_{i \in \mathcal{M}} \left(\sum_{k=0}^{K-1} \nabla F_i(w_{i,k}^{t-\tau_i^t}) - K \nabla F_i(w^{t-\tau_i^t}) \right)$$

1391 Taking its squared norm and expectation:

$$\begin{aligned}
& \mathbb{E} \|\mathcal{E}_{\text{drift}}\|_2^2 = \mathbb{E} \left\| \frac{1}{mK} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} \left(\nabla F_i(w_{i,k}^{t-\tau_i^t}) - \nabla F_i(w^{t-\tau_i^t}) \right) \right\|_2^2 \\
& \leq \frac{1}{mK^2} \sum_{i \in \mathcal{M}_t} \mathbb{E} \left\| \sum_{k=0}^{K-1} \left(\nabla F_i(w_{i,k}^{t-\tau_i^t}) - \nabla F_i(w^{t-\tau_i^t}) \right) \right\|_2^2 \quad (\text{by Lemma a.3 for outer sum}) \\
& \leq \frac{1}{mK} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} \mathbb{E} \|\nabla F_i(w_{i,k}^{t-\tau_i^t}) - \nabla F_i(w^{t-\tau_i^t})\|_2^2 \quad (\text{by Lemma a.3 for inner sum}) \\
& \leq \frac{L^2}{mK} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} \mathbb{E} \|w_{i,k}^{t-\tau_i^t} - w^{t-\tau_i^t}\|_2^2 \quad (\text{by L-smoothness Assumption 2})
\end{aligned}$$

1404 By Lemma a.5:

1405

$$1406 \mathbb{E}\|w_{i,k'}^{t-\tau_i^t} - w^{t-\tau_i^t}\|^2 \leq 5K\eta_l^2(\sigma^2 + 6K\zeta^2) + 30K^2\eta_l^2\mathbb{E}[\|\nabla F(w^{t-\tau_i^t})\|^2]$$

1407

1408 Merging all the pieces. For simplicity of notation, the terms in the partial participation bias
1409 involve $\mathbb{E}[\|\nabla F(\cdot)\|^2]$ are merged in an (weighted) average sense:

1410

$$1411 \mathbb{E}\|B\|^2 \lesssim \left((\sigma^2 + K\zeta^2) + \sum_{i \in \mathcal{S}_t} \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right) + (n-m) \left(\zeta^2 + \sum_{i=1}^n \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right)$$

1412

1413

1414 2. **CA²FL:** The server update is $v^t = h^t + \frac{1}{m} \sum_{i \in \mathcal{S}_t} (\Delta_i^t - h_i^t)$, leading to $\bar{v}^t = h^t + \frac{1}{m} \sum_{i \in \mathcal{S}_t} (\bar{\Delta}_i^t - h_i^t)$. The model delay of the non-participating client i at server iteration t is
1415 denoted as ρ_i^t , since ζ is used for denoting the BDH assumption bound.

1416

1417

$$1418 B = \bar{u}^t - \nabla F(w_{\text{stale}}^t)$$

1419

$$1420 = \frac{1}{mK} \sum_{i \in \mathcal{S}_t} \sum_{k=0}^{K-1} [\nabla F_i(w_{i,k}^{t-\tau_i^t}) - \nabla F_i(w^{t-\tau_i^t})] \quad (\text{Denoted as } X_1)$$

1421

$$1422 + \left(\frac{1}{nK} - \frac{1}{mK} \right) \sum_{i \in \mathcal{S}_t} \sum_{k=0}^{K-1} [\nabla F_i(w_{i,k}^{t-\rho_i^t}) - \nabla F_i(w^{t-\rho_i^t})] \quad (\text{Denoted as } X_2)$$

1423

$$1424 + \frac{1}{nK} \sum_{i \notin \mathcal{S}_t} \sum_{k=0}^{K-1} [\nabla F_i(w_{i,k}^{t-\rho_i^t}) - \nabla F_i(w^{t-\rho_i^t})] \quad (\text{Denoted as } X_3)$$

1425

1426 The core of bounding $\mathbb{E}\|B\|^2$ involves:

1427

1428 (a) Using $\|X_1 + X_2 + X_3\|^2 \leq 3(\|X_1\|^2 + \|X_2\|^2 + \|X_3\|^2)$, where X_1, X_2, X_3 are the
1429 three main summations in B .

1430 (b) For each component, say $X_1 = \frac{1}{mK} \sum_{i \in \mathcal{S}_t} \sum_{k=0}^{K-1} [\nabla F_i(w^{t-\tau_i^t}) - \nabla F_i(w_{i,k}^{t-\tau_i^t})]$:

1431

$$1432 \mathbb{E}\|X_1\|^2 \leq \frac{1}{(mK)^2} \mathbb{E} \left\| \sum_{i \in \mathcal{S}_t} \sum_{k=0}^{K-1} [\nabla F_i(w^{t-\tau_i^t}) - \nabla F_i(w_{i,k}^{t-\tau_i^t})] \right\|^2$$

1433

$$1434 \leq \frac{1}{mK^2} \sum_{i \in \mathcal{S}_t} \mathbb{E} \left\| \sum_{k=0}^{K-1} [\nabla F_i(w^{t-\tau_i^t}) - \nabla F_i(w_{i,k}^{t-\tau_i^t})] \right\|^2 \quad (\text{by Lemma a.3 for outer sum})$$

1435

$$1436 \leq \frac{1}{mK} \sum_{i \in \mathcal{S}_t} \sum_{k=0}^{K-1} \mathbb{E} \|\nabla F_i(w^{t-\tau_i^t}) - \nabla F_i(w_{i,k}^{t-\tau_i^t})\|_2^2 \quad (\text{by Lemma a.3 for inner sum})$$

1437

$$1438 \leq \frac{L^2}{mK} \sum_{i \in \mathcal{S}_t} \sum_{k=0}^{K-1} \mathbb{E} \|w^{t-\tau_i^t} - w_{i,k}^{t-\tau_i^t}\|_2^2 \quad (\text{by L-smoothness Assumption 2})$$

1439

1440 (c) By Lemma a.5 (adapting notation: $w^{\text{start}} = w^{t-\tau_i^t}$ or $w^{t-\rho_i^t}$):

1441

$$1442 \mathbb{E}[\|w_{i,k'}^{\text{start}} - w^{\text{start}}\|^2] \leq 5K\eta_l^2(\sigma^2 + 6K\zeta^2) + 30K^2\eta_l^2\mathbb{E}[\|\nabla F(w^{\text{start}})\|^2]$$

1443

1444 Note that

1445

$$1446 \text{Coefficient} \cdot \underbrace{\frac{m}{|\mathcal{S}_t|}}_{\text{Sum of } |\mathcal{S}_t| \text{ components}} \cdot \underbrace{\frac{m}{m}}_{\text{Coefficient}} + \left(\frac{1}{m} - \frac{1}{n} \right)^2 \cdot m \cdot m + \frac{1}{m^2} \cdot (m-n) \cdot (m-n)$$

1447

$$1448 = 1 + 2\left(1 - \frac{m}{n}\right)^2$$

1458 For simplicity of notation, the terms involve $\mathbb{E}[\|\nabla F(\cdot)\|^2]$ are merged in an (weighted)
 1459 average sense (we treat two sources of delay τ, ρ equivalently):
 1460

$$\begin{aligned} 1461 \mathbb{E}\|B\|^2 &\lesssim \left(1 + \left(1 - \frac{m}{n}\right)^2\right) (\sigma^2 + K\zeta^2) + \frac{1}{m} \sum_{i \in \mathcal{S}_t} \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \\ 1462 &\quad + m \left(\frac{1}{m} - \frac{1}{n}\right)^2 \sum_{i \in \mathcal{S}_t} \mathbb{E}\|\nabla F(w^{t-\rho_i^t})\|_2^2 \\ 1463 &\quad + \frac{(n-m)^2}{m^2} \sum_{i \notin \mathcal{S}_t} \mathbb{E}\|\nabla F(w^{t-\rho_i^t})\|_2^2 \\ 1464 &\lesssim \left(1 + \left(1 - \frac{m}{n}\right)^2\right) \left((\sigma^2 + K\zeta^2) + \sum_{i=1}^n \mathbb{E}\|\nabla F(w^{t-\tau_i^t})\|_2^2 \right) \\ 1465 &\quad \\ 1466 &\quad \\ 1467 &\quad \\ 1468 &\quad \\ 1469 &\quad \\ 1470 &\quad \\ 1471 &\quad \end{aligned}$$

1472 3. **ACE:** The server update $u^t = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i})$ ($t - \tau_i^t < \kappa_i \leq t$).
 1473

1474 Thus, $\bar{u}^t = \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t})$. Therefore:

$$1475 \quad B = \bar{u}^t - \nabla F(w_{\text{stale}}^t) = \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t}) - \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t}) = 0 \\ 1476 \\ 1477$$

1478 Which leads to

$$1479 \quad \mathbb{E}\|B\|_2^2 = 0. \\ 1480 \\ 1481 \\ 1482$$

□

B.5 THEOREM ON DELAY ERROR (TERM C)

1484 **Theorem a.5** (Delay Error Term $C = \nabla F(w_{\text{stale}}^t) - \nabla F(w^t)$). Let w^t be the global model at
 1485 server iteration t , and $w_{\text{stale}}^t = \{w^{t-\tau_i^t}\}_{i=1}^n$ be the collection of stale models used by clients, where
 1486 τ_i^t is the information delay for client i . The expected squared norm of the delay error term C is
 1487 $\mathbb{E}\|C\|_2^2 = \mathbb{E}\|\nabla F(w_{\text{stale}}^t) - \nabla F(w^t)\|_2^2$. Under Assumption 2 (L-Smoothness), this can be bounded in
 1488 terms of model drift $D_i^t = \mathbb{E}\|w^{t-\tau_i^t} - w^t\|_2^2$.
 1489

$$1490 \quad \mathbb{E}\|C\|_2^2 = \mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n (\nabla F_i(w^{t-\tau_i^t}) - \nabla F_i(w^t)) \right\|_2^2 \leq \frac{1}{n} \sum_{i=1}^n \mathbb{E}\|\nabla F_i(w^{t-\tau_i^t}) - \nabla F_i(w^t)\|_2^2 \leq \frac{L^2}{n} \sum_{i=1}^n D_i^t \\ 1491 \\ 1492$$

1493 The model drift $D_i^t = \mathbb{E}\|\sum_{s=t-\tau_i^t}^{t-1} \eta u^s\|_2^2$ (where u^s is the server update at step s) is bounded as
 1494 follows for different asynchronous algorithms, under relevant assumptions (including Assumption 5
 1495 for τ_{\max} , and bounded data heterogeneity ζ^2 where applicable):
 1496

1497 1. **Vanilla ASGD**(Mishchenko et al., 2022), **Delay-Adaptive ASGD**(Koloskova et al., 2022),
 1498 **FedBuff**(Nguyen et al., 2022): If the server update u^s is formed from a subset \mathcal{M}_s of $m \leq n$
 1499 clients, potentially with $K \geq 1$ local steps and local learning rate η_l :

$$1500 \quad D_i^t \lesssim \tau_i^t \eta^2 \eta_l^2 \left(\frac{K\sigma^2}{m} + \frac{1}{m} \sum_{s'=t-\tau_i^t}^{t-1} \mathbb{E}\|\nabla F(w_{\text{stale}}^{s'})\|_2^2 + (n-m)K^2\zeta^2 \right) \\ 1501 \\ 1502$$

1503 The term $(n-m)K^2\zeta^2$ highlights drift arising from client heterogeneity when $m < n$.
 1504

1505 2. **CA²FL**(Wang et al., 2024b): If the server update u^s is from a subset \mathcal{M}_s of m clients,
 1506 calibrated using all-client history, with $K \geq 1$ local steps and local learning rate η_l :

$$1507 \quad D_i^t \lesssim \tau_i^t \eta^2 \eta_l^2 (1 + (1 - \frac{m}{n})^2) \left(\frac{K\sigma^2}{m} + \sum_{s'=t-\tau_i^t}^{t-1} \mathbb{E}\|\nabla F(w_{\text{stale}}^{s'})\|_2^2 \right) \\ 1508 \\ 1509$$

1510 Calibration aims to remove the direct ζ^2 term from partial participation bias found in
 1511 FedBuff's drift.

1512 3. **ACE(Ours):** If the server update u^s averages information from all n clients ($m = n$), with
 1513 $K = 1$ effective local step for the gradient:

$$1515 \quad 1516 \quad 1517 \quad D_i^t \lesssim \tau_i^t \eta^2 \left(\frac{\sigma^2}{n} + \sum_{s'=t-\tau_i^t}^{t-1} \mathbb{E} \|\nabla F(w_{\text{stale}}^{s'})\|_2^2 \right)$$

1518 Here, the ζ^2 term from partial participation is absent because u^s in ACE averages information
 1519 from all n clients.

1521 Note: The core idea is that the structure of u^s (full vs. partial aggregation, number of local steps K)
 1522 influences the terms within D_i^t , and thus Term C.

1524 Proof. The general structure for Term C is $C = \nabla F(w_{\text{stale}}^t) - \nabla F(w^t)$. We need to calculate $\mathbb{E} \|C\|_2^2$,
 1525 w.r.t. the original definition or w.r.t. the model drift D_i^t .

1527 **1. Vanilla ASGD & Delay-Adaptive ASGD & FedBuff:**

1528 The update is $u^t = \frac{1}{m} \sum_{i \in \mathcal{M}_t} \Delta_i^t = \frac{\eta_l}{m} \sum_{i \in \mathcal{M}_t} \sum_{k=0}^{K-1} g_{i,k}^t$. Note that by Lemma a.6, the
 1529 sum of the cross-iteration gradient error is zero. The model drift can be calculated as:

$$\begin{aligned} 1531 \quad 1532 \quad 1533 \quad D_i^t &= \mathbb{E} [\|w^t - w^{t-\tau_i^l}\|^2] = \mathbb{E} \left[\left\| \sum_{s=t-\tau_i^l}^{t-1} (w^{s+1} - w^s) \right\|^2 \right] \\ 1534 \quad 1535 \quad 1536 \quad 1537 \quad &= \mathbb{E} \left[\left\| \eta \sum_{s=t-\tau_i^l}^{t-1} \frac{1}{m} \sum_{j \in \mathcal{M}_s} \sum_{k=0}^{K-1} \eta^l g_{s-\tau_j^s, k}^j \right\|^2 \right] \\ 1538 \quad 1539 \quad 1540 \quad 1541 \quad &= \mathbb{E} \left[\left\| \eta \sum_{s=t-\tau_i^l}^{t-1} \frac{1}{m} \sum_{j \in \mathcal{M}_s} \sum_{k=0}^{K-1} \eta^l (g_{s-\tau_j^s, k}^j - \nabla F_j(w_j^{s-\tau_j^s, k}) + \nabla F_j(w_j^{s-\tau_j^s, k})) \right\|^2 \right] \\ 1542 \quad 1543 \quad 1544 \quad 1545 \quad 1546 \quad 1547 \quad &= 2 \mathbb{E} \left[\left\| \underbrace{\eta \sum_{s=t-\tau_i^l}^{t-1} \frac{1}{m} \sum_{j \in \mathcal{M}_s} \sum_{k=0}^{K-1} \eta^l (g_{s-\tau_j^s, k}^j - \nabla F_j(w_j^{s-\tau_j^s, k}))}_{\text{Expand by Lemma a.6}} \right\|^2 \right] \\ 1548 \quad 1549 \quad 1550 \quad 1551 \quad &+ 2 \mathbb{E} \left[\left\| \eta \sum_{s=t-\tau_i^l}^{t-1} \frac{1}{m} \sum_{j \in \mathcal{M}_s} \sum_{k=0}^{K-1} \eta^l \nabla F_j(w_j^{s-\tau_j^s, k}) \right\|^2 \right] \\ 1552 \quad 1553 \quad 1554 \quad 1555 \quad &\leq \frac{2\tau_i^t K \eta^2 \eta_l^2}{m} \sigma^2 + \frac{2\tau_i^t \eta^2 \eta_l^2}{m^2} \sum_{s=t-\tau_i^l}^{t-1} \mathbb{E} \left[\left\| \sum_{j \in \mathcal{M}_s} \sum_{k=0}^{K-1} \nabla F_j(w_j^{s-\tau_j^s, k}) \right\|^2 \right] \end{aligned}$$

1556 Note that we have

$$\begin{aligned} 1557 \quad 1558 \quad 1559 \quad 1560 \quad &\left\| \sum_{i=1}^n \sum_{k=0}^{K-1} \nabla F_i(w_i^{t,k}) \right\|^2 = \sum_{i=1}^n \left\| \sum_{k=0}^{K-1} \nabla F_i(w_i^{t,k}) \right\|^2 + \sum_{i \neq j} \left\langle \sum_{k=0}^{K-1} \nabla F_i(w_i^{t,k}), \sum_{k=0}^{K-1} \nabla F_j(w_j^{t,k}) \right\rangle \\ 1561 \quad 1562 \quad 1563 \quad &= \sum_{i=1}^n n \left\| \sum_{k=0}^{K-1} \nabla F_i(w_i^{t,k}) \right\|^2 - \frac{1}{2} \sum_{i \neq j} \left\| \sum_{k=0}^{K-1} \nabla F_i(w_i^{t,k}) - \sum_{k=0}^{K-1} \nabla F_j(w_j^{t,k}) \right\|^2, \end{aligned}$$

1564 Where the second equation, $\|\sum_{i=1}^n x_i\|^2 = \sum_{i=1}^n \|x_i\|^2 - \frac{1}{2} \sum_{i \neq j} \|x_i - x_j\|^2$, holds due
 1565 to Lemma a.2. And $\langle a, b \rangle = \frac{1}{2} (\|a\|^2 + \|b\|^2 - \|a - b\|^2)$, holds due to Lemma a.1

1566 For simplicity, we assume a uniform partial participation of the clients, i.e. $\mathbb{P}\{i \in \mathcal{M}_t\} =$
 1567 $\frac{m}{n}$, $\mathbb{P}\{i, j \in \mathcal{M}_t\} = \frac{m(m-1)}{n(n-1)}$.
 1568

$$\begin{aligned}
 1569 & \left\| \sum_{j \in \mathcal{M}_s} \sum_{k=0}^{K-1} \nabla F_j(w_j^{s-\tau_j^s, k}) \right\|^2 = \left\| \sum_{i=1}^n \sum_{k=0}^{K-1} \mathbb{P}\{i \in \mathcal{M}_t\} \nabla F_i(w_i^{t, k}) \right\|^2 \\
 1570 & = \sum_{i=1}^n \mathbb{P}\{i \in \mathcal{M}_t\} \left\| \sum_{k=0}^{K-1} \nabla F_i(w_i^{t, k}) \right\|^2 + \sum_{i \neq j}^n \mathbb{P}\{i, j \in \mathcal{M}_t\} \left\langle \sum_{k=0}^{K-1} \nabla F_i(w_i^{t, k}), \sum_{k=0}^{K-1} \nabla F_j(w_j^{t, k}) \right\rangle \\
 1571 & = \frac{m}{n} \sum_{i=1}^n \left\| \sum_{k=0}^{K-1} \nabla F_i(w_i^{t, k}) \right\|^2 + \frac{m(m-1)}{n(n-1)} \sum_{i \neq j} \left\langle \sum_{k=0}^{K-1} \nabla F_i(w_i^{t, k}), \sum_{k=0}^{K-1} \nabla F_j(w_j^{t, k}) \right\rangle \\
 1572 & = \frac{m^2}{n} \sum_{i=1}^n \left\| \sum_{k=0}^{K-1} \nabla F_i(w_i^{t, k}) \right\|^2 - \frac{m(m-1)}{2n(n-1)} \sum_{i \neq j} \left\| \sum_{k=0}^{K-1} \nabla F_i(w_i^{t, k}) - \sum_{k=0}^{K-1} \nabla F_j(w_j^{t, k}) \right\|^2 \\
 1573 & = \frac{m(n-m)}{n(n-1)} \sum_{i=1}^n \left\| \sum_{k=0}^{K-1} \nabla F_i(w_i^{t, k}) \right\|^2 + \frac{m(m-1)}{n(n-1)} \left\| \sum_{i=1}^n \sum_{k=0}^{K-1} \nabla F_i(w_i^{t, k}) \right\|^2,
 \end{aligned}$$

1586
 1587 Thus, by Lemma a.5 :

$$\begin{aligned}
 1588 & \mathbb{E} \left[\left\| \sum_{j \in \mathcal{M}_s} \sum_{k=0}^{K-1} \nabla F_j(w_j^{s-\tau_j^s, k}) \right\|^2 \right] \\
 1589 & = \frac{m(m-1)}{n(n-1)} \sum_{j=1}^n \mathbb{E} \left[\left\| \sum_{k=0}^{K-1} \nabla F_j(w_j^{s-\tau_j^s, k}) \right\|^2 \right] + \frac{m(m-1)}{n(n-1)} \mathbb{E} \left[\left\| \sum_{j=1}^n \sum_{k=0}^{K-1} \nabla F_j(w_j^{s-\tau_j^s, k}) \right\|^2 \right] \\
 1590 & \leq \frac{m(n-m)}{n(n-1)} \left[15nK^3\eta_l^2(\sigma^2 + 6K\zeta^2) + (90K^4L^2\eta_l^2 + 3K^2) \sum_{j=1}^n \mathbb{E}[\|\nabla F(w^{s-\tau_j^s})\|^2] + 3nK^2\zeta^2 \right] \\
 1591 & + \frac{2m(m-1)}{n(n-1)} \sum_{j=1}^n \mathbb{E} \left[\left\| \sum_{k=0}^{K-1} \nabla F_j(w_j^{s-\tau_j^s, k}) - \sum_{k=0}^{K-1} \nabla F_j(w_j^{s-\tau_s^l, k}) \right\|^2 \right] \\
 1592 & + \frac{2m(m-1)}{n-1} K^2 \sum_{j=1}^n \mathbb{E}[\|\nabla F(w^{s-\tau_j^s})\|^2] \quad (\text{Lemma a.3}) \\
 1593 & \leq \frac{m(n-m)}{n(n-1)} \left[15nK^3\eta_l^2(\sigma^2 + 6K\zeta^2) + (90K^4L^2\eta_l^2 + 3K^2) \sum_{j=1}^n \mathbb{E}[\|\nabla F(w^{s-\tau_j^s})\|^2] + 3nK^2\zeta^2 \right] \\
 1594 & + \frac{2m(m-1)KL^2}{n-1} \sum_{j=1}^n \mathbb{E}[\|w_j^{s-\tau_j^s, k} - w_j^{s-\tau_s^l, k}\|^2] \quad (\text{L-smoothness, Assumption 2}) \\
 1595 & + \frac{2m(m-1)K^2}{n-1} \sum_{j=1}^n \mathbb{E}[\|\nabla F(w^{s-\tau_j^s})\|^2] \\
 1596 & \leq \left[\frac{3m(n-m)}{n(n-1)} + \frac{2nm(m-1)}{n(n-1)} \right] \left[5K^3L^2\eta_l^2(\sigma^2 + 6K\zeta^2) + (30K^4L^2\eta_l^2 + K^2) \frac{1}{n} \sum_{j=1}^n \mathbb{E}[\|\nabla F(w^{s-\tau_j^s})\|^2] \right] \\
 1597 & + \frac{3m(n-m)}{n-1} K^2\zeta^2,
 \end{aligned}$$

1620
1621
1622 Take back to $D_i^t = \mathbb{E} [\|w^t - w^{t-\tau_i^t}\|^2]$. For the simplicity of notations, the terms are
merged in an (weighted) average sense,

$$\begin{aligned} 1623 \quad D_i^t &= \mathbb{E} [\|w^t - w^{t-\tau_i^t}\|^2] \leq \frac{2\tau_i^t K \eta_l^2 \eta_l^2}{m} \sigma^2 + \frac{2\tau_i^t \eta_l^2 \eta_l^2}{m^2} \sum_{s=t-\tau_i^t}^{t-1} \left\{ \left[\frac{3m(n-m)}{n-1} + \frac{2nm(m-1)}{n-1} \right] \right. \\ 1624 &\quad \cdot \left[5K^3 L^2 \eta_l^2 (\sigma^2 + 6K\zeta^2) + (30K^4 L^2 \eta_l^2 + K^2) \mathbb{E} [\|\nabla F(w^{s-\tau_j^s})\|^2] \right] \\ 1625 &\quad \left. + \frac{3m(n-m)}{n-1} K^2 \zeta^2 \right\} \\ 1626 &\lesssim \tau_i^t \eta_l^2 \left(\frac{K\sigma^2}{m} + \frac{1}{m} \sum_{s'=t-\tau_i^t}^{t-1} \frac{\mathbb{E} [\|\nabla F(w_{\text{stale}}^{s'})\|^2]}{(n-m)K^2 \zeta^2} + (n-m)K^2 \zeta^2 \right) \\ 1627 \\ 1628 \\ 1629 \\ 1630 \\ 1631 \\ 1632 \\ 1633 \\ 1634 \end{aligned}$$

1635 2. CA²FL:

1636 The server update is $v^t = h^t + \frac{1}{m} \sum_{i \in S_t} (\Delta_i^t - h_i^t)$, leading to $\bar{v}^t = h^t + \frac{1}{m} \sum_{i \in S_t} (\bar{\Delta}_i^t - h_i^t)$.
1637 The model delay of the non-participating client i at server iteration t is denoted as ρ_i^t , since
1638 ζ is used for denoting the BDH assumption bound.

$$\begin{aligned} 1639 \quad v^t &= \frac{1}{n} \sum_{i \notin S_t} h_i^{t-1} + \frac{1}{n} \sum_{i \in S_t} h_i^{t-1} + \frac{1}{m} \sum_{i \in S_t} (\Delta_i^{t-\tau_i^t} - h_i^{t-1}) \\ 1640 &= \frac{1}{n} \sum_{i \notin S_t} h_i^{t-1} + \sum_{i \in S_t} \left[\left(\frac{1}{n} - \frac{1}{m} \right) h_i^{t-1} + \frac{1}{m} \Delta_i^{t-\tau_i^t} \right] \\ 1641 \\ 1642 \\ 1643 \\ 1644 \end{aligned}$$

1645 Take into the definition of $\mathbb{E} \|C\|^2 = \mathbb{E} \|\nabla F(w_{\text{stale}}^t) - \nabla F(w^t)\|^2$,

$$\begin{aligned} 1646 \\ 1647 \quad \mathbb{E} \left[\left\| \frac{1}{m} \sum_{i \in S_t} [\nabla F_i(w^t) - \nabla F_i(w^{t-\tau_i^t})] + \left(\frac{1}{n} - \frac{1}{m} \right) \sum_{i \in S_t} [\nabla F_i(w^t) - \nabla F_i(w^{t-\rho_i^t})] \right. \right. \\ 1648 &\quad \left. \left. + \frac{1}{n} \sum_{i \notin S_t} [\nabla F_i(w^t) - \nabla F_i(w^{t-\rho_i^t})] \right\|^2 \right] \\ 1649 &\leq \frac{3}{m} \mathbb{E} \left[\sum_{i \in S_t} \|\nabla F_i(w^t) - \nabla F_i(w^{t-\tau_i^t})\|^2 \right] + \frac{3(n-m)^2}{n^2 m} \mathbb{E} \left[\sum_{i \in S_t} \|\nabla F_i(w^t) - \nabla F_i(w^{t-\rho_i^t})\|^2 \right] \\ 1650 &\quad + \frac{3(n-m)}{n^2} \mathbb{E} \left[\sum_{i \notin S_t} \|\nabla F_i(w^t) - \nabla F_i(w^{t-\rho_i^t})\|^2 \right] \\ 1651 &\leq \frac{3L^2}{m} \mathbb{E} \left[\sum_{i \in S_t} \left\| \sum_{s=t-\tau_i^t}^{t-1} (w^{s+1} - w^s) \right\|^2 \right] + \frac{3(n-m)^2 L^2}{n^2 m} \mathbb{E} \left[\sum_{i \in S_t} \left\| \sum_{s=t-\rho_i^t}^{t-1} (w^{s+1} - w^s) \right\|^2 \right] \\ 1652 &\quad + \frac{3(n-m)L^2}{n^2} \mathbb{E} \left[\sum_{i \notin S_t} \left\| \sum_{s=t-\rho_i^t}^{t-1} (w^{s+1} - w^s) \right\|^2 \right] \\ 1653 \\ 1654 \\ 1655 \\ 1656 \\ 1657 \\ 1658 \\ 1659 \\ 1660 \\ 1661 \\ 1662 \\ 1663 \\ 1664 \\ 1665 \\ 1666 \\ 1667 \end{aligned}$$

1668 Note that

$$\underbrace{\frac{1}{m}}_{\text{Coefficient}} \cdot \underbrace{\frac{m}{|\mathcal{S}_t|}}_{\text{Coefficient}} + \frac{(n-m)^2}{n^2 m} \cdot m + \frac{n-m}{n^2} \cdot (n-m) = 1 + 2 \left(1 - \frac{m}{n} \right)^2.$$

1669 Similar to the above proof for the partial participation methods (Vanilla ASGD & Delay-
1670 Adaptive ASGD & FedBuff); and note that by Lemma a.6, the sum of the cross-iteration
1671
1672
1673

1674 gradient error is zero:
 1675

$$\begin{aligned}
 1676 \quad & \mathbb{E} \left[\left\| \sum_{s=t-\tau_i^t}^{t-1} (w^{s+1} - w^s) \right\|^2 \right] = \mathbb{E} \left[\|w^t - w^{t-\tau_i^t}\|^2 \right] \\
 1677 \quad & \leq \frac{2\tau_i^t K \eta^2 \eta_l^2}{m} \sigma^2 + \frac{2\tau_i^t \eta^2 \eta_l^2}{m^2} \sum_{s=t-\tau_i^t}^{t-1} \mathbb{E} \left[\left\| \sum_{j \in S_s} \sum_{k=0}^{K-1} \left(\frac{1}{m} \nabla F_i(w_i^{s-\tau_j^s, k}) \right. \right. \right. \\
 1678 \quad & \left. \left. \left. + \left(\frac{1}{n} - \frac{1}{m} \right) \nabla F_i(w_i^{s-\rho_j^s, k}) \right) \frac{1}{n} \sum_{j \notin S_s} \sum_{k=0}^{K-1} \nabla F_i(w_i^{s-\rho_j^s, k}) \right\|^2 \right].
 \end{aligned}$$

1686 Similarly,
 1687

$$\begin{aligned}
 1688 \quad & \mathbb{E} \left[\left\| \sum_{s=t-\rho_i^t}^{t-1} (w^{s+1} - w^s) \right\|^2 \right] = \mathbb{E} \left[\|w^t - w^{t-\rho_i^t}\|^2 \right] \\
 1689 \quad & \leq \frac{2\rho_i^t K \eta^2 \eta_l^2}{m} \sigma^2 + \frac{2\rho_i^t \eta^2 \eta_l^2}{m^2} \sum_{s=t-\rho_i^t}^{t-1} \mathbb{E} \left[\left\| \sum_{j \in S_s} \sum_{k=0}^{K-1} \left(\frac{1}{m} \nabla F_i(w_i^{s-\tau_j^s, k}) \right. \right. \right. \\
 1690 \quad & \left. \left. \left. + \left(\frac{1}{n} - \frac{1}{m} \right) \nabla F_i(w_i^{s-\rho_j^s, k}) \right) \frac{1}{n} \sum_{j \notin S_s} \sum_{k=0}^{K-1} \nabla F_i(w_i^{s-\rho_j^s, k}) \right\|^2 \right].
 \end{aligned}$$

1698 Merging all the pieces. For the simplicity of notations, the terms are merged in an (weighted)
 1699 average sense (we treat two sources of delay τ, ρ equivalently):
 1700

$$1701 \quad D_i^t \leq \tau_i^t \eta^2 \eta_l^2 \left(1 + \left(1 - \frac{m}{n} \right)^2 \right) \left(\frac{K \sigma^2}{m} + \sum_{s'=t-\tau_i^t}^{t-1} \mathbb{E} \|\nabla F(w_{\text{stale}}^{s'})\|_2^2 \right)$$

1705 3. **ACE (Ours):** For $\mathbb{E} \|w^t - w^{t-\tau_i^t}\|^2$, it can be decomposed as a telescoping sum:
 1706

$$\begin{aligned}
 1707 \quad w^t - w^{t-\tau_i^t} &= \sum_{s=t-\tau_i^t}^{t-1} (w^{s+1} - w^s) = \sum_{s=t-\tau_i^t}^{t-1} (-\eta u^s). \\
 1708 \quad \mathbb{E} \|w^t - w^{t-\tau_i^t}\|^2 &= \eta^2 \mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} u^s \right\|^2
 \end{aligned}$$

1714 Decompose $u^s = (u^s - \bar{u}^s) + \bar{u}^s$ and by Lemma a.3,
 1715

$$\begin{aligned}
 1716 \quad & \eta^2 \mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} ((u^s - \bar{u}^s) + \bar{u}^s) \right\|^2 \leq 2\eta^2 \mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} (u^s - \bar{u}^s) \right\|^2 + 2\eta^2 \mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} \bar{u}^s \right\|^2 \\
 1717 \quad & \leq \frac{2\eta^2}{n^2} \mathbb{E} \underbrace{\left\| \sum_{s=t-\tau_i^t}^{t-1} \sum_{i=1}^n (\nabla f_i(w^{s-\tau_i^s}, \xi_i^{\kappa_i}) - \nabla F_i(w^{s-\tau_i^s})) \right\|^2}_{\text{term I}} \\
 1718 \quad & + \frac{2\eta^2}{n^2} \mathbb{E} \underbrace{\left\| \sum_{s=t-\tau_i^t}^{t-1} \sum_{i=1}^n \nabla F_i(w^{s-\tau_i^s}) \right\|^2}_{\text{term II}}
 \end{aligned}$$

1728 For term I: Let $\delta_i^s = \nabla f_i(w^{s-\tau_i^s}, \xi_i^\kappa) - \nabla F_i(w^{s-\tau_i^s})$.
 1729

1730 term I = $\mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} \sum_{i=1}^n \delta_i^s \right\|^2 = \sum_{s=t-\tau_i^t}^{t-1} \mathbb{E} \left\| \sum_{i=1}^n \delta_i^s \right\|^2 + \sum_{\substack{s_1 \neq s_2 \\ t-\tau_i^t \leq s_1, s_2 \leq t-1}} \mathbb{E} \langle \sum_i \delta_i^{s_1}, \sum_j \delta_j^{s_2} \rangle$
 1731
 1732
 1733

1734 By Lemma a.6, the sum of these cross-iteration gradient error is zero:
 1735

1736
$$\sum_{s_1 \neq s_2} \mathbb{E} \left[\left\langle \sum_{i=1}^n \delta_i^{s_1}, \sum_{j=1}^n \delta_j^{s_2} \right\rangle \right] = \sum_{s_1 \neq s_2} \sum_{i=1}^n \sum_{j=1}^n \mathbb{E} [\langle \delta_i^{s_1}, \delta_j^{s_2} \rangle] = 0$$

 1737
 1738
 1739

1740 Therefore, by Lemma a.3,
 1741

1742 term I = $\mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} \sum_{i=1}^n \delta_i^s \right\|^2 = \sum_{s=t-\tau_i^t}^{t-1} \mathbb{E} \left\| \sum_{i=1}^n \delta_i^s \right\|^2 \leq \sum_{s=t-\tau_i^t}^{t-1} n \sum_{i=1}^n \mathbb{E} \|\delta_i^s\|^2$
 1743
 1744
 1745
 1746
 1747

1748 For term II:
 1749

1750
$$\mathbb{E} \left\| \underbrace{\sum_{s=t-\tau_i^t}^{t-1} \sum_{i=1}^n \nabla F_i(w^{s-\tau_i^s})}_{\tau_i^t \text{ terms}} \right\|^2 \leq \tau_i^t \sum_{s=t-\tau_i^t}^{t-1} \mathbb{E} \left\| \sum_{i=1}^n \nabla F_i(w^{s-\tau_i^s}) \right\|^2$$

 1751
 1752
 1753
 1754

1755 Therefore, merge term I and term II, we have
 1756

1757
$$\mathbb{E} \|w^t - w^{t-\tau_i^t}\|^2 \leq 2 \frac{\eta^2}{n^2} (\tau_i^t n \sigma^2) + 2 \frac{\eta^2}{n^2} (n^2 \tau_i^t \sum_{s=t-\tau_i^t}^{t-1} \mathbb{E} \|\bar{u}^s\|^2)$$

 1758
 1759
 1760
 1761
 1762
 1763

1764 In ACE, $\bar{u}^s = \nabla F(w_{\text{stale}}^s)$:

1765
 1766
$$D_i^t = \mathbb{E} \|w^t - w^{t-\tau_i^t}\|^2 \lesssim \tau_i^t \eta^2 \left(\frac{\sigma^2}{n} + \sum_{s'=t-\tau_i^t}^{t-1} \mathbb{E} \|\nabla F(w_{\text{stale}}^{s'})\|_2^2 \right).$$

 1767
 1768

1769 \square
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782 **C CONVERGENCE RATE OF ACE**
 1783

1784 **C.1 PROOF OF THE RATE**
 1785

1786 **Theorem 1** (Convergence Rate of ACE (Alg. 1)). *Suppose Assumptions A1-A5 hold. By choosing a
 1787 step size $\eta \leq \frac{1}{8L\tau_{\max}}$, ACE achieves the following convergence rate:*

$$1789 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla F(w^t)\|^2 \leq \frac{2\Delta}{T\eta} + \frac{4L\tau_{\max}\eta\sigma^2}{n} + \frac{2L^2\tau_{\max}^2\eta^2\sigma^2}{n}$$

1792 where $\Delta = F(w^0) - F^*$. Substituting $\eta \simeq \frac{1}{\sqrt{nT}}$, the RHS converges to 0 as $T \rightarrow \infty$.
 1793

1794 *Proof.* Start from the Descent Lemma a.4:
 1795

$$1796 \quad \mathbb{E}[F(w^{t+1})] - \mathbb{E}[F(w^t)] \leq -\eta \mathbb{E}\langle \nabla F(w^t), u^t \rangle + \frac{L\eta^2}{2} \mathbb{E}\|u^t\|^2 \quad (\text{a.9})$$

1799 We analyze the two terms on the RHS separately to strictly handle the coefficients.
 1800

1800 **Term 1: The Inner Product.** Using the property $\mathbb{E}_\xi[u^t] = \bar{u}^t$, we have $\mathbb{E}\langle \nabla F(w^t), u^t \rangle =$
 1801 $\langle \nabla F(w^t), \bar{u}^t \rangle$. Using the identity $-\langle a, b \rangle = \frac{1}{2}\|a - b\|^2 - \frac{1}{2}\|a\|^2 - \frac{1}{2}\|b\|^2$:
 1802

$$1803 \quad -\eta \langle \nabla F(w^t), \bar{u}^t \rangle = -\frac{\eta}{2} \|\nabla F(w^t)\|^2 - \frac{\eta}{2} \|\bar{u}^t\|^2 + \frac{\eta}{2} \|\nabla F(w^t) - \bar{u}^t\|^2$$

1805 (Note: By taking the expectation *first*, the variance term $\mathbb{E}\|u^t - \bar{u}^t\|^2$ does not appear here, avoiding
 1806 the negative coefficient issue).
 1807

1808 **Term 2: The Smoothness Term.** Using the exact variance decomposition $\mathbb{E}\|u^t\|^2 = \|\bar{u}^t\|^2 + \mathbb{E}\|u^t -$
 1809 $\bar{u}^t\|^2$:²

$$1810 \quad \frac{L\eta^2}{2} \mathbb{E}\|u^t\|^2 = \frac{L\eta^2}{2} \|\bar{u}^t\|^2 + \frac{L\eta^2}{2} \mathbb{E}\|u^t - \bar{u}^t\|^2$$

1814 **Combine Term 1 and Term 2:** Substituting these back into a.9:

$$1815 \quad \mathbb{E}[F(w^{t+1})] - \mathbb{E}[F(w^t)] \leq -\frac{\eta}{2} \|\nabla F(w^t)\|^2 + \left(\frac{L\eta^2}{2} - \frac{\eta}{2} \right) \|\bar{u}^t\|^2$$

$$1816 \quad + \frac{\eta}{2} \|\nabla F(w^t) - \bar{u}^t\|^2 + \frac{L\eta^2}{2} \mathbb{E}\|u^t - \bar{u}^t\|^2$$

1820 Now, all error terms in the second line of the above inequality have **positive coefficients**, allowing
 1821 for valid upper bound substitutions:
 1822

1823

- 1824 **Noise Term:** The coefficient is $\frac{L\eta^2}{2} > 0$. Using Theorem B.3 ($\mathbb{E}\|u^t - \bar{u}^t\|^2 \leq \sigma^2/n$):

$$1825 \quad \frac{L\eta^2}{2} \mathbb{E}\|u^t - \bar{u}^t\|^2 \leq \frac{L\eta^2\sigma^2}{2n}$$

1828 ²The validity of this decomposition depends on the cross-term $2\mathbb{E}\langle u^t - \bar{u}^t, \bar{u}^t \rangle$ being zero. We prove this
 1829 using the Law of Iterated Expectations:

$$1830 \quad \mathbb{E}[\langle u^t - \bar{u}^t, \bar{u}^t \rangle] = \mathbb{E}_{\mathcal{H}^t} [\langle \mathbb{E}_\xi[u^t - \bar{u}^t | \mathcal{H}^t], \bar{u}^t \rangle]$$

$$1831 \quad = \mathbb{E}_{\mathcal{H}^t} \left[\underbrace{\langle \mathbb{E}_\xi[u^t | \mathcal{H}^t] - \bar{u}^t, \bar{u}^t \rangle}_{\bar{u}^t} \right] = \mathbb{E}_{\mathcal{H}^t} [\langle 0, \bar{u}^t \rangle] = 0.$$

1835 Here, we utilize the fact that \bar{u}^t is measurable with respect to the filtration \mathcal{H}^t (history), allowing it to be pulled
 1836 out of the inner conditional expectation.

1836 • **Delay Term:** The coefficient is $\frac{\eta}{2} > 0$. For ACE, $\bar{u}^t = \frac{1}{n} \sum \nabla F_i(w^{t-\tau_i^t})$.
 1837

1838
$$\|\nabla F(w^t) - \bar{u}^t\|^2 = \left\| \frac{1}{n} \sum_{i=1}^n (\nabla F_i(w^t) - \nabla F_i(w^{t-\tau_i^t})) \right\|^2$$

 1839
 1840
 1841
 1842
$$\leq \frac{1}{n} \sum_{i=1}^n \|\nabla F_i(w^t) - \nabla F_i(w^{t-\tau_i^t})\|^2 \leq \frac{L^2}{n} \sum_{i=1}^n \|w^t - w^{t-\tau_i^t}\|^2$$

 1843
 1844

1845 Substituting these bounds:
 1846

1847
$$\begin{aligned} \mathbb{E}[F(w^{t+1})] - \mathbb{E}[F(w^t)] &\leq -\frac{\eta}{2} \mathbb{E}\|\nabla F(w^t)\|^2 + \left(\frac{L\eta^2}{2} - \frac{\eta}{2} \right) \|\bar{u}^t\|^2 \\ 1848 &\quad + \frac{\eta L^2}{2n} \sum_{i=1}^n \mathbb{E}\|w^t - w^{t-\tau_i^t}\|^2 + \frac{L\eta^2\sigma^2}{2n} \end{aligned} \quad (\text{a.10})$$

 1849
 1850
 1851
 1852

1853 For $\mathbb{E}\|w^t - w^{t-\tau_i^t}\|^2$, it can be decomposed as a telescoping sum:
 1854

1855
$$w^t - w^{t-\tau_i^t} = \sum_{s=t-\tau_i^t}^{t-1} (w^{s+1} - w^s) = \sum_{s=t-\tau_i^t}^{t-1} (-\eta u^s).$$

 1856
 1857
 1858

1859
$$\mathbb{E}\|w^t - w^{t-\tau_i^t}\|^2 = \eta^2 \mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} u^s \right\|^2$$

 1860
 1861
 1862

1863 Decompose $u^s = (u^s - \bar{u}^s) + \bar{u}^s$ and by Lemma a.3,
 1864

1865
$$\begin{aligned} \eta^2 \mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} ((u^s - \bar{u}^s) + \bar{u}^s) \right\|^2 &\leq 2\eta^2 \mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} (u^s - \bar{u}^s) \right\|^2 + 2\eta^2 \mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} \bar{u}^s \right\|^2 \\ 1866 &\leq \frac{2\eta^2}{n^2} \mathbb{E} \underbrace{\left\| \sum_{s=t-\tau_i^t}^{t-1} \sum_{i=1}^n (\nabla f_i(w^{s-\tau_i^s}, \xi_i^\kappa) - \nabla F_i(w^{s-\tau_i^s})) \right\|^2}_{\text{term I}} \\ 1867 &\quad + \frac{2\eta^2}{n^2} \mathbb{E} \underbrace{\left\| \sum_{s=t-\tau_i^t}^{t-1} \sum_{i=1}^n \nabla F_i(w^{s-\tau_i^s}) \right\|^2}_{\text{term II}} \end{aligned}$$

 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878

1879 For term I: Let $\delta_i^s = \nabla f_i(w^{s-\tau_i^s}, \xi_i^\kappa) - \nabla F_i(w^{s-\tau_i^s})$.
 1880

1881
$$\text{term I} = \mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} \sum_{i=1}^n \delta_i^s \right\|^2 = \sum_{s=t-\tau_i^t}^{t-1} \mathbb{E} \left\| \sum_{i=1}^n \delta_i^s \right\|^2 + \sum_{\substack{s_1 \neq s_2 \\ t-\tau_i^t \leq s_1, s_2 \leq t-1}} \mathbb{E} \left\langle \sum_i \delta_i^{s_1}, \sum_j \delta_j^{s_2} \right\rangle$$

 1882
 1883
 1884

1885 By Lemma a.6, the sum of these cross-iteration gradient error is zero:
 1886

1887
$$\sum_{s_1 \neq s_2} \mathbb{E} \left[\left\langle \sum_{i=1}^n \delta_i^{s_1}, \sum_{j=1}^n \delta_j^{s_2} \right\rangle \right] = \sum_{s_1 \neq s_2} \sum_{i=1}^n \sum_{j=1}^n \mathbb{E} [\langle \delta_i^{s_1}, \delta_j^{s_2} \rangle] = 0$$

 1888
 1889

1890

Therefore, by Lemma a.3,

1891

1892

1893

1894

1895

1896

1897

$$\begin{aligned} \text{term I} &= \mathbb{E} \left\| \sum_{s=t-\tau_i^t}^{t-1} \sum_{i=1}^n \delta_i^s \right\|^2 = \sum_{s=t-\tau_i^t}^{t-1} \mathbb{E} \left\| \sum_{i=1}^n \delta_i^s \right\|^2 \leq \sum_{s=t-\tau_i^t}^{t-1} n \sum_{i=1}^n \mathbb{E} \|\delta_i^s\|^2 \\ &\leq \tau_i^t n \sum_{i=1}^n \frac{\sigma^2}{n} = \tau_i^t n \sigma^2 \leq \tau_{\max} n \sigma^2 \end{aligned}$$

1898

For term II:

1899

1900

1901

1902

1903

1904

1905

1906

$$\begin{aligned} \mathbb{E} \left\| \underbrace{\sum_{s=t-\tau_i^t}^{t-1} \sum_{i=1}^n \nabla F_i(w^{s-\tau_i^s})}_{\tau_i^t \text{ terms}} \right\|^2 &\leq \tau_i^t \sum_{s=t-\tau_i^t}^{t-1} \mathbb{E} \left\| \sum_{i=1}^n \nabla F_i(w^{s-\tau_i^s}) \right\|^2 \\ &\leq \tau_{\max} \sum_{s=t-\tau_{\max}}^{t-1} \mathbb{E} \left\| \sum_{i=1}^n \nabla F_i(w^{s-\tau_i^s}) \right\|^2 \end{aligned}$$

1907

Therefore, merge term I and term II, we have

1908

1909

1910

1911

1912

1913

1914

$$\begin{aligned} \mathbb{E} \|w^t - w^{t-\tau_i^t}\|^2 &\leq 2 \frac{\eta^2}{n^2} (\tau_i^t n \sigma^2) + 2 \frac{\eta^2}{n^2} (n^2 \tau_i^t \sum_{s=t-\tau_i^t}^{t-1} \mathbb{E} \|\bar{u}^s\|^2) \\ &\Rightarrow \mathbb{E} \|w^t - w^{t-\tau_i^t}\|^2 \leq 2 \eta^2 \tau_{\max} \left(\frac{\sigma^2}{n} + \sum_{s=t-\tau_i^t}^{t-1} \mathbb{E} \|\bar{u}^s\|^2 \right) \end{aligned}$$

1915

Substitute this back into the main inequality a.10 for $\mathbb{E}[F(w^{t+1})] - \mathbb{E}[F(w^t)]$:

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

$$\begin{aligned} \mathbb{E}[F(w^{t+1})] - \mathbb{E}[F(w^t)] &\leq -\frac{\eta}{2} \mathbb{E} \|\nabla F(w^t)\|^2 + \frac{L\eta^2\sigma^2}{2n} + \left(\frac{L\eta^2}{2} - \frac{\eta}{2} \right) \|\bar{u}^t\|^2 \\ &\quad + \frac{\eta L^2}{2n} n \left[2\eta^2 \tau_{\max} \left(\frac{\sigma^2}{n} + \underbrace{\sum_{s=t-\tau_{\max}}^{t-1} \mathbb{E} \|\bar{u}^s\|^2}_{\tau_{\max} \text{ terms}} \right) \right] \\ &\leq -\frac{\eta}{2} \mathbb{E} \|\nabla F(w^t)\|^2 + \left(\frac{L\eta^2}{2} + L^2\eta^3\tau_{\max} \right) \frac{\sigma^2}{n} \\ &\quad + \left(\frac{L\eta^2}{2} - \frac{\eta}{2} + L^2\eta^3\tau_{\max}^2 \right) \max_t \mathbb{E} \|\bar{u}^t\|^2 \\ &\leq -\frac{\eta}{2} \mathbb{E} \|\nabla F(w^t)\|^2 + \left(\frac{L\eta^2}{2} + L^2\eta^3\tau_{\max} \right) \frac{\sigma^2}{n} \end{aligned} \tag{a.11}$$

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

The last step holds when $(\frac{L\eta^2}{2} - \frac{\eta}{2} + L^2\eta^3\tau_{\max}^2) \leq 0$. This means $\eta(2L^2\tau_{\max}^2\eta^2 + L\eta - 1) \leq 0$.Since $\eta > 0$, we need

$$f(\eta) = 2L^2\tau_{\max}^2\eta^2 + L\eta - 1 \leq 0$$

The roots of $f(\eta) = 0$ are $\eta_{+,-} = \frac{-1 \pm \sqrt{1+8\tau_{\max}^2}}{4L\tau_{\max}^2}$.So $0 < \eta \leq \eta_+ = \frac{-1 + \sqrt{1+8\tau_{\max}^2}}{4L\tau_{\max}^2}$.A looser but simpler condition is by decomposing $-\eta/2 = -\frac{\eta}{4} - \frac{\eta}{4}$ in $\frac{L\eta^2}{2} - \frac{\eta}{2} + L^2\eta^3\tau_{\max}^2$ and assign these two $-\frac{\eta}{4}$ separately:

$$\begin{cases} \frac{L\eta^2}{2} - \eta/4 \leq 0 \implies \eta \leq \frac{1}{2L} \\ L^2\eta^3\tau_{\max}^2 - \eta/4 \leq 0 \implies \eta \leq \frac{1}{2L\tau_{\max}} \end{cases}$$

1944 This leads to $\eta \leq \frac{1}{2L\tau_{\max}}$ (assuming $\tau_{\max} \geq 1$).
 1945

1946 If we apply a practical learning rate $\eta = c\sqrt{n/T}$, then we require $T \geq 4c^2L^2n\tau_{\max}^2$. This is an
 1947 **implicit relationship** between τ_{\max} and T . This relationship suggests that in practice, a sufficiently
 1948 large total number of server iterations T can mitigate the negative impact on convergence caused by a
 1949 delay τ_{\max} .

1950 Go back to a.11 (simplified equation after dropping $\mathbb{E}\|\bar{u}^t\|^2$ term):
 1951

$$1952 \mathbb{E}[F(w^{t+1})] - \mathbb{E}[F(w^t)] \leq -\frac{\eta}{2} \mathbb{E}\|\nabla F(w^t)\|^2 + \left(\frac{L\eta^2}{2} + L^2\eta^3\tau_{\max}\right) \frac{\sigma^2}{n}$$

1954 Sum over $t = 0$ to $T - 1$:
 1955

$$1956 \mathbb{E}[F(w^T)] - F(w^0) \leq -\frac{\eta}{2} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla F(w^t)\|^2 + T \left(\frac{L\eta^2}{2} + L^2\eta^3\tau_{\max}\right) \frac{\sigma^2}{n}$$

1959 Denote $F(w^0) - \mathbb{E}[F(w^T)]$ as Δ .
 1960

$$1961 \frac{\eta}{2} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla F(w^t)\|^2 \leq \Delta + T\eta \left(\frac{L\eta}{2} + L^2\eta^2\tau_{\max}\right) \frac{\sigma^2}{n}$$

1964 Divide by $T\eta/2$:

$$1965 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla F(w^t)\|^2 \leq \frac{2\Delta}{T\eta} + (L\eta + 2L^2\eta^2\tau_{\max}) \frac{\sigma^2}{n}$$

1968 Take $\eta = c\sqrt{n/T}$:
 1969

$$1970 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla F(w^t)\|^2 \leq \frac{2\Delta}{Tc\sqrt{n/T}} + \left(Lc\sqrt{n/T} + 2L^2c^2\frac{n}{T}\tau_{\max}\right) \frac{\sigma^2}{n}$$

$$1973 = \frac{2\Delta}{c\sqrt{nT}} + \frac{cL\sigma^2}{\sqrt{nT}} + \frac{2c^2L^2\tau_{\max}\sigma^2}{T}$$

$$1976 \lesssim \frac{\Delta}{\sqrt{nT}} + \frac{L\sigma^2}{\sqrt{nT}} + \frac{L^2\tau_{\max}\sigma^2}{T}$$

1978 \square
 1979

1980 C.1.1 ALTERNATIVE CONVERGENCE ANALYSIS WITH EXPLICIT INDEPENDENCE 1981

1982 In the primary analysis (Appendix C), we utilized the Law of Iterated Expectations to handle the
 1983 stochasticity of data sampling conditioned on the filtration of the model history. To address potential
 1984 theoretical concerns regarding the subtle statistical dependency between the current model trajectory
 1985 w^t and the historical data samples embedded in the aggregated update u^t , we provide an alternative
 1986 proof in this section.

1987 This alternative analysis adopts a stricter "decomposition technique" (Wang et al., 2024a). Instead
 1988 of evaluating errors relative to the current iterate w^t , we anchor the analysis to the "**oldest possible**
 1989 **model**" currently influencing the system, denoted as $w^{t-\tau_{\max}}$. By definition, all stochastic gradients
 1990 involved in the aggregation at iteration t are computed using models generated *after* $w^{t-\tau_{\max}}$ was
 1991 fixed. This ensures that the specific data batches used for these gradients are statistically independent
 1992 of the reference point $w^{t-\tau_{\max}}$, thereby eliminating correlation issues without relying on conditional
 1993 expectations.

1994 It is worth noting that while this technique offers explicit independence, it treats intermediate updates
 1995 as model drift, leading to an accumulation of error terms scaling with τ_{\max} . Consequently, this results
 1996 in a **looser upper bound** (with larger constant coefficients) compared to our primary proof. However,
 1997 it rigorously serves as a robustness check, confirming that the asymptotic convergence rate order of
 ACE remains valid even under this framework.

1998 *Proof.* Let $s^t := \max(0, t - \tau_{\max})$ be the delayed time index used for decoupling. Note that
 1999 $t - s^t \leq \tau_{\max}$ for all t . By the L -smoothness of F and the update rule $w^{t+1} = w^t - \eta u^t$, we have
 2000 the descent inequality:
 2001

$$\mathbb{E}[F(w^{t+1})] - \mathbb{E}[F(w^t)] \leq -\eta \mathbb{E}\langle \nabla F(w^t), u^t \rangle + \frac{L\eta^2}{2} \mathbb{E}\|u^t\|^2 \quad (\text{a.12})$$

2004 **Step 1: Decomposition of the Inner Product.** Since w^t is coupled with the historical gradients in u^t ,
 2005 we introduce the delayed iterate w^{s^t} which is independent of the stochastic noise in u^t (conditioned
 2006 on \mathcal{F}_{s^t}). We decompose the inner product as:
 2007

$$-\eta \mathbb{E}\langle \nabla F(w^t), u^t \rangle = -\eta \mathbb{E}\langle \nabla F(w^{s^t}), u^t \rangle - \eta \mathbb{E}\langle \nabla F(w^t) - \nabla F(w^{s^t}), u^t \rangle$$

2008 For the first term, we validly apply the conditional expectation $\mathbb{E}[u^t | \mathcal{F}_{s^t}] = \bar{u}^t$. Substituting this back
 2009 and rearranging terms to recover $\nabla F(w^t)$:

$$\begin{aligned} -\eta \mathbb{E}\langle \nabla F(w^{s^t}), u^t \rangle &= -\eta \mathbb{E}\langle \nabla F(w^{s^t}), \bar{u}^t \rangle \\ &= -\eta \mathbb{E}\langle \nabla F(w^t), \bar{u}^t \rangle + \eta \mathbb{E}\langle \nabla F(w^t) - \nabla F(w^{s^t}), \bar{u}^t \rangle \end{aligned}$$

2010 Combining these, we isolate the coupling error term \mathcal{E}_{couple} :

$$-\eta \mathbb{E}\langle \nabla F(w^t), u^t \rangle = -\eta \mathbb{E}\langle \nabla F(w^t), \bar{u}^t \rangle + \underbrace{\eta \mathbb{E}\langle \nabla F(w^t) - \nabla F(w^{s^t}), \bar{u}^t - u^t \rangle}_{\mathcal{E}_{couple}}$$

2011 Let $\delta^t := u^t - \bar{u}^t$. We bound \mathcal{E}_{couple} using Cauchy-Schwarz and the update rule $w^t - w^{s^t} =$
 2012 $\sum_{j=1}^{t-s^t} (-\eta u^{t-j})$:

$$\begin{aligned} \mathcal{E}_{couple} &\leq \eta \mathbb{E}[\|\nabla F(w^t) - \nabla F(w^{s^t})\| \|\delta^t\|] \leq \eta L \mathbb{E} \left[\left\| \sum_{j=1}^{t-s^t} \eta u^{t-j} \right\| \|\delta^t\| \right] \\ &\leq \eta^2 L \sum_{j=1}^{\tau_{\max}} \mathbb{E}[\|u^{t-j}\| \|\delta^t\|] \end{aligned} \quad (\text{a.13})$$

2013 Applying Young's inequality $xy \leq \frac{1}{2}x^2 + \frac{1}{2}y^2$ to each term in the sum:

$$\mathcal{E}_{couple} \leq \frac{\eta^2 L}{2} \sum_{j=1}^{\tau_{\max}} (\mathbb{E}\|u^{t-j}\|^2 + \mathbb{E}\|\delta^t\|^2) = \frac{\eta^2 L}{2} \sum_{j=1}^{\tau_{\max}} \mathbb{E}\|u^{t-j}\|^2 + \frac{\eta^2 L \tau_{\max}}{2} \mathbb{E}\|\delta^t\|^2 \quad (\text{a.14})$$

2014 For the main descent term, we use the identity $-\langle a, b \rangle = \frac{1}{2}\|a - b\|^2 - \frac{1}{2}\|a\|^2 - \frac{1}{2}\|b\|^2$:

$$-\eta \mathbb{E}\langle \nabla F(w^t), \bar{u}^t \rangle = -\frac{\eta}{2} \mathbb{E}\|\nabla F(w^t)\|^2 - \frac{\eta}{2} \mathbb{E}\|\bar{u}^t\|^2 + \frac{\eta}{2} \mathbb{E}\|\nabla F(w^t) - \bar{u}^t\|^2 \quad (\text{a.15})$$

2015 **Step 2: Combining Terms and Variance Bound.** Using Young's inequality for the quadratic term
 2016 in (a.12), $\mathbb{E}\|u^t\|^2 = \mathbb{E}\|\bar{u}^t + \delta^t\|^2 \leq 2\mathbb{E}\|\bar{u}^t\|^2 + 2\mathbb{E}\|\delta^t\|^2$. Substituting (a.14) and (a.15) into (a.12):
 2017

$$\begin{aligned} \mathbb{E}[F(w^{t+1})] - \mathbb{E}[F(w^t)] &\leq -\frac{\eta}{2} \mathbb{E}\|\nabla F(w^t)\|^2 + \left(L\eta^2 - \frac{\eta}{2} \right) \mathbb{E}\|\bar{u}^t\|^2 \\ &\quad + \frac{\eta}{2} \underbrace{\mathbb{E}\|\nabla F(w^t) - \bar{u}^t\|^2}_{\text{Delay Error}} \\ &\quad + \left(L\eta^2 + \frac{\eta^2 L \tau_{\max}}{2} \right) \mathbb{E}\|\delta^t\|^2 \\ &\quad + \frac{\eta^2 L}{2} \sum_{j=1}^{\tau_{\max}} \mathbb{E}\|u^{t-j}\|^2 \quad (\text{Coupling Drift}) \end{aligned} \quad (\text{a.16})$$

2018 **Step 3: Bounding Specific Terms.**

2052 1. **Noise Term:** By Theorem B.3, $\mathbb{E}\|\delta^t\|^2 \leq \frac{\sigma^2}{n}$.
 2053
 2054 2. **Delay Error:** In ACE, $\bar{u}^t = \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^{t-\tau_i^t})$. Since Term B is strictly zero:
 2055

2056
$$\mathbb{E}\|\nabla F(w^t) - \bar{u}^t\|^2 = \mathbb{E}\left\|\frac{1}{n} \sum_{i=1}^n (\nabla F_i(w^t) - \nabla F_i(w^{t-\tau_i^t}))\right\|^2$$

 2057
 2058
$$\leq \frac{L^2}{n} \sum_{i=1}^n \mathbb{E}\|w^t - w^{t-\tau_i^t}\|^2$$

 2059
 2060

2061 Using Jensen's inequality on the update sum, $\|w^t - w^{t-k}\|^2 = \|\sum_{j=1}^k \eta u^{t-j}\|^2 \leq$
 2062 $k\eta^2 \sum_{j=1}^k \|u^{t-j}\|^2$. Since $\tau_i^t \leq \tau_{\max}$:

2063
$$\mathbb{E}\|\nabla F(w^t) - \bar{u}^t\|^2 \leq L^2 \tau_{\max} \eta^2 \sum_{k=1}^{\tau_{\max}} \mathbb{E}\|u^{t-k}\|^2$$

 2064
 2065
 2066

2067 **Step 4: Global Summation and Coefficient Analysis.** Summing (a.16) from $t = 0$ to $T - 1$ and
 2068 substituting the bounds:

2069
$$F(w^0) - F^* \geq \frac{\eta}{2} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla F(w^t)\|^2 - \sum_{t=0}^{T-1} \left(\frac{\eta}{2} - L\eta^2 \right) \mathbb{E}\|\bar{u}^t\|^2$$

 2070
 2071
$$- \left(L\eta^2 + \frac{L\tau_{\max}\eta^2}{2} \right) \frac{T\sigma^2}{n}$$

 2072
 2073
$$- \underbrace{\left(\frac{\eta}{2} L^2 \tau_{\max} \eta^2 + \frac{\eta^2 L}{2} \right)}_{\text{Drift Coeff } C_{\text{drift}}} \sum_{t=0}^{T-1} \sum_{k=1}^{\tau_{\max}} \mathbb{E}\|u^{t-k}\|^2$$

 2074
 2075
 2076
 2077
 2078

2079 We regroup the historical update terms using the property $\sum_{t=0}^{T-1} \sum_{k=1}^{\tau_{\max}} \mathbb{E}\|u^{t-k}\|^2 \leq$
 2080 $\tau_{\max} \sum_{t=0}^{T-1} \mathbb{E}\|u^t\|^2$. Expanding $\mathbb{E}\|u^t\|^2 \leq 2\mathbb{E}\|\bar{u}^t\|^2 + \frac{2\sigma^2}{n}$:

2081
$$C_{\text{drift}} \sum_{t=0}^{T-1} \sum_{k=1}^{\tau_{\max}} \mathbb{E}\|u^{t-k}\|^2 \leq C_{\text{drift}} \tau_{\max} \sum_{t=0}^{T-1} \left(2\mathbb{E}\|\bar{u}^t\|^2 + \frac{2\sigma^2}{n} \right)$$

 2082
 2083

2084 Substituting this back, we analyze the total coefficient $C_{\bar{u}}$ for the $\sum_{t=0}^{T-1} \mathbb{E}\|\bar{u}^t\|^2$ term:
 2085

2086
$$C_{\bar{u}} = \left(L\eta^2 - \frac{\eta}{2} \right) + 2\tau_{\max} C_{\text{drift}} = L\eta^2 - \frac{\eta}{2} + L^2 \tau_{\max}^2 \eta^3 + L\tau_{\max} \eta^2$$

 2087

2088 To ensure $C_{\bar{u}} \leq 0$, we factor out $-\eta/2$:

2089
$$C_{\bar{u}} = -\frac{\eta}{2} (1 - 2L\eta - 2L\tau_{\max}\eta - 2L^2\tau_{\max}^2\eta^2)$$

 2090

2091 By choosing $\eta \leq \frac{1}{8L\tau_{\max}}$ (and assuming $\tau_{\max} \geq 1$), we have $2L\eta \leq \frac{1}{4}$, $2L\tau_{\max}\eta \leq \frac{1}{4}$, and
 2092 $2L^2\tau_{\max}^2\eta^2 \leq 2(\frac{1}{64}) < \frac{1}{4}$. The term in parenthesis is $\geq 1 - 0.25 - 0.25 - 0.04 > 0$, so $C_{\bar{u}} \leq 0$.
 2093 Thus, we can drop the $\mathbb{E}\|\bar{u}^t\|^2$ terms.

2094 **Step 5: Final Rate.** We collect all remaining noise terms (all proportional to σ^2/n):
 2095

2096
$$\text{Total Noise} = \frac{T\sigma^2}{n} \left[\underbrace{\left(L\eta^2 + \frac{L\tau_{\max}\eta^2}{2} \right)}_{\text{Direct Noise}} + \underbrace{2\tau_{\max} C_{\text{drift}}}_{\text{From Drift}} \right]$$

 2097
 2098
 2099
 2100
$$= \frac{T\sigma^2}{n} \left[L\eta^2 + \frac{1}{2} L\tau_{\max}\eta^2 + 2\tau_{\max} \left(\frac{1}{2} L^2 \tau_{\max} \eta^3 + \frac{1}{2} L\eta^2 \right) \right]$$

 2101
 2102
$$= \frac{T\sigma^2}{n} \eta^2 \left[L + \frac{3}{2} L\tau_{\max} + L^2 \tau_{\max}^2 \eta \right]$$

 2103
 2104
$$\leq \frac{T\sigma^2}{n} \eta^2 [2L\tau_{\max} + L^2 \tau_{\max}^2 \eta] \quad (\text{using } \tau_{\max} \geq 2, \text{ terms bounded})$$

 2105

2106 Rearranging the main inequality:
 2107

$$2108 \quad \frac{\eta}{2} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla F(w^t)\|^2 \leq \Delta + \frac{T\sigma^2}{n} \eta^2 (2L\tau_{\max} + L^2\tau_{\max}^2 \eta) \\ 2109 \\ 2110$$

2111 Multiplying by $\frac{2}{T\eta}$:
 2112

$$2113 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla F(w^t)\|^2 \leq \frac{2\Delta}{T\eta} + \frac{2\sigma^2}{n} \eta (2L\tau_{\max} + L^2\tau_{\max}^2 \eta) \\ 2114 \\ 2115 \\ 2116 \\ 2117 \\ 2118$$

$$= \frac{2\Delta}{T\eta} + \frac{4L\tau_{\max}\eta\sigma^2}{n} + \frac{2L^2\tau_{\max}^2\eta^2\sigma^2}{n}$$

2119 All error terms on the RHS contain the factor η . By substituting $\eta \propto 1/\sqrt{T}$, the RHS converges to 0
 2120 as $T \rightarrow \infty$. \square
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

2160 **D DETAILED DISCUSSION ON THE DELAY-AWARE VARIANT**
21612162 **D.1 PSEUDO-CODE OF ACED**
21632164 **Algorithm a.1** ACE Variant: ACED (All-Client Engagement Bounded Delay-Aware AFL)
21652166 **Require:** Maximum allowed delay τ_{algo} , step size η .

2167 1: **Server Initialization:** Initialize w^0 . Server cache stores $(U_i^{\text{cache}}, t_i^{\text{start}})$ for each i . Obtain
2168 $u_i^0 = \nabla f_i(w^0; \xi_i)$. Set $U_i^{\text{cache}} \leftarrow u_i^0$, $t_i^{\text{start}} \leftarrow 1$ for all i . Broadcast $w^1 = w^0 - \eta \frac{1}{n} \sum_{i=1}^n U_i^{\text{cache}}$.
2169 2: **Server Loop:** For $t = 1, \dots, T - 1$:

2170 3: Receive $u_{j_t}^{\text{new}} = \nabla f_{j_t}(w^{t_{j_t}^{\text{start}}}; \xi_{j_t}^{\text{new}})$ from client j_t .
2171 4: Update: $U_{j_t}^{\text{cache}} \leftarrow u_{j_t}^{\text{new}}$.
2172 5: Define active set: $A(t) = \{i \in [n] \mid t - t_i^{\text{start}} \leq \tau_{\text{algo}}\}$.
2173 6: Compute $n_t = |A(t)|$.
2174 7: **If** $n_t > 0$: $w^{t+1} = w^t - \eta \frac{1}{n_t} \sum_{i \in A(t)} U_i^{\text{cache}}$. ▷ Direct sum over active set
2175 8: **Else**: $w^{t+1} = w^t$. ▷ Skip update if no valid “fresh” gradients
2176 9: Send w^{t+1} to client j_t and update: $t_{j_t}^{\text{start}} \leftarrow t + 1$.
2177 10: **Client i Operation:**
2178 11: Initialize: Compute $u_i^1 = \nabla f_i(w^0; \xi_i^1)$, send to server.
2179 12: Loop: Receive w^{received} , compute $u_i^{\text{new}} = \nabla f_i(w^{\text{received}}; \xi_i^{\text{new}})$, send to server.

2180
2181 There are some important details to be noticed for the ACED algorithm:
2182

- 2183 • **Active Set Formation:** At each server iteration t , the server forms an active set $A(t)$ by
2184 checking a condition for every client.
 - 2185 – If a client’s information is fresh (i.e., the elapsed time since it received its model,
2186 $t - t_i^{\text{start}}$, is within the τ_{algo} threshold), it is included in the active set for the current
2187 update.
 - 2188 – **Otherwise**, if the client is too slow and its information becomes stale ($t - t_i^{\text{start}} > \tau_{\text{algo}}$),
2189 it is temporarily excluded from the aggregation.
- 2190 • **Rejoin Mechanism:** The algorithm enables clients to rejoin after being excluded.
 - 2191 – When any client (even one previously excluded for being too slow) sends its completed
2192 gradient to the server, the server accepts the update.
 - 2193 – Crucially, the server then resets that client’s timestamp to the current time ($t_i^{\text{start}} \leftarrow t + 1$).
2194 This action makes the client’s information “fresh” again.
 - 2195 – This reset guarantees the client will be included in the active set in the next iteration,
2196 allowing it to rejoin the training process.

2197 **D.2 ASSUMPTIONS FOR ACED**
21982199 Let n be the total number of clients. The convergence analysis of ACED relies on the following
2200 assumptions, adapted from the main ACE paper and the provided analysis sketch .2201 **Assumption a.1 (Lower Boundedness).** *The global objective function $F(w) = \frac{1}{n} \sum_{i=1}^n F_i(w)$ is
2202 bounded below, i.e., $F(w) \geq F^* > -\infty$ for all $w \in \mathbb{R}^d$. Let $\Delta_F = F(w^0) - F^*$.*2203 **Assumption a.2 (L-Smoothness).** *Each local objective function $F_i(w)$ is L -smooth for some $L \geq 0$.
2204 This implies $F(w)$ is also L -smooth.*

2205
$$\|\nabla F_i(w) - \nabla F_i(w')\|_2 \leq L\|w - w'\|_2, \quad \forall w, w' \in \mathbb{R}^d.$$

2206 **Assumption a.3 (Unbiased Stochastic Gradients).** *For any client i , its cached gradient U_i^{cache} (used
2207 in $u_{i, \text{DA}}^t$) was computed based on a model $w^{t_i^{\text{start}}}$ (where t_i^{start} is the server iteration when client i
2208 obtained this model) and a fresh data sample ξ_i drawn at the time of computation. Let $\mathcal{F}_{t_i^{\text{start}}}$ be the
2209 σ -algebra of information up to the point $w^{t_i^{\text{start}}}$ was determined. Then,*

2210
$$\mathbb{E}[U_i^{\text{cache}} \mid \mathcal{F}_{t_i^{\text{start}}}] = \nabla F_i(w^{t_i^{\text{start}}}).$$

2214 **Assumption a.4 (Bounded Sampling Noise).** The variance of the stochastic gradients used to form
 2215 U_i^{cache} is bounded:
 2216

$$\mathbb{E}[\|U_i^{\text{cache}} - \nabla F_i(w^{t_i^{\text{start}}})\|_2^2 \mid \mathcal{F}_{t_i^{\text{start}}}] \leq \sigma^2.$$

2217 **Assumption a.5 (Bounded Algorithmic Delay for ACED).** The algorithm-defined maximum delay
 2218 threshold τ_{algo} is finite and $\tau_{\text{algo}} \geq 1$. For any client $i \in A(t)$ (the active set at server iteration t), the
 2219 effective delay of its cached gradient U_i^{cache} relative to the current server model w^t is $\delta_i(t) = t - t_i^{\text{start}}$,
 2220 satisfying $0 \leq \delta_i(t) \leq \tau_{\text{algo}}$.
 2221

2222 **Assumption a.6 (Bounded Data Heterogeneity (BDH)).** The dissimilarity between local true gradients
 2223 and the (ideal) global true gradient is bounded:
 2224

$$\|\nabla F_i(w) - \nabla F(w)\|_2^2 \leq \zeta^2$$

2225 for some constant $\zeta^2 \geq 0$.
 2226

2227 **Assumption a.7 (Bounded Gradients).** The expectation of the local gradients are uniformly bounded:
 2228 $\|\nabla F_i(w)\|^2 \leq G^2$ for all i, w . Note that this assumption is NOT necessary, but for the simplicity of
 2229 the notations in the proof.
 2230

2231 **Assumption a.8 (Minimum Participation for ACED).** The number of active clients $n_t = |A(t)|$ in
 2232 any update step t is lower bounded by $n_{\min} \geq 1$.
 2233

D.3 CONVERGENCE THEOREM FOR ACED

2234 **Theorem a.6 (ACED Convergence).** Suppose Assumptions A1-A7 hold. If the step size satisfies
 2235 $\eta_t = \eta \leq \frac{1}{12L\tau_{\text{algo}}}$, then for the ACED algorithm, after T iterations:
 2236

$$\begin{aligned} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla F(w^t)\|^2 &\leq \frac{2\Delta}{T\eta} + \frac{12(\zeta^2 + G^2)}{T} \sum_{t: n_t < n} \left(1 - \frac{n_t}{n}\right)^2 \\ &\quad + \frac{6L\tau_{\text{algo}}\eta\sigma^2}{n_{\min}} + \frac{6L^2\tau_{\text{algo}}^2\eta^2\sigma^2}{n_{\min}} \end{aligned}$$

2237 where n_{\min} is the lower bound of active clients. Substituting $\eta \simeq \frac{1}{\sqrt{T}}$, the RHS converges to 0 (plus
 2238 the vanishing bias term) as $T \rightarrow \infty$.
 2239

2240 *Proof.* The proof starts with the Descent Lemma. For simplicity, we denote "bounded delay-aware"
 2241 as BDA.
 2242

2243 For an update $w^{t+1} = w^t - \eta_t u_{\text{BDA}}^t$, where $u_{\text{BDA}}^t = \frac{1}{n_t} \sum_{i \in A(t)} U_i^{\text{cache}}$, we have:
 2244

$$\mathbb{E}[F(w^{t+1})] \leq \mathbb{E}[F(w^t)] - \eta_t \mathbb{E}[\langle \nabla F(w^t), u_{\text{BDA}}^t \rangle] + \frac{L\eta_t^2}{2} \mathbb{E}\|u_{\text{BDA}}^t\|^2 \quad (\text{a.17})$$

2245 where $\bar{u}_{\text{BDA}}^t = \mathbb{E}_{\xi}[u_{\text{BDA}}^t \mid \mathcal{F}_t] = \frac{1}{n_t} \sum_{i \in A(t)} \nabla F_i(w^{t_i^{\text{start}}})$.
 2246

2247 Rearranging a.17:

$$\eta_t \mathbb{E}[\langle \nabla F(w^t), u_{\text{BDA}}^t \rangle] \leq \mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})] + \frac{L\eta_t^2}{2} \mathbb{E}\|u_{\text{BDA}}^t\|^2 \quad (\text{a.18})$$

2248 We analyze the two terms on the RHS separately to strictly handle the coefficients.
 2249

2250 **Term 1: The Inner Product.** Using the property $\mathbb{E}_{\xi}[u_{\text{BDA}}^t] = \bar{u}_{\text{BDA}}^t$, we have $\mathbb{E}[\langle \nabla F(w^t), u_{\text{BDA}}^t \rangle] =$
 2251 $\langle \nabla F(w^t), \bar{u}_{\text{BDA}}^t \rangle$. Using the identity $-\langle a, b \rangle = \frac{1}{2}\|a - b\|^2 - \frac{1}{2}\|a\|^2 - \frac{1}{2}\|b\|^2$:
 2252

$$-\eta_t \langle \nabla F(w^t), \bar{u}_{\text{BDA}}^t \rangle = -\frac{\eta_t}{2} \|\nabla F(w^t)\|^2 - \frac{\eta_t}{2} \|\bar{u}_{\text{BDA}}^t\|^2 + \frac{\eta_t}{2} \|\nabla F(w^t) - \bar{u}_{\text{BDA}}^t\|^2$$

2253 **Term 2: The Smoothness Term.** Using the exact variance decomposition $\mathbb{E}\|u_{\text{BDA}}^t\|^2 = \|\bar{u}_{\text{BDA}}^t\|^2 +$
 2254 $\mathbb{E}\|u_{\text{BDA}}^t - \bar{u}_{\text{BDA}}^t\|^2$:
 2255

$$\frac{L\eta_t^2}{2} \mathbb{E}\|u_{\text{BDA}}^t\|^2 = \frac{L\eta_t^2}{2} \|\bar{u}_{\text{BDA}}^t\|^2 + \frac{L\eta_t^2}{2} \mathbb{E}\|u_{\text{BDA}}^t - \bar{u}_{\text{BDA}}^t\|^2$$

2268
2269**Combine Term 1 and Term 2:** Substituting these back into a.17:

2270

2271

2272

2273

2274

2275

2276

2277

2278

Now, we bound the key terms:

2279

2280

A. Sampling Noise of u_{BDA}^t :

2281

Following the similar derivation in the proof of Theorem B.3,

2282

2283

2284

2285

2286

2287

2288

2289

B. Squared Norm of u_{BDA}^t :

2290

Using the variance decomposition and P1:

2291

2292

2293

2294

$$\mathbb{E}\|u_{\text{BDA}}^t\|_2^2 = \mathbb{E}\|u_{\text{BDA}}^t - \bar{u}_{\text{BDA}}^t\|_2^2 + \|\bar{u}_{\text{BDA}}^t\|_2^2$$

2295

$$\leq \frac{\sigma^2}{n_t} + \|\bar{u}_{\text{BDA}}^t\|_2^2$$

2296

$$\leq \frac{\sigma^2}{n_{\min}} + \|\bar{u}_{\text{BDA}}^t\|_2^2$$

2297

2298

2299

2300

2301

2302

C. Model Drift $\mathbb{E}\|w^t - w^s\|_2^2$ for $s < t$:

2303

2304

Let $s = t_i^{\text{start}}$, $\delta = t - s \leq \tau_{\text{algo}}$. The sum of the cross-iteration gradient error is zero::

2305

2306

2307

$$\begin{aligned} \mathbb{E}\|w^t - w^{t_i^{\text{start}}}\|_2^2 &= \mathbb{E}\|\sum_{k=s}^{t-1}(w^{k+1} - w^k)\|_2^2 = \eta_t^2 \mathbb{E}\|\sum_{k=s}^{t-1}u_{\text{BDA}}^k\|_2^2 \\ &= \eta_t^2 \mathbb{E}\|\sum_{k=s}^{t-1}(u_{\text{BDA}}^k - \bar{u}_{\text{BDA}}^k) + \sum_{k=s}^{t-1}\bar{u}_{\text{BDA}}^k\|_2^2 \quad (\text{Using Lemma a.3}) \end{aligned}$$

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

$$\begin{aligned} &= 2\eta_t^2 \underbrace{\mathbb{E}\|\sum_{k=s}^{t-1}(u_{\text{BDA}}^k - \bar{u}_{\text{BDA}}^k)\|_2^2}_{\text{Using Lemma a.6 and P1}} + 2\eta_t^2 \underbrace{\mathbb{E}\|\sum_{k=s}^{t-1}\bar{u}_{\text{BDA}}^k\|_2^2}_{\text{Using Lemma a.3}} \\ &\leq 2\eta_t^2 \tau_{\text{algo}} \left(\frac{\sigma^2}{n_t} + \sum_{k=s}^{t-1} \mathbb{E}\|\bar{u}_{\text{BDA}}^k\|_2^2 \right) \\ &\leq 2\eta_t^2 \tau_{\text{algo}} \left(\frac{\sigma^2}{n_{\min}} + \sum_{k=s}^{t-1} \mathbb{E}\|\bar{u}_{\text{BDA}}^k\|_2^2 \right) \end{aligned} \quad (\text{P3})$$

2322 *D. Gradient Error* $\mathbb{E}\|\nabla F(w^t) - \bar{u}_{BDA}^t\|^2 := \mathbb{E}\|\mathcal{E}_{BDA}^t\|^2$:

$$\begin{aligned}
 \mathcal{E}_{BDA}^t &= \bar{u}^t - \nabla F(w_{\text{stale}}^t) \\
 &= \frac{1}{n_t} \sum_{i \in A(t)} \nabla F_i(w^s) - \frac{1}{n} \sum_{i=1}^n \nabla F_i(w^t) \\
 &= \underbrace{\left(\frac{1}{n_t} - \frac{1}{n} \right) \sum_{i \in A(t)} \nabla F_i(w^t)}_{\text{Part 1}} - \underbrace{\frac{1}{n} \sum_{i \notin A(t)} \nabla F_i(w^t)}_{\text{Part 2}} \\
 &\quad + \underbrace{\frac{1}{n_t} \sum_{i \in A(t)} (\nabla F_i(w^s) - \nabla F_i(w^t))}_{\mathcal{E}_{\text{Delay}}}
 \end{aligned}$$

2337 And by Lemma a.3,

$$\mathbb{E}\|\mathcal{E}_{BDA}^t\|^2 \leq 3\mathbb{E}\|\text{Part 1}\|_2^2 + 3\mathbb{E}\|\text{Part 2}\|_2^2 + 3\mathbb{E}\|\mathcal{E}_{\text{Delay}}\|^2$$

2339 Therefore, similar as the proof for Theorem B.4, for the *partial participation bias* Part 1 and 2, the
2340 client subset \mathcal{S} to determine the sum is $A(t)$ or $[n]/A(t)$:

$$\begin{aligned}
 \mathbb{E}\|\sum_{i \in \mathcal{S}} \nabla F_i(w^t)\|_2^2 &= \mathbb{E}\|\sum_{i \in \mathcal{S}} \nabla F_i(w^t) - \sum_{i \in \mathcal{S}} \nabla F(w^t) + \sum_{i \in \mathcal{S}} \nabla F(w^t)\|_2^2 \\
 &\leq \underbrace{2\mathbb{E}\|\sum_{i \in \mathcal{S}} \nabla F_i(w^t) - \sum_{i \in \mathcal{S}} \nabla F(w^t)\|_2^2}_{\text{Can be determined by BDH Assumption and Lemma a.3}} + 2\mathbb{E}\|\sum_{i \in \mathcal{S}} \nabla F(w^t)\|_2^2 \quad (\text{By Lemma a.3}) \\
 &\leq 2|\mathcal{S}| \sum_{i \in \mathcal{S}} \zeta^2 + 2|\mathcal{S}| \sum_{i \in \mathcal{S}} \mathbb{E}\|\nabla F(w^t)\|_2^2
 \end{aligned}$$

2349 Given that $|A(t)| = n_t$, $|[n]/A(t)| = n - n_t$:

$$\begin{aligned}
 \mathbb{E}\|\text{Part 1}\|_2^2 &\leq 2 \left(\frac{1}{n_t} - \frac{1}{n} \right)^2 \left(n_t^2 \zeta^2 + n_t \sum_{i \in A(t)} \mathbb{E}\|\nabla F(w^t)\|_2^2 \right) \\
 \mathbb{E}\|\text{Part 2}\|_2^2 &\leq \frac{2}{n^2} \left((n - n_t)^2 \zeta^2 + (n - n_t) \sum_{i \notin A(t)} \mathbb{E}\|\nabla F(w^t)\|_2^2 \right)
 \end{aligned}$$

2358 Note that

$$2 \left(\frac{1}{n_t} - \frac{1}{n} \right)^2 n_t^2 + \frac{2}{n^2} (n - n_t)^2 = 4 \left(1 - \frac{n_t}{n} \right)^2,$$

2361 And we can bound the expectation of the global gradient by Assumption a.7:

$$\begin{aligned}
 \mathbb{E}\|\nabla F(w^t)\|_2^2 &= \mathbb{E}\|\frac{1}{n} \sum_{i=1}^n \nabla F_i(w^t)\|_2^2 \\
 &\leq \frac{1}{n^2} \cdot n \sum_{i=1}^n \|\nabla F_i(w^t)\|_2^2 \quad (\text{Lemma a.3}) \\
 &\leq \frac{1}{n^2} \cdot n \sum_{i=1}^n G^2 = G, \quad (\text{Assumption a.7})
 \end{aligned}$$

2371 Therefore,

$$\begin{aligned}
 \mathbb{E}\|\text{Part 1}\|_2^2 + \mathbb{E}\|\text{Part 2}\|_2^2 &\leq 4 \left(1 - \frac{n_t}{n} \right)^2 (\zeta^2 + G^2) \\
 &\leq 4 \left(1 - \frac{n_{\min}}{n} \right)^2 (\zeta^2 + G^2)
 \end{aligned}$$

The delay error $\mathcal{E}_{\text{Delay}}$ (using P3):

$$\begin{aligned}
\mathbb{E}\|\mathcal{E}_{\text{Delay}}\|^2 &= \left\| \frac{1}{n_t} \sum_{i \in A(t)} (\nabla F_i(w^s) - \nabla F_i(w^t)) \right\|^2 \\
&\leq \frac{L^2}{n_t} \sum_{i \in A(t)} \mathbb{E}\|w^{t_i^{\text{start}}} - w^t\|^2 \quad (\text{Lemma a.3}) \\
&\leq \frac{L^2}{n_t} \cdot n_t \cdot 2\eta_t^2 \tau_{\text{algo}} \left(\frac{\sigma^2}{n_t} + \sum_{k=s}^{t-1} \mathbb{E}\|\bar{u}_{\text{BDA}}^k\|_2^2 \right) \quad (\text{Using P3}) \\
&= 2L^2 \eta_t^2 \tau_{\text{algo}} \left(\frac{\sigma^2}{n_t} + \sum_{k=s}^{t-1} \mathbb{E}\|\bar{u}_{\text{BDA}}^k\|_2^2 \right) \\
&\leq 2L^2 \eta_t^2 \tau_{\text{algo}} \left(\frac{\sigma^2}{n_{\min}} + \sum_{k=s}^{t-1} \mathbb{E}\|\bar{u}_{\text{BDA}}^k\|_2^2 \right)
\end{aligned}$$

Thus,

$$\begin{aligned}
\mathbb{E}\|\mathcal{E}_{\text{BDA}}^t\|^2 &= \mathbb{E}\|\nabla F(w^t) - \bar{u}_{\text{BDA}}^t\|^2 \\
&\leq 6\mathbb{E}\|\text{Part 1}\|_2^2 + 6\mathbb{E}\|\text{Part 2}\|_2^2 + 6\mathbb{E}\|\mathcal{E}_{\text{Delay}}\|^2 \\
&\leq 24\left(1 - \frac{n_t}{n}\right)^2(\zeta^2 + G^2) \\
&\quad + 12L^2\eta_t^2\tau_{\text{algo}}\left(\frac{\sigma^2}{n_t} + \sum_{k=s}^{t-1}\mathbb{E}\|\bar{u}_{\text{BDA}}^k\|_2^2\right) \\
&\leq 24\left(1 - \frac{n_{\min}}{n}\right)^2(\zeta^2 + G^2) \\
&\quad + 12L^2\eta_t^2\tau_{\text{algo}}\left(\frac{\sigma^2}{n_{\min}} + \sum_{k=s}^{t-1}\mathbb{E}\|\bar{u}_{\text{BDA}}^k\|_2^2\right)
\end{aligned} \tag{P4}$$

Substituting P1 and P4 into a.19:

$$\begin{aligned}
\mathbb{E}[F(w^{t+1})] - \mathbb{E}[F(w^t)] &\leq -\frac{\eta_t}{2} \mathbb{E}\|\nabla F(w^t)\|^2 + \left(\frac{L\eta_t^2}{2} - \frac{\eta_t}{2}\right) \|\bar{u}_{\text{BDA}}^t\|^2 \\
&\quad + \frac{\eta_t}{2} \mathbb{E}\|\mathcal{E}_{\text{BDA}}^t\|^2 + \frac{L\eta_t^2}{2} \mathbb{E}\|u_{\text{BDA}}^t - \bar{u}_{\text{BDA}}^t\|^2 \\
&\leq -\frac{\eta_t}{2} \mathbb{E}\|\nabla F(w^t)\|^2 + \frac{L\eta_t^2}{2} \frac{\sigma^2}{n_t} \\
&\quad + \frac{\eta_t}{2} \left[24 \left(1 - \frac{n_t}{n}\right)^2 (\zeta^2 + G^2) + 12L^2\eta_t^2\tau_{\text{algo}} \left(\frac{\sigma^2}{n_t} + \sum_{k=s}^{t-1} \mathbb{E}\|\bar{u}_{\text{BDA}}^k\|_2^2\right) \right] \\
&\quad + \left(\frac{L\eta_t^2}{2} - \frac{\eta_t}{2}\right) \mathbb{E}\|\bar{u}_{\text{BDA}}^t\|_2^2 \\
&\leq -\frac{\eta_t}{2} \mathbb{E}\|\nabla F(w^t)\|^2 + \frac{\eta_t}{2} \cdot 24 \left(1 - \frac{n_t}{n}\right)^2 (\zeta^2 + G^2) \\
&\quad + \left(\frac{L\eta_t^2}{2} + 6L^2\eta_t^3\tau_{\text{algo}}\right) \frac{\sigma^2}{n_t} \\
&\quad + \left(\frac{L\eta_t^2}{2} - \frac{\eta_t}{2} + 6L^2\eta_t^3\tau_{\text{algo}}^2\right) \max_t \mathbb{E}\|\bar{u}_{\text{BDA}}^t\|_2^2
\end{aligned} \tag{BD}$$

Let $f(\eta_t) = 6L^2\eta_t^2\tau_{\text{algo}}^2 + L\eta_t/2 - 1/2$. If $f(\eta_t) \leq 0$, then $(\frac{L\eta_t^2}{2} - \frac{\eta_t}{2} + 6L^2\eta_t^3\tau_{\text{algo}}^2) \max_t \mathbb{E}\|\bar{u}_{\text{BDA}}^t\|^2 \leq 0$. A loose condition to derive $f(\eta_t) \leq 0$ is to decompose $-1/2 = -1/4 - 1/4$ and assign them

2430 separately:

2431

$$\begin{cases} L\eta_t/2 - 1/4 \leq 0 \implies \eta_t \leq \frac{1}{2L} \\ 6\eta_t^2 L^2 \tau_{\text{algo}}^2 - 1/4 \leq 0 \implies \eta_t \leq \frac{1}{2\sqrt{3}L\tau_{\text{algo}}} \end{cases} \implies \eta_t \leq \frac{1}{2\sqrt{3}L\tau_{\text{algo}}} \text{ (Using tighter bound)}$$

2432

2433

2434 With appropriately selected learning rates for each server iteration t , BD further becomes:

2435

$$\begin{aligned} \frac{\eta_t}{2} \mathbb{E}[\|\nabla F(w^t)\|^2] &\leq \mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})] + \frac{\eta_t}{2} \cdot 24 \left(1 - \frac{n_t}{n}\right)^2 (\zeta^2 + G^2) \\ &\quad + \left(\frac{L\eta_t^2}{2} + 6L^2\eta_t^3\tau_{\text{algo}}\right) \frac{\sigma^2}{n_t} \end{aligned}$$

2436

2437

2438 Multiply $2/\eta_t$ on both sides:

2439

$$\begin{aligned} \mathbb{E}[\|\nabla F(w^t)\|^2] &\leq \frac{2}{\eta_t} (\mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})]) + 24 \left(1 - \frac{n_t}{n}\right)^2 (\zeta^2 + G^2) \\ &\quad + (L\eta_t + 12L^2\eta_t^2\tau_{\text{algo}}) \frac{\sigma^2}{n_{\min}} \end{aligned}$$

2440

2441

2442 Let $\{t : n_t < n, t \in [0, T-1]\}$ be the set of iterations with partial client participation. The bias term (in P4) related to $(n - n_t)^2$ is non-zero only for $t \in \{t : n_t < n, t \in [0, T-1]\}$. Summing from $t = 0$ to $T-1$ and dividing by T :

2443

$$\begin{aligned} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F(w^t)\|^2] &\leq \frac{1}{T} \sum_{t=0}^{T-1} \frac{2}{\eta_t} (\mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})]) \\ &\quad + \frac{24(\zeta^2 + G^2)}{T} \sum_{t:n_t < n} \left(1 - \frac{n_t}{n}\right)^2 \\ &\quad + \frac{1}{T} \sum_{t=0}^{T-1} (L\eta_t + 12L^2\eta_t^2\tau_{\text{algo}}) \frac{\sigma^2}{n_t} \end{aligned}$$

2444

2445

2446 Now, we set a fixed learning rate $\eta_t = c\sqrt{n/T}$ for some constant $c > 0$. Let's analyze each term on the RHS:

2447

2448 1. For the first term, given $\Delta = F(w^0) - \mathbb{E}[F(w^T)]$, we have:

2449

$$\begin{aligned} \frac{1}{T} \sum_{t=0}^{T-1} \frac{2}{\eta_t} (\mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})]) &= \frac{1}{T} \sum_{t=0}^{T-1} \frac{2}{c\sqrt{n/T}} (\mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})]) \\ &= \frac{2}{c\sqrt{nT}} \sum_{t=0}^{T-1} (\mathbb{E}[F(w^t)] - \mathbb{E}[F(w^{t+1})]) \\ &= \frac{2\Delta_F}{c\sqrt{nT}}, \end{aligned}$$

2450

2451

2452 2. For the second term, it remains being a sum over only the partial participation iterations:

2453

$$\frac{24(\zeta^2 + G^2)}{T} \sum_{t:n_t < n} \left(1 - \frac{n_t}{n}\right)^2$$

2454

2484 3. For the third term, we substitute $\eta_t = c\sqrt{n/T}$:

$$\begin{aligned}
 2486 \quad & \frac{1}{T} \sum_{t=0}^{T-1} (L\eta_t + 12L^2\eta_t^2\tau_{\text{algo}}) \frac{\sigma^2}{n_t} = \frac{1}{T} \sum_{t=0}^{T-1} \left(Lc\sqrt{\frac{n}{T}} + 12L^2\frac{c^2n}{T}\tau_{\text{algo}} \right) \frac{\sigma^2}{n_t} \\
 2487 \quad & = \frac{1}{T} \sum_{t=0}^{T-1} \left(\frac{12L^2c^2\tau_{\text{algo}}\sigma^2}{T}n + \frac{Lc\sigma^2}{\sqrt{T}}\sqrt{n} \right) \frac{1}{n_t} \\
 2488 \quad & = \frac{12L^2c^2\tau_{\text{algo}}\sigma^2}{T} \cdot n \cdot \underbrace{\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{n_t}}_{:=\frac{1}{n_{\text{avg}}}} + \frac{Lc\sigma^2}{\sqrt{T}} \cdot \sqrt{n} \cdot \underbrace{\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{n_t}}_{:=\frac{1}{n_{\text{avg}}}} \\
 2489 \quad & \leq \frac{12L^2c^2\tau_{\text{algo}}\sigma^2}{T} \frac{n}{n_{\text{avg}}} + \frac{Lc\sigma^2}{\sqrt{T}} \frac{\sqrt{n}}{n_{\text{avg}}}
 \end{aligned}$$

2490 Since $\frac{1}{n_{\text{avg}}} = \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{n_t}$, it is worth noting that $n_{\min} \leq n_{\text{avg}} \leq n$.

2491 Combining these terms, we obtain a bound for the convergence rate:

$$\begin{aligned}
 2501 \quad & \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[|\nabla F(w^t)|^2] \leq \frac{2\Delta}{c\sqrt{nT}} + \frac{24(\zeta^2 + G^2)}{T} \sum_{t \in T_{\mathcal{P}}} (1 - \frac{n_t}{n})^2 + \frac{12L^2c^2\tau_{\text{algo}}\sigma^2}{T} \frac{n}{n_{\text{avg}}} + \frac{Lc\sigma^2}{\sqrt{T}} \frac{\sqrt{n}}{n_{\text{avg}}} \\
 2502 \quad & \lesssim \frac{\Delta}{\sqrt{nT}} + \underbrace{(\zeta^2 + G^2) \sum_{t: n_t < n} \frac{(n - n_t)^2}{T}}_{\text{Vanishes as } T \text{ increases}} \\
 2503 \quad & + \frac{L^2\tau_{\text{algo}}\sigma^2}{T} \frac{n}{n_{\text{avg}}} + \frac{L\sigma^2}{\sqrt{T}} \frac{\sqrt{n}}{n_{\text{avg}}}
 \end{aligned}$$

□

2512 D.3.1 ALTERNATIVE CONVERGENCE RATE ANALYSIS FOR ACED

2513 Similar to the alternative proof provided for the conceptual ACE algorithm, we present a supplementary convergence analysis for ACED that strictly avoids potential correlation issues without relying on the Law of Iterated Expectations.

2514 This analysis anchors the error estimation to the reference model $w^{t-\tau_{\text{algo}}}$. Since the ACED mechanism explicitly enforces that all gradients contributing to the update u_{BDA}^t are computed on models no older than τ_{algo} iterations (i.e., $t - t_i^{\text{start}} \leq \tau_{\text{algo}}$), anchoring to $w^{t-\tau_{\text{algo}}}$ guarantees that the data samples associated with these gradients were generated *after* the reference model was fixed. This secures explicit statistical independence between the reference point and the stochastic noise. While this technique treats the allowable delay as model drift - resulting in a looser upper bound with larger constant coefficients - it rigorously confirms that the convergence properties of ACED are robust and hold independently of the filtration assumptions used in the primary proof.

2515 *Proof.* Let $s^t := \max(0, t - \tau_{\text{algo}})$ be the delayed time index. For any client $i \in A(t)$ utilized in ACED, the delay is bounded by $t - t_i^{\text{start}} \leq \tau_{\text{algo}}$, and the decoupling lag is $t - s^t \leq \tau_{\text{algo}}$.

2516 By the L -smoothness of F and the update rule $w^{t+1} = w^t - \eta u_{\text{BDA}}^t$:

$$2517 \quad \mathbb{E}[F(w^{t+1})] - \mathbb{E}[F(w^t)] \leq -\eta \mathbb{E}\langle \nabla F(w^t), u_{\text{BDA}}^t \rangle + \frac{L\eta^2}{2} \mathbb{E}\|u_{\text{BDA}}^t\|^2 \quad (\text{a.20})$$

2518 **Step 1: Rigorous Decomposition of Inner Product.** To handle the statistical dependency between w^t and the historical gradients in u_{BDA}^t , we decompose the inner product using the independent anchor w^{s^t} . Since all gradients in u_{BDA}^t started computation at times $\geq t - \tau_{\text{algo}} \geq s^t$, the stochastic noise in u_{BDA}^t is independent of w^{s^t} (conditioned on \mathcal{F}_{s^t}). We split the inner product into a “Decoupled Term” and a “Coupling Error”:

$$2519 \quad -\eta \mathbb{E}\langle \nabla F(w^t), u_{\text{BDA}}^t \rangle = -\eta \mathbb{E}\langle \nabla F(w^{s^t}), u_{\text{BDA}}^t \rangle - \eta \mathbb{E}\langle \nabla F(w^t) - \nabla F(w^{s^t}), u_{\text{BDA}}^t \rangle$$

2538 For the first term, we apply the conditional expectation $\mathbb{E}[u_{\text{BDA}}^t | \mathcal{F}_{s^t}] = \bar{u}_{\text{BDA}}^t$, where $\bar{u}_{\text{BDA}}^t =$
 2539 $\frac{1}{n_t} \sum_{i \in A(t)} \nabla F_i(w^{t_i^{\text{start}}})$. Substituting this back:
 2540

$$2541 -\eta \mathbb{E}\langle \nabla F(w^{s^t}), \bar{u}_{\text{BDA}}^t \rangle = -\eta \mathbb{E}\langle \nabla F(w^t), \bar{u}_{\text{BDA}}^t \rangle + \eta \mathbb{E}\langle \nabla F(w^t) - \nabla F(w^{s^t}), \bar{u}_{\text{BDA}}^t \rangle$$

2542 Combining these, we isolate the coupling error $\mathcal{E}_{\text{couple}}$:

$$2543 -\eta \mathbb{E}\langle \nabla F(w^t), u_{\text{BDA}}^t \rangle = -\eta \mathbb{E}\langle \nabla F(w^t), \bar{u}_{\text{BDA}}^t \rangle + \underbrace{\eta \mathbb{E}\langle \nabla F(w^t) - \nabla F(w^{s^t}), \bar{u}_{\text{BDA}}^t - u_{\text{BDA}}^t \rangle}_{\mathcal{E}_{\text{couple}}}$$

2544 Let $\delta^t := u_{\text{BDA}}^t - \bar{u}_{\text{BDA}}^t$ be the zero-mean noise vector. We bound $\mathcal{E}_{\text{couple}}$ using the Cauchy-Schwarz
 2545 inequality, L -smoothness, and the update rule $w^t - w^{s^t} = -\sum_{j=1}^{t-s^t} \eta u_{\text{BDA}}^{t-j}$:

$$2546 \mathcal{E}_{\text{couple}} \leq \eta \mathbb{E} [\|\nabla F(w^t) - \nabla F(w^{s^t})\| \|\delta^t\|] \leq \eta L \mathbb{E} [\|w^t - w^{s^t}\| \|\delta^t\|]$$

$$2547 = \eta L \mathbb{E} \left[\left\| \sum_{j=1}^{t-s^t} \eta u_{\text{BDA}}^{t-j} \right\| \|\delta^t\| \right] \leq \eta^2 L \sum_{j=1}^{\tau_{\text{algo}}} \mathbb{E} [\|u_{\text{BDA}}^{t-j}\| \|\delta^t\|]$$

2548 Using Young's Inequality ($xy \leq \frac{1}{2}x^2 + \frac{1}{2}y^2$) on each term in the sum:

$$2549 \mathcal{E}_{\text{couple}} \leq \frac{\eta^2 L}{2} \sum_{j=1}^{\tau_{\text{algo}}} (\mathbb{E} \|u_{\text{BDA}}^{t-j}\|^2 + \mathbb{E} \|\delta^t\|^2) = \frac{\eta^2 L}{2} \sum_{j=1}^{\tau_{\text{algo}}} \mathbb{E} \|u_{\text{BDA}}^{t-j}\|^2 + \frac{\eta^2 L \tau_{\text{algo}}}{2} \mathbb{E} \|\delta^t\|^2 \quad (\text{a.21})$$

2550 For the main descent term, we use the identity $-\langle a, b \rangle = \frac{1}{2}\|a - b\|^2 - \frac{1}{2}\|a\|^2 - \frac{1}{2}\|b\|^2$:

$$2551 -\eta \mathbb{E}\langle \nabla F(w^t), \bar{u}_{\text{BDA}}^t \rangle = -\frac{\eta}{2} \mathbb{E} \|\nabla F(w^t)\|^2 - \frac{\eta}{2} \mathbb{E} \|\bar{u}_{\text{BDA}}^t\|^2 + \frac{\eta}{2} \mathbb{E} \|\nabla F(w^t) - \bar{u}_{\text{BDA}}^t\|^2 \quad (\text{a.22})$$

2552 **Step 2: Combining Terms with Quadratic Bound.** For the quadratic term in (a.20), we use Young's
 2553 Inequality: $\mathbb{E} \|u_{\text{BDA}}^t\|^2 = \mathbb{E} \|\bar{u}_{\text{BDA}}^t + \delta^t\|^2 \leq 2\mathbb{E} \|\bar{u}_{\text{BDA}}^t\|^2 + 2\mathbb{E} \|\delta^t\|^2$. Substituting (a.21) and (a.22)
 2554 into (a.20):

$$2555 \mathbb{E}[F(w^{t+1})] \leq \mathbb{E}[F(w^t)] - \frac{\eta}{2} \mathbb{E} \|\nabla F(w^t)\|^2 + \left(L\eta^2 - \frac{\eta}{2} \right) \mathbb{E} \|\bar{u}_{\text{BDA}}^t\|^2$$

$$2556 + \frac{\eta}{2} \underbrace{\mathbb{E} \|\nabla F(w^t) - \bar{u}_{\text{BDA}}^t\|^2}_{\text{Gradient Error}}$$

$$2557 + \underbrace{\left(L\eta^2 + \frac{L\tau_{\text{algo}}\eta^2}{2} \right) \mathbb{E} \|\delta^t\|^2}_{\text{Noise Terms}} + \underbrace{\frac{L\eta^2}{2} \sum_{j=1}^{\tau_{\text{algo}}} \mathbb{E} \|u_{\text{BDA}}^{t-j}\|^2}_{\text{Coupling Drift}} \quad (\text{a.23})$$

2558 **Step 3: Three-Part Decomposition of Gradient Error.** We rigorously decompose the gradient error
 2559 $\mathcal{E}_{\text{grad}} = \bar{u}_{\text{BDA}}^t - \nabla F(w^t)$ into three parts: Participation Bias (Scaling + Missing) and Delay Drift.

$$2560 \mathcal{E}_{\text{grad}} = \underbrace{\left(\frac{1}{n_t} - \frac{1}{n} \right) \sum_{i \in A(t)} \nabla F_i(w^t)}_{P1:\text{Scaling}} - \underbrace{\frac{1}{n} \sum_{i \notin A(t)} \nabla F_i(w^t)}_{P2:\text{Missing}} + \underbrace{\frac{1}{n_t} \sum_{i \in A(t)} (\nabla F_i(w^{t_i^{\text{start}}}) - \nabla F_i(w^t))}_{P3:\text{Delay}}$$

2561 Using the inequality $\|a + b + c\|^2 \leq 3\|a\|^2 + 3\|b\|^2 + 3\|c\|^2$:

2562 1. **P1 (Scaling Bias):** Using Assumption a.7 (Bounded Gradients $\|\nabla F_i\|^2 \leq G^2$) and Jensen's
 2563 inequality:

$$2564 \mathbb{E} \|P1\|^2 \leq \left(\frac{n - n_t}{nn_t} \right)^2 n_t \sum_{i \in A(t)} \mathbb{E} \|\nabla F_i(w^t)\|^2$$

2592 2. **P2 (Missing Data Bias):** Similarly:

$$2594 \quad \mathbb{E}\|P2\|^2 \leq \frac{1}{n^2}(n - n_t) \sum_{i \notin A(t)} \mathbb{E}\|\nabla F_i(w^t)\|^2 \\ 2595 \\ 2596$$

2597 Therefore, similar as the proof for Theorem B.4, for the *partial participation bias* Part 1 and
2598 2, the client subset \mathcal{S} to determine the sum is $A(t)$ or $[n]/A(t)$:

$$2600 \quad \mathbb{E}\left\|\sum_{i \in \mathcal{S}} \nabla F_i(w^t)\right\|_2^2 = \mathbb{E}\left\|\sum_{i \in \mathcal{S}} \nabla F_i(w^t) - \sum_{i \in \mathcal{S}} \nabla F(w^t) + \sum_{i \in \mathcal{S}} \nabla F(w^t)\right\|_2^2 \\ 2601 \\ 2602 \\ 2603 \\ 2604 \\ 2605 \\ 2606 \\ 2607 \\ 2608 \\ 2609$$

$$\leq \underbrace{2\mathbb{E}\left\|\sum_{i \in \mathcal{S}} \nabla F_i(w^t) - \sum_{i \in \mathcal{S}} \nabla F(w^t)\right\|_2^2}_{\text{Can be determined by BDH Assumption and Lemma a.3}} + 2\mathbb{E}\left\|\sum_{i \in \mathcal{S}} \nabla F(w^t)\right\|_2^2 \quad (\text{By Lemma a.3}) \\ \leq 2|\mathcal{S}| \sum_{i \in \mathcal{S}} \zeta^2 + 2|\mathcal{S}| \sum_{i \in \mathcal{S}} \mathbb{E}\|\nabla F(w^t)\|_2^2$$

Given that $|A(t)| = n_t$, $|[n]/A(t)| = n - n_t$:

$$2610 \\ 2611 \quad \mathbb{E}\|P1\|_2^2 \leq 2 \left(\frac{1}{n_t} - \frac{1}{n} \right)^2 \left(n_t^2 \zeta^2 + n_t \sum_{i \in A(t)} \mathbb{E}\|\nabla F(w^t)\|_2^2 \right) \\ 2612 \\ 2613$$

$$2614 \\ 2615 \quad \mathbb{E}\|P2\|_2^2 \leq \frac{2}{n^2} \left((n - n_t)^2 \zeta^2 + (n - n_t) \sum_{i \notin A(t)} \mathbb{E}\|\nabla F(w^t)\|_2^2 \right) \\ 2616 \\ 2617$$

2618 Note that

$$2619 \\ 2620 \quad 2 \left(\frac{1}{n_t} - \frac{1}{n} \right)^2 n_t^2 + \frac{2}{n^2} (n - n_t)^2 = 4 \left(1 - \frac{n_t}{n} \right)^2, \\ 2621$$

2622 And we can bound the expectation of the global gradient by Assumption a.7:

$$2623 \\ 2624 \quad \mathbb{E}\|\nabla F(w^t)\|_2^2 = \mathbb{E}\left\|\frac{1}{n} \sum_{i=1}^n \nabla F_i(w^t)\right\|_2^2 \\ 2625 \\ 2626 \\ 2627 \leq \frac{1}{n^2} \cdot n \sum_{i=1}^n \|\nabla F_i(w^t)\|^2 \quad (\text{Lemma a.3}) \\ 2628 \\ 2629 \\ 2630 \leq \frac{1}{n^2} \cdot n \sum_{i=1}^n G^2 = G, \quad (\text{Assumption a.7}) \\ 2631 \\ 2632$$

2633 Therefore,

$$2634 \\ 2635 \quad \mathbb{E}\|\text{Part 1}\|_2^2 + \mathbb{E}\|\text{Part 2}\|_2^2 \leq 4 \left(1 - \frac{n_t}{n} \right)^2 (\zeta^2 + G^2) \\ 2636 \\ 2637 \\ 2638 \leq 4 \left(1 - \frac{n_{\min}}{n} \right)^2 (\zeta^2 + G^2)$$

2639 3. **P3 (Delay Drift):** Using L -smoothness and Jensen's inequality:

$$2640 \\ 2641 \quad \mathbb{E}\|P3\|^2 \leq \frac{1}{n_t} \sum_{i \in A(t)} L^2 \mathbb{E}\|w^{t_i^{\text{start}}} - w^t\|^2 \\ 2642 \\ 2643 \\ 2644 \\ 2645 \leq \frac{L^2}{n_t} \sum_{i \in A(t)} \tau_{\text{algo}} \eta^2 \sum_{j=1}^{\tau_{\text{algo}}} \mathbb{E}\|u_{\text{BDA}}^{t-j}\|^2 = L^2 \tau_{\text{algo}} \eta^2 \sum_{j=1}^{\tau_{\text{algo}}} \mathbb{E}\|u_{\text{BDA}}^{t-j}\|^2$$

2646 Substituting back into the gradient error term in (a.23):
 2647

$$2648 \frac{\eta}{2} \mathbb{E} \|\mathcal{E}_{grad}\|^2 \leq 3\|P1\|^2 + 3\|P2\|^2 + 3\|P3\|^2 \quad (a.24)$$

$$2649 \leq \frac{\eta}{2} \left[12 \left(1 - \frac{n_t}{n} \right)^2 (\zeta^2 + G^2) + 3L^2 \tau_{algo} \eta^2 \sum_{j=1}^{\tau_{algo}} \mathbb{E} \|u_{BDA}^{t-j}\|^2 \right]$$

$$2650 \\ 2651 \\ 2652 \\ 2653 \\ 2654 \\ 2655 \\ 2656 \\ 2657 \\ 2658 \\ 2659 \\ 2660 \\ 2661 \\ 2662 \\ 2663 \\ 2664 \\ 2665 \\ 2666 \\ 2667 \\ 2668 \\ 2669 \\ 2670 \\ 2671 \\ 2672 \\ 2673 \\ 2674 \\ 2675 \\ 2676 \\ 2677 \\ 2678 \\ 2679 \\ 2680 \\ 2681 \\ 2682 \\ 2683 \\ 2684 \\ 2685 \\ 2686 \\ 2687 \\ 2688 \\ 2689 \\ 2690 \\ 2691 \\ 2692 \\ 2693 \\ 2694 \\ 2695 \\ 2696 \\ 2697 \\ 2698 \\ 2699$$

$$= 6\eta \left(1 - \frac{n_t}{n} \right)^2 (\zeta^2 + G^2) + \frac{3}{2} L^2 \tau_{algo} \eta^3 \sum_{j=1}^{\tau_{algo}} \mathbb{E} \|u_{BDA}^{t-j}\|^2 \quad (a.25)$$

Step 4: Global Summation and Coefficient Analysis. Summing (a.23) from $t = 0$ to $T - 1$ and inserting (a.24):

$$\begin{aligned} \Delta &\geq \frac{\eta}{2} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla F(w^t)\|^2 - \sum_{t=0}^{T-1} \left(L\eta^2 - \frac{\eta}{2} \right) \mathbb{E} \|\bar{u}_{BDA}^t\|^2 \\ &\quad - \sum_{t=0}^{T-1} 6\eta \left(1 - \frac{n_t}{n} \right)^2 (\zeta^2 + G^2) \\ &\quad - \sum_{t=0}^{T-1} \left(L\eta^2 + \frac{L\tau_{algo}\eta^2}{2} \right) \mathbb{E} \|\delta^t\|^2 \\ &\quad - \underbrace{\left(\frac{L\eta^2}{2} + \frac{3}{2} L^2 \tau_{algo} \eta^3 \right)}_{C_{drift}} \sum_{t=0}^{T-1} \sum_{j=1}^{\tau_{algo}} \mathbb{E} \|u_{BDA}^{t-j}\|^2 \end{aligned}$$

We regroup the historical update terms. Note that $\sum_{t=0}^{T-1} \sum_{j=1}^{\tau_{algo}} \mathbb{E} \|u^{t-j}\|^2 \leq \tau_{algo} \sum_{t=0}^{T-1} \mathbb{E} \|u^t\|^2$. Expanding $\mathbb{E} \|u^t\|^2 \leq 2\mathbb{E} \|\bar{u}^t\|^2 + 2\mathbb{E} \|\delta^t\|^2$:

$$\sum_{t=0}^{T-1} \sum_{j=1}^{\tau_{algo}} \mathbb{E} \|u^{t-j}\|^2 \leq \tau_{algo} \sum_{t=0}^{T-1} (2\mathbb{E} \|\bar{u}_{BDA}^t\|^2 + 2\mathbb{E} \|\delta^t\|^2)$$

We now calculate the total coefficient $C_{\bar{u}}$ for $\sum_{t=0}^{T-1} \mathbb{E} \|\bar{u}_{BDA}^t\|^2$:

$$\begin{aligned} C_{\bar{u}} &= \left(L\eta^2 - \frac{\eta}{2} \right) + 2\tau_{algo} C_{drift} \\ &= L\eta^2 - \frac{\eta}{2} + 2\tau_{algo} \left(\frac{L\eta^2}{2} + \frac{3}{2} L^2 \tau_{algo} \eta^3 \right) \\ &= -\frac{\eta}{2} (1 - 2L\eta - 2L\tau_{algo}\eta - 6L^2\tau_{algo}^2\eta^2) \end{aligned}$$

We require $C_{\bar{u}} \leq 0$. By choosing $\eta \leq \frac{1}{12L\tau_{algo}}$ (and assuming $\tau_{algo} \geq 1$):

- $2L\eta \leq \frac{1}{6} \approx 0.16$
- $2L\tau_{algo}\eta \leq \frac{1}{6} \approx 0.16$
- $6L^2\tau_{algo}^2\eta^2 \leq 6 \cdot \frac{1}{144} \approx 0.04$

Sum is $0.36 < 1$. Thus, the term in parenthesis is positive, so $C_{\bar{u}} \leq 0$. We can safely drop the $\mathbb{E} \|\bar{u}_{BDA}^t\|^2$ terms.

2700 **Step 5: Final Rate.** We collect all remaining terms involving $\mathbb{E}\|\delta^t\|^2$. Recall $\mathbb{E}\|\delta^t\|^2 \leq \frac{\sigma^2}{n_{min}}$ (upper
 2701 bound).
 2702

$$\begin{aligned} \text{Total Noise Coeff } C_\delta &= \sum_{t=0}^{T-1} \left[\left(L\eta^2 + \frac{L\tau_{\text{algo}}\eta^2}{2} \right) + 2\tau_{\text{algo}}C_{\text{drift}} \right] \\ &= \sum_{t=0}^{T-1} \eta^2 \left[L + \frac{L\tau_{\text{algo}}}{2} + L\tau_{\text{algo}} + 3L^2\tau_{\text{algo}}^2\eta \right] \\ &\leq T\eta^2 [3L\tau_{\text{algo}} + 3L^2\tau_{\text{algo}}^2\eta] \quad (\text{using } \tau_{\text{algo}} \geq 1) \end{aligned}$$

2710 Rearranging the main inequality:
 2711

$$\frac{\eta}{2} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla F(w^t)\|^2 \leq \Delta + \sum_{t=0}^{T-1} 6\eta \left(1 - \frac{n_t}{n}\right)^2 (\zeta^2 + G^2) + C_\delta \frac{\sigma^2}{n_{\min}}$$

2714 Dividing by $T\eta/2$:
 2715

$$\begin{aligned} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla F(w^t)\|^2 &\leq \frac{2\Delta}{T\eta} + \frac{12(\zeta^2 + G^2)}{T} \sum_{t:n_t < n} \left(1 - \frac{n_t}{n}\right)^2 \\ &\quad + \frac{2\sigma^2}{n_{\min}T\eta} \cdot T\eta^2 (3L\tau_{\text{algo}} + 3L^2\tau_{\text{algo}}^2\eta) \\ &\leq \frac{2\Delta}{T\eta} + \frac{12(\zeta^2 + G^2)}{T} \sum_{t \in \mathcal{P}} \left(1 - \frac{n_t}{n}\right)^2 + \frac{6L\tau_{\text{algo}}\eta\sigma^2}{n_{\min}} + \frac{6L^2\tau_{\text{algo}}^2\eta^2\sigma^2}{n_{\min}} \end{aligned}$$

2724 This confirms the rate. □
 2725

2726 D.4 DISCUSSIONS ON ACED

2728 D.4.1 ALGORITHM BEHAVIOR WITH DROPPED CLIENTS

2730 Let S_{drop} be the set of N_{drop} clients that permanently stop sending updates after contributing a final
 2731 gradient, say G_j^{last} for client $j \in S_{\text{drop}}$. Let $S_{\text{active}} = n - N_{\text{drop}}$ clients that continue
 2732 to participate. For iterations t occurring significantly after the dropouts, the aggregated gradient u^t
 2733 effectively becomes:

$$g^t = \frac{1}{n} \left(\sum_{i \in S_{\text{active}}} G_i^{\text{latest},t} + \sum_{j \in S_{\text{drop}}} G_j^{\text{last}} \right)$$

2737 where $G_i^{\text{latest},t} = \nabla f_i(w^{t-\tau_i^t}; \xi_i^{\kappa_i})$ is the latest (stochastic) gradient from an active client i , computed
 2738 on a (potentially stale) model $w^{t-\tau_i^t}$. The crucial part is that G_j^{last} for $j \in S_{\text{drop}}$ are fixed, unchanging
 2739 gradient values based on very old (and increasingly stale) model parameters.
 2740

2741 The core problem introduced by permanent dropouts is a persistent bias in the aggregated gradient.
 2742 Let $\bar{u}^t = \mathbb{E}[u^t | \mathcal{F}_{t'}]$ for some appropriately chosen history $\mathcal{F}_{t'}$ (e.g., $t' = t - \tau_{\max}$ for active clients).
 2743 Taking the expectation over the stochasticity of fresh samples from active clients:

$$\bar{u}^t \approx \frac{1}{n} \sum_{i \in S_{\text{active}}} \mathbb{E}[G_i^{\text{latest},t} | \mathcal{F}_{t'}] + \frac{1}{n} \sum_{j \in S_{\text{drop}}} G_j^{\text{last}}$$

2747 Assuming $G_i^{\text{latest},t}$ are unbiased estimates for $\nabla F_i(w^{t-\tau_i^t})$:

$$\bar{u}^t \approx \frac{1}{n} \sum_{i \in S_{\text{active}}} \nabla F_i(w^{t-\tau_i^t}) + \underbrace{\frac{1}{n} \sum_{j \in S_{\text{drop}}} G_j^{\text{last}}}_{:= B_{\text{drop}}}$$

2752 The term B_{drop} represents a constant vector that acts as a persistent bias. This bias does not depend
 2753 on the current model w^t in the same way active client gradients do.

2754 The bias of the expected update \bar{u}^t relative to the true current gradient $\nabla F(w^t)$ is:
 2755

$$\mathcal{E}_t = \bar{u}^t - \nabla F(w^t)$$

$$\mathcal{E}_t = \underbrace{\frac{1}{n} \sum_{i \in S_{\text{active}}} (\nabla F_i(w^{t-\tau_i^t}) - \nabla F_i(w^t))}_{\text{Delay error from active clients}} + \underbrace{B_{\text{drop}} - \frac{1}{n} \sum_{j \in S_{\text{drop}}} \nabla F_j(w^t)}_{\text{Non-vanishing bias from dropped clients}}$$

2761 The critical component is $B_{\text{drop}} - \frac{1}{n} \sum_{j \in S_{\text{drop}}} \nabla F_j(w^t)$, which is a non-vanishing bias term. Even
 2762 if active clients' models $w^{t-\tau_i^t}$ were perfectly up-to-date (w^t), and even if w^t were to converge to
 2763 some w^* , the term $B_{\text{drop}} - \frac{1}{n} \sum_{j \in S_{\text{drop}}} \nabla F_j(w^*)$ would remain, unless B_{drop} coincidentally matches
 2764 $\frac{1}{n} \sum_{j \in S_{\text{drop}}} \nabla F_j(w^*)$.
 2765

2766 D.4.2 DISCUSSION OF THE ASSUMPTIONS

2767 **Assumption a.6: Managing the Diversity-Staleness Trade-off with the BDH Assumption** The
 2768 τ_{algo} parameter in ACED provides a direct mechanism to manage the trade-off between client diver-
 2769 sity and update staleness, a challenge central to practical AFL. Its primary role is to eliminate the
 2770 non-vanishing bias (B_{drop}) that arises from permanently dropped or extremely delayed clients, which
 2771 would otherwise contribute fixed, outdated gradients (G_j^{last}). The convergence analysis quantifies
 2772 the consequence of this filtering: when the active client set n_t is less than the total n , a manageable
 2773 participation bias emerges, captured by terms related to $(n - n_t)^2 \zeta^2$. The Bounded Data Hetero-
 2774 geneity (BDH) assumption, where $\|\nabla F_i(w) - \nabla F(w)\|_2^2 \leq \zeta^2$, is used in the analysis to bound
 2775 the participation imbalance bias that occurs when the server update is not formed from all clients
 2776 ($n_t < n$).
 2777

2778 This theoretical insight is validated by experimental results. An excessively small τ_{algo} (e.g., $\tau_{\text{algo}} = 1$)
 2779 leads to a small n_t and significant participation bias, causing ACED's performance to degrade towards
 2780 that of Vanilla ASGD. Conversely, the experiments show that a moderate τ_{algo} (e.g., twice the average
 2781 client delay) maintains robust performance. This demonstrates that τ_{algo} is not a limitation but a tool:
 2782 it allows the system to be configured to mitigate the more harmful non-vanishing bias from stragglers
 2783 while controlling the manageable participation bias to maximize performance, thereby ensuring high
 2784 participation ($n_t \approx n$) in typical scenarios.

2785 **Assumption a.7: The Removability of the Bounded Gradients Assumption** As explicitly stated,
 2786 the Bounded Gradients assumption (Assumption a.7) for the ACED convergence analysis can indeed
 2787 be removed, as it is **not necessary** and serves only **for the simplicity of the notations in the proof**.
 2788 The assumption's sole purpose is to simplify the bound for the partial participation bias term (when
 2789 $n_t < n$) during the derivation in Appendix D. Specifically, in the steps leading to **Part 1** and **Part 2** of
 2790 the bias decomposition, this assumption allows the gradient norm term $\mathbb{E} \|\nabla F(w^t)\|_2^2$ to be bounded
 2791 by a constant G^2 , resulting in a concise bias upper bound proportional to $(\zeta^2 + G^2)$. Without this
 2792 assumption, the bias term would retain its dependency on $(\zeta^2 + \mathbb{E} \|\nabla F(w^t)\|_2^2)$. This modified term
 2793 would then be carried through to the gradient error bound and subsequently into the main single-step
 2794 convergence inequality. At that stage, the inequality would contain the term $\mathbb{E} \|\nabla F(w^t)\|_2^2$ on both
 2795 its left and right sides. By applying a simple algebraic rearrangement to collect all instances of
 2796 $\mathbb{E} \|\nabla F(w^t)\|_2^2$ onto the left-hand side, one can proceed with the subsequent summation and analysis
 2797 to derive a valid, although more complex, convergence rate. This confirms that the assumption is a
 2798 matter of notation convenience rather than a theoretical necessity.
 2799

2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807

2808 **E RATE COMPARISON WITH OTHER AFL ALGORITHMS**
28092810 Table a.1: We present the key assumptions of the baseline algorithms, their corresponding convergence
2811 rates in the \mathcal{O} -sense, and the number of *client-server communication(s) per server iteration*.
2812

2814 Algorithm	2815 Convergence Rate $\frac{1}{T} \sum_{t=1}^T \mathbb{E}[\nabla F(w^t) ^2]$	2816 Key Assumptions	2817 Comms. per Server Iteration
2818 Vanilla ASGD (Mishchenko et al., 2022)	$\sqrt{\frac{\sigma^2}{T} + \frac{n}{T} + \zeta^2}$ (with non-vanishing error ζ^2 as T increases)	2819 Bounded Sampling Noise (σ^2), Bounded Data Heterogeneity (ζ^2). 2820	1
2821 FedBuff (Nguyen et al., 2022)	$\sqrt{\frac{\sigma^2 + K\zeta^2}{mKT} + \frac{K\tau_{\text{avg}}\tau_{\text{max}}\zeta^2 + \tau_{\text{max}}\sigma^2}{T}}$ (with heterogeneity amplification $\tau\zeta^2$)	2822 Bounded Sampling Noise (σ^2), Bounded Data Heterogeneity (ζ^2), Bounded Delay ($\tau_{\text{max}}, \tau_{\text{avg}}$). 2823	M
2824 Delay-Adaptive ASGD (Koloskova et al., 2022)	$\sqrt{\frac{\sigma^2 + \zeta^2}{T} + \frac{\sqrt[3]{\tau_{\text{avg}} \frac{1}{n} \sum_{i=1}^n \tau_i^i \zeta_i^2}}{T^{2/3}}}$ (with heterogeneity amplification $\tau\zeta^2$)	2825 Bounded Sampling Noise (σ^2), Bounded Data Heterogeneity (Global ζ^2 , local ζ_i^2), Bounded Delay ($\tau_{\text{max}}, \tau_{\text{avg}}$). 2826	1
2827 CA ² FL (Wang et al., 2024b)	$\frac{\Delta + \sigma^2}{\sqrt{TKM}} + \frac{\sigma^2 + K\zeta^2}{TK} + \frac{(\tau_{\text{max}} + \rho_{\text{max}})\sigma^2}{T}$ (No direct $\tau\zeta^2$ term due to calibration)	2828 Bounded Sampling Noise (σ^2), Bounded Data Heterogeneity (ζ^2), Bounded Delay ($\tau_{\text{max}}, \rho_{\text{max}}$). 2829	M
2830 ACE (Ours, Theorem 1)	$\frac{\Delta}{\sqrt{nT}} + \frac{L\sigma^2}{\sqrt{nT}} + \frac{L^2\tau_{\text{max}}\sigma^2}{T}$ (No heterogeneity amplification)	2831 Bounded Sampling Noise (σ^2), Bounded Delay (τ_{max}). 2832	1
2833 ACED (Ours) 2834 (Theorem D.3)	$\frac{\Delta}{\sqrt{nT}} + \frac{L\sigma^2}{\frac{n_{\text{avg}}}{\sqrt{n}}\sqrt{T}} + \frac{L^2\tau_{\text{algo}}\sigma^2}{T} \frac{n}{n_{\text{avg}}}$ $+ (\zeta^2 + G^2) \sum_{t: n_t < n} \frac{(n - n_t)^2}{T}$	2835 Bounded Sampling Noise (σ^2), Minimum Participation ($n_{\text{min}} = \min_t \{i \in [n] \mid t - t_i^{\text{start}} \leq \tau_{\text{algo}}\} $), Bounded Gradient (G). 2836	1

2837 Based on the convergence rates and communication costs presented in Table a.1:
2838

- 2839 **Shortcomings of Buffered Methods:** Buffered algorithms like FedBuff and CA²FL present
2840 two main drawbacks:
 - 2841 **High Communication Cost per Update and Slower Convergence:** These methods
2842 require the server to collect updates from M clients to fill a buffer before performing a
2843 single global model update. This results in a communication cost per server iteration
2844 that is M times higher than for non-buffered approaches. A fair metric for comparing
2845 convergence is the total number of client communications, C_{total} .
 - 2846 * For buffered methods like CA²FL, the convergence rate is dominated by the leading
2847 term $\mathcal{O}(\frac{1}{\sqrt{MKT}})$, where T is the number of server iterations. Achieving T iterations
2848 requires $C_{\text{total}} = M \cdot T$ communications. Substituting $T = C_{\text{total}}/M$, the rate with
2849 respect to total communications becomes $\mathcal{O}(\frac{1}{\sqrt{MK(C_{\text{total}}/M)}}) = \mathcal{O}(\frac{1}{\sqrt{K \cdot C_{\text{total}}}})$.
 - 2850 * In contrast, for ACE, each communication triggers a server update, so $T = C_{\text{total}}$.
2851 Its convergence in terms of total communications, is $\mathcal{O}(\frac{1}{\sqrt{n \cdot C_{\text{total}}}})$.
 - 2852 * This shows that for the same communication budget, ACE's theoretical convergence
2853 is faster by a factor of $\sqrt{n/K}$. Given that experiments are conducted with $K = 1$
2854 for a fair comparison of aggregation strategies, the speedup factor is \sqrt{n} .
 - 2855 **Reliance on Bounded Data Heterogeneity:** Both algorithms' convergence guarantees
2856 depend on the Bounded Data Heterogeneity (BDH) assumption. For FedBuff, this is
2857 due to its *partial participation* mechanism ($M < n$). For CA²FL, it originates from
2858 an *imbalanced update scaling* that gives new updates from the buffer a larger weight
2859 than older, cached updates. In both cases, this imbalance requires the BDH assumption
2860 (ζ^2) to bound the resulting bias, making their performance theoretically vulnerable in
2861 settings with high data heterogeneity. See Appendix F.1 for a more detailed discussion.

- **Limitations of Partial Participation Methods:** Non-buffered, partial participation algorithms (e.g., Vanilla ASGD, Delay-Adaptive ASGD) are communication-efficient (1 communication per iteration) but can suffer from heterogeneity amplification. This is often indicated by terms coupling delay and heterogeneity ($\tau\zeta^2$) in their convergence rates. Furthermore, some of these methods exhibit a fixed error floor; for instance, the rate for Vanilla ASGD includes a non-vanishing ζ^2 term.
- **ACE’s Advantage:** ACE is also communication-efficient, requiring only **one communication per iteration**. Its all-client aggregation design eliminates the reliance on the Bounded Data Heterogeneity assumption entirely, thereby mitigating heterogeneity amplification while maintaining maximal communication efficiency.
- **Trade-off in ACED:** The convergence rate of ACED reveals a trade-off between client diversity (participation bias) and update staleness (delay error) in AFL systems. Observing the convergence rate expression for ACED (Theorem D.3, Table a.1):

$$\cdots + \underbrace{\frac{L^2 \tau_{\text{algo}} \sigma^2}{T} \frac{n}{n_{\text{avg}}}}_{\text{Delay Error}} + \underbrace{(\zeta^2 + G^2) \sum_{t: n_t < n} \frac{(n - n_t)^2}{T}}_{\text{Participation Bias}}$$

In an AFL system with both high delay (implying some clients may drop out or their local models become very stale) and high heterogeneity (making it difficult to estimate the global gradient from a subset of clients, see the explanation for the BDH assumption in Section 3), a trade-off emerges:

- Discarding updates from clients with extreme delays (by setting a *smaller* τ_{algo}) introduces participation bias, quantified by the $(\zeta^2 + G^2) \sum \frac{(n - n_t)^2}{T}$ term.
- Including these updates (by setting a *larger* τ_{algo}) introduces significant delay error due to their stale models, which is captured by the $\frac{L^2 \tau_{\text{algo}} \sigma^2}{T} \frac{n}{n_{\text{avg}}}$ term.

This dynamic illustrates that these two sources of error cannot be simultaneously eliminated in practical AFL systems. For typical AFL systems, the design of ACED allows clients to rejoin the active set once their delay returns to an acceptable level defined by τ_{algo} . Provided that extreme delays are reasonably handled, setting a moderate τ_{algo} (as shown in Figure 3 in Section 5) to include as many clients as possible is generally more beneficial for improving algorithm performance. This strategy better addresses the common challenge of data heterogeneity (participation bias) in FL and is consistent with the core principle of ACE, which leverages updates from the maximum number of clients to refine the global model.

- **Equivalence of ACED and ACE under a Sufficiently Large Delay Threshold:** The ACED algorithm becomes functionally identical to the conceptual ACE algorithm under a specific condition. This occurs when the delay threshold, τ_{algo} , is set to a value greater than or equal to the maximum possible system delay, τ_{max} . In this scenario, the condition for a client’s inclusion in the active set, $t - t_i^{\text{start}} \leq \tau_{\text{algo}}$, is always satisfied for all clients at every iteration. Consequently, the active set $A(t)$ consistently includes all n clients, making $n_t = n = n_{\text{avg}}$ for all t . The update rule for ACED then simplifies to that of ACE. This equivalence extends to their theoretical guarantees. The participation bias term in the convergence rate of ACED, $(\zeta^2 + G^2) \sum_{t: n_t < n} \frac{(n - n_t)^2}{T}$, vanishes as n_t is always equal to n . The remaining terms in the ACED rate then simplify to precisely match the convergence rate of ACE in Theorem 1 and Table a.1.

2916
2917

F ADDITIONAL EXPERIMENTAL DETAILS

2918
2919

F.1 DETAILED DISCUSSION ON BASELINE METHODS

2920
2921
2922
2923
2924

This section provides an overview of selected asynchronous federated learning algorithms, detailing their design philosophies and presenting their pseudocode. We focus on FedBuff(Nguyen et al., 2022), CA²FL(Wang et al., 2024b) (Cache-Aided Asynchronous Federated Learning), and Delay-Adaptive Asynchronous SGD(Koloskova et al., 2022) (ASGD). Vanilla ASGD (Mishchenko et al., 2022) can be regarded as a special case of FedBuff when $M = 1$.

2925
2926

F.1.1 FEDBUFF (FEDERATED LEARNING WITH BUFFERED ASYNCHRONOUS AGGREGATION)

2927
2928
2929
2930
2931
2932
2933
2934
2935

Design Idea FedBuff (Nguyen et al., 2022) is designed to improve the efficiency and scalability of federated learning by allowing clients to send their model updates to the server asynchronously. Instead of waiting for all clients in a round to complete their local training (as in synchronous methods like FedAvg), the server in FedBuff accumulates updates from clients as they arrive. The global model is updated only after a certain number of client updates (defined by a buffer size, M) have been received. This approach helps to mitigate the straggler problem, where slow clients can delay the entire training process. Upon receiving an update from a client, the server can immediately assign a new task to an available client, thus maintaining a consistent level of client activity (concurrency, M_c).

2936
2937**Algorithm a.2** FedBuff (without Differential Privacy)2938
2939

Require: Local step size η_l , global step size η , server concurrency M_c , buffer size M , total number of clients N .

2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953

```

1: Initialize: Global model update accumulator  $\Delta_1 \leftarrow 0$ , update count  $m \leftarrow 0$ .
2: Sample an initial set of  $M_c$  active clients to run local SGD updates.
3: repeat
4:   if a client update  $\Delta_t^i$  is received from client  $i$  then
5:     Server accumulates update:  $\Delta_t \leftarrow \Delta_t + \Delta_t^i$ .
6:      $m \leftarrow m + 1$ .
7:     Sample another client  $j$  from available clients.
8:     Broadcast the current global model  $w_t$  to client  $j$ .
9:     Client  $j$  runs local SGD updates.
10:    end if
11:    if  $m = M$  then
12:      Update global model:  $w_{t+1} \leftarrow w_t + \eta \cdot (\Delta_t/M)$ .
13:      Reset for next aggregation:  $m \leftarrow 0$ ,  $\Delta_{t+1} \leftarrow 0$ ,  $t \leftarrow t + 1$ .
14:    end if
15:  until Convergence

```

2954
2955
2956
2957
2958
2959
2960
2961

Partial Participation ($M < N$): This is the standard operational mode for FedBuff (Nguyen et al., 2022). The server waits to fill a buffer of size M before updating the global model. As our theoretical analysis in Section 4 shows, this design inherently introduces **partial participation bias**, which is the root cause of heterogeneity amplification when client data is non-IID. Vanilla ASGD (Mishchenko et al., 2022) represents the extreme case where $M = 1$, maximizing this bias and the variance of the global updates.

2962
2963
2964
2965
2966

Full Participation ($M = N$): In this hypothetical scenario, FedBuff would be forced to wait for updates from all N clients before performing a single update. This transforms the algorithm into a **synchronous** protocol, similar to FedAvg (Li et al., 2020), thereby losing the primary advantage of AFL in overcoming straggler issues.

2967
2968
2969

Update Frequency and Communication Cost: A critical consequence of FedBuff’s buffered design is the decoupling of client communication from global model updates. To perform a single server iteration (one global update), the server must wait for and process M individual client communications. This introduces a synchronization-like bottleneck, reducing the overall frequency

2970 of model evolution. This means that the communication cost per learning step is M times higher than
 2971 for a non-buffered approach, a crucial factor in evaluating overall system efficiency.
 2972

2973 F.1.2 CA²FL (CACHE-AIDED ASYNCHRONOUS FEDERATED LEARNING) 2974

2975 **Design Idea** CA²FL (Wang et al., 2024b) uses a buffering mechanism similar to FedBuff but adds a
 2976 calibration step using a server-side cache of historical updates from all clients. Its behavior changes
 2977 drastically depending on the buffer size M . The core idea is for the server to maintain a cache of the
 2978 latest model update (or difference) received from each client. These cached updates are then used
 2979 to calibrate the global model update. When a client sends its new update Δ_t^i , the server calculates
 2980 the difference between this new update and the client's previously cached update h_t^i . This calibrated
 2981 difference, $\Delta_t^i - h_t^i$, is then accumulated. The global update v_t incorporates the average of these
 2982 calibrated differences along with a global cached variable h_t (which is the average of all clients'
 2983 currently cached updates). This mechanism aims to make the aggregated update more consistent with
 2984 the current global model state, especially when dealing with stale updates from delayed clients and
 2985 diverse data distributions across clients. CA²FL is designed to achieve these improvements without
 2986 imposing additional communication or computation overhead on the clients.
 2987

2988 **Algorithm a.3** CA²FL (Cache-Aided Asynchronous FL)

2989 **Require:** Local step size η_l , global step size η , server concurrency M_c , buffer size M , total number
 2990 of clients N .

2991 1: **Initialize:** Global model update accumulator $\Delta_1 \leftarrow 0$, Cached update for each client $i \in [N]$,
 2992 $h_1^i \leftarrow 0$, Global cached variable $h_1 \leftarrow \frac{1}{N} \sum_{i=1}^N h_1^i$, Update count $m \leftarrow 0$, set of clients updated
 2993 in current buffer $\mathcal{S}_t \leftarrow \emptyset$.
 2994 2: Sample an initial set of M_c active clients to run local SGD updates.
 2995 3: **repeat**
 2996 4: **if** a client update Δ_t^i is received from client i **then**
 2997 Server accumulates calibrated update: $\Delta_t \leftarrow \Delta_t + (\Delta_t^i - h_t^i)$.
 2998 Server updates client's cached variable: $h_{t+1}^i \leftarrow \Delta_t^i$.
 2999 $m \leftarrow m + 1$.
 3000 $\mathcal{S}_t \leftarrow \mathcal{S}_t \cup \{i\}$.
 3001 Sample another client j from available clients.
 3002 Broadcast the current global model w_t to client j .
 3003 Client j runs local SGD updates.
 3004 12: **end if**
 3005 13: **if** $m = M$ **then**
 3006 **for** all clients $j \notin \mathcal{S}_t$ **do**
 3007 Server maintains their cached variable: $h_{t+1}^j \leftarrow h_t^j$.
 3008 **end for**
 3009 Calculate calibrated global update: $v_t \leftarrow h_t + \frac{1}{|\mathcal{S}_t|} \Delta_t$.
 3010 Update global model: $w_{t+1} \leftarrow w_t + \eta \cdot v_t$.
 3011 Initialize global cached variable for next round: $h_{t+1} \leftarrow \frac{1}{N} \sum_{i=1}^N h_{t+1}^i$.
 3012 Reset for next aggregation: $m \leftarrow 0$, $\Delta_{t+1} \leftarrow 0$, $\mathcal{S}_{t+1} \leftarrow \emptyset$, $t \leftarrow t + 1$.
 3013 21: **end if**
 3014 22: **until** Convergence

3015 **The $M = N$ Limit: A Synchronous Algorithm** A critical distinction is that setting the buffer
 3016 size $M = N$ in CA²FL does not make it equivalent to ACE; it makes it **synchronous**. The server's
 3017 workflow requires waiting until all N client updates are received to perform a **single** global update.
 3018 During this waiting period, the global model w^t remains static. Consequently, all N clients compute
 3019 their updates based on the exact same model version and receive the same new model w^{t+1} for the
 3020 next round. In this synchronous workflow, information staleness, becomes trivially zero for all clients
 3021 ($\tau_i^t = 0$), which is fundamentally different from any asynchronous protocol.

3022 **The $M = 1$ Limit: Imbalanced Update Weighting** Even in the $M = 1$ case, where both CA²FL
 3023 and ACE update upon every client's arrival, their mathematical update rules are fundamentally

3024 different. Let $h_t = \frac{1}{N} \sum_{k=1}^N h_k^{\text{old}}$ be the average of all cached updates before a new update Δ_j^{new}
 3025 arrives from client j .
 3026

- 3027 • The **CA²FL** update rule becomes:

$$3029 \quad v_t = h_t + (\Delta_j^{\text{new}} - h_j^{\text{old}}) \quad (\text{a.26})$$

3030 The global update applies the **full, unscaled** change from the reporting client to the global average.
 3031 This retains a form of partial participation bias, and its convergence rate consequently depends on
 3032 the data heterogeneity bound ζ^2 , as shown in Table a.1.
 3033

- 3034 • The **ACE** incremental update rule (derived in Section 3.4) is:

$$3035 \quad u^t = u^{t-1} + \frac{1}{N} (\Delta_j^{\text{new}} - h_j^{\text{old}}) \quad (\text{a.27})$$

3038 Here, the change from the reporting client is **scaled by $1/N$** . This scaling is crucial as it ensures
 3039 all clients, whether their information is new or old, **contribute equally** to the final average. This
 3040 design choice is what eliminates the dependency on the BDH assumption and removes the ζ^2 term
 3041 from ACE's convergence bound.

3042 **Update Frequency and Communication Cost:** Despite its advanced calibration mechanism,
 3043 CA²FL's reliance on a buffer of size M means it shares the same fundamental limitation as FedBuff
 3044 regarding update frequency. A single global model update requires the server to wait for M clients.
 3045 This design choice inherently trades higher model evolution frequency for its calibration benefits,
 3046 resulting in a communication cost of M client uploads for every server iteration.
 3047

3048 F.1.3 DELAY-ADAPTIVE ASYNCHRONOUS SGD (ASGD)

3050 **Design Idea** Standard Asynchronous SGD (ASGD) allows workers to compute and send gradients
 3051 at their own pace without synchronization. This can lead to the server applying "stale" gradients,
 3052 which are gradients computed based on older versions of the global model. The convergence rates of
 3053 such algorithms often depend on the maximum gradient delay (τ_{\max}), a metric that can be overly
 3054 pessimistic if significant delays (stragglers) are rare. Delay-Adaptive ASGD (Koloskova et al., 2022)
 3055 directly targets the adverse effect of staleness by dynamically adjusting the learning rate η_t based on
 3056 the delay τ_t of each incoming gradient. The core idea is that gradients computed on older models
 3057 (i.e., with a large τ_t) are less reliable and should have a smaller impact on the global model update.
 3058

3059 **Algorithm a.4** Delay-Adaptive Asynchronous SGD

3060 **Require:** Initial model $w^{(0)}$, base learning rate parameter $\eta \leq 1/(4L)$ (where L is the smoothness
 3061 constant of the objective function), total iterations T .

- 3062 1: **Initialize:** Server selects an initial set of active workers \mathcal{C}_0 and sends them $w^{(0)}$.
- 3063 2: **for** $t = 0, \dots, T - 1$ **do**
- 3064 3: Active workers \mathcal{C}_t compute stochastic gradients $g = \nabla F(w_{\text{model}}, \xi)$ in parallel, based on the
 3065 model version w_{model} they were assigned.
- 3066 4: Once a worker j_t finishes computation (gradient $g_t = \nabla F(w^{(t-\tau_t)}, \xi_t)$ for model $w^{(t-\tau_t)}$)
 3067 with delay τ_t , it sends g_t to the server.
- 3068 5: Server determines delay-adaptive step size η_t :
- 3069 6: **if** $\tau_t \leq \tau_C$ **then** $\triangleright \tau_C$ is concurrency or average concurrency
- 3070 7: $\eta_t \leftarrow \eta$.
- 3071 8: **else**
- 3072 9: Choose η_t such that $0 \leq \eta_t < \min\{\eta, 1/(4L\tau_t)\}$. \triangleright e.g., drop ($\eta_t = 0$) or scale down
- 3073 10: **end if**
- 3074 11: Server updates global model: $w_{t+1} \leftarrow w_t - \eta_t \cdot g_t$.
- 3075 12: Server selects a subset \mathcal{A}_t of inactive workers (can include j_t) and sends them the latest
 3076 model w^{t+1} .
- 3077 13: Update active worker set: $\mathcal{C}_{t+1} \leftarrow (\mathcal{C}_t \setminus \{j_t\}) \cup \mathcal{A}_t$.
- 3078 14: **end for**

3078 **Connection to Delay Error:** Our theoretical framework in Section 4 identifies that the **Delay**
 3079 **Error** (Term C) is amplified by the model drift experienced by a client. This drift is influenced by a
 3080 factor proportional to $\eta^2 \tau_i^t$. The inequality below, derived from our analysis of the per-iteration delay
 3081 error, highlights this dependency on different algorithm design choices:
 3082

$$\mathbb{E}[\text{Delay Error}]^2 \lesssim \underbrace{\eta^2 \tau_i^t}_{\text{Learning rate}} \left\{ \underbrace{\frac{\sigma^2}{m}}_{\text{Noise}} + \underbrace{\sum_{s=t-\tau_i^t}^{t-1} ((N-m)^2 K^2 \zeta^2 + \dots)}_{\text{Number of server iterations}} \right\}$$

3087 A large delay τ_i^t can cause this error term to dominate, especially when combined with the bias from
 3088 partial participation. Delay-Adaptive ASGD mitigates this by ensuring the product $\eta_t^2 \tau_t$ does not
 3089 grow uncontrollably. By setting η_t to be inversely proportional to τ_t for large delays (e.g., $\eta_t \propto 1/\tau_t$),
 3090 the algorithm effectively down-weights the contribution of highly stale gradients, thus suppressing
 3091 their negative impact and reducing the magnitude of the overall Delay Error.
 3092

3093 **Limitations:** While this adaptive learning rate strategy effectively reduces the error component
 3094 related to *staleness*, it does not address the **Bias Error** (Term B) that arises from its single-client
 3095 update mechanism ($m = 1$). The global model is still updated based on the perspective of a single,
 3096 potentially unrepresentative client at each step. Therefore, it only partially mitigates the heterogeneity
 3097 amplification effect, whereas ACE is designed to eliminate the partial participation bias at its source.
 3098

3099 F.1.4 ACE AND ACED: ASYNCHRONOUS FULL AND DYNAMIC PARTICIPATION

3101 **Algorithm a.5** ACE Implementation (Incremental Update), in addition to Algorithm 1

3102 1: **System Initialization:**
 3103 2: Server initializes global model w^0 .
 3104 3: For each client $i \in [n]$:
 3105 4: Client computes initial gradient $g_i^0 \leftarrow \nabla f_i(w^0; \xi_i^0)$ and sends it to the server.
 3106 5: Client stores its gradient locally: $g_i^{\text{prev}} \leftarrow g_i^0$.
 3107 6: Server computes initial aggregate update: $u \leftarrow \frac{1}{n} \sum_{i=1}^n g_i^0$. $\triangleright \mathcal{O}(d)$ server storage cost
 3108 7: Server updates model: $w^1 \leftarrow w^0 - \eta u$.
 3109 8: Server makes w^1 available to clients.
 3110 9: **Server Loop:** For $t = 1, \dots, T - 1$:
 3111 10: Wait to receive a gradient difference $(g_i^{\text{new}} - g_i^{\text{prev}})$ from some client j .
 3112 11: Incrementally update the aggregate: $u \leftarrow u + (g_j^{\text{new}} - g_j^{\text{prev}})/n$.
 3113 12: Update global model: $w^{t+1} \leftarrow w^t - \eta u$.
 3114 13: Server makes w^{t+1} available to client j .
 3115 14: **Client i Operation (after initialization):**
 3116 15: $w_{\text{local}} \leftarrow$ latest model version received from server.
 3117 16: Compute new gradient $g_i^{\text{new}} \leftarrow \nabla f_i(w_{\text{local}}; \xi_i^{\text{new}})$.
 3118 17: Send gradient difference $(g_i^{\text{new}} - g_i^{\text{prev}})$ to server.
 3119 18: Update local state for next round: $g_i^{\text{prev}} \leftarrow g_i^{\text{new}}$. $\triangleright \mathcal{O}(d)$ client storage cost
 3120

3121 **ACE:** By design, ACE is an asynchronous algorithm that always leverages information from
 3122 $m = n$ clients. However, unlike the synchronous $M = N$ case of CA²FL, it performs a global
 3123 update **immediately** upon the arrival of *any single* client’s gradient. **It averages this freshly**
 3124 **arrived gradient with the stale gradients from other clients.** This results in a high frequency of
 3125 model updates, where the global model is constantly evolving. This dynamic is the essence of its
 3126 asynchronous nature and is precisely what gives rise to the non-trivial staleness values ($\tau_i^t > 0$) that
 3127 our framework analyzes.
 3128

3129 **ACED:** This variant introduces a dynamic participation model where m becomes a variable, n_t ,
 3130 determined by system dynamics and the hyperparameter τ_{algo} . It explicitly navigates the trade-off
 3131 discussed in this paper: when $n_t < n$, it accepts a controllable level of partial participation bias in
 exchange for robustness against the extreme staleness introduced by stragglers or dropped-out clients.
 3132

3132 **Update Frequency and Communication Efficiency:** A core design principle of ACE is its non-
3133 buffered, immediate update mechanism. This establishes a **1-to-1 relationship** between a client's
3134 arrival and a global model update (one server iteration). Consequently, for a given budget of total
3135 client communications (e.g., 1000 uploads), ACE performs 1000 global updates, whereas a buffered
3136 method with $M = 10$ would only perform 100. This makes ACE more communication-efficient,
3137 allowing for faster model evolution under the same communication constraints.

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

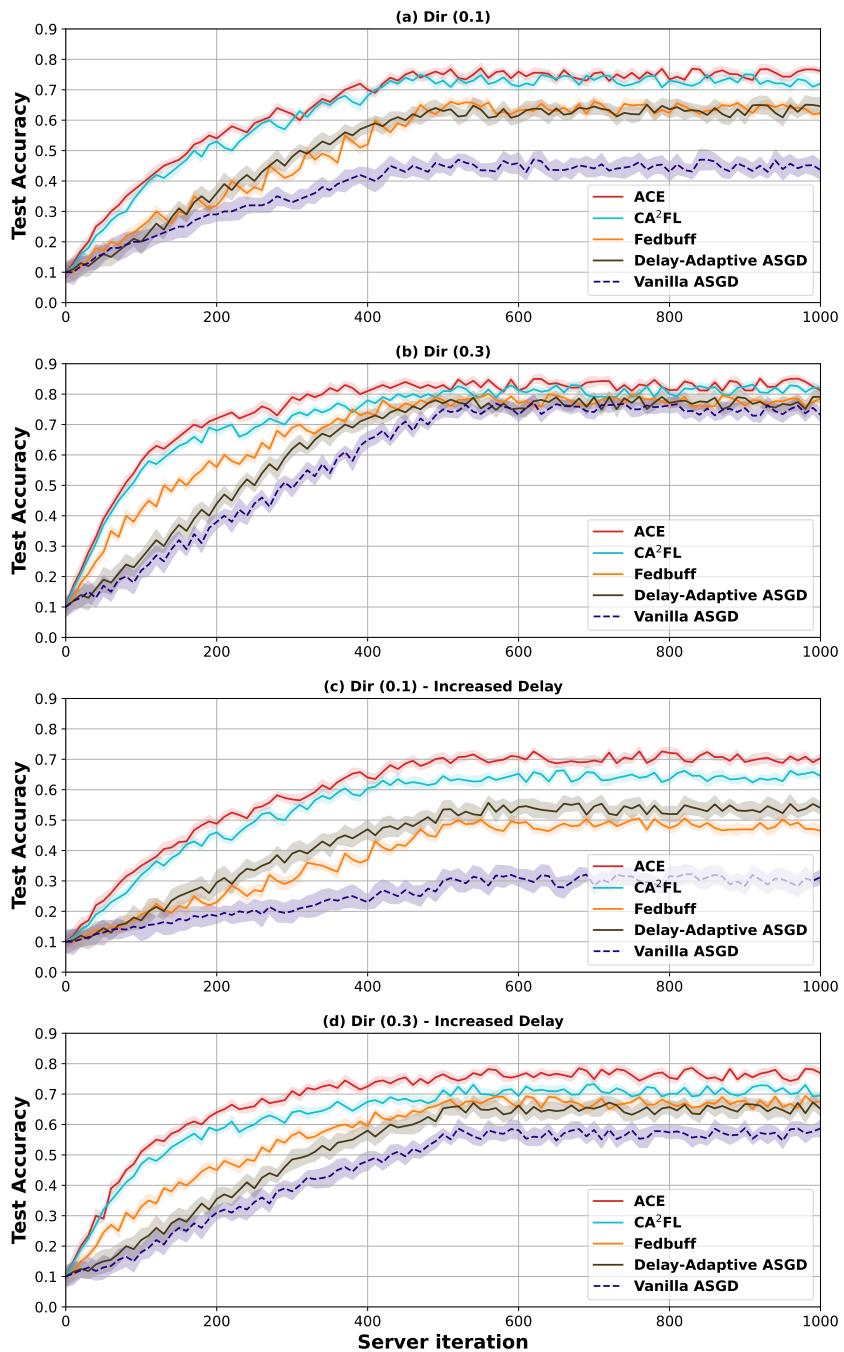
3181

3182

3183

3184

3185

3186 F.2 EXTENDED CONVERGENCE ANALYSIS AND STABILITY VISUALIZATION FOR SECTION 5
3187
3188
3189
3190

3234 Figure a.1: Extended performance comparison of AFL algorithms on CIFAR-10 up to 1000 server
3235 iterations, including stability analysis via error bars. The four subplots correspond to the scenarios
3236 detailed in Section 5: (a) Dir (0.1), (b) Dir (0.3), (c) Dir (0.1) with increased delay, and (d) Dir (0.3)
3237 with increased delay. Shaded regions represent the standard deviation ($\pm\sigma$) of accuracy. The error
3238 bands clearly show that single-client update methods (Vanilla ASGD, Delay-Adaptive ASGD) exhibit
3239 higher variance, while multi-client aggregation methods (FedBuff, CA²FL, and ACE) converge more
stably.

To provide a more comprehensive view of the algorithms' long-term behavior, we extend the primary experiments in Section 5 to 1000 server iterations, with the results presented in Figure a.1. This extended analysis serves two main purposes. First, it demonstrates that the primary convergence dynamics and final performance rankings of all algorithms are well-established within the first 450-500 iterations. The subsequent iterations show that the learning curves have reached their plateaus, validating our choice of $T = 500$ in the main paper as a sufficient duration for a conclusive comparison.

Second, the larger format of this appendix figure allows for the inclusion of error bars (visualized as shaded regions representing one standard deviation, $\pm\sigma$), which were omitted from the smaller figures in the main text due to space constraints that would compromise visual clarity. The insights from these error bars provide strong empirical support for our theoretical framework:

- **Stability Correlates with Participation:** A clear trend emerges from the visualization: an algorithm's stability is directly correlated with the number of clients participating in each global update.
- **High Variance in Single-Client Methods:** The single-client update methods, Vanilla ASGD and Delay-Adaptive ASGD, consistently exhibit the widest and most volatile error bands. This empirically demonstrates their high update variance, as each step is guided by a single client's potentially noisy and biased gradient, leading to a more erratic convergence path.
- **Variance Reduction via Aggregation:** In contrast, methods that aggregate updates from multiple clients (FedBuff, CA²FL, and our proposed ACE) show narrower and more stable error bands. This confirms that aggregating information across a diverse client set effectively reduces the variance of the global updates, resulting in a more reliable and predictable training process. Notably, ACE, which leverages information from all clients at every step, maintains one of the most stable profiles throughout the training, reinforcing the benefits of its all-client engagement design.

In summary, this extended analysis provides a clear visual confirmation that increased client participation is crucial not only for final accuracy but also for achieving a more stable training process.

F.3 ADDITIONAL EXPERIMENTS

To further validate the robustness and effectiveness of our proposed ACE algorithm, we conduct additional experiments across a variety of datasets and task types. These experiments are designed to assess ACE's performance under different data distributions, model architectures, and against specific challenges inherent in federated learning.

F.3.1 RESULTS ON CIFAR-100 DATASET

We simulate an Asynchronous Federated Learning (AFL) environment to evaluate the performance of various algorithms on the CIFAR-100 (Krizhevsky, 2009) image classification dataset with ResNet-18 (He et al., 2016) models. We deploy $n = 100$ clients, each holding a non-identically distributed (non-IID) subset of the data. The non-IID nature is modeled using a *Dirichlet distribution*, where the concentration parameter α controls the degree of data heterogeneity across clients. Lower α values indicate higher heterogeneity (clients' data distributions are more dissimilar), while higher α values represent more IID-like data distributions. The α values explored are $\alpha \in \{0.1, 0.3, 1.0, 10.0\}$.

The delays in AFL are simulated using an exponential distribution with a mean parameter β . Higher β values signify longer average delays and a greater likelihood of extreme delays (stragglers) in the system. The β values investigated are $\beta \in \{1, 5, 20, 30\}$.

All algorithms are trained for $T = 500$ server iterations and results are reported as an average of 5 runs. The primary evaluation metric is the *test accuracy* achieved by the global model on the CIFAR-100 test set. The test set remains identical across different levels of heterogeneity across clients and the extent of delays. The experiments aim to understand how different AFL algorithms perform under varying data heterogeneity and delay profile, particularly focusing on the phenomenon of "heterogeneity amplification" where faster clients with specific data distributions can disproportionately influence the global model in asynchronous settings. The baseline algorithms compared include FedBuff (Nguyen et al., 2022), CA²FL (Wang et al., 2024b), Delay-adaptive ASGD (Koloskova et al., 2022), Vanilla

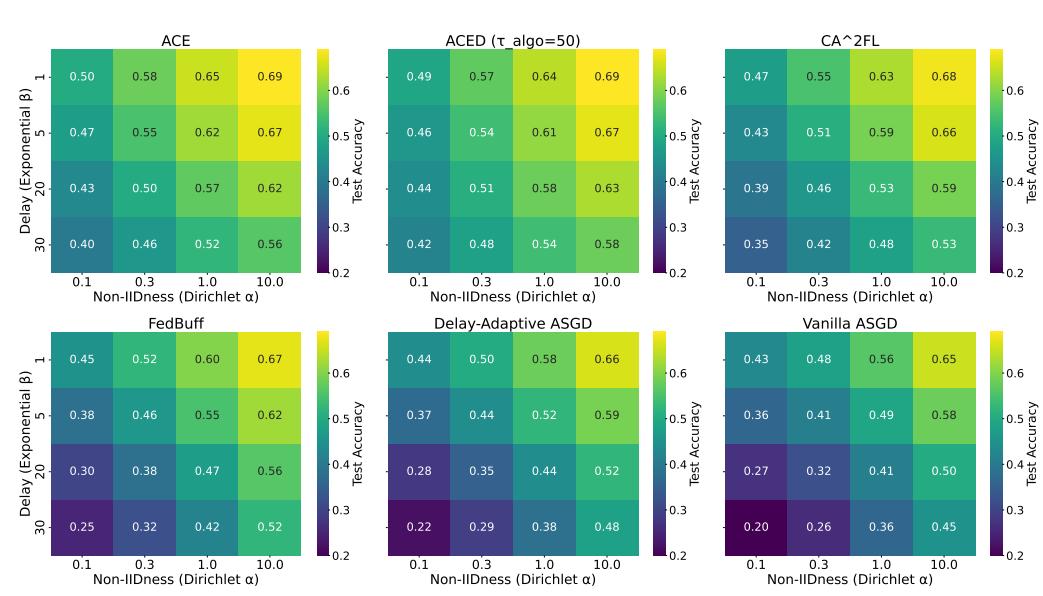


Figure a.2: Comparative Performance of Asynchronous Federated Learning Algorithms on CIFAR-100 under Varying Data Heterogeneity and System Delays. The heatmaps illustrate the final test accuracy of six AFL algorithms: (a) ACE, (b) ACED ($\tau_{\text{algo}} = 50$), (c) CA²FL, (d) FedBuff, (e) Delay-Adaptive ASGD, and (f) Vanilla ASGD. The x-axis represents the Dirichlet distribution parameter α controlling client data non-IIDness (lower α indicates higher heterogeneity). The y-axis represents the mean β of an exponential distribution modeling client delays (higher β indicates greater system delay and straggler presence). Accuracy values are normalized across all heatmaps using a common color scale to facilitate direct comparison. Algorithms like ACE and ACED demonstrate strong performance and robustness, particularly maintaining higher accuracies under combined high heterogeneity and high delay conditions. In contrast, algorithms such as FedBuff, Delay-Adaptive ASGD, and Vanilla ASGD show a more pronounced degradation, illustrating the impact of heterogeneity amplification. ACED's performance at high delay (e.g., $\beta = 30$) relative to ACE highlights its design for mitigating the impact of extreme stragglers.

ASGD (Mishchenko et al., 2022), alongside the proposed ACE and its practical variant ACED (with $\tau_{\text{algo}} = 50$). The goal is to observe how design choices such as full client gradient aggregation (ACE) or bounded-delay aggregation (ACED) impact robustness and final performance under these challenging AFL conditions.

F.3.2 RESULTS ON 20NEWSGROUP TEXT CLASSIFICATION FOR BERT MODELS

20Newsgroup Dataset The 20Newsgroup dataset is a widely used collection of approximately 20k newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups (Lang, 1995). Some examples of these newsgroups include topics like computers (e.g., `comp.graphics`), science (e.g., `sci.med`, `sci.space`), politics (e.g., `talk.politics.misc`), and religion (e.g., `soc.religion.christian`). The paper uses this dataset for **text classification tasks** because its larger output space (20 labels) is important for studying label-distribution shift scenarios. (Lang, 1995) specifies the training and test set sizes for 20Newsgroup as 11.3k training examples and 7.5k test examples. To simulate non-IID data, particularly label distribution shift, we partition the dataset among clients using a Dirichlet distribution $Dir(\alpha)$. We distribute the datasets across $n = 100$ clients. For the experiments presented in Table a.2, client delays are simulated using an exponential distribution with a mean parameter $\beta = 5$.

Models: DistilBERT and BERT Our experiments primarily utilize Transformer-based architectures.

- **BERT** (Bidirectional Encoder Representations from Transformers) is a language representation model pre-trained on a large corpus of text, which can be fine-tuned for a wide range

3348 of NLP tasks (Devlin et al., 2019). The paper uses BERT-base for comparison, which has
 3349 around 110 million parameters.
 3350

- 3351 • **DistilBERT** is a distilled version of BERT, designed to be smaller, faster, cheaper, and
 3352 lighter while retaining a significant portion of BERT’s performance (Sanh et al., 2019). It
 3353 achieves this through knowledge distillation during the pre-training phase. DistilBERT has
 3354 approximately 67.0 million tunable parameters.
 3355

3355 Table a.2: Test accuracy (mean $\pm 2 \times \text{std. error}$ over 5 runs, shown as percentages) of AFL algorithms
 3356 on 20Newsgroup with DistilBERT and BERT-base under label distribution shift (α) and low system
 3357 delay ($\beta = 5$).
 3358

3359 Algorithm		3360 DistilBERT			3361 BERT-base		
		3362 $\alpha = 0.1$	3363 $\alpha = 1.0$	3364 $\alpha = 10$	3365 $\alpha = 0.1$	3366 $\alpha = 1.0$	3367 $\alpha = 10$
3368 Vanilla ASGD (Mishchenko et al., 2022)	3369	49.3 \pm 2.8%	59.1 \pm 2.2%	62.2 \pm 1.8%	54.2 \pm 2.9%	64.3 \pm 2.3%	67.1 \pm 1.9%
3370 Delay-Adaptive ASGD(Koloskova et al., 2022)	3371	52.4 \pm 2.6%	61.8 \pm 2.0%	65.3 \pm 1.6%	57.3 \pm 2.7%	66.8 \pm 2.1%	70.2 \pm 1.7%
3372 FedBuff (Nguyen et al., 2022)	3373	55.7 \pm 2.4%	65.2 \pm 1.8%	68.1 \pm 1.5%	60.4 \pm 2.5%	70.3 \pm 1.9%	73.1 \pm 1.6%
3374 CA ² FL (Wang et al., 2024b)	3375	61.6 \pm 2.0%	69.3 \pm 1.5%	71.2 \pm 1.2%	66.2 \pm 2.1%	74.1 \pm 1.6%	76.3 \pm 1.3%
3376 ACED (Ours, $\tau_{\text{algo}} = 50$)	3377	63.1 \pm 1.8%	70.7 \pm 1.3%	72.6 \pm 1.1%	68.3 \pm 1.9%	75.7 \pm 1.4%	77.6 \pm 1.1%
3378 ACE (Ours)	3379	63.7 \pm 1.7%	71.4 \pm 1.2%	73.1 \pm 1.0%	68.7 \pm 1.8%	76.6 \pm 1.3%	78.2 \pm 1.0%

3380 **Performance on 20Newsgroup** The Table a.2 summarizes the accuracy of different AFL algorithms
 3381 on the 20Newsgroup dataset using DistilBERT and BERT-base, under varying degrees of label
 3382 distribution shift controlled by α , and with a fixed low system delay ($\beta = 5$). The accuracies
 3383 presented reflect performance after 500 server iterations. Reference accuracies for these models
 3384 under a hypothetical synchronous, no-delay federated setup would generally be slightly higher than
 3385 the values reported here for $\beta = 5$.
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401

3402 F.3.3 REDUCING THE MEMORY OVERHEAD OF ACE BY COMPRESSION
3403

3404 A key insight from our theoretical and empirical analysis is the positive correlation between an
3405 algorithm’s performance under client heterogeneity and the memory overhead required to manage
3406 all-client state. Algorithms that operate with minimal overhead, such as Vanilla ASGD (Mishchenko
3407 et al., 2022), inherently suffer from heterogeneity amplification because they lack the necessary
3408 information to correct for participation imbalance.

3409 Conversely, state-of-the-art methods that effectively combat this issue, including **both CA²FL (Wang**

3410 et al., 2024b) and our proposed ACE, rely on caching information from all n clients. CA²FL
3411 requires an $\mathcal{O}(nd)$ server-side cache for historical updates (h_i^t) to perform its calibration, while ACE
3412 requires an $\mathcal{O}(nd)$ cache for the latest gradients to perform its full aggregation.

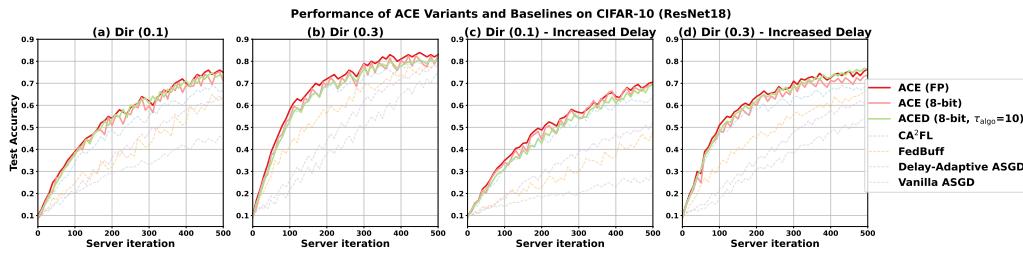
3413 Therefore, the $\mathcal{O}(nd)$ overhead should be viewed as a **necessary cost** for achieving top-tier performance
3414 and robustness in challenging AFL environments. The comparison in Table a.3 should be
3415 interpreted through this lens: the increased overhead of ACE and CA²FL directly corresponds to
3416 their superior ability to handle the core challenges of ACE.

3417 Table a.3: Comparison of storage overheads and convergence rates for various AFL algorithms.
3418 The table highlights a fundamental trade-off between memory efficiency and robustness to client
3419 heterogeneity. Algorithms with lower storage overhead, such as Vanilla ASGD, Delay-Adaptive
3420 ASGD, and FedBuff, are susceptible to heterogeneity amplification, as indicated by the presence
3421 of heterogeneity-dependent terms (non-vanishing ζ^2 or $\tau\zeta^2$ interaction) in their convergence rates.
3422 Conversely, methods like CA²FL and our proposed ACE/ACED achieve superior convergence by
3423 eliminating this amplification effect, but at the cost of a higher total system overhead of $\mathcal{O}(nd)$. This
3424 higher cost is necessary to cache state information from all clients, which is used to correct the
3425 participation imbalance bias. Notably, ACE offers implementation flexibility, allowing this $\mathcal{O}(nd)$
3426 overhead to be concentrated on the server (Direct Aggregation) or distributed among the clients
3427 (Incremental Update).

Algorithm	Client-Side Overhead	Server-Side Overhead	Total Cost	Convergence Rate $\mathcal{O}(\cdot)$	Notes
Vanilla ASGD (Mishchenko et al., 2022)	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\sqrt{\frac{\sigma^2}{T} + \frac{n}{T} + \zeta^2}$ (with non-vanishing error ζ^2 as T increases)	The client and server are stateless, leading to low overhead but susceptibility to bias.
Delay-Adaptive ASGD (Koloskova et al., 2022)	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\sqrt{\frac{\sigma^2 + \zeta^2}{T}} + \sqrt[3]{\tau_{avg} \frac{1}{T} \sum_{i=1}^n \tau_{avg}^i \zeta^2}$ (with heterogeneity amplification $\tau\zeta^2$)	The client and server are stateless, leading to low overhead but susceptibility to bias.
FedBuff (Nguyen et al., 2022)	$\mathcal{O}(1)$	$\mathcal{O}(Md)$	$\mathcal{O}(n + Md)$	$\sqrt{\frac{\sigma^2 + K\zeta^2}{mKT}} + \frac{K\tau_{avg}\tau_{max}\zeta^2 + \tau_{max}\sigma^2}{T}$ (with heterogeneity amplification $\tau\zeta^2$)	The server buffers M updates; performance is limited by the $\tau\zeta^2$ term.
CA ² FL (Wang et al., 2024b)	$\mathcal{O}(1)$	$\mathcal{O}(nd)$	$\mathcal{O}(nd)$	$\frac{\Delta + \sigma^2}{\sqrt{TKM}} + \frac{\sigma^2 + K\zeta^2}{TK} + \frac{(\tau_{max} + \rho_{max})\sigma^2}{T}$ (No heterogeneity amplification $\tau\zeta^2$ term due to calibration)	Server caches state for all n clients to calibrate updates, mitigating direct amplification.
ACE (Direct Aggregation)	$\mathcal{O}(1)$	$\mathcal{O}(nd)$	$\mathcal{O}(nd)$	$\frac{\Delta}{\sqrt{nT}} + \frac{L\sigma^2}{\sqrt{nT}} + \frac{L^2\tau_{max}\sigma^2}{T}$ (No heterogeneity amplification $\tau\zeta^2$)	Server caches the latest gradient from all n clients, eliminating the ζ^2 term from the rate.
ACE (Incremental Update)	$\mathcal{O}(d)$	$\mathcal{O}(d)$	$\mathcal{O}(nd)$	$\frac{\Delta}{\sqrt{nT}} + \frac{L\sigma^2}{\sqrt{nT}} + \frac{L^2\tau_{max}\sigma^2}{T}$ (No heterogeneity amplification $\tau\zeta^2$)	Reallocates the total $\mathcal{O}(nd)$ system cost, shifting storage burden from server to clients.
ACED (Ours)	$\mathcal{O}(1)$	$\mathcal{O}(nd)$	$\mathcal{O}(nd)$	$\dots + \frac{L^2\tau_{algo}\sigma^2}{T} \frac{n}{n_{avg}} + (\zeta^2 + G^2) \sum \frac{(n - n_t)^2}{T}$ (No heterogeneity amplification $\tau\zeta^2$, a vanishing error term $\frac{\zeta^2}{T}$ as T increases)	The client is stateless. The server still needs to cache the latest gradients from all n clients to dynamically select the aggregation subset based on the delay threshold.

3448 As demonstrated in Table a.3, the total system overhead of ACE is comparable to that of CA²FL.
3449 The choice between our Direct Aggregation (server-heavy) and Incremental Update (client-heavy)
3450 implementations allows for flexibility in deploying this all-client principle, depending on where the
3451 system’s resource capacity lies. In other words, for the two implementations of ACE, the total system
3452 overhead remains the same (Direct Aggregation: client $n \cdot \mathcal{O}(1)$ + server $\mathcal{O}(nd)$; Incremental Update:
3453 client $n \cdot \mathcal{O}(d)$ + server $\mathcal{O}(d)$, for a total system state of $\mathcal{O}(nd)$). The incremental approach merely
3454 reallocates the storage burden between clients and the server, rather than reducing it. Given that this
3455 overhead is a fundamental requirement for high performance, we argue that practical optimization
efforts should focus on reducing the size of individual gradient vectors. To this end, we investigate

3456 the use of 8-bit quantization as a promising direction to significantly lower the memory overhead
 3457 while preserving the performance benefits of our approach.
 3458



3468 Figure a.3: Impact of 8-bit server-side gradient quantization on the test accuracy of ACE and ACED
 3469 on CIFAR-10 with ResNet18. The 8-bit variations achieve comparable final performance to the
 3470 full-precision implementation.
 3471

3472 A practical consideration for **ACE** and its variant **ACED** is the server-side memory required to
 3473 store the latest gradients from all clients for the full aggregation step, especially when dealing with
 3474 large-scale models possessing a massive number of trainable parameters. This section is motivated
 3475 by the need to address this potential limitation and explore memory-efficient implementations. We
 3476 investigate the impact of applying 8-bit quantization to the gradients cached at the server before
 3477 they are aggregated. The goal is to determine if a significant reduction in memory overhead can be
 3478 achieved while largely preserving the convergence speed and final performance benefits demonstrated
 3479 by the full-precision versions of ACE and ACED.

3480 To achieve this, we introduce **ACE-8bit** and **ACED-8bit**. The core modification lies in how the
 3481 server handles the incoming gradients from clients. Specifically:

- 3482 • In both ACE-8bit and ACED-8bit, clients compute and transmit their gradients,
 3483 $\nabla f_i(w^{t-\tau_i^t}; \xi_i)$, using full precision as in the original algorithms.
 3484
- 3485 • Upon receiving a gradient from client i , say $U_i^t = \nabla f_i(w^{t-\tau_i^t}; \xi_i)$, the server quantizes this
 3486 gradient to an **8-bit representation**, denoted as $Q(U_i^t)$. This can be achieved using standard
 3487 unbiased quantization techniques.
 3488
- 3489 • The server then stores this quantized gradient $Q(U_i^t)$ in its cache for client i .
 3490
- 3491 • For the global model update, ACE-8bit computes $u^t = \frac{1}{n} \sum_{i=1}^n Q(U_i^t)$, utilizing the latest
 3492 available quantized gradient from all n clients. Similarly, ACED-8bit computes its update
 3493 $u_{\text{BDA}}^t = \frac{1}{n_t} \sum_{i \in A(t)} Q(U_i^{\text{cache}})$, using the quantized gradients from the set $A(t)$ of active
 3494 clients whose information meets the delay threshold τ_{algo} .
 3495

3496 This approach directly reduces the memory overhead on the server for storing the gradient components
 3497 from each client. In addition, this approach also illustrates the compatibility of ACE/ACED and
 3498 the model compression algorithm, providing the possibility for the practical use of ACE/ACED in a
 3499 large-scale federated learning system.
 3500

3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509

3510 F.4 HYPER-PARAMETER CONFIGURATIONS
35113512 Table a.4: Hyper-parameters for CIFAR-10 Experiments (Section 5, Appendix F.3.3). Total clients
3513 $n = 100$. $T = 500$ server iterations.
3514

Hyper-parameter	ACE	FedBuff	CA ² FL	Vanilla ASGD
Model			ResNet-18	
Global Learning Rate (η)	$0.2\sqrt{n/T}$	$0.2\sqrt{n/T}$	$0.2\sqrt{n/T}$	$0.2\sqrt{n/T}$
Local Learning Rate (η_l)	N/A ($K = 1$)	5×10^{-2}	5×10^{-2}	N/A ($K = 1$)
Optimizer (Local step)	SGD (momentum 0.9)	SGD (momentum 0.9)	SGD (momentum 0.9)	SGD (momentum 0.9)
Batch Size	50	50	50	50
α (Dirichlet)	{0.1, 0.3}	{0.1, 0.3}	{0.1, 0.3}	{0.1, 0.3}
β (Mean Exp. Delay Param.)	{5, 30}	{5, 30}	{5, 30}	{5, 30}
Buffer Size (M)	N/A	10	10	N/A
Concurrency (M_c)	N (all clients)	20	20	1 (sequential)

3523 Table a.5: Hyper-parameters for CIFAR-100 Experiments (Appendix F.3.1). Total clients $n = 100$.
3524 $T = 500$ server iterations.
3525

Hyper-parameter	ACE	FedBuff	CA ² FL	Vanilla ASGD
Model			ResNet-18	
Global Learning Rate (η)	$0.2\sqrt{n/T}$	$0.2\sqrt{n/T}$	$0.2\sqrt{n/T}$	$0.2\sqrt{n/T}$
Local Learning Rate (η_l)	N/A ($K = 1$)	5×10^{-2}	5×10^{-2}	N/A ($K = 1$)
Optimizer (Local step)	SGD (momentum 0.9)	SGD (momentum 0.9)	SGD (momentum 0.9)	SGD (momentum 0.9)
Batch Size	50	50	50	50
α (Dirichlet)	{0.1, 0.3, 1.0, 10.0}	{0.1, 0.3, 1.0, 10.0}	{0.1, 0.3, 1.0, 10.0}	{0.1, 0.3, 1.0, 10.0}
β (Mean Exp. Delay Param.)	{1, 5, 20, 30}	{1, 5, 20, 30}	{1, 5, 20, 30}	{1, 5, 20, 30}
Buffer Size (M)	N/A	10	10	N/A
Concurrency (M_c)	N (all clients)	20	20	1 (sequential)

3535 Table a.6: Hyper-parameters for 20Newsgroup (BERT fine-tuning) Experiments (Appendix F.3.2).
3536 Total clients $n = 20$. $T = 100$ server iterations.
3537

Hyper-parameter	ACE	FedBuff	CA ² FL	Vanilla ASGD
Model			DistilBERT / BERT-base	
Global Learning Rate (η)	$0.2\sqrt{n/T}$	$0.2\sqrt{n/T}$	$0.2\sqrt{n/T}$	$0.2\sqrt{n/T}$
Local Learning Rate (η_l)	N/A ($K = 1$)	5×10^{-4}	5×10^{-4}	N/A ($K = 1$)
Optimizer (Local step)	AdamW	AdamW	AdamW	AdamW
Batch Size	32	32	32	32
α (Dirichlet)	{0.1, 1.0, 10.0}	{0.1, 1.0, 10.0}	{0.1, 1.0, 10.0}	{0.1, 1.0, 10.0}
β (Mean Exp. Delay Param.)	5	5	5	5
Buffer Size (M)	N/A	10	10	N/A
Concurrency (M_c)	N (all clients)	10	10	1 (sequential)

3551 **General Setup** To ensure a theoretically consistent comparison that directly aligns with our analytical
3552 framework, the local computational workload for every client across **all compared algorithms**
3553 was standardized to a **single gradient descent step** ($K = 1$) per communication round. This approach
3554 prioritizes a direct test of the different aggregation strategies by eliminating the confounding effects
3555 of local client drift. Specifically:

3556

- 3557 • For algorithms theoretically based on a single gradient update, such as ACE, Vanilla ASGD,
3558 and Delay-Adaptive ASGD, each client computes a stochastic gradient on *one mini-batch* of
3559 its local data using the unmodified global model it received. This single gradient is then sent
3560 to the server.
- 3561 • For algorithms designed to support multiple local steps, namely FedBuff and CA²FL, we
3562 explicitly set their local step parameter to $K = 1$. This ensures they also perform only a
3563 single mini-batch update before communication, making their update mechanism directly
comparable to the other methods under our theoretical lens.

3564 This setup provides a clear evaluation of how each aggregation method handles staleness and
 3565 participation bias, which is the central focus of our paper. For CIFAR datasets, this single step was
 3566 performed using SGD with momentum 0.9. For 20Newsgroup (BERT) experiments, the AdamW
 3567 optimizer was used for the local step.

3568 Data heterogeneity across clients is configured using a Dirichlet distribution controlled by parameter
 3569 α . For CIFAR-10, $\alpha \in \{0.1, 0.3\}$. For CIFAR-100, $\alpha \in \{0.1, 0.3, 1.0, 10.0\}$. For 20Newsgroup,
 3570 $\alpha \in \{0.1, 1.0, 10.0\}$.

3571 Client update delays are generated using an exponential distribution governed by a mean parameter β .
 3572 For CIFAR-10, $\beta \in \{5, 30\}$. For CIFAR-100, $\beta \in \{1, 5, 20, 30\}$. For the 20Newsgroup experiments
 3573 detailed in Table a.2, a fixed $\beta = 5$ was used. All resulting delays are inherently bounded.

3574 The tables summarize key hyper-parameters. Global learning rates are tuned based on scaling $\sqrt{n/T}$
 3575 with parameter $c \in \{10, 5, 2, 1, 0.5, 0.2, 0.1\}$, and local learning rates are tuned based on grid search.

3576 For the ACED variant, the additional hyper-parameter τ_{algo} is specified depending on the experimental
 3577 case/setting.

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617