AVATARSYNC: RETHINKING TALKING-HEAD ANIMATION THROUGH PHONEME-GUIDED AUTOREGRESSIVE PERSPECTIVE

Anonymous authorsPaper under double-blind review

ABSTRACT

Talking-head animation focuses on generating realistic facial videos from audio input. Following Generative Adversarial Networks (GANs), diffusion models have become the mainstream, owing to their robust generative capacities. However, inherent limitations of the diffusion process often lead to inter-frame flicker and slow inference, restricting their practical deployment. To address this, we introduce AvatarSync, an autoregressive framework on phoneme representations that generates realistic and controllable talking-head animations from a single reference image, driven directly by text or audio input. To mitigate flicker and ensure continuity, AvatarSync leverages an autoregressive pipeline that enhances temporal modeling. To ensure controllability, we introduce phonemes, which are the basic units of speech sounds, and construct a many-to-one mapping from text/audio to phonemes, enabling precise phoneme-to-visual alignment. Additionally, to further accelerate inference, we adopt a two-stage generation strategy that decouples semantic modeling from visual dynamics, and incorporate a customized phonemeframe causal attention mask to support multi-step parallel acceleration. Extensive experiments show that AvatarSync outperforms existing talking-head animation methods in visual fidelity, temporal consistency, and computational efficiency, providing a scalable and controllable solution.

1 Introduction

Talking-head animation Guo et al. (2024); Hu (2024); Tian et al. (2024b); Chen et al. (2025); Meng et al. (2024); Lu et al. (2021); Wei et al. (2024); Chu et al. (2025); Zhen et al. (2025); Wang et al. (2025) is a representative multimodal generation task that demands fine-grained alignment between audio and visual outputs. Leveraging advancements in artificial intelligence, this technique synthesizes realistic, speech-synchronized facial motion from static images and audio inputs. This technology finds widespread applications in areas such as video dubbing, virtual avatars, and digital entertainment Prajwal et al. (2020). Despite significant progress, efficiently generating high-quality, lifelike, and fine-grained talking-head animations in real time remains a formidable challenge.

In the field, two primary paradigms have emerged: Generative Adversarial Networks (GANs) Goodfellow et al. (2020) and diffusion models Ho et al. (2020). GANs-based methods Zhen et al. (2023); Cheng et al. (2022); Wang et al. (2023); Zhang et al. (2023b;a) offer advantages in inference speed and computational efficiency. However, they often suffer from visual artifacts and struggle to maintain identity consistency, limiting their applicability in high-fidelity scenarios. Recently, diffusion models Rombach et al. (2022); Wang et al. (2024a); Ji et al. (2024); Lin et al. (2025); Li et al. (2024); Jiang et al. (2024) have gained attention due to their superior visual fidelity in image generation tasks. Several works (such as EMO Tian et al. (2024b), Hallo Xu et al. (2024a); Cui et al. (2024), and EchoMimic Chen et al. (2025) Meng et al. (2024) have extended diffusion models to talking-head animation. These approaches generally produce clearer and more stable visual results. Nonetheless, the reliance of diffusion models on multi-step denoising processes leads to slow inference and high computational cost, which severely hinders their deployment in real-time applications. To address these issues, recent efforts Ji et al. (2024); Li et al. (2024) have explored strategies, such as sampling path control, to improve inference efficiency. However, diffusion-based approaches still suffer from fundamental limitations, including inter-frame flicker, unnatural facial dynamics, and

056

060 061

062

063

064

065

066

067

069

071

073

074

075

076

077

079

081

082

084

085

087

089

092

093

095

096

097

098

099

102

103

105

107

Figure 1: Comparison of GANs-based, diffusion-based, and our autoregressive method. The left and middle panels summarize key limitations of GANs and diffusion models. The right panel illustrates the advantages of our autoregressive method.

poor real-time performance. As illustrated in Figure 1, although both GANs-based and diffusion-based methods have made significant progress, achieving a better balance among computational efficiency, generation consistency, and visual fidelity remains a major challenge in this field.

To this end, we introduce AvatarSync, an autoregressive framework on phoneme representations that generates realistic and controllable talking-head animations from a single reference image, driven by text or audio input. As illustrated in Figure 3, AvatarSync adopts a two-stage generation strategy, combining a Facial Keyframe Generation (FKG) module with the inter-frame interpolation module to synthesize natural facial dynamics. In the first stage, by leveraging this many-to-one relationship, the FKG module extracts character-level phoneme sequences from text or audio input. Subsequently, the phoneme sequences and reference image are respectively tokenized using a text tokenizer Ding et al. (2021) and a visual tokenizer trained with either VQ Van Den Oord et al. (2017); Esser et al. (2021) or LFQ Yu et al. (2023). These phoneme and visual tokens are then aligned and concatenated into a unified sequence, enabling an autoregressive transformer model to produce a sparse set of keyframes under a Phoneme-Frame Causal Attention Mask.

In the second stage, we propose a timestamp-aware adaptive strategy built upon a selective state space model, to enable efficient temporal modeling and precise audio-visual alignment. The interpolation module leverages explicit timestamp information embedded in keyframes to flexibly control motion intensity across variable frame intervals. In addition, to facilitate global context aggregation, adjacent keyframes are encoded as interleaved token sequences and processed through state space modeling. As a result, the system synthesizes natural and temporally coherent facial dynamics.

To support practical deployment, we structurally optimize the inference pipeline to significantly improve computational efficiency without compromising generation quality. AvatarSync outperforms conventional systems in most real-world scenarios, delivering a smooth and responsive user experience. Notably, AvatarSync establishes a new modeling paradigm and methodological framework for talking-head multimodal generation task. In summary, our main contributions are listed as follows:

- We propose AvatarSync, an autoregressive framework on phoneme representations that generates talking-head animations from a single reference image, driven by text or audio. By leveraging the many-to-one mapping from text/audio to phonemes, we construct phoneme-to-visual alignment. This design enables AvatarSync to support editable, segment-level, and fine-grained control over video generation.
- We introduce a two-stage hierarchical generation strategy that decouples semantics from visual dynamics. The first stage, Facial Keyframe Generation (FKG), models phonemealigned semantics, while the second stage interpolates intermediate frames to enhance temporal coherence and visual smoothness. This design mitigates error accumulation, supports localized editing, and enables parallel inference for improved efficiency.
- In FKG, we design a Phoneme-Frame Causal Attention Mask to enhance phoneme-frame alignment and employ a composite loss integrating perceptual, identity, and facial similarity. For interpolation, we propose a timestamp-aware adaptive strategy based on selective state space modeling, enabling temporal inference and audio-visual synchronization.
- We conduct comprehensive evaluations of Avatarsync on two benchmark datasets, CMLR and HDTF, covering Chinese and English. As shown in Table 1 and Figure 4, AvatarSync consistently outperforms existing advanced audio-driven talking-head animation models in terms of computational efficiency, facial fidelity, and motion consistency.

2 RELATED WORK

2.1 TALKING HEAD GENERATION

Audio-driven talking-head generation has emerged as a key research topic in multimodal content generation, demonstrating significant practical value in applications such as video dubbing and virtual avatars. Prevailing approaches can be broadly categorized into two classes: GANs-based methods Zhou et al. (2019; 2021); Meshry et al. (2021); Das et al. (2020); Chen et al. (2019); Zhang et al. (2023a) and diffusion-based methods Wang et al. (2024a); Ji et al. (2024); Lin et al. (2025); Li et al. (2024); Jiang et al. (2024); Xu et al. (2024b). In the following, we provide a systematic review of recent advances and representative characteristics of each class.

GANs-based methods. GANs-based methods are widely recognized for their computational efficiency and rapid inference. However, early approaches struggle with maintaining identity consistency and accurate lip synchronization. To address this, methods, such as SadTalker Zhang et al. (2023a) and FaceVid2Vid Wang et al. (2021), adopt multi-stage inference pipelines that decouple audio-to-motion and motion-to-video modeling. While this improves generation quality, it significantly increases computational overhead and system complexity. Moreover, the decoupled modeling leads to unnatural generation results, where only the mouth moves while the rest of the face remains static, compromising realism and temporal continuity.

Diffusion-based methods. Diffusion-based approaches typically integrate ReferenceNet, temporal modeling layers, and audio-attention modules into a single unified framework. These methods enable vivid talking head generation from a single image, but come with high computational costs and often suffer from unstable mouth motion. To reduce the overhead, MuseTalk Zhang et al. (2024b) combines diffusion with GANs. OmniHuman-1 Lin et al. (2025) further proposes a hybrid training scheme based on a Diffusion Transformer architecture. While these methods partially alleviate slow inference and low visual fidelity, they do not overcome diffusion's inherent limitations, leaving generated videos with artifacts such as ghosting and inter-frame flicker.

2.2 VISUAL GENERATION BASED ON LARGE LANGUAGE MODELS

In recent years, large language models (LLMs) Achiam et al. (2023); Touvron et al. (2023); Liang et al. (2024) have extended to the domain of visual content generation. Compared to diffusion models that rely on multi-step denoising, LLM-based visual generation methods offer superior scalability and inference efficiency for multimodal tasks.

LLM-based visual generation approaches can be broadly categorized into two types: **masked language models** (MLMs) and **autoregressive language models** (AR-LMs). MLMs enable efficient training and fast sampling by predicting randomly masked tokens in parallel. In image generation, MaskGIT Chang et al. (2022) progressively refines images by predicting missing tokens, achieving both high quality and computational efficiency. Subsequently, this approach is extended to the video domain. MAGVIT-v2 proposes an embedding method for iterative masked video token modeling.

AR-LMs predict tokens sequentially, modeling the conditional probability of each token given its preceding context. In image synthesis, LlamaGen Sun et al. (2024) employs an autoregressive Transformer to generate semantically aligned, detail-rich images, while VAR Tian et al. (2024a) adopts a coarse-to-fine generation strategy to iteratively refine multi-scale representations. In video generation, VideoPoet Kondratyuk et al. (2023) processes multimodal inputs through region-wise tokenization. CogVideo Hong et al. (2022), Show-o Xie et al. (2024) and EMU3 Wang et al. (2024b) further extend autoregressive modeling to text-to-video generation, proposing multimodal architectures. Recently, a few studies Chu et al. (2025); Zhen et al. (2025) have also explored transformer-based architectures specifically for talking-head generation, achieving promising results in both visual realism and controllability. These methods directly encode audio sequences and reference images using standard Transformer architectures to generate video frames. However, these methods typically entail high computational demands and inference complexity, limiting practical deployment.

Furthermore, as LLMs Khanuja et al. (2024); Fang et al. (2024); Shahmohammadi et al. (2023) are increasingly adopted in natural language processing, token-level parallelization strategies for accelerating autoregressive inference have rapidly gained traction in visual generation Leviathan et al. (2023); He et al. (2024); Fu et al. (2024). These approaches require no model retraining, offering

Figure 2: Inter-frame Flicker Visualization. Left: reference frame; subsequent panels show pixel-wise differences between consecutive frames, where scattered high-difference regions reveal temporal flicker.

strong generalizability and deployment flexibility. In summary, LLM-based methods represent a promising direction for achieving real-time, high-fidelity, and controllable talking-head generation.

3 METHOD

3.1 Preliminary of Inter-frame Flicker

As illustrated in Figure 2, diffusion-based video generation methods often exhibit inter-frame flicker, manifesting as temporal inconsistencies or identity shifts between adjacent frames. In the following, we provide a theoretical analysis based on Denoising Diffusion Probabilistic Models formulation. Consider the DDPM reverse process for generating a single image frame $\hat{\mathbf{x}}_0^{(t)}$ from Gaussian noise:

$$\mathbf{x}_T^{(t)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \hat{\mathbf{x}}_0^{(t)} = f_{\theta}(\mathbf{x}_T^{(t)}, \mathbf{c}^{(t)})$$
 (1)

where t indexes the frame index, $\mathbf{c}^{(t)}$ is the conditioning input, and $f_{\theta}(\cdot)$ denotes the denoising trajectory defined by the model. Even under fixed $\mathbf{c}^{(t)} = \mathbf{c}$ across all frames, the sampled latent variables $\mathbf{x}_T^{(t)}$ are independent:

$$Cov(\mathbf{x}_T^{(t)}, \mathbf{x}_T^{(t+1)}) = \mathbf{0}$$
(2)

As a result, the output frames $\hat{\mathbf{x}}_0^{(t)}$ and $\hat{\mathbf{x}}_0^{(t+1)}$ are conditionally uncorrelated, resulting in inter-frame variability. Formally, the output distribution is:

$$p_{\theta}(\hat{\mathbf{x}}_0^{(t)}|\mathbf{c}) = \int p_{\theta}(\hat{\mathbf{x}}_0^{(t)}|\mathbf{x}_T^{(t)}, \mathbf{c}) \cdot \mathcal{N}(\mathbf{x}_T^{(t)}; \mathbf{0}, \mathbf{I}) d\mathbf{x}_T^{(t)}$$
(3)

Since $\mathbf{x}_T^{(t)}$ and $\mathbf{x}_T^{(t+1)}$ are independently and identically sampled from the standard Gaussian prior, adjacent frames are marginally independent even under identical conditioning. Consequently, the generated frame sequence $\{\hat{\mathbf{x}}_0^{(t)}\}_{t=1}^T$ is prone to exhibit a lack of temporal coherence.

While some diffusion models, such as DDIM Song et al. (2020), DiT Peebles & Xie (2023), and models employing 3D convolutions Ho et al. (2022), have begun to model temporal dependencies in the denoising process, the independent sampling of the initial noise $\mathbf{x}_T^{(t)}$ for each frame still leads to insufficient temporal coherence in the generated videos. To mitigate this, guided noise injection methods Li et al. (2024) have been proposed. However, the inherent stochasticity of the initial noise poses a significant challenge to fully resolving the issue of inter-frame flickering.

Autoregressive models generate video frames as a single and unified token sequence. Let $X = \{x_1^{(1)},...,x_K^{(T)}\}$ denote a flattened sequence of T video frames, where each frame contains K discrete tokens. Here, x_i denotes the i-th token in the flattened sequence, and $x_j^{(t)}$ refers to the j-th token in frame t. The model estimates Ashish (2017):

$$P(X) = \prod_{i=1}^{N} P(x_i|x_{< i}, c)$$
(4)

For any token $x_j^{(t)}$ in frame t, its generation depends on all tokens from previous frames and prior tokens within the same frame:

$$P(x_{j}^{(t)}|x_{1}^{(1)},...,x_{K}^{(t-1)},x_{1}^{(t)},...,x_{j-1}^{(t)},c) \tag{5}$$

Here, when t=1 or j=1, the corresponding conditioning sets are empty. Therefore, compared to diffusion models, autoregressive models generate frames sequentially with strong contextual conditioning, exhibiting a strong inductive bias toward temporal coherence.

3.2 Model Design

The overall framework of AvatarSync is depicted in Figure 3. It mainly consists of three parts: (1) an image tokenizer for quantizing the reference image into visual tokens, and an audio ASR tool for processing the input speech into a phoneme sequence; (2) a two-stage generation model based on an autoregressive framework, designed to effectively model phoneme-conditioned multimodal inputs and synthesize high-quality visual outputs; (3) a decoder for performing downstream tasks. In the following, we focus on detailing the first and second components of the system.

Tokenization. AvatarSync is flexible for handling multimodal input, supporting both text-image and audio-image modalities for video generation. (1) *For text input*, the input text is first converted into a phoneme sequence, leveraging the stable many-to-one mapping to facilitate accurate mouth-shape generation. Subsequently, a standard tokenizer transforms the phoneme sequence into discrete tokens. (2) *For audio input*, we employ automatic speech recognition (ASR) tools to extract phoneme-level alignments with timestamps, which are then tokenized into discrete phoneme tokens. (3) *For an image input*, we adopt a pre-trained vision foundation model, such as Open-MAGVIT2 Luo et al. (2024), to extract image features. To capture fine-grained facial details, we employ MMPose for facial landmark detection and adjust the input image's aspect ratio.

Auto-regressive Model. Following prior work Yan et al. (2021); Kondratyuk et al. (2023), text, audio and images prompts are projected into the feature space of a large language model (LLM). As illustrated in Figure 3, our autoregressive model follows a pipelined generation process consisting of two stages: Facial Keyframe Generation (FKG) and the inter-frame interpolation module.

- (1) The model generates T_s keyframes in accordance with the sequential order of the input phoneme. The Facial Keyframe Generation (FKG) module receives phoneme representations encoded by a tokenizer and structures the input sequence as: $\{\{Phoneme\} [B] \{Frame_1\}, \ldots, \{Frame_{T_s}\}\}$. In addition, we introduce a Phoneme-Frame Causal Attention Mask, which restricts each keyframe to its paired phonemes and masking cross-frame attention to avoid leakage. Specifically, when generating each keyframe, the model attends only to its corresponding phoneme information, enabling precise phoneme-to-frame mapping and temporally aligned phoneme modeling. In practice, the model conditions on both phoneme information and the reference image, and employs a parallel strategy to simultaneously predict T_s keyframes.
- (2) The interpolation module operates on phonemes, timestamps, and known keyframes. Drawing on VFIMamba Zhang et al. (2024a), we introduce a timestamp-aware adaptive strategy built upon a selective state space model, enabling efficient temporal modeling and precise audio-visual alignment. Specifically, guided by phoneme-timestamp pairs, intermediate frames are inserted between keyframes. Additionally, at each interpolation step, adjacent keyframes are encoded into interleaved token sequences and processed via state space modeling, enabling efficient global context aggregation with linear complexity. This design progressively refines frame durations based on phoneme rhythm, ensuring temporal coherence, synchronization with audio, and stable output frame rates. Furthermore, interpolations between different keyframe pairs can be performed in parallel, significantly improving inference efficiency.

3.3 FACIAL TRAINING STRATEGY

In training AvatarSync, we decouple semantic accuracy from visual refinement. The FKG module is optimized for semantic precision, while the interpolation module focuses on temporal coherence and visual smoothness. For the FKG training, we employ a composite loss function that integrates reconstruction, perceptual similarity, identity preservation, and facial appearance fidelity. To mitigate the instability caused by simultaneous optimization of multiple objectives, we adopt a phased training strategy. The training objective of the first stage is to learn abstract facial inpainting using a single loss function:

$$\mathcal{L}_{recon} = -\sum_{i} \log P\left(v_{i}^{real} \mid \mathbf{x}\right) \tag{6}$$

where v_i^{real} is the ground-truth token at position i, and $P(\cdot)$ represents the predicted probability distribution over the token vocabulary. In the second stage of training, we operate in the decoded pixel space and incorporate three loss terms: LPIPS Perceptual loss Li et al. (2024); Zhang et al.

Figure 3: The overall framework of AvatarSync. The pipeline first normalizes text/audio into a compact phoneme token sequence via a many-to-one mapping, and tokenizes the reference image into visual tokens. Next, a two-stage autoregressive generator performs Facial Keyframe Generation under a Phoneme-Frame Causal Attention Mask, then inserts intermediate frames using a timestamp-aware selective that interleaves keyframes for linear-time global context. Finally, the decoder reconstructs RGB frames to animate character.

(2018), Identity Consistency loss, and Facial Similarity loss to enhance visual quality.

$$\mathcal{L}_{lpips} = \sum_{l} w_{l} \cdot \frac{1}{H_{l} W_{l}} \sum_{h, w} \|F_{l}(I_{gen})_{h, w} - F_{l}(I_{real})_{h, w}\|_{2}^{2}$$
(7)

where $F_l(\cdot)$ denotes the feature map from the layer l, and H_l , W_l are its height and width.

$$\mathcal{L}_{Id} = \frac{1}{N} \sum_{i=1}^{N} \left(1 - \cos(f_{gen}^i, f_{real}^i) \right) \cdot w_{id}$$
 (8)

where f_{qen}^i and f_{real}^i are identity embeddings of the *i*-th generated and real image, respectively.

$$\mathcal{L}_{FS} = \frac{1}{N} \sum_{i=1}^{N} 0.5 \cdot d_{cos}(f_{gen}^i, f_{real}^i) \cdot w_{fs}$$

$$\tag{9}$$

where $d_{cos}(\cdot, \cdot)$ measures the cosine distance in the FaceNet512 embedding space. The overall optimization objective for this stage is:

$$\mathcal{L}_{total} = \lambda_1 \cdot \mathcal{L}_{recon} + \lambda_2 \cdot \mathcal{L}_{lpips} + \lambda_3 \cdot \mathcal{L}_{Id} + \lambda_4 \cdot \mathcal{L}_{FS}$$
 (10)

3.4 Data Preparation

To support keyframe generation, we construct two phoneme-to-frame aligned training datasets: the Chinese Mandarin Lip Reading (CMLR) dataset Zhao et al. (2019; 2020) and the English-speaking HDTF dataset Zhang et al. (2021), enabling cross-lingual modeling. Initially, we apply ASR tools to extract phonemes and their corresponding timestamps from the audio tracks, and use them to retrieve the aligned video frames. Facial regions are then detected and cropped to obtain phoneme-aligned face images. In addition, due to the low resolution of the CMLR dataset, we incorporate the GFP-GAN face enhancement algorithm to perform four-times super-resolution reconstruction. Finally, to reduce encoder training complexity, we further map abstract phonemes to concrete, character-level units. This preprocessing results in two phoneme-image paired datasets. Notably, we compare two strategies for facial region extraction: Face-Centric Cropping and Pose-Driven Landmark Cropping. Based on empirical results (see Table 3 in Appendix A.3), we adopt the pose-driven method.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Details. We train AvatarSync on a mixed dataset that combines the super-resolved Chinese CMLR dataset and the original English HDTF dataset, with a standard 95:5 train-test split applied to

Table 1: Quantitative comparison on CMLR and HDTF datasets. This table evaluates various methods on two benchmarks: the Chinese CMLR and English HDTF datasets. For the metrics, lower is better for FID, FVD, LPIPS, and Sync-D (\downarrow) , while higher is better for PSNR and SSIM (\uparrow) . The best-performing result is highlighted in **bold**, and the second-best is <u>underlined</u>.

Method	Type		CMLR					HDTF					
		FID↓	FVD↓	LPIPS↓	PSNR↑	SSIM↑	Sync-D↓	FID↓	FVD↓	LPIPS↓	PSNR↑	SSIM↑	Sync-D↓
SadTalker	GAN	<u>20.65</u>	233.81	0.30±0.00	15.38	0.55	0.91	31.06	323.22	0.36±0.07	21.60	0.83	5.72
V-Express	Diffusion	28.21	1010.22	0.36±0.01	13.83	0.45	0.86	33.53	864.10	0.39±0.08	20.62	0.81	5.29
Hallo	Diffusion	21.58	414.04	0.30 ± 0.01	15.62	0.56	1.26	33.11	564.51	0.39 ± 0.08	21.82	0.84	5.05
Hallo2	Diffusion	22.45	610.51	0.31 ± 0.01	15.50	0.56	0.76	31.28	335.54	0.38 ± 0.08	22.06	0.84	6.37
EchoMimic	Diffusion	21.50	1588.41	0.26 ± 0.03	16.67	0.58	0.89	27.39	363.45	0.26 ± 0.05	20.40	0.83	2.63
Sonic	Diffusion	22.75	274.22	0.31 ± 0.01	15.22	0.55	2.25	28.02	<u>262.16</u>	0.38 ± 0.08	21.61	0.83	7.65
AvatarSync	Autoregressive	17.11	189.24	0.07±0.01	24.14	0.86	0.98	23.69	251.89	0.21±0.06	23.34	0.89	1.26

Figure 4: Generation Time Comparison. AvatarSync scales nearly linearly with phoneme count, while others exhibit exponential growth. At 20 phonemes, it is 2.4 times faster than Hallo and remains the most efficient.

each benchmark before mixing. The training is conducted for a total of 10,000 steps on this mixed dataset, using a total of 8 NVIDIA V100 and 2 NVIDIA L20 GPUs. At the core of the training stage, we introduce a custom Phoneme-Frame Causal Attention Mask and utilize a meticulously designed composite loss function to fine-tune the pre-trained model weights. For optimization, we employ the Adam optimizer with a learning rate of 2×10^{-4} , complemented by a cosine annealing schedule. To ensure memory efficiency, we enable 16-bit mixed-precision training, accelerated by the DeepSpeed ZeRO-2 framework. The complete training procedure is detailed in Appendix A.2.

Evaluation Metrics. We evaluate generation quality using six key metrics. For perceptual realism, Fréchet Inception Distance (FID), Fréchet Video Distance (FVD), and Learned Perceptual Image Patch Similarity (LPIPS) assess the perceptual quality of the generated videos, where lower is better. For frame-level fidelity, Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) measure reconstruction accuracy against the ground truth, where higher is better. Finally, Synchronization-D (Sync-D) quantifies the audio-visual lip alignment, with a lower score indicating more precise synchronization.

Compared Baselines. We compare AvatarSync with state-of-the-art audio-driven talking-head methods, including both GANs-based and diffusion-based approaches. Additionally for GANs-based models, we consider SadTalker Zhang et al. (2023a), which generates 3D motion from audio using a 3DMM and conditional VAE. Diffusion-based baselines include V-Express Wang et al. (2024a), Hallo Xu et al. (2024a), Hallo 2 Cui et al. (2024), EchoMimic Chen et al. (2025), and Sonic Ji et al. (2024). These models leverage various strategies such as multimodal attention, hierarchical diffusion, landmark/audio conditioning, and long-range temporal modeling.

4.2 QUANTITATIVE EVALUATION

Comparison on CMLR dataset. As presented in Table 1, our proposed AvatarSync establishes a new state-of-the-art (SOTA) on the Chinese CMLR dataset. In this experiment, we evaluate the model's ability to generalize across multiple half-body portrait inputs, subject to the constraint of maintaining input—output consistency. Specifically, it achieves leading scores in generation realism and temporal coherence, marked by an FID of 17.11 and an FVD of 189.24. The state-of-the-art FVD score provides direct quantitative evidence of suppressed inter-frame flicker, confirming the temporal stability of our generated videos. Furthermore, AvatarSync excels in reconstruction fidelity, attaining top results across LPIPS (0.07), PSNR (24.14), and SSIM (0.86). This exceptional frame-level accuracy is crucial for identity preservation, eliminating identity drift and highlighting the model's ability to produce outputs with high perceptual quality and fidelity.

Figure 5: Qualitative comparison on the CMLR and HDTF dataset. (a) Top: ground-truth frames. Middle: results from baseline models. Bottom: Each phoneme (represented as pinyin for Chinese) is aligned with its corresponding frame. (b) Inter-frame flicker visualization, where pixel-wise differences between consecutive frames highlight temporal inconsistencies across methods.

Comparison on HDTF dataset. AvatarSync demonstrates exceptional cross-lingual generalization, establishing a new SOTA on the English HDTF dataset by surpassing baselines on all six metrics (Table 1). It achieves leading scores for generation realism (FID: 23.69, FVD: 251.89) and reconstruction fidelity (LPIPS: 0.21, PSNR: 23.34, SSIM: 0.89). These results indicate robust reconstruction quality, and its SOTA Sync-D score (1.26) further confirms its precise cross-lingual lip synchronization. These results demonstrate AvatarSync's capacity to generate high-fidelity, synchronized talking-head videos, validating its strong synthesis capabilities in English.

Scalability and Generation Speed. To directly confront the critical bottleneck of slow inference common in existing GANs and diffusion-based approaches, we evaluated the scalability of AvatarSync. As shown in Figure 4, our model demonstrates exceptional efficiency. Its generation time exhibits a near-linear relationship with the input phoneme count, while competitor models show exponential scaling that quickly becomes computationally prohibitive. This efficiency advantage is significant; for instance, at just 20 phonemes, AvatarSync is already 2.4 times faster than Hallo. Crucially, this linear scalability is achieved without sacrificing the high visual quality. This makes our model uniquely practical for generating long, unconstrained talking head videos and marks a significant step towards real-time applications.

4.3 QUALITATIVE EVALUATION

Qualitative comparisons in Figure 5a reveal two primary failure modes in existing methods. First, methods like SadTalker and Hallo produce blurry reconstructions with imprecise lip articulation, while EchoMimic generates nearly static mouth shapes, all indicating poor audio-visual correlation. Second, others like V-Express and Sonic suffer from severe structural degradation, introducing warping artifacts in the lower face that render outputs unusable. In contrast, AvatarSync generates precise, dynamic mouth shapes that accurately track phonemes while preserving high-fidelity facial anatomy. This dual capability eliminates the articulatory imprecision, blurring, and distortion endemic to prior work, setting a new standard for realistic talking avatars.

Beyond per-frame quality, we evaluate temporal stability via inter-frame difference heatmaps in Figure 5b. The results indicate that diffusion-based methods exhibit severe and widespread flicker across the entire frame. In contrast, AvatarSync's pixel changes are minimal and strictly localized to the articulating mouth and jaw. This stability is inherent to autoregressive architecture, which

conditions each frame on prior ones to enforce temporal coherence. The sequential dependency eliminates the stochastic variations that cause flicker, ensuring SOTA temporal coherence.

4.4 ABLATION STUDIES

Attention Mechanisms. To validate the necessity of the Phoneme-Frame Causal Attention Mask, we conducted an ablation study on attention mechanisms using the CMLR dataset. Based on the scope of accessible phoneme, four distinct attention configurations were compared: (1) Non-

Table 2: Ablation of Attention Mechanisms on CMLR.

ID	Setting	FID↓	FVD↓	LPIPS↓	PSNR↑	SSIM↑
1	Non-Causal	15.63	287.95	0.07 ± 0.01	24.41	0.86
2	Causal Acc.	19.47	210.25	0.07 ± 0.01	23.35	0.86
3	Lim. Hist.	19.56	186.68	0.07 ± 0.01	23.83	0.86
4	One-to-One	<u>17.11</u>	<u>189.24</u>	0.07 ± 0.01	<u>24.14</u>	0.86

Causal Global Attention, (2) Causal Accumulative Attention, (3) Limited History Attention (sliding window size=2), (4) One-to-One Attention. The results are detailed in Table 2.

Although the Non-Causal Global Attention excels on frame-level metrics (FID/PSNR), its reliance on future information renders it unsuitable for real-time streaming tasks. Among the causal models, our chosen One-to-One Attention achieves the optimal trade-off between frame-level fidelity and temporal coherence, thus demonstrating the most robust overall performance. Detailed definitions of each mechanism are provided in Appendix A.4.

Loss Components. Our ablation study on four key loss terms: token-level cross-entropy (CE), pixel-level LPIPS, identity consistency, and facial similarity. Results (see Table 4 in Appendix A.5) show that while each component improves over the CE-only baseline, their combination yields consistently stronger performance. Notably, excluding identity or facial similarity losses leads to a marked drop in generation quality, highlighting their importance in preserving identity.

Phoneme-based Representation Learning (PRL). PRL converts raw text into compact phoneme sequences, drastically shrinking the modeling space from vast vocabularies to a small, finite, and unified set of phonemes, simplifying processing for both alphabetic and logographic languages. As shown in Figure 6, ablation studies on the CMLR dataset confirm PRL's effectiveness: face reconstruction loss drops by 41.8%, total loss by 9.6%, and non-reconstruction terms by 21.5%. Operating in this efficient phoneme space significantly reduces training costs and accelerates inference speed.

Figure 6: Loss comparison with and without PRL.

5 CONCLUSION

We introduce AvatarSync, an autoregressive framework on phoneme representations for talking-head animation generation. The method addresses two major limitations of diffusion-based approaches: (1) inter-frame flickers in generated videos; and (2) low training and inference efficiency. By leveraging the stable many-to-one mapping from text/audio to phonemes, AvatarSync enables accurate lip synchronization with lightweight design and editable controllability. To further improve temporal coherence and inference efficiency, we design a two-stage hierarchical generation strategy that decouples phoneme semantics from visual dynamics, incorporating a Phoneme-Frame Causal Attention Mask and a timestamp-aware interpolation module. Experimental results on the CMLR and HDTF datasets demonstrate that AvatarSync outperforms existing methods in visual fidelity, motion consistency, and inference speed, showing strong potential for real-time applications. Future work will leverage large-scale codebooks and MoE frameworks to achieve robust multilingual generalization, enabling a new generation of lifelike and interactive digital human applications.

ETHICS STATEMENT

In developing AvatarSync, a phoneme-guided autoregressive talking-head generation framework, we are committed to adhering to ethical principles and promoting responsible AI usage. We recognize potential risks, including deepfake abuse, impersonation, and unauthorized manipulation of personal media, and emphasize the necessity of applying this technology in contexts that respect privacy, consent, and individual rights.

REPRODUCIBILITY STATEMENT

To encourage transparency and responsible research, our code and pretrained models will be publicly released for academic and educational purposes, while we strongly discourage harmful applications such as misinformation, defamation, or harassment. Furthermore, we advocate for ongoing research on detection mechanisms and safeguard strategies to mitigate misuse, ensuring that AvatarSync contributes positively to society and aligns with ethical and legal standards.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Vaswani Ashish. Attention is all you need. *Advances in neural information processing systems*, 30: I, 2017.
- Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11315–11325, 2022.
- Lele Chen, Ross K Maddox, Zhiyao Duan, and Chenliang Xu. Hierarchical cross-modal talking face generation with dynamic pixel-wise loss. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7832–7841, 2019.
- Zhiyuan Chen, Jiajiong Cao, Zhiquan Chen, Yuming Li, and Chenguang Ma. Echomimic: Lifelike audio-driven portrait animations through editable landmark conditions. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 2403–2410, 2025.
- Kun Cheng, Xiaodong Cun, Yong Zhang, Menghan Xia, Fei Yin, Mingrui Zhu, Xuan Wang, Jue Wang, and Nannan Wang. Videoretalking: Audio-based lip synchronization for talking head video editing in the wild. In *SIGGRAPH Asia 2022 Conference Papers*, pp. 1–9, 2022.
- Xuangeng Chu, Nabarun Goswami, Ziteng Cui, Hanqin Wang, and Tatsuya Harada. Artalk: Speechdriven 3d head animation via autoregressive model. *arXiv preprint arXiv:2502.20323*, 2025.
- Jiahao Cui, Hui Li, Yao Yao, Hao Zhu, Hanlin Shang, Kaihui Cheng, Hang Zhou, Siyu Zhu, and Jingdong Wang. Hallo2: Long-duration and high-resolution audio-driven portrait image animation. *arXiv preprint arXiv:2410.07718*, 2024.
- Dipanjan Das, Sandika Biswas, Sanjana Sinha, and Brojeshwar Bhowmick. Speech-driven facial animation using cascaded gans for learning of motion and texture. In *Computer Vision–ECCV* 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16, pp. 408–424. Springer, 2020.
- Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers. *Advances in neural information processing systems*, 34:19822–19835, 2021.
- Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12873–12883, 2021.

- Yuwei Fang, Willi Menapace, Aliaksandr Siarohin, Tsai-Shien Chen, Kuan-Chien Wang, Ivan Skorokhodov, Graham Neubig, and Sergey Tulyakov. Vimi: Grounding video generation through multi-modal instruction. arXiv preprint arXiv:2407.06304, 2024.
 - Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference using lookahead decoding. *arXiv* preprint arXiv:2402.02057, 2024.
 - Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*, 63(11):139–144, 2020.
 - Jianzhu Guo, Dingyun Zhang, Xiaoqiang Liu, Zhizhou Zhong, Yuan Zhang, Pengfei Wan, and Di Zhang. Liveportrait: Efficient portrait animation with stitching and retargeting control. *arXiv* preprint arXiv:2407.03168, 2024.
 - Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou, Kaipeng Zhang, and Bohan Zhuang. Zipar: Accelerating autoregressive image generation through spatial locality. *arXiv preprint* arXiv:2412.04062, 2024.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
 - Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet. Video diffusion models. *Advances in neural information processing systems*, 35:8633–8646, 2022.
 - Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pretraining for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.
 - Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8153–8163, 2024.
 - Xiaozhong Ji, Xiaobin Hu, Zhihong Xu, Junwei Zhu, Chuming Lin, Qingdong He, Jiangning Zhang, Donghao Luo, Yi Chen, Qin Lin, et al. Sonic: Shifting focus to global audio perception in portrait animation. *arXiv preprint arXiv:2411.16331*, 2024.
 - Jianwen Jiang, Chao Liang, Jiaqi Yang, Gaojie Lin, Tianyun Zhong, and Yanbo Zheng. Loopy: Taming audio-driven portrait avatar with long-term motion dependency. *arXiv* preprint *arXiv*:2409.02634, 2024.
 - Simran Khanuja, Sathyanarayanan Ramamoorthy, Yueqi Song, and Graham Neubig. An image speaks a thousand words, but can everyone listen? on image transcreation for cultural relevance. *arXiv preprint arXiv:2404.01247*, 2024.
 - Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Grant Schindler, Rachel Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, et al. Videopoet: A large language model for zero-shot video generation. *arXiv preprint arXiv:2312.14125*, 2023.
 - Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.
 - Chunyu Li, Chao Zhang, Weikai Xu, Jinghui Xie, Weiguo Feng, Bingyue Peng, and Weiwei Xing. Latentsync: Audio conditioned latent diffusion models for lip sync. *arXiv* preprint *arXiv*:2412.09262, 2024.
 - Zijing Liang, Yanjie Xu, Yifan Hong, Penghui Shang, Qi Wang, Qiang Fu, and Ke Liu. A survey of multimodel large language models. In *Proceedings of the 3rd International Conference on Computer, Artificial Intelligence and Control Engineering*, pp. 405–409, 2024.
 - Gaojie Lin, Jianwen Jiang, Jiaqi Yang, Zerong Zheng, and Chao Liang. Omnihuman-1: Rethinking the scaling-up of one-stage conditioned human animation models. *arXiv* preprint *arXiv*:2502.01061, 2025.

- Yuanxun Lu, Jinxiang Chai, and Xun Cao. Live speech portraits: real-time photorealistic talkinghead animation. *ACM Transactions on Graphics (ToG)*, 40(6):1–17, 2021.
 - Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2: An open-source project toward democratizing auto-regressive visual generation. *arXiv* preprint *arXiv*:2409.04410, 2024.
 - Rang Meng, Xingyu Zhang, Yuming Li, and Chenguang Ma. Echomimicv2: Towards striking, simplified, and semi-body human animation. *arXiv preprint arXiv:2411.10061*, 2024.
 - Moustafa Meshry, Saksham Suri, Larry S Davis, and Abhinav Shrivastava. Learned spatial representations for few-shot talking-head synthesis. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 13829–13838, 2021.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 - KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri, and CV Jawahar. A lip sync expert is all you need for speech to lip generation in the wild. In *Proceedings of the 28th ACM international conference on multimedia*, pp. 484–492, 2020.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - Hassan Shahmohammadi, Adhiraj Ghosh, and Hendrik Lensch. Vipe: Visualise pretty-much everything. arXiv preprint arXiv:2310.10543, 2023.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020.
 - Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv* preprint *arXiv*:2406.06525, 2024.
 - K Tian, Y Jiang, Z Yuan, et al. Visual autoregressive modeling: Scalable image generation via next-scale prediction. *Advances in neural information processing systems*, 37:84839–84865, 2024a.
 - Linrui Tian, Qi Wang, Bang Zhang, and Liefeng Bo. Emo: Emote portrait alive generating expressive portrait videos with audio2video diffusion model under weak conditions. In *European Conference on Computer Vision*, pp. 244–260. Springer, 2024b.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
 - Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in neural information processing systems*, 30, 2017.
 - Cong Wang, Kuan Tian, Jun Zhang, Yonghang Guan, Feng Luo, Fei Shen, Zhiwei Jiang, Qing Gu, Xiao Han, and Wei Yang. V-express: Conditional dropout for progressive training of portrait video generation. *arXiv preprint arXiv:2406.02511*, 2024a.
 - Jiadong Wang, Xinyuan Qian, Malu Zhang, Robby T Tan, and Haizhou Li. Seeing what you said: Talking face generation guided by a lip reading expert. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14653–14662, 2023.
 - Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot free-view neural talking-head synthesis for video conferencing. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10039–10049, 2021.
 - Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need. *arXiv preprint arXiv:2409.18869*, 2024b.

- Yuchi Wang, Junliang Guo, Jianhong Bai, Runyi Yu, Tianyu He, Xu Tan, Xu Sun, and Jiang Bian. Instructavatar: Text-guided emotion and motion control for avatar generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 8132–8140, 2025.
- Huawei Wei, Zejun Yang, and Zhisheng Wang. Aniportrait: Audio-driven synthesis of photorealistic portrait animation. *arXiv preprint arXiv:2403.17694*, 2024.
- Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer to unify multimodal understanding and generation. *arXiv* preprint arXiv:2408.12528, 2024.
- Mingwang Xu, Hui Li, Qingkun Su, Hanlin Shang, Liwei Zhang, Ce Liu, Jingdong Wang, Yao Yao, and Siyu Zhu. Hallo: Hierarchical audio-driven visual synthesis for portrait image animation. *arXiv preprint arXiv:2406.08801*, 2024a.
- Sicheng Xu, Guojun Chen, Yu-Xiao Guo, Jiaolong Yang, Chong Li, Zhenyu Zang, Yizhong Zhang, Xin Tong, and Baining Guo. Vasa-1: Lifelike audio-driven talking faces generated in real time. *Advances in Neural Information Processing Systems*, 37:660–684, 2024b.
- Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using vq-vae and transformers. *arXiv preprint arXiv:2104.10157*, 2021.
- Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion—tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.
- Guozhen Zhang, Chuxnu Liu, Yutao Cui, Xiaotong Zhao, Kai Ma, and Limin Wang. Vfimamba: Video frame interpolation with state space models. *Advances in Neural Information Processing Systems*, 37:107225–107248, 2024a.
- Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 586–595, 2018.
- Wenxuan Zhang, Xiaodong Cun, Xuan Wang, Yong Zhang, Xi Shen, Yu Guo, Ying Shan, and Fei Wang. Sadtalker: Learning realistic 3d motion coefficients for stylized audio-driven single image talking face animation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8652–8661, 2023a.
- Yue Zhang, Minhao Liu, Zhaokang Chen, Bin Wu, Yubin Zeng, Chao Zhan, Yingjie He, Junxin Huang, and Wenjiang Zhou. Musetalk: Real-time high quality lip synchronization with latent space inpainting. *arXiv preprint arXiv:2410.10122*, 2024b.
- Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie Fan. Flow-guided one-shot talking face generation with a high-resolution audio-visual dataset. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3661–3670, 2021.
- Zhimeng Zhang, Zhipeng Hu, Wenjin Deng, Changjie Fan, Tangjie Lv, and Yu Ding. Dinet: Deformation inpainting network for realistic face visually dubbing on high resolution video. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 3543–3551, 2023b.
- Ya Zhao, Rui Xu, and Mingli Song. A cascade sequence-to-sequence model for chinese mandarin lip reading. In *Proceedings of the 1st ACM International Conference on Multimedia in Asia*, pp. 1–6, 2019.
- Ya Zhao, Rui Xu, Xinchao Wang, Peng Hou, Haihong Tang, and Mingli Song. Hearing lips: Improving lip reading by distilling speech recognizers. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 6917–6924, 2020.
- Dingcheng Zhen, Shunshun Yin, Shiyang Qin, Hou Yi, Ziwei Zhang, Siyuan Liu, Gan Qi, and Ming Tao. Teller: Real-time streaming audio-driven portrait animation with autoregressive motion generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 21075–21085, 2025.

Rui Zhen, Wenchao Song, Qiang He, Juan Cao, Lei Shi, and Jia Luo. Human-computer interaction system: A survey of talking-head generation. *Electronics*, 12(1):218, 2023.

Hang Zhou, Yu Liu, Ziwei Liu, Ping Luo, and Xiaogang Wang. Talking face generation by adversarially disentangled audio-visual representation. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 9299–9306, 2019.

Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy, Xiaogang Wang, and Ziwei Liu. Pose-controllable talking face generation by implicitly modularized audio-visual representation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4176–4186, 2021.

A APPENDIX

A.1 DETAILS OF CMLR SUPER-RESOLUTION

The scarcity of high-quality, large-scale Chinese talking-head datasets poses a significant challenge to research in this domain. The CMLR dataset stands as one of the few publicly available Chinese datasets for this task, offering a crucial resource for research. However, its inherent low resolution results in blurry facial features and a lack of crucial detail in the lip region. This directly compromises the training efficacy and evaluation reliability of models that require high-fidelity visual input.

To address this limitation and establish a more robust benchmark, we employed the GFPGAN face enhancement algorithm to perform a comprehensive four-times super-resolution reconstruction across the entire CMLR dataset. A visual comparison of the frames before and after this enhancement is presented in Figure 7 and 8.

Furthermore, to foster future research and benefit the community, we will open-source this enhanced, high-resolution version of the CMLR dataset.

Figure 7: Original Video Frames from the Dataset.

Figure 8: Enhanced Video Frames after Super-Resolution.

A.2 TRAINING DETAILS

We trained the model on a mixed dataset that combines the super-resolved CMLR dataset (Chinese) and the original HDTF dataset (English). The training was conducted for a total of 10,000 steps on this mixed dataset.

Figures 10a, 10b, 10c, 10d, 10e, and 10f illustrate the progression of various loss functions during training, demonstrating the convergence behavior and the contribution of individual loss components to the total loss.

A.3 FACE CROPPING STRATEGIES ABLATION DETAILS

Cropping Strategy. We compare two preprocessing methods: Face-Centric Cropping and Pose-Driven Landmark Cropping. The former leads to unstable generation due to scale and background variations. In contrast, the landmark-based approach ensures tighter alignment and better lip dynamics. In addition, the choice of face cropping strategy significantly impacts the final generation quality. Therefore, we conducted this ablation study to validate our choice of the Pose-Driven Landmark Cropping strategy over the baseline Face-Centric Cropping. Both qualitative and quantitative results confirm the superiority of our approach.

Qualitatively, as shown in Figure 9, our method yields tighter facial alignment and more consistent lip dynamics, resulting in enhanced visual coherence and identity preservation. Quantitatively, Table 3 shows our strategy yields a lower (better) Identity Similarity Score (ISS) between the generated faces and the ground-truth video on a majority of the face recognition models (3 out of 4).

(a) Face-Centric Cropping

(b) Pose-Driven Landmark Cropping

Figure 9: Visual comparison of face preprocessing methods.

	Model		Face-Ce	ntric Croppin	g	Landmark-Based Cropping				
Subset		ArcFace	FaceNet	FaceNet512	VGG-Face	ArcFace	FaceNet	FaceNet512	VGG-Face	
s1		0.2958	0.1608	0.1931	0.2899	0.3250	0.2175	0.2360	0.3399	
s2		0.2189	0.1672	0.1278	0.2885	0.2077	0.1886	0.1011	0.2236	
s3		0.2576	0.1715	0.1079	0.2899	0.2873	0.1784	0.0752	0.2012	
s4		0.3698	0.3415	0.2198	0.3643	0.3628	0.2822	0.1922	0.3465	
s5		0.3137	0.2790	0.1677	0.3588	0.3015	0.1978	0.1319	0.2626	
Total		0.2912	0.2240	0.1632	0.3183	0.2968	0.2129	0.1472	0.2748	

Table 3: Identity similarity (ISS) comparison under different cropping strategies. Lower ISS values indicate greater identity similarity. **Bold numbers** in the **Total** row indicate better-performing cropping strategy per model.

Given its superior performance in both visual quality and quantitative identity preservation, we adopted the Pose-Driven Landmark Cropping strategy for all experiments.

A.4 ATTENTION MECHANISMS ABLATION DETAILS

To validate the necessity and design rationale of our proposed Phoneme-Frame Causal Attention Mask, we conducted a key ablation study on the super-resolved CMLR dataset. We designed and compared four distinct attention configurations, which primarily differ in the scope of phonetic information accessible to the model during the generation of each frame. The details of these four attention mechanisms are as follows:

- (1) Non-Causal Full Attention. When generating any frame, the model can access the entire input phoneme sequence from beginning to end. This configuration sees "future" information, making it unsuitable for streaming generation tasks. Its results are typically considered a theoretical performance upper bound.
- (2) Causal Accumulative Attention. When generating the i-th frame, the model can access all historical phonemes from the 1st to the current i-th. This represents a standard autoregressive (causal) attention mechanism.
- (3) **Limited History Attention.** When generating the i-th frame (for i > 1), the model utilizes a sliding window of size 2, accessing only the current i-th and the previous (i-1)-th phonemes. This strategy aims to provide limited local context while maintaining high computational efficiency.
- (4) One-to-One Attention. When generating the i-th frame, the model strictly accesses only the corresponding i-th phoneme. This is the strictest form of causality, ensuring that the generation of each frame depends solely on the currently aligned input, without reliance on any historical or future information.

Configuration	Exp.	Loss Functions				Evaluation Metrics				
comgaration	Eap.	CE	LPIPS	Identity	Facial	FID↓	LPIPS↓	PSNR↑	SSIM↑	
Baseline	1	✓				28.1361	0.0365	25.0786	0.8837	
	2	√	√			16.6485	0.0128	32.5706	0.9615	
+ Single Additional Loss	5	✓		✓		16.1956	0.0138	32.0478	0.9620	
	6	\checkmark			✓	16.4723	0.0131	32.4699	0.9653	
	3	✓	✓	✓		15.6558	0.0151	31.9085	0.9632	
+ Double Additional Losses	4	✓	✓		✓	18.1449	0.0162	31.8410	0.9623	
	7	✓		\checkmark	✓	13.4429	0.0133	32.4377	0.9643	
Full Model	8	✓	✓	✓	✓	13.8603	0.0136	33.1348	0.9666	

Table 4: Ablation study on different loss function combinations. **CE**: Cross-Entropy Loss; **LPIPS**: Learned Perceptual Image Patch Similarity; **Identity**: Identity Consistency Loss; **Facial**: Facial Similarity Loss. ↓: lower is better; ↑: higher is better. Bold = best; underlined = second best per column.

A.5 Loss Function Ablation Details

To validate the effectiveness of each component in our proposed composite loss function, we conduct a detailed ablation study, with the full results presented in Table 4. In this study, we establish a baseline model trained exclusively with a token-level cross-entropy (CE) loss. We then incrementally incorporate our other proposed loss terms: the pixel-level LPIPS perceptual loss, identity consistency loss, and facial similarity loss.

The experimental results clearly demonstrate that while each loss component individually yields performance gains over the baseline, the optimal overall generation quality is achieved only through their combination. Particularly noteworthy is the finding that removing either the identity consistency or the facial similarity loss from the full model leads to a marked degradation in generation quality. This underscores their critical roles in preserving subject identity and enhancing visual realism.

THE USE OF LARGE LANGUAGE MODELS(LLMS)

We utilized a large language model as a general-purpose writing assistant during the preparation of this paper. Its role was strictly limited to improving grammar, spelling, and overall language clarity. The authors are fully responsible for the research ideation, data, analysis, and final content of this manuscript.

Figure 10: Training loss curves on the mixed dataset (CMLR + HDTF). The plots illustrate the convergence of various loss components over 10,000 training steps. Key metrics include reconstruction objectives, face-specific metrics, and autoregressive losses.