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Abstract

We propose novel statistics which maximise the power of a two-sample test based
on the Maximum Mean Discrepancy (MMD), by adapting over the set of kernels
used in defining it. For finite sets, this reduces to combining (normalised) MMD
values under each of these kernels via a weighted soft maximum. Exponential
concentration bounds are proved for our proposed statistics under the null and
alternative. We further show how these kernels can be chosen in a data-dependent
but permutation-independent way, in a well-calibrated test, avoiding data splitting.
This technique applies more broadly to general permutation-based MMD testing,
and includes the use of deep kernels with features learnt using unsupervised models
such as auto-encoders. We highlight the applicability of our MMD-FUSE test on
both synthetic low-dimensional and real-world high-dimensional data, and compare
its performance in terms of power against current state-of-the-art kernel tests.

1 Introduction

The fundamental problem of non-parametric two-sample testing consists in detecting the difference
between any two distributions having access only to samples from these. Kernel-based tests relying
on the Maximum Mean Discrepancy (MMD; Gretton et al., 2012a) as a measure of distance on
distributions are well-suited for this framework as they can identify complex non-linear features
in the data, and benefit from both strong theoretical guarantees and ease of implementation. This
explains their popularity among practitioners and justifies their wide use for real-world applications.

However, the performance of these tests is crucially impacted by the choice of kernel. This is
commonly tackled by either: choosing the kernel by some weakly data-dependent heuristic (Gretton
et al., 2012a); or splitting off a hold-out set of data for kernel selection, with the other half used for
the actual test (Gretton et al., 2012b; Sutherland et al., 2017). This latter method includes training
feature extractors such as deep kernels on the first selection half. Both of these methods can incur
a significant loss in test power, since heuristics may lead to poor kernel choices, and data splitting
reduces the number of data points for the actual test.

Our contribution is to present MMD-based tests which can strongly adapt to the data without data
splitting. This comes in two parallel parts: firstly we show how the kernel can be chosen in an
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unsupervised fashion using the entire dataset, and secondly we show how multiple such kernels can
be adaptively weighted in a single test statistic, optimising test power.

Data Splitting. The data splitting approach selects test parameters on a held-out half of the dataset,
and applies the test to the other half. Commonly, this involves optimising a kernel on held-out data
in a supervised fashion to distinguish which sample originated from which distribution, either by
learning a deep kernel directly (Sutherland et al., 2017; Liu et al., 2020, 2021), or indirectly through
the associated witness function (Kübler et al., 2022a,b). Jitkrittum et al. (2016) propose tests which
select witness function features (in either spatial or frequency space) on the held-out data, running
the analytic representation test of Chwialkowski et al. (2015) on the remaining data.

Our first contribution is to show that it is possible to learn a feature extractor for our test (e.g.,
a deep kernel) on the entirety of the data in an unsupervised manner while retaining the desired
non-asymptotic test level. Specifically, any method can be used that is ignorant of which distribution
generated which samples. We can thus leverage many feature extraction methods, from auto-encoders
(Hinton and Salakhutdinov, 2006) to recent powerful developments in self-supervised learning (He
et al., 2020; Chen et al., 2020a,b,c; Chen and He, 2021; Grill et al., 2020; Caron et al., 2020; Zbontar
et al., 2021; Li et al., 2021). Remarkably, our method applies to any permutation-based two-sample
test, even non-kernel tests, provided the parameters are chosen in this unsupervised fashion. This
includes a very wide array of MMD-based tests, and finally provides a formal justification for the
commonly-used median heuristic (Gretton et al., 2012b; Ramdas et al., 2015; Reddi et al., 2015).

Adaptive Kernel Selection. A newer approach originating in Schrab et al. (2023) performs adaptive
kernel selection through multiple testing. Aggregating several MMD-based tests with different kernels,
each on the whole dataset, results in an overall adaptive test with optimal power guarantees in terms
of minimax separation rate over Sobolev balls. Variants of this kernel adaptivity through aggregation
have been proposed with linear-time estimators (Schrab et al., 2022b), spectral regularisation (Hagrass
et al., 2022), kernel thinning compression (Domingo-Enrich et al., 2023), and in the asymptotic
regime (Chatterjee and Bhattacharya, 2023). Another adaptive approach using the entire dataset for
both kernel selection and testing is given by Kübler et al. (2020); this leverages the Post Selection
Inference framework, but the resulting test suffers from low power in practice.

While our unsupervised feature extraction method is an extremely general technique and potentially
powerful, particularly for high-dimensional structured data like images, it is not always sufficient for
data where such feature extraction is difficult. This motivates our second contribution, a method for
combining whole-dataset MMD estimates under multiple different kernels into single test statistics,
for which we prove exponential concentration. Kernel parameters such as bandwidth can then be
chosen in a non-heuristic manner to optimise power, even on data with less structure and varying
length scales. Using a single statistic also ensures that a single test can be used, instead of the multiple
testing approach outlined above, reducing computational expense.

MMD-FUSE. By combining these contributions we construct two closely related MMD-FUSE
tests. Each chooses a set of kernels based on the whole dataset in an unsupervised fashion, and then
adaptively weights and fuses this (potentially infinite) set of kernels through our new statistics; both
parts of this procedure are done using the entire dataset without splitting. On the finite sets of kernels
we use in practice, the weighting procedure is done in closed form via a weighted soft maximum. We
show these new tests to be well-calibrated and give sufficient power conditions which achieve the
minimax optimal rate in terms of MMD. In empirical comparisons, our test compares favourably to
the state-of-the-art aggregated tests in terms of power and computational cost.

Outline and Summary of Contributions. In Section 2 we outline our setting, crucial results under-
lying our work, and alternative existing approaches. Section 3 covers the construction of permutation
tests and discusses how we can choose the parameters for any such test in any unsupervised fashion
including with deep kernels and by those methods mentioned above. Section 4 introduces and moti-
vates our two proposed tests. Section 5 discusses sufficient conditions for test power (at a minimax
optimal rate in MMD), and the exponential concentration of our statistics. Finally, we show that our
test compares favourably with a wide variety of competitors in Section 6 and discuss in Section 7.
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2 Background

Two-Sample Testing. The two-sample testing problem is to determine whether two distributions p
and q are equal or not. In order to test this hypothesis, we are given access to two samples, X :=

(X1, . . . , Xn)
iid∼ p and Y := (Y1, . . . , Ym)

iid∼ q as tuples of data points with sizes n and m. We write
the combined (ordered) sample as Z := (Z1, . . . , Zn+m) = (X,Y ) = (X1, . . . , Xn, Y1, . . . , Ym).

We define the null hypothesis H0 as p = q and the alternative hypothesis H1 as p ̸= q, usually with a
requirement D(p, q) > ϵ for a distance D (such as the MMD) and some ϵ > 0. A hypothesis test ∆
is a {0, 1}-valued function of Z, which rejects the null hypothesis if ∆(Z) = 1 and fails to reject
it otherwise. It will usually be formulated to control the probability of a type I error at some level
α ∈ (0, 1), so that Pp×p(∆(Z) = 1) ≤ α, while simultaneously minimising the probability of a type
II error, Pp×q(∆(Z) = 0). In the above we have used the notation Pp×p and Pp×q to indicate that the
sample Z is either drawn from the null, p = q, or the alternative p ̸= q. Similar notation will be used
for expectations and variances. When a bound β ∈ (0, 1) on the probability of a type II error is given
(which may depend on the precise formulation of the alternative), we say the test has power 1− β.

Maximum Mean Discrepancy. The Maximum Mean Discrepancy (MMD) is a kernel-based measure
of distance between two distributions p and q, which is often used for two-sample testing. The MMD
quantifies the dissimilarity between these distributions by comparing their mean embeddings in a
reproducing kernel Hilbert space (RKHS; Aronszajn, 1950) with kernel k(·, ·). Formally, if Hk is
the RKHS associated with kernel function k, the MMD between distributions p and q is the integral
probability metric defined by:

MMDk(p, q) := sup
f∈Hk:∥f∥Hk

≤1

(EX∼p[f(X)]− EY∼q[f(Y )]) .

The minimum variance unbiased estimate of MMD2
k, is given by the sum of two U-statistics and a

sample average as:2

M̂MD2
k(Z) :=

1

n(n− 1)

∑
(i,i′)∈[n]2

k(Xi, Xi′) +
1

m(m− 1)

∑
(j,j′)∈[m]2

k(Yj , Yj′)−
2

mn

n∑
i=1

m∑
j=1

k(Xi, Yj),

where we introduced the notation [n]2 = {(i, i′) ∈ [n]2 : i ̸= i′} for the set of all pairs of distinct
indices in [n] = {1, . . . , n}. Tests based on the MMD usually reject the null when M̂MD2

k exceeds
some critical threshold, with the resulting power being greatly affected by the kernel choice. For
characteristic kernel functions (Sriperumbudur et al., 2011), it can be shown that MMDk(p, q) = 0
if and only if p = q, leading to consistency results. However, on finite sample sizes, convergence
rates of MMD estimates typically have strong dependence on the data dimension, so there are settings
in which kernels ignoring redundant or unimportant features (i.e. non-characteristic kernels) will give
higher test power in practice than characteristic kernels (which can over-weight redundant features).

Distributions Over Kernels. In our test statistic, we will consider the case where the kernel k ∈ K
is drawn from a distribution ρ ∈ M1

+(K) (with the latter notation denoting a probability measure; c.f.
Benton et al., 2019 in the Gaussian Process literature). This distribution will be adaptively chosen
based on the data subject to a regularisation term based on a “prior” π ∈ M1

+(K) and defined through
the Kullback-Liebler divergence: KL(ρ∥π) := Eρ[log(dρ/dπ)] for ρ ≪ π and KL(ρ∥π) := ∞
otherwise. When constructing these statistics the Donsker-Varadhan equality (Donsker and Varadhan,
1975), holding for any measurable g : K → R, will be useful:

sup
ρ∈M1

+(A)

Eρ[g]−KL(ρ∥π) = logEπ[exp ◦g]. (1)

This can be further related to the notion of soft maxima. If π is a uniform distribution on finite K
with |K| = r, then KL(ρ∥π) ≤ log(r). Setting g = tf for some t > 0, Equation (1) relaxes to

max
k

f(k)− log(r)

t
≤ 1

t
log

(
1

r

∑
k

etf(k)

)
≤ max

k
f(k), (2)

2Kim et al. (2022) note that M̂MD2
k can equivalently be written as a two-sample U-statistic with kernel

hk(x, x
′; y, y′) = k(x, x′) + k(y, y′)− k(x, y′)− k(x′, y), which is useful for analysis.
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which approximates the maximum with error controlled by t. Our approach in considering these
soft maxima is reminiscent of the PAC-Bayesian (McAllester, 1998; Seeger et al., 2001; Maurer,
2004; Catoni, 2007; see Guedj, 2019 or Alquier, 2021 for a survey) approach to capacity control
and generalisation. This framework has raised particular attention recently as it has been used to
provide the only non-vacuous generalisation bounds for deep neural networks (Dziugaite and Roy,
2017, 2018; Dziugaite et al., 2021; Zhou et al., 2019; Perez-Ortiz et al., 2021; Biggs and Guedj, 2021,
2022a); it has also been fruitfully applied to other varied problems from ensemble methods (Lacasse
et al., 2006, 2010; Masegosa et al., 2020; Wu et al., 2021; Zantedeschi et al., 2021; Biggs and Guedj,
2022b; Biggs et al., 2022) to online learning (Haddouche and Guedj, 2022). Our proofs draw on
techniques in that literature for U-Statistics (Lever et al., 2013) and martingales (Seldin et al., 2012;
Biggs and Guedj, 2023; Haddouche and Guedj, 2023; Chugg et al., 2023). By considering these soft
maxima, we gain a major advantage over the standard approaches, as we can obtain concentration
and power results for our statistics without incurring Bonferroni-type multiple testing penalties.

Permutation Tests. The tests we discuss in this paper use permutations of the data Z to approximate
the null distribution. We begin our discussion in a fairly general form to include other close settings
such as independence testing (Albert et al., 2022; Rindt et al., 2021) or wild bootstrap-based two-
sample tests (Fromont et al., 2012, 2013; Chwialkowski et al., 2014; Schrab et al., 2023). Let
G be a group of transformations on Z; in our setting G = Sn+m, denoting the permutation (or
symmetric) group of [N ] by SN and its elements by σ ∈ SN , σ : [N ] → [N ]. We write gZ
for the action of g ∈ G on Z; e.g. defining σZ = (Zσ(1), . . . , Zσ(n+m)) for the group elements
σ ∈ Sn+m. We will suppose Z is invariant under the action of G when the sample is drawn from the
null distribution, i.e. if the null is true than gZ =d Z (by which we notate equality of distribution)
for all g ∈ G. This is clearly the case for G = Sn+m in two-sample testing, since under the null
Z = (Z1, . . . , Zm+n)

iid∼ p with p = q, while under the alternative, the permuted sample σZ for
randomised σ ∼ Uniform(Sn+m) simulates the null distribution.

We can use permutations to construct an approximate cumulative distribution function (CDF) of our
test statistic under the null, and choose an appropriate quantile of this CDF as our test threshold,
which must be exceeded under the null with probability less that level α. For this we introduce a
quantile operator (analogous to the max and min operators) for a finite set {f(a) ∈ R : a ∈ A}:

quantile
q, a∈A

f(a) := inf

{
r ∈ R :

1

|A|
∑
a∈A

1{f(a) ≤ r} ≥ q

}
. (3)

Various different results can be used to choose the threshold giving a correct level; we will here
highlight a very general and easy-to-use theorem for constructing permutation tests, and in Section 3
will discuss previously unconsidered implications for using unsupervised feature extraction methods
as a part of our tests. Although this result is not new, we believe that its usefulness has been under-
appreciated in the kernel testing community, and can be more conveniently applied than Romano and
Wolf (2005, Lemma 1), which requires exchangeablity and is commonly used, e.g. in Albert et al.
(2022, Proposition 1) and Schrab et al. (2023, Proposition 1).
Theorem 1 (Hemerik and Goeman, 2018, Theorem 2.). Let G be a vector of elements from G,
G = (g1, g2, . . . , gB+1), with gB+1 = id (the identity permutation) for any B ≥ 1. The elements
g1, . . . , gB are drawn uniformly from G either i.i.d. or without replacement (which includes the
possibility of G = G). If τ(Z) is a statistic of Z and Z =d gZ for all g ∈ G under the null then

Pp×p,G

(
τ(Z) > quantile

1−α,g∈G
τ(gZ)

)
≤ α.

In other words, if we compare τ(Z) with the empirical quantile of τ(gZ) as a test threshold, the
type I error rate is no more than α.3 The potentially complex task of constructing a permutation
test reduces to the trivial task of choosing the statistic τ(Z). This result is also true for randomised
permutations of any number B ≥ 1 without approximation, so an exact and computationally efficient
test can be straightforwardly constructed this way.

We finally mention the related approach of the MMD Aggregated test (MMDAgg; Schrab et al.,
2023), which combines multiple MMD-based permutation tests with different kernels, and rejects if

3This test is near-exact. Specifically, if the statistic realisations are distinct (τ(gZ) ̸= τ(g′Z) for g ̸= g′) as
is common for continuous data, the level is exactly ⌊(B + 1)α⌋/(B + 1).
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any of these reject, using distinct quantiles for each kernel. To ensure the overall aggregated test is
well-calibrated, these quantiles must be adjusted using a second level of permutations. This incurs
additional computational cost, a pitfall avoided by our fused single statistic.

Faster Sub-Optimal Tests. While the main focus of this paper revolves around the kernel selection
problem for optimal, quadratic MMD testing, we also highlight the existence of a rich literature
on efficient kernel tests which run in linear (or near-linear) time. These speed improvements are
achieved using various tools such as: incomplete U-statistics (Gretton et al., 2012b; Yamada et al.,
2019; Lim et al., 2020; Kübler et al., 2020; Schrab et al., 2022b), block U-statistics (Zaremba et al.,
2013; Deka and Sutherland, 2022), eigenspectrum approximations (Gretton et al., 2009), Nyström
approximations (Cherfaoui et al., 2022), random Fourier features (Zhao and Meng, 2015), analytic
representations (Chwialkowski et al., 2015; Jitkrittum et al., 2016), deep linear kernels (Kirchler
et al., 2020), kernel thinning (Dwivedi and Mackey, 2021; Domingo-Enrich et al., 2023), etc.

The efficiency of these tests usually entail weaker theoretical power guarantees compared to their
quadratic-time counterparts, which are minimax optimal4 (Kim et al., 2022; Li and Yuan, 2019;
Fromont et al., 2013; Schrab et al., 2023; Chatterjee and Bhattacharya, 2023). These optimal quadratic
tests are either permutation-based non-asymptotic tests (Kim et al., 2022; Schrab et al., 2023) or
studentised asymptotic tests (Kim and Ramdas, 2023; Shekhar et al., 2022; Li and Yuan, 2019; Gao
and Shao, 2022; Florian et al., 2023). We emphasise that the parameters of any of these permutation-
based two-sample tests can be chosen in the unsupervised way we outline in Section 3. We choose
to focus in this work on optimal quadratic-time results, but note that our general approach could be
extended to sub-optimal faster tests as well.

3 Learning Statistics for Permutation Tests

Here we discuss how we can improve permutation-based tests by learning parameters for them
in an unsupervised manner. The reason that we highlighted Theorem 1 in the previous section is
that it holds for any τ . For example, we could use the MMD with a kernel chosen based on the
data, τ(Z) = M̂MD2

k=k(Z)(Z); however, for each permutation σ we would need to re-compute

τ(σZ) = M̂MD2
k=k(σZ)(σZ), so the kernel being used would be different for each permutation.

This has two major disadvantages: firstly, it might be computationally expensive to re-compute k for
each permutation, especially for a deep kernel5. Secondly, the scale of the resulting MMD could be
dramatically different for each permutation, so the empirical quantile might not lead to a powerful
test. This second problem is related to the problem of combining multiple different MMD values into
a single test which our MMD-FUSE statistics are designed to combat (Section 4; c.f. also MMDAgg,
Schrab et al., 2023).

Our Proposal. In two-sample testing we propose to use a statistic τθ parameterised by some θ, where
θ is fixed for all permutations, but depends on the data in an unsupervised or permutation-invariant
way. Specifically, we allow such a parameter to depend on ⟨Z⟩ := {Z1, . . . , Zn+m}, the unordered
combined sample. Since our tests will not depend on the internal ordering of X and Y (which are
assumed i.i.d. under both hypotheses), the only additional information contained in Z over ⟨Z⟩ is
the label assigning Zi to its initial sample. This is justified since ⟨Z⟩ = ⟨σZ⟩ for all σ ∈ Sn+m, so
setting τ(Z) = τθ(⟨Z⟩)(Z) gives a fixed θ and statistic for all permutations to use in Theorem 1. The
information in ⟨Z⟩ can be used to fine-tune test parameters for any test fitting this setup. This solves
both the computation and scaling issues mentioned above.

The above provides a first formal justification for the use of the median heuristic in Gretton et al.
(2012a), since it is a permutation-invariant function of the data. However, a far richer set of possi-
bilities are available even when restricting ourselves to these permutation-free functions of Z. For
example, we can use any unsupervised or self-supervised learning method to learn representations
to use as the input to an MMD-based test statistic, while paying no cost in terms of calibration and
needing to train such methods only once. Given the wide variety of methods dedicated to feature
extraction and dimensionality reduction, this opens up a huge range of possibilities for the design of
new and principled two-sample tests. The simplicity and generality of our proposal might lead one to

4With the exception of the near-linear test of Domingo-Enrich et al. (2023) which achieves the same MMD
separation rate as the quadratic test but under stronger assumptions on the data distributions.

5A possibility envisaged by e.g. Liu et al. (2020) and dismissed due to the computational infeasability.
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expect that this idea has been used before, but it has not to our best knowledge, underlined by the
fact that the median heuristic has been widely used without such justification when one follows from
this method. This potentially powerful and widely-applicable possibility represents one of our most
practical contributions.

4 MMD-FUSE: Fusing U-Statistics by Exponentiation

Say we have computed several MMD values M̂MD2
k under different kernels k ∈ K. How might we

combine these? One possibility is to perform multiple testing as in the case of MMDAgg. An even
simpler approach would simply take the maximum of those values maxk M̂MD2

k since Theorem 1
shows that this will not prevent us from controlling the level of our test by α; note though that for
each permutation we would take this maximum separately. Indeed, Cárcamo et al. (2022) show
that for certain kernel choices the supremum of the MMD values with respect to the bandwidth is a
valid integral probability metric (Müller, 1997). There are two main problems with this approach: a
capacity control issue and a normalisation issue.

Firstly, if the class over which we are maximising is sufficiently rich (for example a complex neural
network), then the maximum may be able to effectively memorise the entire sample for each possible
permutation, saturating the statistic for every permutation and limiting test power. Any convergence
results would need to hold simultaneously for every k in K, and so power results suffer: for finite
|K| we would incur a sub-optimal Bonferroni correction (see Section 5); while for infinite classes,
results would need to involve capacity control quantities like Rademacher complexity. Further, only
information from a single maximising “base” kernel can be considered at a time.

Therefore, in both our statistics, we prefer a “soft” maximum, which considers information from
every kernel simultaneously and when more than one of the kernels is well-suited (Section 5) it
therefore avoids the Bonferroni correction arising from uniform bounds. From Equation (1), our
approach is equivalent to using a KL complexity penalty, and is strongly reminiscent of PAC-Bayesian
(Section 2) capacity control. We note that other soft maxima could be considered, but our choice
makes obtaining exponential concentration inequalities relatively easy (Appendix C), and the dual
formulation (Equation (2)) allows us to derive power results in terms of MMD directly.

The second issue is that the MMD estimates might have different scales or variances per kernel which
need to be accounted for. In order to be able to meaningfully compare MMD values between each
other, these need to be normalised somehow before taking a maximum. We use the common approach
of dividing through by a variance-like term (as in “studentised” tests, see Section 2). The specific
normaliser is permutation invariant and gives our statistic tight sub-Gaussian null concentration (for
well-chosen regularisation parameter λ; see Appendix C).

Based on the above we introduce the FUSE-1 statistic which uses a log-sum-exp soft maximum, and
the FUSE-N which combines this with normalisation. Both statistics use a “prior” distribution on K,
denoted π(⟨Z⟩), which is either fixed independently of the data, or is a function of the data which is
invariant under permutation (as discussed in Section 3).

Definition 1. We define the un-normalised (subscript 1 for normaliser of 1) and normalised (subscript
N) test statistics with parameter λ > 0, respectively, as

F̂USE1(Z) :=
1

λ
log
(
Ek∼π(⟨Z⟩)

[
exp

(
λM̂MD2

k(X,Y )
)])

,

F̂USEN (Z) :=
1

λ
log

Ek∼π(⟨Z⟩)

exp
λM̂MD2

k(X,Y )√
N̂k(Z)

 ,

where N̂k(Z) := 1
n(n−1)

∑
(i,j)∈[n+m]2

k(Zi, Zj)
2 is permutation invariant.

Although these statistics appear complex, we note that in the case where π has finite support, their
calculation reduces to a log-sum-exp of MMD estimates normalised by N̂k. This is even clearer when
π is also uniform on its support, as we consider experimentally; then Equation (2) shows that our
statistics reduce to soft maxima, with λ controlling the smoothness or “temperature”.
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From this, we define the FUSE-1 test (with the FUSE-N test ∆FUSEN
defined analogously) as

∆FUSE1(Z) := 1

{
F̂USE1(Z) > quantile

1−α,σ∈S
F̂USE1(σZ)

}
(4)

for sampled set S of permutations as described above. It compares the test statistic F̂USE1 with its
quantiles under permutation, and rejects if the overall value exceeds a quantile controlled by α. Note
that since N̂k(Z) is permutation invariant, it only needs to be calculated once per kernel in ∆FUSEN

(and not separately for each permutation) as per Section 3. See Appendix A.5 for its time complexity.

Comparison with MMDAgg. MMDAgg is a different way to think about combining multiple kernels
and MMD values, but it relies on a framework based on multiple testing. This can be problematic
in the case where the number of kernels considered is large, since as this number increases in the
multiple testing approach MMDAgg, the level needs to be corrected differently, so its theretical
power behaviour becomes unclear (though empirically MMDAgg retains its power in this setting).
By contrast, our proposed FUSE methods avoid multiple testing as a single statistic and quantile are
used, avoiding such issues. The FUSE statistics are even defined in the limit of an infinite number of
kernels (continuous/uncountable collection of kernels) by considering distributions on the space of
kernels, which is not the case for MMDAgg. Moreover, while the MMDAgg approach is only useful
for hypothesis testing, having a quantity like FUSE combining multiple kernel-based measures of
distance with exponential concentration bounds could be of interest in a wider range of applications.

FUSE-1 and the Mean Kernel. Although the un-normalised test has worse performance in practice
than our normalised test, the FUSE-1 statistic is interesting in its own right because of various
theoretical properties, as we discuss below. Firstly, we introduce the mean kernel Kρ(x, y) =
Ek∼ρk(x, y) under a “posterior” ρ ∈ M1

+(K), which is indeed a reproducing kernel in its own right.
In the finite case, this is simply a weighted sum of “base” kernels.

Note that the linearity of M̂MD2
k and MMD2

k in the kernel k implies that Ek∼ρ MMD2
k(p, q) =

MMD2
Kρ

(p, q), and similarly for M̂MD2
k, with these terms appearing in our power results (Section 5).

Combining this linearity with the dual formulation of F̂USE1 via Equation (1) gives

F̂USE1(Z) = sup
ρ∈M1

+(K)

M̂MD2
Kρ

(X,Y )− KL(ρ, π)

λ
.

This re-states F̂USE1 in terms of “posterior” ρ, and makes the interpretation of our statistic as
a KL-regularised kernel-learning method clear. In the finite case, our test simply optimises the
weightings of the different kernels in a constrained way. We note that for certain infinite kernel sets
and choices of prior it is be possible to express the mean kernel in closed form. This happens because,
e.g. the expectation of a Gaussian kernel with respect to a Gamma prior over the bandwidth is simply
a (closed form) rational quadratic kernel. We discuss this point further in Appendix B.

5 Theoretical Power of MMD-FUSE

In this section we outline possible sufficient conditions for our tests to obtain power at least 1− β
at given level α. The conditions will depend on a fixed data-independent “prior” π ∈ M1

+(K) and
thus hold even without unsupervised parameter optimisation. They are stated as requirements for the
existence of a “posterior” ρ ∈ M1

+(K) with corresponding mean kernel Kρ as defined in Section 4.
In the finite case, Kρ is simply a weighted sum of kernels, so these requirements are also satisfied
under the same conditions for any single kernel, corresponding to the case where the posterior puts
all its weight on a single kernel.

Technically, these results require that there is some constant κ upper bounding all of the kernels, and
that n and m are within a constant multiple (i.e. n ≤ m ≤ cn for some c ≥ 1, notated n ≍ m). They
hold when using randomised permutations provided B > c′α−2 log(β−1) for small constant c′ > 0.
Theorem 2 (FUSE-1 Power). Fix prior π independently of the data. For the un-normalised test
FUSE-1 with λ ≍ n/κ and n ≍ m, there exists a universal constant C > 0 such that

∃ρ ∈ M1
+(K) : MMD2

Kρ
(p, q) >

Cκ

n

(
1

β
+ log

1

α
+KL(ρ, π)

)
.

is sufficient for FUSE-1 to achieve power at least 1− β at level α.
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A similar result is obtained for FUSE-N under an assumption that the normalising term is well
behaved (see assumption in Theorem 3). This requirement will be satisfied for kernels (including
most common ones) that tend to zero only in the limit of the data being infinitely far apart.
Theorem 3 (FUSE-N Power). Fix prior π independently of the data such that for all k ∈ supp(π)

the expectation EZ∼p×q[N̂k(Z)−1] < c/κ is bounded for some c < ∞. For the normalised test
FUSE-N with λ ≍ n ≍ m, there exists a universal constant C > 0 such that

∃ρ ∈ M1
+(K) : MMD2

Kρ
(p, q) >

Cκ

n

(
1

β2
+ log

1

α
+KL(ρ, π)

)
.

is sufficient for FUSE-N to achieve power at least 1− β at level α.

Discussion. The conditions in Theorems 2 and 3 give the optimal MMD2 separation rate in n
(Domingo-Enrich et al., 2023, Proposition 2). These results also imply consistency if the prior π
assigns non-zero weight to characteristic kernels.6 Applying these results to uniform priors supported
on r points, the KL penalty can be upper bounded as KL(ρ, π) ≤ log(r). Thus in the worst case,
where only a single kernel achieves large MMD2

k(p, q), the price paid for adaptivity is only log(r). In
many cases, most of the kernels will give large MMD2

k(p, q). The posterior will then mirror the prior,
and this KL penalty will be even smaller. Thus very large numbers of kernels could be considered,
and if all give large MMD values the power would not be greatly affected.

Additional Technical Results. Aside from the presentation of our new statistics and tests, we make
a number of technical contributions on the way to proving Theorems 2 and 3, as well as proving
some additional results. In particular, we give exponential concentration bounds for our statistics
under permutations and the null, which do not require bounded kernels. This refined analysis requires
the construction of a coupled Rademacher chaos and concentration thereof. We obtain intermediate
results using variances from the proofs of Theorems 2 and 3 that could be used in future work to
obtain power guarantees under alternative assumptions such as Sobolev spaces (Schrab et al., 2023).
Finally, we prove exponential concentration for F̂USE1 under the alternative and bounded kernels,
requiring the proof of a “PAC-Bayesian” bounded differences-type concentration inequality. See the
appendix for a more detailed overview.

6 Experiments

We compare the test power of MMD-FUSE-N (λ =
√
n(n− 1)) against various MMD-based kernel

selective tests (see Section 1 for details) using: the median heuristic (MMD-Median; Gretton et al.,
2012a), data splitting (MMD-Split; Sutherland et al., 2017), analytic Mean Embeddings and Smooth
Characteristic Functions (ME & SCF; Jitkrittum et al., 2016), the MMD Deep kernel (MMD-D;
Liu et al., 2020), Automated Machine Learning (AutoML; Kübler et al., 2022b), kernel thinning
to (Aggregate) Compress Then Test (CTT & ACTT; Domingo-Enrich et al., 2023), and MMD
Aggregated (Incomplete) tests (MMDAgg & MMDAggInc; Schrab et al., 2023, 2022b). Additional
details and code link for experimental reproducibility are provided in Appendix A.

Distribution on Kernels. We choose our kernel prior distribution π as uniform over a collection of
Gaussian, kgγ(x, y) = exp

(
−∥x−y∥22

/
2γ2
)
, and Laplace, kℓγ(x, y) = exp

(
−
√
2∥x−y∥1

/
γ
)
, kernels

with various bandwidths γ > 0. These bandwidths are chosen as the uniform discretisation of the
interval between half the 5% and twice the 95% quantiles (for robustness) of {∥z− z′∥r : z, z′ ∈ Z},
with r ∈ {1, 2}, respectively. This choice is similar to that of Schrab et al. (2023, Section 5.2),
who empirically show that ten points for the discretisation is sufficient (Schrab et al., 2023, Figure
6), which we verify in Appendix A.4. This set of distances is permutation-invariant, so Theorem 1
guarantees a well-calibrated test even though the kernels are data-dependent.

Mixture of Gaussians. Our first experiments (Figure 1) consider multimodal distributions p and q,
each a 2-dimensional mixture of four Gaussians with means (±µ,±µ) with µ = 20 and diagonal
covariances. For p, the four components all have unit variances, while for q we vary the standard
deviation σ of one of the Gaussians, σ = 1 corresponds to the null hypothesis p = q. Intuitively, an
appropriate kernel bandwidth to distinguish p from q would correspond to that separating Gaussians

6Under this condition KL(ν, π)<∞ with ν the restriction of π to characteristic kernels. Kν is characteristic
so MMDKν (p, q)>0 ⇐⇒ p ̸= q, and our condition lower bound tends to zero with n → ∞.
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Figure 1: Power experiments. The four columns correspond to different settings: Mixture of
Gaussians in two dimensions (null σ = 1), Perturbed Uniform for d ∈ {1, 2} (null a = 0), and
Galaxy MNIST in dimension 12288 (null c = 0). In the first row, the deviations away from the null
are varied for fixed sample size m = n = 500. In the second row, the sample size varies while the
deviations are fixed as σ = 1.3, a = 0.2, a = 0.4, and c = 0.15, for the four respective problems.
The plots correspond to the rejections of the null averaged over 200 repetitions.

with standard deviations 1 and σ. This is significantly smaller than the median bandwidth which
scales with the distance µ between modes.

Table 1: Test power for detecting the
difference between CIFAR-10 and
CIFAR-10.1 images with test level
α = 0.05. The averaged numbers of
rejections over 1000 repetitions are
reported.

Tests Power

MMD-FUSE 0.937
MMDAgg 0.883
MMD-D 0.744

CTT 0.711
MMD-Median 0.678

ACTT 0.652
ME 0.588

AutoML 0.544
C2ST-L 0.529
C2ST-S 0.452
MMD-O 0.316

MMDAggInc 0.281
SCF 0.171

Perturbed Uniform. In Figure 1, we report test power for
detecting perturbations on uniform distributions in one and
two dimensions. We vary the amplitude a of two perturbations
from a = 0 (null) to a = 1 (maximum value for the density
to remain non-negative). A similar benchmark was first pro-
posed by Schrab et al. (2023, Section 5.5) and considered in
several other works (Schrab et al., 2022b; Hagrass et al., 2022;
Chatterjee and Bhattacharya, 2023). Different bandwidths are
required to detect different amplitudes of the perturbations.

Galaxy MNIST. We examine performance on real-world data
in Figure 1, through galaxy images (Walmsley et al., 2022)
in dimension d = 3×64×64 = 12288 captured by a ground-
based telescope. These consist of four classes: ‘smooth and
cigar-shaped’, ‘edge-on-disk’, ‘unbarred spiral’, and ‘smooth
and round’. One distribution uniformly samples images from
the first three categories, while the other does the same with
probability 1− c and uniformly samples a ‘smooth and round’
galaxy image with probability of corruption c ∈ [0, 1]. The
null hypothesis corresponds to the case c = 0.

CIFAR 10 vs 10.1. The aim of this experiment is to detect the
difference between images from the CIFAR-10 (Krizhevsky,
2009) and CIFAR-10.1 (Recht et al., 2019) test sets. This is a
challenging problem as CIFAR-10.1 was specifically created to
consist of new samples from the CIFAR-10 distribution so that
it can be used as an alternative test set for models trained on
CIFAR-10. Samples from the two distributions are presented
in Figure 6 in Appendix A.3 (Liu et al., 2020, Figure 5). This
benchmark was proposed by Liu et al. (2020, Table 3) who introduced the deep MMD test MMD-D
and the MMD-Split test (here referred to as MMD-O to point out that their implementation has
been used rather than ours). They also compare to ME and SCF, as well as to C2ST-L and C2ST-S
(Lopez-Paz and Oquab, 2017) which correspond to Classifier Two-Sample Tests based on Sign or
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Linear kernels. For the tests slitting the data, 1000 images from both datasets are used for parameter
selection and/or model training, and 1021 other images from each distributions are used for testing.
Consequently, tests avoiding data splitting are given the full 2021 images from CIFAR-10.1 and 2021
images sampled from CIFAR-10.

Experimental Results of Figure 1. We observe similar trends in all eight experiments in Figure 1:
MMD-FUSE matches the power of state-of-the-art MMDAgg while being computationally faster
(both theoretically and practically). These two tests consistently obtain the highest power in every
experiment, except when increasing the number of Galaxy MNIST images where MMD-D obtains
higher power. However, we observe in Table 1 that MMD-FUSE outperforms MMD-D on another
image data problem, also with large sample size. On synthetic data, the deep kernel test MMD-D
surprisingly only obtains power similar to MMD-Split in most experiments (even lower in the 2-
dimensional perturbed uniform experiment). The two near-linear aggregated variants ACTT and
MMDAggInc trade-off a small portion of test power for computational efficiency, with the former
outperforming the latter for large sample sizes. The importance of kernel selection is emphasised
by the fact that the two tests using the median bandwidth (MMD-Median and CTT) achieve very
low power. While the linear-time SCF test, based in the frequency domain, attains high power in
the Mixture of Gaussians experiments, it has low power in the three other experiments. Its spatial
domain variant ME performs better on Perturbed Uniform d ∈ {1, 2} experiments but in general still
has reduced power compared to both linear and quadratic time alternatives. Finally, the AutoML test
performs well for fixed sample size m = n = 500 (first row of Figure 1), but its power compared to
other tests considerably deteriorates as the sample size increases (second row of Figure 1). Overall,
MMD-FUSE achieves state-of-the-art performance across all experiments on both low-dimensional
synthetic data and high-dimensional real-world data.

Experimental Results of Table 1. We report in Table 1 the power achieved by each test on the
CIFAR 10 vs 10.1 experiment, which is averaged over 1000 repetitions. We observe that MMD-FUSE
performs the best and obtains power 0.937, which means that out of 1000 repetitions, it was 937
times able to distinguish between samples from CIFAR-10 and from CIFAR-10.1. This demonstrates
that the images in CIFAR-10.1 do not come from the same distribution as those in CIFAR-10.

Experimental Results of Figure 7. We observe in Figure 7 of Appendix A.4 that MMD-FUSE can
achieve higher power than MMDAgg in some additional perturbed uniform experiment. We also
note that using a relatively small number of kernels (e.g., 10) is enough to capture all the required
information, and that the test power is retained when further increasing the number of kernels.

7 Conclusions

In this work, we propose MMD-FUSE, an MMD-based test which fuses kernels through a soft
maximum and a method for learning general two-sample testing parameters in an unsupervised
fashion. We demonstrate the empirical performance of MMD-FUSE and show that it achieves the
optimal MMD separation rate guaranteeing high test power. This optimality holds with respect to the
sample size and likely also for the logarithmic dependence in α, but we believe the dependence on β
could be improved in future work; a general question is whether lower bounds in terms of α and β
can be proved. Obtaining separation rates in terms of the L2-norm between the densities (Schrab
et al., 2023) may also be possible but challenging since this distance is independent of the kernel.

An open question is in explaining the significant empirical power advantage of the normalised test
over its un-normalised variant, which is currently not reflected in the derived rates. The importance
of this normalisation is clear when considering kernels with different bandwidths, leading to vastly
different scaling in the un-normalised permutation distributions. Work here could begin with finite-
sample concentration guarantees for our normalised statistic or other “studentised” variants, some of
which might obtain better performance.

Future work could also examine computationally efficient variants of MMD-FUSE, by either relying
on incomplete U -statistics (Schrab et al., 2022b) and leading to suboptimal rates, or by relying on
recent ideas of kernel thinning (Domingo-Enrich et al., 2023) which can lead to the same optimal
rate under stronger assumptions on the data distributions, or by considering the permutation-free
approach of Shekhar et al. (2022). Finally, our two-sample MMD fusing approach could be extended
to the HSIC independence framework (Gretton et al., 2005, 2008; Albert et al., 2022) and to the KSD
goodness-of-fit setting (Chwialkowski et al., 2016; Liu et al., 2016; Schrab et al., 2022a).
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Overview of Appendices

Appendix A We give further experimental details, discuss time complexity of our results while
graphing run-times.

Appendix B We discuss how F̂USE1 can be expressed in a simple form for certain uncountable
priors.

Appendix C We prove exponential concentration bounds for both our statistics under the null and
permutations.

Appendix D We prove exponential concentration bounds for the F̂USE1 statistic under the alterna-
tive hypothesis.

Appendix E We prove the power results stated in Section 5 and other interesting intermediate results.

A Additional Experimental Details

A.1 Code and licenses

Our implementation of MMD-FUSE in Jax (Bradbury et al., 2018), as well as the code for the
reproducibility of the experiments, are made publicly available at:

https://github.com/antoninschrab/mmdfuse-paper

Our code is under the MIT License, and we also implement ourselves the MMD-Median (Gretton
et al., 2012a) and MMD-Split (Sutherland et al., 2017) tests. For ME & SCF (Jitkrittum et al., 2016),
MMD-D (Liu et al., 2020), AutoML (Kübler et al., 2022b), CTT & ACTT (Domingo-Enrich et al.,
2023), MMDAgg & MMDAggInc (Schrab et al., 2023, 2022b), we use the implementations of the
respective authors, which are all under the MIT license.

The experiments were run on an AMD Ryzen Threadripper 3960X 24 Cores 128Gb RAM CPU at
3.8GHz and on an NVIDIA RTX A5000 24Gb Graphics Card, with a compute time of a couple of
hours.

A.2 Test parameters

In general, we use the default test parameters recommended by the authors of the tests (listed above).
For the ME and SCF tests, ten test locations are chosen on half of the data. AutoML is run with the
recommended training time limit of one minute.

Kernels. As explained in Section 6 (§Distribution on Kernels), for MMD-Fuse, we use Gaussian
and Laplace kernels with bandwidths in {qr5% + i(qr95% − qr5%)/9 : i = 0, . . . , 9} where qr5% is half
the 5% quantile of all the inter-sample distances {∥z − z′∥r : z, z′ ∈ Z} with r = 1 and r = 2 for
Laplace and Gaussian kernels, respectively. Similarly, qr95% is twice the 95% quantile.

MMD-Split selects a Gaussian kernel on half of the data with bandwidth in {qr5%+i(qr95%−qr5%)/99 :
i = 0, . . . , 99} by maximizing a proxy for asymptotic power which is the ratio of the estimated
MMD with its estimated standard deviation under the alternative (Liu et al., 2020, Equation 3). The
MMD test is then run on the other half with the selected kernel.

CTT and MMD-Median both use a Gaussian kernel with bandwidth the median of {∥z − z′∥2 :
z, z′ ∈ Z}, while ACTT is run with Gaussian kernels with bandwidths in {q25% + i(q295% − q25%)/9 :
i = 0, . . . , 9}.

The MMDAgg and MMDAggInc tests are run with their default implementations, which similarly
use collections of 20 kernels split equally between Gaussian and Laplace kernels with ten bandwidths
each, but they use a different (non-uniform) discretisation of the intervals [qr95%, q

r
5%].

Permutations. For MMD-Median, MMD-Split, and MMD-FUSE, we use 2000 permutations to
estimate the quantiles. MMDAgg and MMDAggInc use 2000 + 2000 and 500 + 500 permutations,
respectively, to approximate the quantiles and the multiple testing correction. The CTT and ACTT
tests are run with 39 and 299 + 200 permutations, respectively. AutoML uses 10000 permutations
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and MMD-D 100 of them. The ME and SCF tests use asymptotic quantiles. We recall that using a
higher number of permutations for the quantile does not necessarily lead to a more powerful test
(Rindt et al., 2021, Section 7).

A.3 Details on the experiments of Section 6

In this section, we present figures illustrating the four experimental settings described in Section 6
with results in Figure 1: Mixture of Gaussians (Figure 2), Perturbed Uniform d = 1 (Figure 3),
Perturbed Uniform d = 2 (Figure 4), Galaxy MNIST (Figure 5), and CIFAR 10 vs 10.1 (Figure 6).
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Figure 2: Mixture of Gaussians. Both distributions are mixtures of four 2-dimensional Gaussians
with means (±20,±20) and standard deviations σ1 = σ2 = σ3 = 1. Samples from p (orange) are
drawn with σ4 = 1, while samples from q (blue) are drawn with σ4 = 2.
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Figure 3: Perturbed Uniform d = 1. One-dimensional uniform densities with two perturbations are
plotted for various amplitudes a.
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Figure 4: Perturbed Uniform d = 2. Two-dimensional uniform densities with two perturbations per
dimension are plotted for various amplitudes a.

Figure 5: Galaxy MNIST (Walmsley et al., 2022) images in dimension 3 × 64 × 64 across four
categories: ‘smooth cigar’ (first row), ‘edge on disk’ (second row), ‘unbarred spiral’ (third row), and
‘smooth round’ (fourth row).
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(a) CIFAR-10 images (b) CIFAR-10.1 images

Figure 6: Images from the CIFAR-10 (Krizhevsky, 2009) and CIFAR-10.1 (Recht et al., 2019) test
sets. This figure corresponds to Figure 5 of Liu et al. (2020).
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A.4 Experiment varying the number of kernels

In Figure 7, we provide an additional perturbed uniform experiment where we vary the number of
kernels for MMD-FUSE and for MMDAgg. We consider the task of detecting six one-dimensional
perturbations with amplitude a = 0.5 for sample sizes m = n = 500 while varying the number of
Gaussian and Laplace kernels from 10 to 1000.

Firstly, we observe that MMD-FUSE achieves higher power than MMDAgg in this setting. Secondly,
both MMD-FUSE and MMDAgg retain their power when increasing the number of bandwidths. This
matches the empirical observation of Schrab et al. (2023, Section 5.7) that a discretisation of 10
bandwidths is enough to capture all the information in certain two-sample problems and that using a
finer discretisation (which is computationally more expensive) does not improve the test power.
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Figure 7: Power experiment with perturbed uniform samples while varying the number of kernels.

A.5 Time complexity and runtimes

The time complexity of MMD-FUSE is

O
(
KB

(
m2 + n2

))
(5)

where m and n are the sizes of the two samples, K is the number of kernels fused, and B is the
number of permutations to estimate the quantile. Note that this is an improvement over the time
complexity of MMDAgg (Schrab et al., 2023)

O
(
K
(
B +B′)(m2 + n2

))
(6)

where the extra parameterB′ corresponds to the number of permutations used to estimate the multiple
testing correction, often set as B′ = B in practice (Schrab et al., 2023, Section 5.2). We indeed
observe in Figure 8 that MMD-FUSE runs twice as fast as MMDAgg.7

While the runtimes of most tests should not depend on the type of data (only on the sample size and
on the dimension), we note that the runtimes of tests relying on optimisation (e.g. ME & SCF) can be
affected. In the experiment of Figure 8, we consider samples from multivariate Gaussians centred
at zero with covariance matrices Id and σId with σ = 1.1. We vary both the sample sizes and the
dimensions.

7The two constants hidden in the O-notations of Equations (5) and (6) are exactly the same, which is indeed
verified by our empirical observations.
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Figure 8: Test runtimes plotted using logarithmic scales. In the LHS figure, we vary the sample size
for fixed dimension 10. In the RHS figure, we vary the dimension for fixed sample size 500. The
mean and standard deviations of the test runtimes over ten repetitions are reported. Recall that the
tests are run with their default parameters with different numbers of permutations, and that AutoML
has a training time parameter which is set to 60 seconds by default, as described in Appendix A.2.

23



B Closed Form Mean Kernel

We have observed in the main text that in some cases where the prior has non-finite support, F̂USE1

still gives a straightforwardly expressed statistic. This happens because for certain kernel choices, the
expectation of the kernel with respect to some parameter is still a closed form kernel. We give one
example of such a statistic here.

Theorem 4. For any fixed α > 0, the following is an example of a F̂USE1 statistic:

F̂USE
rq

1 (Z) = sup
R>0

M̂MD2
krq(α,

√
Rη0)

(Z)− α · logR+ 1/R− 1

λ

where krq(α,η) = (1 + ∥x − y∥2/2η2)−α is a rational quadratic kernel, and η0 is the “prior”
bandwidth (which can essentially be absorbed into the data scaling).

Proof of Theorem 4. Firstly, we define a general rational quadratic kernel

krq(α,η)(x, y) =

(
1 +

∥x− y∥22
2η2

)−α

.

Note that kg(r) = e−τr2/2 with r = ∥x− y∥2 is a bounded kernel with parameter τ . If we take the
expectation of τ with respect to a Gamma distribution,

Eτ∼Γ(α,β)e
−τr2/2 =

βα

Γ(α)

∫ ∞

−∞
τα−1 exp(−τβ) exp(−τr2/2) dτ

=
βα

Γ(α)
Γ(α)

(
β +

r2

2

)−α

=

(
1 +

r2

2β

)−α

= krq(α,
√
β)(r)

where Γ denotes the gamma function. The KL divergence between Gamma distributions is

KL(Γ(α, β),Γ(α0, β0)) = (α− α0)ψ(α) + log
Γ(α0)

Γ(α)
+ α0 logR+ α

(
1

R
− 1

)
where R = β/β0 and ψ(α) := Γ′(α)/Γ(α) denotes the digamma function. Using the dual form of
F̂USE1 we find that

F̂USE1 = sup
α>0,β>0

M̂MD2
krq(α,

√
β)
(Z)− KL(Γ(α, β),Γ(α0, β0))

λ
.

Restricting α = α0, prior β0 = η20 and setting β = Rη20 gives the result.
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C Null and Permutation Concentration Results

In this section we prove the following concentration results under the null (or equivalently, under
the permutation distribution). These results show that for appropriate choices of λ, both statistics
converge to zero at rate at least O(1/n) under the null or permutations. We recall that without loss of
generality n ≤ m.
Theorem 5. For bounded kernels k ≤ κ <∞ and parameter λ, with probability at least 1− δ over
a sample Z from the null,

F̂USE1(Z) ≤ 4κ2λ

n(n− 1)
+

log 1
δ

λ

provided 0 < λ <
√
n(n− 1)/8

√
2κ, and

−F̂USE1(Z) ≤ 1 + 32 log 1
δ√

2n(n− 1)
· κ
2
.

For potentially unbounded kernels and parameter λ, with probability at least 1− δ over a sample Z
from the null,

F̂USEN (Z) ≤ 16λ

n(n− 1)
+

log 1
δ

λ
,

provided 0 < λ <
√
n(n− 1)/16

√
2, and

−F̂USEN (Z) ≤ 1 + 32 log 1
δ√

2n(n− 1)
.

The above bounds are also valid for F̂USE1(σZ), F̂USEN (σZ) and any fixed Z (potentially non-
null) under permutation by σ ∼ Uniform(Sn+m).

While the upper bounds depend critically upon our choice of λ, the lower bounds instead hold
regardless of λ. Choosing λ ≍

√
n(n− 1) ≍ n gives the desired upper bound rates O(1/n).

C.1 Sub-Gaussian Chaos Theorem

We provided constants for Theorem 5, even though they are not strictly necessary, as we hope they
could be useful when adapting FUSE statistics to other settings. In particular, the constants help
understand for which values of λ the bounds hold, and to understand the relation between the two
different right hand side terms which can be matched by tuning λ. In provide these constants, in this
subsection we replicate the proof of a sub-result from Rudelson and Vershynin (2013), but unlike
in that paper we explicitly keep track of the constants. To be clear, Rudelson and Vershynin (2013)
does not give numerical constants at all (only their existence is proved), and we need then for our
statement of Theorem 5. We do not claim this as a contribution, the proof is only included so that we
are not stating the numerical constants without justification.
Theorem 6 (Sub-Gaussian Chaos; adapted from Rudelson and Vershynin, 2013). Let Xi be mean-
zero 1-sub-Gaussian variables, such that logEX exp(tX) ≤ 1

2 t
2 for every t ∈ R. Let A ∈ Rn×n be

a real symmetric matrix with zeros on the diagonal and we define the sub-Gaussian chaos

W :=

n∑
i=1

n∑
j=1

AijXiXj .

For all |t| ≤ (4
√
2∥A∥)−1,

EX exp(tW ) ≤ exp
(
16t2∥A∥2F

)
.

Proof. This proof is closely adapted from Rudelson and Vershynin (2013) with some modifications
to explicitly track numerical constants.

Let Xi be mean-zero 1-sub-Gaussian variables, such that logEX exp(tX) ≤ 1
2 t

2 for every t ∈ R.
We are considering

W :=
∑
i,j

AijXiXj
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where Aij has zeros on the diagonal. We introduce independent Bernoulli random variables δi ∈
{0, 1} with Eδi = 1/2 and define the matrix Aδ with entries (Aδ)ij = δi(1 − δj)Aij . Note that
EδA

δ = 1
4A, since Eδi(1− δj) equals 1/4 for i ̸= j.

Writing the set of indices Λδ = {i ∈ [n] : δi = 1}, we introduce

Wδ :=
∑
i,j

Aδ
ijXiXj =

∑
i∈Λδ, j∈Λc

δ

AijXiXj =
∑
j∈Λc

δ

Xj

( ∑
i∈Λδ

AijXi

)
.

By Jensen’s inequality,
EX exp(tW ) ≤ EX,δ exp(4tWδ).

Conditioned on δ and (Xi)i∈Λδ
, Wδ is a linear combination of the mean-zero sub-gaussian random

variables Xj , j ∈ Λc
δ . It follows that this conditional distribution of Wδ is sub-gaussian, and so

E(Xj)j∈Λc
δ
exp(4tWδ) ≤ exp

1

2
(4t)2

∑
j∈Λc

δ

( ∑
i∈Λδ

AijXi

)2 .

Now introduce g = (g1, . . . , gn) ∼ N (0, 1) i.i.d. draws from a normal and note that the above can
also arise directly as the moment generating function of these Normal variables, so we make the
further equality (for fixed X and δ),

exp

1

2
(4t)2

∑
j∈Λc

δ

( ∑
i∈Λδ

AijXi

)2 = Eg exp

4t
∑
j∈Λc

δ

gj

( ∑
i∈Λδ

AijXi

)2 .

Rearranging the terms, and using that the resulting term is a linear combination of the sub-Gaussian
Xi, i ∈ Λδ , we find that

EX,g exp

4t
∑
j∈Λc

δ

gj

( ∑
i∈Λδ

AijXi

)2 = EX,g exp

4t
∑
i∈Λδ

Xi

( ∑
j∈Λc

δ

Aijgj

)
≤ EX,g exp

1

2
(4t)2

∑
i∈Λδ

( ∑
j∈Λc

δ

Aijgj

)2
≤ EX,g exp

8t2
∑
i

(∑
j

δi(1− δj)Aijgj

)2
≤ EX,g exp

(
8t2∥Aδg∥22

)
.

Now, by the rotation invariance of the distribution of g, the random variable ∥Aδg∥22 is distributed
identically with

∑
i s

2
i g

2
i where si denote the singular values of Aδ , so by independence

EX,g exp
(
8t2∥Aδg∥22

)
= Eg exp

(
8t2
∑
i

s2i g
2
i

)
=
∏
i

Eg exp
(
8t2s2i g

2
i

)
≤
∏
i

exp
(
16t2s2i

)
where the last inequality holds if 8t2 maxi s

2
i ≤ 1

4 and arises since the MGF of a Chi-squared variable,
Eetg2 ≤ e2t for 0 ≤ t ≤ 1

4 .

Since maxi si = ∥Aδ∥ ≤ ∥A∥ and
∑

i s
2
i = ∥Aδ∥2F ≤ ∥A∥F , we combine the above steps to find

that
EX exp(tW ) ≤ exp

(
16t2∥A∥2F

)
for |t| ≤ (4

√
2∥A∥)−1.
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C.2 Permutation Bounds for Two-Sample U-Statistics

The main technical result we use for the null bounds is the following. Here we assume the
permutation-invariance property of the U statistic kernel that h(x1, x2; y1, y2) = h(x2, x1; y1, y2) =
h(x1, x2; y2, y1). This can always be ensured by symmetrizing the kernel, and is satisfied by the
kernel used by M̂MD2 which we consider in this paper.
Theorem 7. Fix combined sample Z of size n + m with n ≤ m and let h(x1, x2; y1, y2) be a
two-sample U-statistic kernel as described above. Define

Uk(Z) :=
1

n(n− 1)m(m− 1)

∑
(i,i′)∈[n]2

∑
(j,j′)∈[m]2

h(Zi, Zi′ ;Zn+j , Zn+j′).

and

Ūk(Z) =
1

n(n− 1)m(m− 1)
sup

σ∈Sn+m

√√√√√ ∑
(i,i′)∈[n]2

 ∑
(j,j′)∈[m]2

h(Zσ(i), Zσ(i′);Zσ(n+j), Zσ(n+j′))

2

.

If σ ∈ Uniform(Sn+m) is a random permutation of the dataset, then then for all |t| <

(4
√
2Ūk(Z))−1,

Eσ exp(tUk(σZ)) ≤ exp
(
t2Ū2

k (Z)
)
.

Theorem 8 (Normaliser Bound). If h(x, x′; y, y′) = k(x, x′) + k(y, y′)− k(x, y′)− k(x′, y) then

Ūk(Z)2 ≤ 16

n(n− 1)
N̂k(Z)

where n ≤ m and

N̂k(Z) =
1

n(n− 1)

∑
(i,j)∈[n+m]2

k(Zi, Zj)
2.

Additionally, if 0 ≤ k(x, x′) ≤ κ for all x, x′, then

Ū2
k (Z) ≤ 4κ2

n(n− 1)
.

Proof of Theorem 7. Firstly, we make the following definitions based on the work of Kim et al.
(2022): let L = {l1, . . . , ln} be an n-tuple drawn uniformly without replacement from [m]. Then for
any fixed Z

EL[Ũ
L
k (Z)] = Uk(Z) (7)

where we define
ŨL
k (Z) :=

1

n(n− 1)

∑
(i,j)∈[n]2

h(Zi, Zj ;Zn+li , Zn+lj ).

Note that in the above we have used the invariance h(x1, x2; y1, y2) = h(x1, x2; y2, y1).

Now additionally define ζi as i.i.d. Rademacher variables, and let σ ∼ Uniform(Sn+m). For any
fixed Z

ŨL
k (σZ) =d ŨL,ζ

k (σZ) (8)
where we have defined

ŨL,ζ
k (Z) :=

1

n(n− 1)

∑
(i,j)∈[n]2

ζiζjh(Zi, Zj ;Zn+li , Zn+lj ).

This works because we can first define Z̃i = Zi or Z̃i = Zn+li , each with probability 1
2 . The

distribution of ŨL
k (σZ̃) =d ŨL

k (σZ), and then using the symmetry of k(x, y) in its arguments gives
the equivalence Equation (8) (c.f. eq. 28, Kim et al., 2022).

Now for fixed Z, combining Equations (7) and (8) and Jensen’s inequality we gives

Eσ exp(tUk(σZ)) = Eσ exp(tEL[Ũ
L
k (σZ)|σ])
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= Eσ exp(tEL,ζ [Ũ
L,ζ
k (σZ)|σ])

≤ Eσ,ζ exp

tEL

 1

n(n− 1)

∑
(i,j)∈[n]2

ζiζjh(Zσ(i), Zσ(j);Zσ(n+li), Zσ(n+lj))

∣∣∣∣∣∣σ


= Eσ,ζ exp

t 1

n(n− 1)

∑
(i,j)∈[n]2

ζiζjEL

[
h(Zσ(i), Zσ(j);Zσ(n+li), Zσ(n+lj))

∣∣σ]


=: Eσ,ζ exp

t n∑
i=1

n∑
j=1

ζiζjA
σ
ij

 .

In the final step we have defined the matrix Aσ, with entries Aσ
ij = (n(n −

1))−1EL

[
h(Zσ(i), Zσ(j);Zσ(n+li), Zσ(n+lj))

∣∣σ] for i ̸= j and Aii = 0 for all i.

We note that ζ is independent of σ and satisfies the conditions of Theorem 6, so applying this theorem
we obtain that

Eσ,ζ exp

t n∑
i=1

n∑
j=1

ζiζjA
σ
ij


≤ Eσ exp

(
16t2∥Aσ∥2F

)
for |t| < (4

√
2∥Aσ∥)−1

≤ Eσ exp
(
16t2∥Aσ∥2F

)
for |t| < (4

√
2∥Aσ∥F )−1

≤ exp

(
16t2 sup

σ∈Sn+m

∥Aσ∥2F

)
for |t| < (4

√
2 sup
σ∈Sn+m

∥Aσ∥F )−1

where in the second line we have used that ∥M∥ ≤ ∥M∥F for any matrix M .

Now note that

∥Aσ∥2F =

n∑
i=1

n∑
i′=1

(Aσ
ii′)

2

=
1

n2(n− 1)2

∑
(i,i′)∈[n]2

(EL

[
h(Zσ(i), Zσ(i′);Zσ(n+li), Zσ(n+li′ )

)
∣∣σ])2

=
1

n2(n− 1)2

∑
(i,i′)∈[n]2

 1

m(m− 1)

∑
(j,j′)∈[m]2

h(Zσ(i), Zσ(i′);Zσ(n+j), Zσ(n+j′))

2

.

We complete the proof by noting that Ūk(Z)2 = supσ∈Sn+m
∥Aσ∥2F .

Proof of Theorem 8. We have

Ū2
k (Z) =

1

n2(n− 1)2

∑
(i,i′)∈[n]2

 1

m(m− 1)

∑
(j,j′)∈[m]2

h(Zσ(i), Zσ(i′);Zσ(n+j), Zσ(n+j′))

2

≤ 1

n2(n− 1)2m(m− 1)

∑
(i,i′)∈[n]2

∑
(j,j′)∈[m]2

h(Zσ(i), Zσ(i′);Zσ(n+j), Zσ(n+j′))
2

≤ 4

n2(n− 1)2m(m− 1)

∑
(i,i′)∈[n]2

∑
(j,j′)∈[m]2

(
k(Zσ(i), Zσ(i′))

2 + k(Zσ(n+j), Zσ(n+j′))
2

+ k(Zσ(i), Zσ(n+j′))
2 + k(Zσ(i′), Zσ(n+j′))

2
)

=
4

n2(n− 1)2m(m− 1)

(
m(m− 1)

∑
(i,i′)∈[n]2

k(Zσ(i), Zσ(i′))
2
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+ n(n− 1)
∑

(j,j′)∈[m]2

k(Zσ(n+j), Zσ(n+j′))
2

+ (m− 1)(n− 1)
∑

1≤i≤n

∑
1≤j≤m

k(Zσ(i), Zσ(n+j′))
2

+ (m− 1)(n− 1)
∑

1≤i≤n

∑
1≤j≤m

k(Zσ(i′), Zσ(n+j))
2

)

≤ 16

n2(n− 1)2

∑
(i,j)∈[n+m]2

k(Zi, Zj)
2

=
16

n(n− 1)
N̂k(Z)

where the first inequality holds by Jensen’s inequality, the second by convexity (so that (a+ b+ c+
d)2 ≤ 4(a2 + b2 + c2 + d2)) and the third inequality using n ≤ m to upper bound each of the four
scalars inside the parentheses by m(m− 1), and we also upper bounded each of sums over subsets of
terms by the sum over all possible terms.

For the second part note that since h ∈ [−2κ, 2κ]

Ū2
k (Z) =

1

n2(n− 1)2

∑
(i,i′)∈[n]2

 1

m(m− 1)

∑
(j,j′)∈[m]2

h(Zσ(i), Zσ(i′);Zσ(n+j), Zσ(n+j′))

2

≤ 1

n2(n− 1)2

∑
(i,i′)∈[n]2

(2κ)2

≤ 4κ2

n(n− 1)
.

C.3 Bounds for MMD-FUSE under Null: Proof of Theorem 5

Proof of Theorem 5. Note under the null Z is permutation invariant. We will use Theorem 7 with h
as the MMD 2-statistic kernel, so that Uk(Z) = M̂MD2(Z) (for fixed k). We will use the notation
≤1−δ to denote that the inequality holds with probability at least 1 − δ over the random variables
being considered.

Note that Ū2
k ≤ 4κ2/n(n− 1) from Theorem 8, so that

logEk∼π(⟨Z⟩) exp
(
λM̂MD2

k(X,Y )
)

≤1−δ logEZEk∼π(⟨Z⟩) exp
(
λM̂MD2

k(X,Y )
)
+ log

1

δ
Markov

= logEσEZEk∼π(⟨Z⟩) exp
(
λM̂MD2

k(σZ)
)
+ log

1

δ
Null Permutation-Free

= logEZEk∼π(⟨Z⟩)Eσ exp
(
λM̂MD2

k(σZ)
)
+ log

1

δ
Prior Permutation-Free

≤ logEZEk∼π(⟨Z⟩)Eσ exp
(
λ2Ū2

k

)
+ log

1

δ

≤ 4κ2λ2

n(n− 1)
+ log

1

δ
, (9)

where the penultimate result holds using Theorem 7 provided |λ| < (4
√
2 supk Ūk(Z))−1. Using

the bound on Ūk from above gives the |λ| <
√
n(n− 1)/8

√
2κ in the theorem statement.

By dividing M̂MD2 by the permutation invariant N̂k in every one of the above, we also find that

logEk∼π(⟨Z⟩) exp

λM̂MD2
k(X,Y )√

N̂k(⟨Z⟩)

 ≤1−δ logEZEk∼π(⟨Z⟩)Eσ exp

(
λ2Ū2

k

N̂k(⟨Z⟩)

)
+ log

1

δ
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≤ 16λ2

n(n− 1)
+ log

1

δ
(10)

(11)

the first inequality using that N̂k is permutation-invariant and holding for |λ| <√
supk N̂k(4

√
2 supk Ūk(Z))−1. The final step uses that Ū2

k ≤ 16N̂k/n(n − 1) from Theorem 8

which also shows that |λ| <
√
n(n− 1)/16

√
2 is sufficient.

The upper tail bounds for F̂USEN and F̂USE1 immediately follow from the above by dividing
through λ > 0 and from their definitions.

Lower Bounds. For the lower tails,

−F̂USE1(Z) =
1

λ
logEk∼π(⟨Z⟩) exp(λM̂MD2

k(Z))

≤ −Ek∼π(⟨Z⟩)[M̂MD2
k(Z)] Jensen

=
1

s
log ◦ exp(Ek∼π(⟨Z⟩)[−sM̂MD2

k(Z)]) introduce dummy s > 0

≤ 1

s
log ◦ exp(Ek∼π(⟨Z⟩) − sM̂MD2

k(Z)) Jensen on exp

≤1−δ
4κ2s

n(n− 1)
+

1

s
log

1

δ
,

where the last line follows from Equation (9) replacing λ by dummy variable −s for 0 < s <√
n(n− 1)/8

√
2κ; we importantly note that this bound held for negative λ by Theorem 7.

By following the same process for F̂USEN and instead using Equation (10), also holding for
potentially negative λ, we obtain

−F̂USEN (Z) ≤1−δ
16s

n(n− 1)
+

1

s
log

1

δ

for 0 < s <
√
n(n− 1)/16

√
2.

For the small δ we generally use, these are tightest when s is at its maximum permissible value, so
we substitute these values for the theorem statement.

Under Permutation. To prove the equivalent result for σZ under permutations, we replace Z by
σZ and our application of Markov’s inequality introducing an expectation over Z with one over σ.
This changes nothing else in the derivations.
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D Concentration under the alternative

We give the exponential convergence bounds for F̂USE1 under the alternative and relate it to its
mean. In the following we will assume that K is a class of kernels bounded by 0 < κ <∞, so that
F̂USE1 ∈ [−2κ, 2κ]. We also introduce the following quantity (for fixed, data-free prior π) which is
closely related to the expectation of F̂USE1,

FUSE1 := sup
ρ∈M1

+(K)

MMD2
Kρ

(p, q)− KL(ρ, π)

λ
.

Theorem 9. FUSE1 is bounded in the following ways:

FUSE1 ≤ EZF̂USE1(Z) ≤ FUSE1 +8κ2λ

(
1

n
+

1

m

)
,

and

MMD2
Kπ

(p, q) ≤ FUSE1 ≤ sup
ρ∈M1

+(K):KL(ρ,π)<∞
MMD2

Kρ
(p, q) ≤ sup

k∈supp(π)

MMD2
k(p, q).

Under the null hypothesis FUSE1 = 0.

We can now state concentration results for F̂USE1 in terms of FUSE1.

Theorem 10. With probability at least 1− δ over the sample

F̂USE1(Z)− FUSE1 ≤ 8κ2λ

(
1

n
+

1

m

)
+

log δ−1

λ

and with the same probability,

FUSE1 −F̂USE1(Z) ≤ 2κ

√
8

(
1

n
+

1

m

)
log δ−1.

D.1 Proofs

Note on the proofs. The “bounded difference lemma” (Theorem 11) we give below is not the same
as the bounded difference inequality, though it is closely related. In fact, our result could be used
as an intermediate step in proving the latter, but we note that this would not be the usual method
(e.g. Boucheron et al., 2013, use an “entropy” method instead), and the converse is not true. The fact
that we have to prove a variant form of an existing concentration inequality to get concentration for
our log-sum-exp statistics is similar to how the same is required in PAC-Bayesian proofs, where e.g.
PAC-Bayes Bernstein inequalities also require modified proof techniques that mirror those used to
prove the usual Bernstein inequalities.

The usual bounded difference inequality cannot be used to prove Theorem 9, since it is not a
concentration bound. It also does not give the concentration we need in Theorem 10, since the FUSE
statistics do not have the bounded difference property, only M̂MD2

k does; this is why our proofs
cannot use a “plug-in” concentration bound.

Theorem 11 (Bounded Difference Lemma). A function f has the bounded difference property there
exist constants Lℓ <∞, ℓ ∈ [n] such that

|f(z1, . . . , zk, . . . , zn)− f(z1, . . . , zℓ, . . . , zn)| ≤ Lℓ

for any choices of z1, . . . , zn, z′ℓ, and ℓ ∈ [n].

For such a function and any independent random variables Z1, . . . , Zn and t ∈ R (subject to
appropriate measurability restrictions)

E exp(t(f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn))) ≤ exp

(
1

8
t2

n∑
ℓ=1

L2
ℓ

)
.
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Proof of Theorem 11. We introduce the Doob construction, defining

Dℓ = E[f(Z1, . . . , Zn)|Z1, . . . , Zℓ]− E[f(Z1, . . . , Zn)|Z1, . . . , Zℓ−1]

This is a martingale difference sequence with
n∑

ℓ=1

Dℓ = f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn).

It is shown by (for example) Wainwright (2019, Ch. 2.2, p.37) that Dℓ lies in an interval of length at
most Lℓ by the bounded differences assumption. Thus, applying iterated expectation and Hoeffding’s
lemma for the MGF of bounded random variables,

E exp(t(f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn))) = E exp

(
λ

n∑
ℓ=1

Dℓ

)

= E

[
exp

(
λ

n−1∑
ℓ=1

Dℓ

)
E [exp (λDn) |Z1, . . . , Zn−1]

]

≤ E

[
exp

(
λ

n−1∑
ℓ=1

Dℓ

)]
exp

(
1

8
λ2L2

nDn

)

≤ exp

(
1

8
t2

n∑
ℓ=1

L2
ℓ

)
.

The MGF of M̂MD2 can then be bounded using the following result, proved via the above.
Theorem 12. For bounded kernel k ≤ κ, t ∈ R and sample sizes m,n,

E exp(t(M̂MD2
k(X,Y )−MMD2

k(p, q))) ≤ exp

(
8t2κ2

(
1

m
+

1

n

))
.

Proof of Theorem 12. We show that M̂MD2
k(x, y) has the bounded differences property and then

apply Theorem 11. Denote by x\ℓ for ℓ ∈ [n] that the ℓ-th example in the x sample is changed. Then

|M̂MD2
k(x, y)−M̂MD2

k(x
\ℓ, y)|

=

∣∣∣∣∣∣ 2

n(n− 1)

∑
i∈[n]\{ℓ}

(k(xℓ, xi)− k(x′ℓ, xi))−
2

mn

m∑
j=1

(k(xℓ, yj)− k(x′ℓ, yj))

∣∣∣∣∣∣
≤ 2

n(n− 1)

∑
i∈[n]\{ℓ}

|k(xℓ, xi)− k(x′ℓ, xi)|+
2

mn

m∑
j=1

|k(xℓ, yj)− k(x′ℓ, yj)|

≤ 2

n(n− 1)
(n− 1) · 2κ+

2

mn
m · 2κ

=
8κ

n
.

A similar process for the y sample gives bounds of 8κ/m, so that M̂MD2 has the bounded differences
property with

n+m∑
ℓ=1

L2
ℓ ≤ n ·

(
8κ

n

)2

+m ·
(
8κ

m

)2

= 64κ2
(
1

n
+

1

m

)
.

Proof of Theorem 9. For the first lower bound, note

EZF̂USE1(Z) = EZ sup
ρ

Eρ[M̂MD2]− KL

λ
≥ sup

ρ
EZ,ρ[M̂MD2]− KL

λ
= FUSE1 .
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For the upper bound, note that

EZF̂USE1(Z) ≤
[
1

λ
log
(
EZEk∼π

[
eλM̂MD2

k

])]
Jensen

≤
[
1

λ
log
(
Ek∼πEZ

[
eλM̂MD2

k

])]
Independence of π from Z

≤ 1

λ
log
(
Ek∼π

[
eλMMD2

k +8λ2κ2(n−1+m−1)
])

Theorem 12

= FUSE1 +8κ2λ

(
1

n
+

1

m

)
.

The lower bound on FUSE1 is obtained by relaxing the supremum with ρ = π. The upper bounds
come since the supremum over ρ ∈ M1

+(K) : KL(ρ, π) <∞ of MMD2 is clearly greater than the
KL-regularised version. Under the null hypothesis, MMDk(p, q) = 0 for every kernel (regardless of
them being characteristic or not), so FUSE1 = 0.

Proof of Theorem 10. For the upper bound,

F̂USE1(Z) =

[
1

λ
log
(
Ek∼π

[
eλM̂MD2

k

])]
≤1−δ

[
1

λ
log
(
EZEk∼π

[
eλM̂MD2

k

])]
+

log δ−1

λ
Markov

≤
[
1

λ
log
(
Ek∼πEZ

[
eλM̂MD2

k

])]
+

log δ−1

λ
Independence of π from Z

≤ 1

λ
log
(
Ek∼π

[
eλMMD2

k +8λ2κ2(m−1+n−1)
])

+
log δ−1

λ
Theorem 12

= FUSE1 +8κ2λ

(
1

n
+

1

m

)
+

log δ−1

λ
.

For the lower bound, let ρ∗ be the value of ρ achieving the supremum in the dual form of FUSE1

(which we note is independent of the sample), so that

FUSE1 −F̂USE1(Z) = sup
ρ

{
Eρ∗ [MMD2

k]−
KL(ρ, π)

λ

}
− sup

ρ

{
Eρ[M̂MD2

k]−
KL(ρ, π)

λ

}
= Eρ∗ [MMD2

k]−
KL(ρ∗, π)

λ
− sup

ρ

{
Eρ[M̂MD2

k]−
KL(ρ, π)

λ

}
≤ Eρ∗ [MMD2

k]−
KL(ρ∗, π)

λ
−
(
Eρ∗ [M̂MD2

k]−
KL(ρ∗, π)

λ

)
= Eρ∗ [MMD2

k −M̂MD2
k]

= MMD2
Kρ∗

(p, q)− M̂MD2
Kρ∗

(Z).

Now the above is for fixed kernel Kρ∗ independent of the data, so by Markov’s inequality and
Theorem 12, for any s > 0 we find

MMD2
Kρ∗

(p, q)− M̂MD2
Kρ∗

(Z)

≤1−δ s
−1 logEZ exp

(
s
(
MMD2

Kρ∗
(p, q)− M̂MD2

Kρ∗
(Z)

))
+ s−1 log δ−1

≤ 8sκ2
(

1

m
+

1

n

)
+ s−1 log δ−1.

Optimising for s yields s = κ−1
√

log(1/δ)/
√
8(1/m+ 1/n) which gives the desired result.
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E Power Analysis

E.1 General Recipe for Power Analysis of Permutation Tests

The general outline for power analysis consists of the following: First we start with the Type II error
probability. Then we attempt to upper bound it by iteratively applying the following simple lemma to
the different terms.

Monotonicity in High Probability. Let X,Y be r.v.s, such that X ≤ Y w.p. ≥ 1 − δ. Then
P(X ≥ c) ≤ P(Y ≥ c) + δ. This result can be applied both when X ≤ Y a.s. giving δ = 0, or if
Y = a is constant.

Iteratively applying this lemma gives P(Type II) ≤ Nδ, and then we set Nδ = β.

As a first step in the above process we will use the following useful result (adapted from Kim et al.,
2022) to convert from the random permutations we use in practice to the full set of permutation. This
result shows that when B is taken sufficiently large (roughly Ω(α−2 log(β−1))), the only changes to
the final power results will be in constants multiplying α and β.

Theorem 13 (From Randomised to Deterministic Permutations). Suppose G = (g1, . . . , gB+1)
consists of B uniformly drawn permutations from G, plus the identity permutation as gB+1. Then

P
(
τ(Z) ≤ quantile

1−α,G
τ(gZ)

)
≤ P

(
τ(Z) ≤ quantile

1−αB ,G
τ(gZ)

)
+ δ

where 1− αB = B+1
B (1− α) +

√
log(2/δ)

2B .

We note that provided B ≥ 8α−2 log(2/δ), then 1− αB ≤ 1− α/2.

Proof. We note the Dvoretzky–Kiefer–Wolfowitz inequality Dvoretzky et al. (1956); Massart (1990)
for empirical CDF Fn of n samples from original CDF F :

P
(
sup
x

|Fn(x)− F (x)| ≥ t

)
≤ 2e−2nt2 (12)

for every t > 0.

The permutation CDF for a group G take the form

FG(x) =
1

|G|
∑
g∈G

1{τ(gZ) ≤ x}

and given sample G̃ = (g1, . . . , gB) i.i.d. uniformly from G (this excludes the identity permutation
added to G), the empirical CDF is

F̂G̃(x) =
1

B

∑
g∈G̃

1{τ(gZ) ≤ x}

We can also write F̂G(x) including the identity permutation as gB+1, and note that F̂G(x) =

Define the good event

A =

{
sup
x

|FG̃(x)− FG(x)| ≤
√

log(2/δ)

2B

}
which holds with probability at least 1− δ by Equation (12). Given A, we have

qG := quantile
1−α,g∈G

τ(gZ) = inf{r ∈ R :
1

B + 1

∑
g∈G

1{τ(gZ) ≤ r} ≥ 1− α}

≤ inf{r ∈ R :
1

B + 1

∑
g∈G

1{τ(gZ) ≤ r} ≥ 1− α}
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= inf{r ∈ R : F̂G̃(r) ≥
B + 1

B
(1− α)}

≤ inf

{
r ∈ R : F̂G(r) ≥

B + 1

B
(1− α) +

√
log(2/δ)

2B

}
= quantile

1−αB ,g∈G
τ(gZ) =: q

where we have defined αB as above.

Overall we find P(τ ≤ qG) ≤ P(τ ≤ qG|A) + P(Ac) ≤ P(τ ≤ q) + δ.

E.2 Variance of M̂MD2
k

In proving our power results it is necessary to upper bound the variance of M̂MD2
k.

Theorem 14. For any kernel k upper bounded by κ, if n ≤ m ≤ cn for c ≥ 1, there exists universal
constant C > 0 depending only on c, such that

V[M̂MD2
k] ≤ C

(
4κMMD2

k

n
+
κ2

n2

)
Proof. We define

σ2
10 = VX(EX′,Y,Y ′ [h(X,X ′, Y, Y ′)])

σ2
01 = VY (EX,X′,Y ′ [h(X,X ′, Y, Y ′)])

σ2
11 = max{E[k2(X,X ′)],E[k2(X,Y )],E[k2(Y, Y ′)]}.

From a well-known bound (based on Lee, 1990, Equation 2, p.38; see also Kim et al., 2022, Appendix
F, Equation 59 or Schrab et al., 2023, Proposition 3),

V[M̂MD2
k] ≤ C

(
σ2
10

m
+
σ2
01

n
+ σ2

11

(
1

m
+

1

n

)2
)

≤ C

(
σ2
10

n
+
σ2
01

n
+
σ2
11

n2

)
where we used that n ≤ m ≤ cn. and the result in red above, and the boundedness of the kernel for
the final term. This gives the further bound

V[M̂MD2
k] ≤ C

(
4κMMD2

k

n
+
κ2

n2

)
since

σ2
10 = varX(EX′,Y,Y ′ [h(X,X ′, Y, Y ′)])

= EX

[(
EX′,Y,Y ′ [h(X,X ′, Y, Y ′)]

)2]
= EX

[(
EX′,Y,Y ′ [⟨ϕ(X)− ϕ(Y ), ϕ(X ′)− ϕ(Y ′)⟩]

)2]
= EX

[
⟨ϕ(X)− µQ, µP − µQ⟩2

]
≤
(
EX

[
∥ϕ(X)− µQ∥2

])
∥µP − µQ∥2

≤ 2κ∥µP − µQ∥2

= 2κMMD2
k,

a similar result for σ01, and the simple bound σ2
11 ≤ κ2.
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E.3 Proof of Theorem 2

Proof. Define αB as in Theorem 13, noting that 1 − αB < 1 − α/2 under the assumption B ≥
8α−2 log(4/β). From Theorem 13 we can consider the full permutation set as

Pp×q,G

(
F̂USE1(Z) ≤ quantile

1−α,G
F̂USE1(σZ)

)
≤ Pp×q

(
F̂USE1(Z) ≤ quantile

1−αB ,G
F̂USE1(σZ)

)
+ β/2.

We also recall that from Theorem 5 when λ = cn/κ,

quantile
1−αB ,G

F̂USE1(σZ) ≤ C1κ(1 + logα−1)

n
,

so that

Pp×q

(
F̂USE1(Z) ≤ quantile

1−αB ,G
F̂USE1(σZ)

)
≤ Pp×q

(
F̂USE1(Z) ≤ C1κ(1 + logα−1)

n

)
.

For any ρ, we define

Sρ = MMD2
Kρ

(p, q)− KL(ρ, π)

λ
− C1κ(1 + logα−1)

n
,

which we substitute into

Pp×q

(
F̂USE1(Z) ≤ C1κ(1 + logα−1)

n

)
= P

(
MMD2

Kρ
(p, q)− 1

λ
KL(ρ, π)− F̂USE1(Z) ≥ Sρ

)
= P

(
MMD2

Kρ
(p, q)− 1

λ
KL(ρ, π)− sup

ρ′

(
M̂MD2

Kρ′
(Z)− 1

λ
KL(ρ′, π)

)
≥ Sρ

)
≤ P

(
MMD2

Kρ
(p, q)− M̂MD2

Kρ
(Z) ≥ Sρ

)
=

1

S2
ρ

Vp×q

[
M̂MD2

Kρ
(Z)

]
≤ C2

S2
ρ

(
4κMMD2

n
+
κ2

n2

)
.

After substituting Sρ, we used the dual form of F̂USE1 and the inequalities sup f(ρ′) ≥ f(ρ),
Chebyshev’s, and Theorem 14. This term is upper bounded by β/2 if we set

S2
ρ >

2C2

β

(
4κMMD2

n
+
κ2

n2

)
.

We also note that for a, b, x all non-negative, if x2 > a2 + 2b, then x2 > ax+ b. This works because

x2 > ax+ b is equivalent to x2 >
(

a
2 +

√
a2

4 + b

)2

by taking the positive root, and(
a

2
+

√
a2

4
+ b

)2

=
a2

2
+ b+ 2

a

2

√
a2

4
+ b ≤ a2 + 2b

using Young’s inequality 2AB ≤ A2 +B2.

Combining the above the Type II error rate is controlled by β provided any of the following statements
are true for any ρ (with each new result implying the former):

MMD2
Kρ

(p, q) >
KL(ρ, π)

λ
+
C1κ(1 + logα−1)

n
+

√
2C2

β

(
4κMMD2

n
+
κ2

n2

)
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MMD2
Kρ

(p, q) >
KL(ρ, π)

λ
+
C1κ(1 + logα−1)

n
+

√
8C2κ

nβ
MMD+

√
2C2κ

n
√
β

MMD2
Kρ

(p, q) >
2KL(ρ, π)

λ
+

2C1κ(1 + logα−1)

n
+

8C2κ

nβ
+

2
√
2C2κ

n
√
β

MMD2
Kρ

(p, q) >
C3κ

n

(
1

β
+ log

1

α
+KL(ρ, π)

)
where we used that

√
x+ y ≤ √

x+
√
y, the result above, and λ = cn/κ.

E.4 Proof of Theorem 3

The proof of this statement proceeds similarly to the proof of Theorem 2. Using Theorem 5 with
λ = cn and Theorem 13 we find that

Pp×q,G

(
F̂USEN (Z) ≤ quantile

1−α,G
F̂USEN (σZ)

)
≤ Pp×q

(
F̂USEN (Z) ≤ C1(1 + logα−1)

n

)
+ β/2.

For any ρ such that KL(ρ, π) <∞ we define

Tρ =
C1

κ
·MMD2

Kρ

Sρ = Tρ −
1

λ
KL(ρ, π)− C1κ(1 + logα−1)

n
.

We assumed that n ≤ m ≤ cn for some c ≥ 1. Based on this, note that Nk ≤ κ2/C2
1 for C1

depending only on m/n ∈ [1, c], and (since MMD2 ≥ 0 is strictly non-negative, unlike M̂MD2

which can be negative),

−Eρ

 MMD2
k√

N̂k(Z)

 ≤ −C1

κ
Ek∼ρ

[
MMD2

k

]
= −Tρ. (13)

Now we introduce these definitions to bound

P
(
F̂USEN (Z) ≤ C1(1 + logα−1)

n

)
= P

(
Tρ −

1

λ
KL(ρ, π)− F̂USEN (Z) ≥ Sρ

)

= P

Tρ − 1

λ
KL(ρ, π)− sup

ρ′

Ek∼ρ′

M̂MD2
k(Z)√

N̂k(Z)

− 1

λ
KL(ρ′, π)

 ≥ Sρ


≤ P

Tρ − Ek∼ρ

M̂MD2
k(Z)√

N̂k(Z)

 ≥ Sρ

 sup f(ρ′) ≥ f(ρ)

= P

Tρ − Ek∼ρ

 MMD2
k√

N̂k(Z)
− MMD2

k√
N̂k(Z)

+
M̂MD2

k(Z)√
N̂k(Z)

 ≥ Sρ


= P

Tρ − Ek∼ρ

 MMD2
k√

N̂k(Z)

+ Ek∼ρ

MMD2
k −M̂MD2

k(Z)√
N̂k(Z)

 ≥ Sρ


= P

Tρ − Ek∼ρ

 MMD2
k√

N̂k(Z)

+ Ek∼ρ

MMD2
k −M̂MD2

k(Z)√
N̂k(Z)

 ≥ Sρ


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≤ P

Ek∼ρ

MMD2
k −M̂MD2

k(Z)√
N̂k(Z)

 ≥ Sρ

 by Equation (13)

≤ P

∣∣∣∣∣∣Ek∼ρ

MMD2
k −M̂MD2

k(Z)√
N̂k(Z)

∣∣∣∣∣∣ ≥ Sρ

 x ≤ |x|

≤ P

Ek∼ρ

∣∣∣∣∣∣MMD2
k −M̂MD2

k(Z)√
N̂k(Z)

∣∣∣∣∣∣
 ≥ Sρ

 |x| convex, Jensen

= P

Ek∼ρ

 |MMD2
k −M̂MD2

k(Z)|√
N̂k(Z)

 ≥ Sρ

 N̂k positive

≤ 1

Sρ
EZEk∼ρ

 |MMD2
k −M̂MD2

k(Z)|√
N̂k(Z)

 N̂k positive, Markov

≤ 1

Sρ

√√√√EZEk∼ρ

[
|MMD2

k −M̂MD2
k(Z)|2

]
EZEk∼ρ

[
1

N̂k(Z)

]
Cauchy-Schwarz.

Thus the type II error will be controlled by β if for any ρ

Sρ >
2

β

√√√√EZEk∼ρ

[
|MMD2

k −M̂MD2
k(Z)|2

]
EZEk∼ρ

[
1

N̂k(Z)

]
.

Provided there is a c > 0 with

Ep×q

[
1

N̂k(Z)

]
≤ c

for all k, this reduces to the condition

MMD2
Kρ

(p, q) > C2κ

(
logα−1

n
+

1

β

√
EρVp×q

[
M̂MD2

k(Z)
]
+

KL(ρ, π)

n

)
.

Applying Theorem 14, the proof is completed in essentially the same way as in the result for F̂USE1

(with slightly different β dependence).
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