

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AVATAR SYNC: RETHINKING TALKING-HEAD ANIMATION THROUGH PHONEME-GUIDED AUTOREGRESSIVE PERSPECTIVE

Anonymous authors

Paper under double-blind review

ABSTRACT

Talking-head animation focuses on generating realistic facial videos from audio input. Following Generative Adversarial Networks (GANs), diffusion models have become the mainstream, owing to their robust generative capability. However, inherent limitations of the diffusion process often lead to inter-frame flicker and slow inference, hindering their practical use in talking-head animation. To address this, we introduce AvatarSync, an autoregressive framework on phoneme representations that generates realistic and controllable talking-head animations from a single reference image, driven by text or audio input. To mitigate flicker and ensure continuity, AvatarSync leverages an autoregressive pipeline that enhances temporal modeling. In addition, to ensure controllability, we introduce phonemes that are the basic units of speech sounds, and construct a many-to-one mapping from text/audio to phonemes, enabling precise phoneme-to-visual alignment. To further accelerate inference, we adopt a two-stage generation strategy that decouples semantic modeling from visual dynamics, incorporating a Phoneme-Frame Causal Attention Mask and a timestamp-aware adaptive strategy to support parallel inference. Extensive experiments conducted on Chinese (CMLR) and English (HDTF) benchmarks show that AvatarSync substantially reduces inter-frame flicker and outperforms existing methods in visual fidelity, temporal consistency, and computational efficiency, providing a scalable solution.

1 INTRODUCTION

Talking-head animation Guo et al. (2024); Hu (2024); Tian et al. (2024b); Chen et al. (2025); Meng et al. (2024); Lu et al. (2021); Wei et al. (2024); Chu et al. (2025); Zhen et al. (2025); Wang et al. (2025) is a representative multimodal generation task that demands fine-grained alignment between audio and visual outputs. Leveraging advancements in artificial intelligence, this technique synthesizes realistic, speech-synchronized facial motion from static images and audio inputs. This technology finds widespread applications in areas such as video dubbing, virtual avatars, and digital entertainment Prajwal et al. (2020). Despite significant progress, efficiently generating high-quality, lifelike, and fine-grained talking-head animations in real time remains a formidable challenge.

In the field, two primary paradigms have emerged: Generative Adversarial Networks (GANs) Goodfellow et al. (2020) and diffusion models Ho et al. (2020). GAN-based methods Zhen et al. (2023); Cheng et al. (2022); Wang et al. (2023); Zhang et al. (2023b;a) offer advantages in inference speed and computational efficiency. However, they often suffer from visual artifacts and struggle to maintain identity consistency, limiting their applicability in high-fidelity scenarios. Recently, diffusion models Rombach et al. (2022); Wang et al. (2024a); Ji et al. (2024); Lin et al. (2025); Li et al. (2024); Jiang et al. (2024) have gained attention due to their superior visual fidelity in image generation tasks. Several works (such as EMO Tian et al. (2024b), Hallo Xu et al. (2024a); Cui et al. (2024), and EchoMimic Chen et al. (2025) Meng et al. (2024)) have extended diffusion models to talking-head animation. These approaches generally produce clearer and more stable visual results. Nonetheless, the reliance of diffusion models on multi-step denoising processes leads to slow inference and high computational cost, which severely hinders their deployment in real-time applications. To address these issues, recent efforts Ji et al. (2024); Li et al. (2024) have explored strategies, such as sampling path control, to improve inference efficiency. However, diffusion-based approaches still

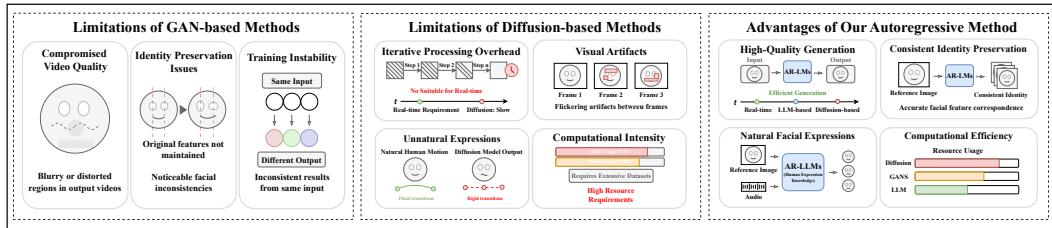


Figure 1: Comparison of GAN-based, diffusion-based, and our autoregressive method. The left and middle panels summarize key limitations of GAN and diffusion models. The right panel illustrates the advantages of our autoregressive method.

suffer from fundamental limitations, including inter-frame flicker, unnatural facial dynamics, and poor real-time performance. As illustrated in Figure 1, although both GAN-based and diffusion-based methods have made significant progress, achieving a better balance among computational efficiency, generation consistency, and visual fidelity remains a major challenge in this field.

To this end, we introduce AvatarSync, an autoregressive framework on phoneme representations that generates realistic and controllable talking-head animations from a single reference image, driven by text or audio input. As illustrated in Figure 3, AvatarSync adopts a two-stage generation strategy, combining a Facial Keyframe Generation (FKG) module with the inter-frame interpolation module to synthesize natural facial dynamics. In the first stage, by leveraging this many-to-one relationship, the FKG module extracts character-level phoneme sequences from text or audio input. Subsequently, the phoneme sequences and reference image are respectively tokenized using a text tokenizer Ding et al. (2021) and a visual tokenizer trained with either VQ Van Den Oord et al. (2017); Esser et al. (2021) or LFQ Yu et al. (2023). These phoneme and visual tokens are then aligned and concatenated into a unified sequence, enabling an autoregressive transformer model to produce a sparse set of keyframes under a Phoneme-Frame Causal Attention Mask.

In the second stage, we propose a timestamp-aware adaptive strategy built upon a selective state space model, to enable efficient temporal modeling and precise audio-visual alignment. The interpolation module leverages explicit timestamp information embedded in keyframes to flexibly control motion intensity across variable frame intervals. In addition, to facilitate global context aggregation, adjacent keyframes are encoded as interleaved token sequences and processed through state space modeling. As a result, the system synthesizes natural and temporally coherent facial dynamics.

To support practical deployment, we structurally optimize the inference pipeline to significantly improve computational efficiency without compromising generation quality. AvatarSync outperforms conventional systems in most real-world scenarios, delivering a smooth and responsive user experience. Notably, AvatarSync establishes a new modeling paradigm and methodological framework for talking-head multimodal generation task. In summary, our main contributions are listed as follows:

- To substantially reduce inter-frame flicker, we propose AvatarSync, an autoregressive framework on phoneme representations that generates talking-head animations from a single reference image, driven by text or audio. By leveraging the many-to-one mapping from text/audio to phonemes, we construct phoneme-to-visual alignment. This design enables it to support editable, segment-level, and fine-grained control over video generation.
- We introduce a two-stage hierarchical generation strategy that decouples semantics from visual dynamics. The first stage, Facial Keyframe Generation (FKG), models phoneme-aligned semantics, while the second stage interpolates intermediate frames to enhance temporal coherence and visual smoothness. This design mitigates error accumulation, supports localized editing, and enables parallel inference for improved efficiency.
- In FKG, we design a Phoneme-Frame Causal Attention Mask to enhance phoneme-frame alignment and employ a composite loss integrating perceptual, identity, and facial similarity. For interpolation, we propose a timestamp-aware adaptive strategy based on selective state space modeling, enabling temporal inference and audio-visual synchronization.
- We conduct comprehensive evaluations of AvatarSync on two benchmark datasets, CMLR and HDTF, covering Chinese and English. As shown in Table 1 and Figure 10, AvatarSync consistently outperforms existing advanced audio-driven talking-head animation models in terms of computational efficiency, facial fidelity, and motion consistency.

108

2 RELATED WORK

109

2.1 TALKING HEAD GENERATION

110 Audio-driven talking-head generation has emerged as a key research topic in multimodal content
 111 generation, demonstrating significant practical value in applications such as video dubbing and virtual
 112 avatars. Prevailing approaches can be broadly categorized into two classes: GAN-based meth-
 113 ods Zhou et al. (2019; 2021); Meshry et al. (2021); Das et al. (2020); Chen et al. (2019); Zhang et al.
 114 (2023a) and diffusion-based methods Wang et al. (2024a); Ji et al. (2024); Lin et al. (2025); Li et al.
 115 (2024); Jiang et al. (2024); Xu et al. (2024b). In the following, we provide a systematic review of
 116 recent advances and representative characteristics of each class.
 117

118 **GAN-based methods.** GAN-based methods are widely recognized for their computational effi-
 119 ciency and rapid inference. However, early approaches struggle with maintaining identity consis-
 120 tency and accurate lip synchronization. To address this, methods, such as SadTalker Zhang et al.
 121 (2023a) and FaceVid2Vid Wang et al. (2021), adopt multi-stage inference pipelines that decouple
 122 audio-to-motion and motion-to-video modeling. While this improves generation quality, it signifi-
 123 cantly increases computational overhead and system complexity. Moreover, the decoupled modeling
 124 leads to unnatural generation results, where only the mouth moves while the rest of the face remains
 125 static, compromising realism and temporal continuity.
 126

127 **Diffusion-based methods.** Diffusion-based approaches typically integrate ReferenceNet, temporal
 128 modeling layers, and audio-attention modules into a single unified framework. These methods en-
 129 able vivid talking head generation from a single image, but come with high computational costs and
 130 often suffer from unstable mouth motion. To reduce the overhead, MuseTalk Zhang et al. (2024b)
 131 combines diffusion with GANs. OmniHuman-1 Lin et al. (2025) further proposes a hybrid train-
 132 ing scheme based on a Diffusion Transformer architecture. While these methods partially alleviate
 133 slow inference and low visual fidelity, they do not overcome diffusion’s inherent limitations, leaving
 134 generated videos with artifacts such as ghosting and inter-frame flicker.
 135

136

2.2 VISUAL GENERATION BASED ON LARGE LANGUAGE MODELS

137 In recent years, large language models (LLMs) Achiam et al. (2023); Touvron et al. (2023); Liang
 138 et al. (2024) have extended to the domain of visual content generation. Compared to diffusion mod-
 139 els that rely on multi-step denoising, LLM-based visual generation methods offer superior scalability
 140 and inference efficiency for multimodal tasks.
 141

142 LLM-based visual generation approaches can be broadly categorized into two types: **masked lan-**
 143 **guage models (MLMs)** and **autoregressive language models (AR-LMs)**. MLMs enable efficient
 144 training and fast sampling by predicting randomly masked tokens in parallel. In image generation,
 145 MaskGIT Chang et al. (2022) progressively refines images by predicting missing tokens, achieving
 146 both high quality and computational efficiency. Subsequently, this approach is extended to the video
 147 domain. MAGVIT-v2 proposes an embedding method for iterative masked video token modeling.
 148

149 AR-LMs predict tokens sequentially, modeling the conditional probability of each token given its
 150 preceding context. In image synthesis, LlamaGen Sun et al. (2024) employs an autoregressive Trans-
 151 former to generate semantically aligned, detail-rich images, while VAR Tian et al. (2024a) adopts a
 152 coarse-to-fine generation strategy to iteratively refine multi-scale representations. In video genera-
 153 tion, VideoPoet Kondratyuk et al. (2023) processes multimodal inputs through region-wise tokeniza-
 154 tion. CogVideo Hong et al. (2022), Show-o Xie et al. (2024) and EMU3 Wang et al. (2024b) further
 155 extend autoregressive modeling to text-to-video generation, proposing multimodal architectures.
 156 Recently, a few studies Chu et al. (2025); Zhen et al. (2025) have also explored transformer-based
 157 architectures specifically for talking-head generation, achieving promising results in both visual re-
 158 alism and controllability. These methods directly encode audio sequences and reference images
 159 using standard Transformer architectures to generate video frames. However, these methods typi-
 160 cally entail high computational demands and inference complexity, limiting practical deployment.
 161

162 Furthermore, as LLMs Khanuja et al. (2024); Fang et al. (2024); Shahmohammadi et al. (2023) are
 163 increasingly adopted in natural language processing, token-level parallelization strategies for accel-
 164 erating autoregressive inference have rapidly gained traction in visual generation Leviathan et al.
 165 (2023); He et al. (2024); Fu et al. (2024). These approaches require no model retraining, offering
 166

Figure 2: Inter-frame Flicker Visualization. Left: reference frame; subsequent panels show pixel-wise differences between consecutive frames, where scattered high-difference regions reveal temporal flicker.

strong generalizability and deployment flexibility. In summary, LLM-based methods represent a promising direction for achieving real-time, high-fidelity, and controllable talking-head generation.

3 METHOD

3.1 PRELIMINARY OF INTER-FRAME FLICKER

As illustrated in Figure 2, diffusion-based video generation methods often exhibit inter-frame flicker, manifesting as temporal inconsistencies or identity shifts between adjacent frames. In the following, we provide a theoretical analysis based on Denoising Diffusion Probabilistic Models formulation.

Consider the DDPM reverse process for generating a single image frame $\hat{\mathbf{x}}_0^{(t)}$ from Gaussian noise:

$$\mathbf{x}_T^{(t)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \hat{\mathbf{x}}_0^{(t)} = f_{\theta}(\mathbf{x}_T^{(t)}, \mathbf{c}^{(t)}) \quad (1)$$

where t indexes the frame index, $\mathbf{c}^{(t)}$ is the conditioning input, and $f_{\theta}(\cdot)$ denotes the denoising trajectory defined by the model. Even under fixed $\mathbf{c}^{(t)} = \mathbf{c}$ across all frames, the sampled latent variables $\mathbf{x}_T^{(t)}$ are independent:

$$\text{Cov}(\mathbf{x}_T^{(t)}, \mathbf{x}_T^{(t+1)}) = \mathbf{0} \quad (2)$$

As a result, the output frames $\hat{\mathbf{x}}_0^{(t)}$ and $\hat{\mathbf{x}}_0^{(t+1)}$ are conditionally uncorrelated, resulting in inter-frame variability. Formally, the output distribution is:

$$p_{\theta}(\hat{\mathbf{x}}_0^{(t)} | \mathbf{c}) = \int p_{\theta}(\hat{\mathbf{x}}_0^{(t)} | \mathbf{x}_T^{(t)}, \mathbf{c}) \cdot \mathcal{N}(\mathbf{x}_T^{(t)}; \mathbf{0}, \mathbf{I}) d\mathbf{x}_T^{(t)} \quad (3)$$

Since $\mathbf{x}_T^{(t)}$ and $\mathbf{x}_T^{(t+1)}$ are independently and identically sampled from the standard Gaussian prior, adjacent frames are marginally independent even under identical conditioning. Consequently, the generated frame sequence $\{\hat{\mathbf{x}}_0^{(t)}\}_{t=1}^T$ is prone to exhibit a lack of temporal coherence.

While some diffusion models, such as DDIM Song et al. (2020), DiT Peebles & Xie (2023), and models employing 3D convolutions Ho et al. (2022), have begun to model temporal dependencies in the denoising process, the independent sampling of the initial noise $\mathbf{x}_T^{(t)}$ for each frame still leads to insufficient temporal coherence in the generated videos. To mitigate this, guided noise injection methods Li et al. (2024) have been proposed. However, the inherent stochasticity of the initial noise poses a significant challenge to fully resolving the issue of inter-frame flickering.

Autoregressive models generate video frames as a single and unified token sequence. Let $X = \{x_1^{(1)}, \dots, x_K^{(T)}\}$ denote a flattened sequence of T video frames, where each frame contains K discrete tokens. Here, x_i denotes the i -th token in the flattened sequence, and $x_j^{(t)}$ refers to the j -th token in frame t . The model estimates Ashish (2017):

$$P(X) = \prod_{i=1}^N P(x_i | x_{<i}, c) \quad (4)$$

For any token $x_j^{(t)}$ in frame t , its generation depends on all tokens from previous frames and prior tokens within the same frame:

$$P(x_j^{(t)} | x_1^{(1)}, \dots, x_K^{(t-1)}, x_1^{(t)}, \dots, x_{j-1}^{(t)}, c) \quad (5)$$

Here, when $t = 1$ or $j = 1$, the corresponding conditioning sets are empty. Therefore, compared to diffusion models, autoregressive models generate frames sequentially with strong contextual conditioning, exhibiting a strong inductive bias toward temporal coherence.

216
217

3.2 MODEL DESIGN

218 The overall framework of AvatarSync is depicted in Figure 3. It mainly consists of three parts: (1)
 219 an image tokenizer for quantizing the reference image into visual tokens, and an audio ASR tool for
 220 processing the input speech into a phoneme sequence; (2) a two-stage generation model based on an
 221 autoregressive framework, designed to effectively model phoneme-conditioned multimodal inputs
 222 and synthesize high-quality visual outputs; (3) a decoder for performing downstream tasks. In the
 223 following, we focus on detailing the first and second components of the system.

224 **Tokenization.** AvatarSync is flexible for handling multimodal input, supporting both text-image and
 225 audio-image modalities for video generation. (1) *For text input*, the input text is first converted into
 226 a phoneme sequence, leveraging the stable many-to-one mapping to facilitate accurate mouth-shape
 227 generation. Subsequently, a standard tokenizer transforms the phoneme sequence into discrete to-
 228 kens. (2) *For audio input*, we employ automatic speech recognition (ASR) tools to extract phoneme-
 229 level alignments with timestamps, which are then tokenized into discrete phoneme tokens. (3) *For an image input*, we adopt a pre-trained vision foundation model, such as Open-MAGVIT2 Luo et al.
 230 (2024), to extract image features. To capture fine-grained facial details, we employ MMPose for
 231 facial landmark detection and adjust the input image’s aspect ratio.

232 **Auto-regressive Model.** Following prior work Yan et al. (2021); Kondratyuk et al. (2023), text,
 233 audio and image prompts are projected into the feature space of a large language model (LLM). As
 234 illustrated in Figure 3, our autoregressive model follows a pipelined generation process consisting of
 235 two stages: Facial Keyframe Generation (FKG) and the inter-frame interpolation module. Notably,
 236 unlike the two-stage designs in prior work Harvey et al. (2022); Wei et al. (2024), our framework
 237 aligns keyframes explicitly with phoneme units rather than uniformly sampling in time, and the
 238 second stage interpolates frames within these phoneme-aligned intervals using their timestamps.

239 (1) The model generates T_s keyframes in accordance with the sequential order of the input
 240 phoneme. The Facial Keyframe Generation (FKG) module receives phoneme representations en-
 241 coded by a tokenizer and structures the input sequence as: $\{\{\text{Phoneme}\} [B] \{\text{Frame}_1\}, \dots,$
 242 $\{\text{Frame}_{T_s}\}\}$. In addition, we introduce a Phoneme-Frame Causal Attention Mask, which restricts
 243 each keyframe to its paired phonemes and masking cross-frame attention to avoid leakage. Specif-
 244 ically, when generating each keyframe, the model attends only to its corresponding phoneme infor-
 245 mation, enabling precise phoneme-to-frame mapping and temporally aligned phoneme modeling. In
 246 practice, the model conditions on both phoneme information and the reference image, and employs
 247 a parallel strategy to simultaneously predict T_s keyframes.

248 (2) The interpolation module operates on phonemes, timestamps, and known keyframes. Drawing
 249 on VFIMamba Zhang et al. (2024a), we introduce a timestamp-aware adaptive strategy built upon
 250 a selective state space model, enabling efficient temporal modeling and precise audio-visual align-
 251 ment. Specifically, guided by phoneme-timestamp pairs, intermediate frames are inserted between
 252 keyframes. Additionally, at each interpolation step, adjacent keyframes are encoded into interleaved
 253 token sequences and processed via state space modeling, enabling efficient global context aggrega-
 254 tion with linear complexity. This design progressively refines frame durations based on phoneme
 255 rhythm, ensuring temporal coherence, synchronization with audio, and stable output frame rates.
 256 Furthermore, interpolations between different keyframe pairs can be performed in parallel, signifi-
 257 cantly improving inference efficiency.

258
259

3.3 FACIAL TRAINING STRATEGY

260 In training AvatarSync, we decouple semantic accuracy from visual refinement. The FKG module
 261 is optimized for semantic precision, while the interpolation module focuses on temporal coherence
 262 and visual smoothness. For the FKG training, we employ a composite loss function that integrates
 263 reconstruction, perceptual similarity, identity preservation, and facial appearance fidelity. To miti-
 264 gate the instability caused by simultaneous optimization of multiple objectives, we adopt a phased
 265 training strategy. The training objective of the first stage is to learn abstract facial inpainting using a
 266 single loss function:

$$\mathcal{L}_{\text{recon}} = - \sum_i \log P(v_i^{\text{real}} | \mathbf{x}) \quad (6)$$

267
268
269

where v_i^{real} is the ground-truth token at position i , and $P(\cdot)$ represents the predicted probability
 distribution over the token vocabulary. In the second stage of training, we operate in the decoded

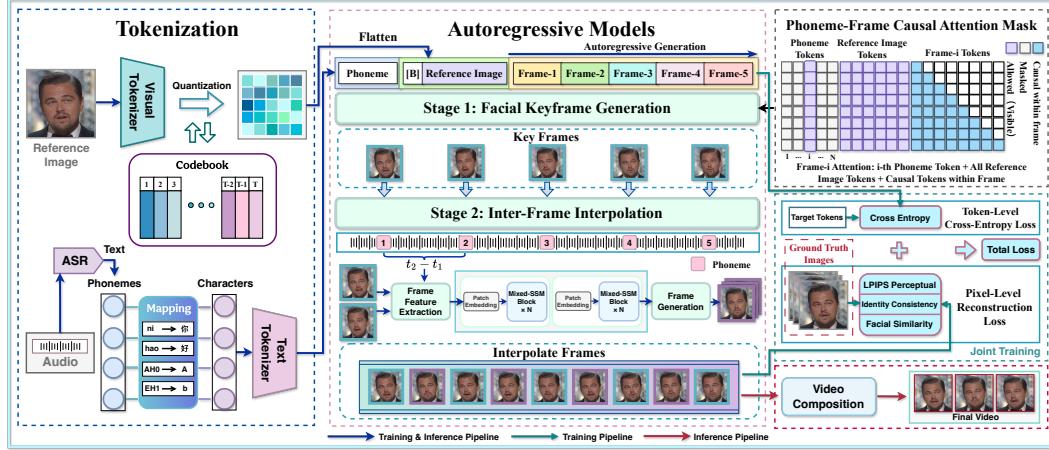


Figure 3: The overall framework of AvatarSync. The pipeline first normalizes text/audio into a phoneme token sequence via a many-to-one mapping, and tokenizes the reference image into visual tokens. Next, a two-stage autoregressive generator performs Facial Keyframe Generation under a Phoneme-Frame Causal Attention Mask, and inserts intermediate frames using a timestamp-aware module that interleaves keyframes for linear-time global context. Finally, the decoder reconstructs RGB frames to animate character.

pixel space and incorporate three loss terms: LPIPS Perceptual loss Li et al. (2024); Zhang et al. (2018), Identity Consistency loss, and Facial Similarity loss to enhance visual quality.

$$\mathcal{L}_{lpips} = \sum_l w_l \cdot \frac{1}{H_l W_l} \sum_{h,w} \|F_l(I_{\text{gen}})_{h,w} - F_l(I_{\text{real}})_{h,w}\|_2^2 \quad (7)$$

where $F_l(\cdot)$ denotes the feature map from the layer l , and H_l, W_l are its height and width.

$$\mathcal{L}_{Id} = \frac{1}{N} \sum_{i=1}^N (1 - \cos(f_{\text{gen}}^i, f_{\text{real}}^i)) \cdot w_{id} \quad (8)$$

where f_{gen}^i and f_{real}^i are identity embeddings of the i -th generated and real image, respectively.

$$\mathcal{L}_{FS} = \frac{1}{N} \sum_{i=1}^N 0.5 \cdot d_{\text{cos}}(f_{\text{gen}}^i, f_{\text{real}}^i) \cdot w_{fs} \quad (9)$$

where $d_{\text{cos}}(\cdot, \cdot)$ measures the cosine distance in the FaceNet512 embedding space. The overall optimization objective for this stage is:

$$\mathcal{L}_{\text{total}} = \lambda_1 \cdot \mathcal{L}_{\text{recon}} + \lambda_2 \cdot \mathcal{L}_{lpips} + \lambda_3 \cdot \mathcal{L}_{Id} + \lambda_4 \cdot \mathcal{L}_{FS} \quad (10)$$

3.4 DATA PREPARATION

To support keyframe generation, we construct two phoneme-to-frame aligned training datasets: the Chinese Mandarin Lip Reading (CMLR) dataset Zhao et al. (2019; 2020) and the English-speaking HDTF dataset Zhang et al. (2021), enabling cross-lingual modeling. Initially, we apply ASR tools to extract phonemes and their corresponding timestamps from the audio tracks, and use them to retrieve the aligned video frames. Facial regions are then detected and cropped to obtain phoneme-aligned face images. In addition, due to the low resolution of CMLR, we incorporate the GFPGAN face enhancement algorithm to perform four-times super-resolution reconstruction. To reduce encoder training complexity, we further map abstract phonemes to concrete, character-level units. For coarticulation, we explicitly introduce special mappings for specific coarticulation patterns (e.g., two characters are jointly pronounced). This preprocessing results in two phoneme-image paired datasets. Notably, we compare two strategies for facial region extraction: Face-Centric Cropping and Pose-Driven Landmark Cropping. Based on empirical results (see Table 4 in Appendix A.3), we adopt the pose-driven method.

324 Table 1: Quantitative comparison on CMLR and HDTF datasets. SadTalker is GAN-based, the other baselines
 325 are diffusion models, and AvatarSync (ours) is autoregressive.

Method	CMLR										HDTF									
	FID \downarrow	FVD \downarrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	CSIM \uparrow	Sync-C \downarrow	Sync-D \downarrow	FID \downarrow	FVD \downarrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	CSIM \uparrow	Sync-C \downarrow	Sync-D \downarrow				
SadTalker	30.96	618.74	<u>0.42</u>	14.50	0.48	<u>0.79</u>	0.91	14.29	37.20	316.78	0.26	18.85	0.74	0.82	5.72	11.83				
V-Express	32.54	821.95	0.46	12.99	0.39	0.70	<u>0.83</u>	13.71	40.13	779.19	0.27	18.29	0.72	0.88	5.29	12.79				
AniPortrait	32.46	711.30	0.47	14.71	0.49	0.69	0.89	14.99	40.19	614.01	0.28	18.52	0.72	0.88	5.61	<u>11.30</u>				
Haloo	<u>30.84</u>	630.53	0.43	14.62	0.49	0.71	1.20	14.99	44.48	520.72	<u>0.25</u>	<u>18.94</u>	0.75	0.88	5.05	11.62				
Haloo2	35.10	<u>570.12</u>	0.44	14.59	0.49	0.75	0.80	14.67	42.77	340.83	<u>0.25</u>	19.04	0.75	0.89	6.37	11.91				
EchoMimic	33.09	1225.10	0.42	<u>14.87</u>	0.48	0.69	0.89	13.97	38.11	<u>301.33</u>	0.29	18.11	0.73	0.85	<u>2.63</u>	12.88				
Sonic	31.58	953.30	0.43	14.39	0.47	0.68	2.25	<u>12.84</u>	<u>32.89</u>	379.13	0.26	18.55	0.74	<u>0.90</u>	7.65	12.70				
StableAvatar	39.38	741.36	0.46	14.41	0.49	<u>0.79</u>	0.92	14.83	35.39	700.82	0.28	18.41	0.72	0.85	5.34	12.56				
AvatarSync	25.19	503.29	0.40	15.07	0.49	0.85	0.94	10.90	29.72	260.65	0.24	18.69	0.73	0.95	2.57	10.39				

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Details. We train AvatarSync on a mixed dataset that combines the super-resolved Chinese CMLR dataset and the original English HDTF dataset, with a standard 95:5 train-test split applied to each benchmark before mixing. The training is conducted for a total of 10,000 steps on this mixed dataset, using a total of 8 NVIDIA V100 and 2 NVIDIA L20 GPUs. At the core of the training stage, we introduce a custom Phoneme-Frame Causal Attention Mask and utilize a meticulously designed composite loss function to fine-tune the pre-trained model weights. For optimization, we employ the Adam optimizer with a learning rate of 2×10^{-4} , complemented by a cosine annealing schedule. To ensure memory efficiency, we enable 16-bit mixed-precision training, accelerated by the DeepSpeed ZeRO-2 framework. The complete training procedure is detailed in Appendix A.2.

Evaluation Metrics. We evaluate the models with eight complementary metrics. For perceptual quality and identity preservation, FID, FVD, LPIPS, and CSIM are computed in deep feature space, where lower FID/FVD/LPIPS and higher CSIM are better. For frame-level fidelity, PSNR and SSIM assess reconstruction accuracy with respect to the ground-truth frames in pixel space (higher is better). Finally, Sync-C and Sync-D quantify audio-visual lip synchronization (lower is better).

Compared Baselines. We compare AvatarSync with SOTA audio-driven talking-head methods, including both GAN-based and diffusion-based approaches. For GAN-based models, we consider SadTalker Zhang et al. (2023a). Diffusion-based baselines include V-Express Wang et al. (2024a), AniPortrait Wei et al. (2024), Haloo Xu et al. (2024a), Haloo2 Cui et al. (2024), EchoMimic Chen et al. (2025), Sonic Ji et al. (2024), and StableAvatar Tu et al. (2025). These models leverage various strategies such as multimodal attention, hierarchical diffusion, and landmark/audio conditioning.

4.2 QUANTITATIVE EVALUATION

Comparison on CMLR and HDTF. As shown in Table 1, AvatarSync consistently achieves state-of-the-art performance on both the Chinese CMLR and English HDTF datasets. Specifically, on CMLR, it achieves the best scores in generation realism and temporal coherence (FID, FVD). The state-of-the-art FVD score provides direct quantitative evidence of suppressed inter-frame flicker. Furthermore, it also matches or surpasses all baselines in reconstruction metrics (LPIPS, PSNR, SSIM) and identity similarity (CSIM), achieving the lowest Sync-D and competitive Sync-C. On HDTF, AvatarSync achieves state-of-the-art performance in six key metrics, which indicates accurate identity preservation and precise lip synchronization. These results demonstrate that AvatarSync can generate high-quality talking-head videos and exhibits strong generalization ability across languages.

Inference Efficiency. In AvatarSync, the inter-frame module processes each keyframe pair in parallel, reducing the complexity from $\mathcal{O}(\sum_i L_i)$ to $\mathcal{O}(\max_i L_i)$, where L_i is the length of interval i . With T_s roughly uniformly spaced keyframes, this design yields up to a $(T_s - 1) \times$ theoretical speedup over a naive generator and supports multi-GPU deployment. To further evaluate the in-

Table 2: Inference efficiency on 3.9s clips at 512 \times 512 resolution.

Method	Latency(s) \downarrow	RTF \downarrow
SadTalker	78.90	20.13
V-Express	167.90	42.83
AniPortrait	575.50	146.81
Haloo	444.30	113.34
Haloo2	427.50	109.06
EchoMimic	512.70	130.79
Sonic	190.40	48.57
StableAvatar	187.00	47.70
AvatarSync	58.00	14.80

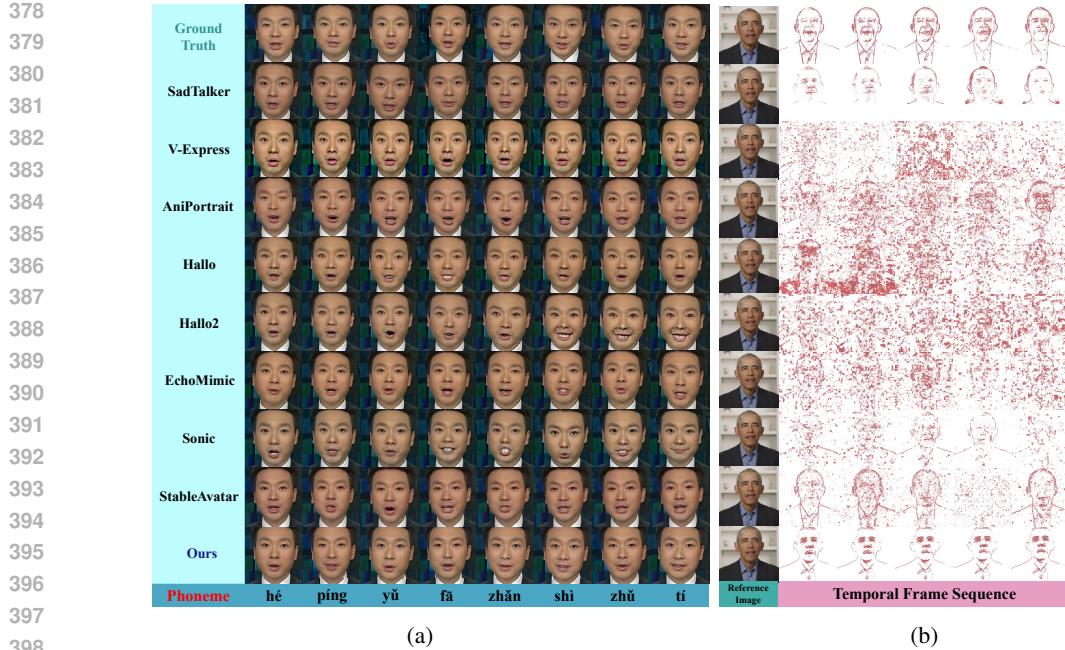


Figure 4: Qualitative comparison on the CMLR and HDTF dataset. (a) Top: ground-truth frames. Middle: results from baseline models. Bottom: Each phoneme (represented as pinyin for Chinese) is aligned with its corresponding frame. (b) Inter-frame flicker visualization, where pixel-wise differences between consecutive frames highlight temporal inconsistencies across methods.

ference efficiency of AvatarSync, we compare it with existing GAN and diffusion-based methods. Under 3.9s clips at 512×512 resolution, Table 2 shows that AvatarSync achieves the lowest latency (58.0s) and real-time factor (RTF 14.8). As shown in Figure 10 in Appendix A.8, our model’s latency exhibits a near-linear relationship with the input phoneme count, while competitors show exponential scaling. The parallelizable design makes our model practical for long talking-head videos.

4.3 QUALITATIVE EVALUATION

Qualitative comparisons in Figure 4a reveal two primary failure modes in existing methods. First, methods such as SadTalker, AniPortrait, and StableAvatar produce blurry reconstructions with imprecise lip articulation, while EchoMimic generates nearly static mouth shapes, all indicating weak audio-visual correlation. Second, others like V-Express, Hallo, Hallo2, and Sonic suffer from structural degradation, introducing warping artifacts in the lower face that render outputs unusable. In contrast, AvatarSync generates precise, dynamic mouth shapes that accurately track phonemes while preserving high-fidelity facial anatomy. This dual capability eliminates the articulatory imprecision, blurring, and distortion endemic to prior work, setting a new standard for realistic talking avatars.

Beyond per-frame quality, we evaluate temporal stability via inter-frame difference heatmaps in Figure 4b. The results indicate that diffusion-based methods exhibit severe and widespread flicker across the entire frame. In contrast, AvatarSync’s pixel changes are minimal and strictly localized to the articulating mouth and jaw. This stability is inherent to autoregressive architecture, which conditions each frame on prior ones to enforce temporal coherence. The sequential dependency eliminates the stochastic variations that cause flicker, ensuring SOTA temporal coherence.

4.4 HUMAN EVALUATION

We conducted a human evaluation to assess the quality of generated animations. Thirty participants rated nine state-of-the-art methods across four dimensions: Flicker, body movement realism, temporal coherence, and lip synchronization, using a 5-point Likert scale. To ensure fair comparison, videos were randomly presented, providing insights into subjective perceptions of animation quality and natural expression alignment. As shown in Figure 9 in Appendix A.7, our method achieved the highest overall score, with strong scores across all dimensions (4.8 ± 0.41 , 3.8 ± 0.48 , 4.4 ± 0.50 , 3.6 ± 0.62) and low variance in scores, which indicates robust and consistent performance.

432
433

4.5 ABLATION STUDIES

434

Attention Mechanisms. To validate the necessity of the Phoneme-Frame Causal Attention Mask, we conducted an ablation study on attention mechanisms using the CMLR dataset. Based on the scope of accessible phoneme, four distinct attention configurations

440

were compared: (1) Non-Causal Global Attention, (2) Causal Accumulative Attention, (3) Limited History Attention (sliding window size=2), (4) One-to-One Attention (Ours). As shown in Table 3, One-to-One Attention (Ours) achieves the optimal trade-off between frame-level fidelity and temporal coherence demonstrating the most robust overall performance. Detailed definitions of each mechanism are provided in Appendix A.4.

441

442

443

444

445

Frame Allocation Strategies. To verify the contribution of the timestamp-aware adaptive strategy, we compare three frame allocation strategies on CMLR: Random, Fixed, and Dynamic (ours). As summarized in Table 5 in Appendix A.5, the timestamp-aware adaptive strategy achieves the best performance on seven metrics, which confirms that it improves temporal coherence and lip synchronization without degrading reconstruction quality.

446

447

448

449

450

Loss Components. Our ablation study on four key loss terms: token-level cross-entropy (CE), pixel-level LPIPS, identity consistency, and facial similarity. Results (see Table 6 in Appendix A.6) show that while each component improves over the CE-only baseline, their combination yields consistently stronger performance. Notably, excluding identity or facial similarity losses leads to a marked drop in generation quality, highlighting their importance in preserving identity.

451

452

453

454

455

Phoneme-based Representation Learning (PRL). To assess whether phonemes are necessary as intermediate conditioning units, we compare two audio-driven configurations on the Chinese CMLR dataset: a baseline that conditions keyframe generation on audio features aligned with word-level units in the transcript, and a PRL configuration that uses the same audio aligned at the phoneme level. As shown in Fig. 5, phoneme-level conditioning respectively reduces the face reconstruction, total, and non-reconstruction losses by 41.8%, 9.6%, and 21.5%, indicating that phoneme-level conditioning provides finer-grained and more stable speech-lip alignment.

462

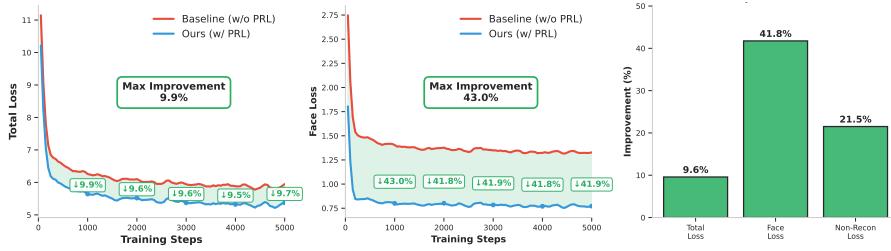


Figure 5: Loss comparison with and without PRL.

471

472

5 CONCLUSION

473

474

475

We introduce AvatarSync, an autoregressive framework on phoneme representations for talking-head animation generation. The method addresses two major limitations of diffusion-based approaches: (1) inter-frame flickers in generated videos; and (2) low training and inference efficiency. By leveraging the stable many-to-one mapping from text/audio to phonemes, AvatarSync enables accurate lip synchronization with lightweight design and editable controllability. To further improve temporal coherence and inference efficiency, we design a two-stage hierarchical generation strategy that decouples phoneme semantics from visual dynamics, incorporating a Phoneme-Frame Causal Attention Mask and a timestamp-aware interpolation module. Experimental results on the CMLR and HDTF datasets demonstrate that AvatarSync substantially reduces inter-frame flicker and consistently outperforms existing methods in visual fidelity, temporal consistency, and inference speed. Future work will leverage large-scale codebooks and MoE frameworks to achieve robust multilingual generalization, enabling a new generation of lifelike and interactive digital human applications.

486 ETHICS STATEMENT
487488 In developing AvatarSync, a phoneme-guided autoregressive talking-head generation framework, we
489 are committed to adhering to ethical principles and promoting responsible AI usage. We recognize
490 potential risks, including deepfake abuse, impersonation, and unauthorized manipulation of personal
491 media, and emphasize the necessity of applying this technology in contexts that respect privacy,
492 consent, and individual rights.494 REPRODUCIBILITY STATEMENT
495496 To encourage transparency and responsible research, our code and pretrained models will be publicly
497 released for academic and educational purposes, while we strongly discourage harmful applications
498 such as misinformation, defamation, or harassment. Furthermore, we advocate for ongoing research
499 on detection mechanisms and safeguard strategies to mitigate misuse, ensuring that AvatarSync
500 contributes positively to society and aligns with ethical and legal standards.502 REFERENCES
503504 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
505 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
506 report. *arXiv preprint arXiv:2303.08774*, 2023.507 Vaswani Ashish. Attention is all you need. *Advances in neural information processing systems*, 30: I, 2017.510 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
511 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
512 *recognition*, pp. 11315–11325, 2022.513 Lele Chen, Ross K Maddox, Zhiyao Duan, and Chenliang Xu. Hierarchical cross-modal talking
514 face generation with dynamic pixel-wise loss. In *Proceedings of the IEEE/CVF conference on*
515 *computer vision and pattern recognition*, pp. 7832–7841, 2019.517 Zhiyuan Chen, Jiajiong Cao, Zhiqian Chen, Yuming Li, and Chenguang Ma. Echomimic: Lifelike
518 audio-driven portrait animations through editable landmark conditions. In *Proceedings of the*
519 *AAAI Conference on Artificial Intelligence*, volume 39, pp. 2403–2410, 2025.520 Kun Cheng, Xiaodong Cun, Yong Zhang, Menghan Xia, Fei Yin, Mingrui Zhu, Xuan Wang, Jue
521 Wang, and Nannan Wang. Videoretalking: Audio-based lip synchronization for talking head
522 video editing in the wild. In *SIGGRAPH Asia 2022 Conference Papers*, pp. 1–9, 2022.524 Xiangeng Chu, Nabarun Goswami, Ziteng Cui, Hanqin Wang, and Tatsuya Harada. Artalk: Speech-
525 driven 3d head animation via autoregressive model. *arXiv preprint arXiv:2502.20323*, 2025.526 Jiahao Cui, Hui Li, Yao Yao, Hao Zhu, Hanlin Shang, Kaihui Cheng, Hang Zhou, Siyu Zhu, and
527 Jingdong Wang. Hallo2: Long-duration and high-resolution audio-driven portrait image anima-
528 tion. *arXiv preprint arXiv:2410.07718*, 2024.530 Dipanjan Das, Sandika Biswas, Sanjana Sinha, and Brojeshwar Bhowmick. Speech-driven facial
531 animation using cascaded gans for learning of motion and texture. In *Computer Vision–ECCV*
532 *2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16*,
533 pp. 408–424. Springer, 2020.534 Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou,
535 Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers.
536 *Advances in neural information processing systems*, 34:19822–19835, 2021.538 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
539 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
tion, pp. 12873–12883, 2021.

540 Yuwei Fang, Willi Menapace, Aliaksandr Siarohin, Tsai-Shien Chen, Kuan-Chien Wang, Ivan Sko-
 541 rokhodov, Graham Neubig, and Sergey Tulyakov. Vimi: Grounding video generation through
 542 multi-modal instruction. *arXiv preprint arXiv:2407.06304*, 2024.

543

544 Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
 545 ence using lookahead decoding. *arXiv preprint arXiv:2402.02057*, 2024.

546 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 547 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
 548 *ACM*, 63(11):139–144, 2020.

549

550 Jianzhu Guo, Dingyun Zhang, Xiaoqiang Liu, Zhizhou Zhong, Yuan Zhang, Pengfei Wan, and
 551 Di Zhang. Liveportrait: Efficient portrait animation with stitching and retargeting control. *arXiv*
 552 *preprint arXiv:2407.03168*, 2024.

553 William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood. Flexi-
 554 ble diffusion modeling of long videos. *Advances in neural information processing systems*, 35:
 555 27953–27965, 2022.

556

557 Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou, Kaipeng Zhang, and Bohan Zhuang.
 558 Zipar: Accelerating autoregressive image generation through spatial locality. *arXiv preprint*
 559 *arXiv:2412.04062*, 2024.

560 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 561 *neural information processing systems*, 33:6840–6851, 2020.

562

563 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 564 Fleet. Video diffusion models. *Advances in neural information processing systems*, 35:8633–
 565 8646, 2022.

566

567 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-
 568 training for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.

569

570 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
 571 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 pp. 8153–8163, 2024.

572

573 Xiaozhong Ji, Xiaobin Hu, Zhihong Xu, Junwei Zhu, Chuming Lin, Qingdong He, Jiangning Zhang,
 574 Donghao Luo, Yi Chen, Qin Lin, et al. Sonic: Shifting focus to global audio perception in portrait
 575 animation. *arXiv preprint arXiv:2411.16331*, 2024.

576

577 Jianwen Jiang, Chao Liang, Jiaqi Yang, Gaojie Lin, Tianyun Zhong, and Yanbo Zheng. Loopy:
 578 Taming audio-driven portrait avatar with long-term motion dependency. *arXiv preprint*
 579 *arXiv:2409.02634*, 2024.

580

581 Simran Khanuja, Sathyaranayanan Ramamoorthy, Yueqi Song, and Graham Neubig. An image
 582 speaks a thousand words, but can everyone listen? on image transcreation for cultural relevance.
 583 *arXiv preprint arXiv:2404.01247*, 2024.

584

585 Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Grant Schindler, Rachel
 586 Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, et al. Videopoet: A large language
 587 model for zero-shot video generation. *arXiv preprint arXiv:2312.14125*, 2023.

588

589 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 590 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.

591

592 Chunyu Li, Chao Zhang, Weikai Xu, Jinghui Xie, Weiguo Feng, Bingyue Peng, and Weiwei
 593 Xing. Latentsync: Audio conditioned latent diffusion models for lip sync. *arXiv preprint*
 594 *arXiv:2412.09262*, 2024.

595

596 Zijing Liang, Yanjie Xu, Yifan Hong, Penghui Shang, Qi Wang, Qiang Fu, and Ke Liu. A survey
 597 of multimodel large language models. In *Proceedings of the 3rd International Conference on*
 598 *Computer, Artificial Intelligence and Control Engineering*, pp. 405–409, 2024.

594 Gaojie Lin, Jianwen Jiang, Jiaqi Yang, Zerong Zheng, and Chao Liang. Omnihuman-1: Re-
 595 thinking the scaling-up of one-stage conditioned human animation models. *arXiv preprint*
 596 *arXiv:2502.01061*, 2025.

597 Yuanxun Lu, Jinxiang Chai, and Xun Cao. Live speech portraits: real-time photorealistic talking-
 598 head animation. *ACM Transactions on Graphics (ToG)*, 40(6):1–17, 2021.

600 Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2:
 601 An open-source project toward democratizing auto-regressive visual generation. *arXiv preprint*
 602 *arXiv:2409.04410*, 2024.

603 Rang Meng, Xingyu Zhang, Yuming Li, and Chenguang Ma. Echomimicv2: Towards striking,
 604 simplified, and semi-body human animation. *arXiv preprint arXiv:2411.10061*, 2024.

606 Moustafa Meshry, Saksham Suri, Larry S Davis, and Abhinav Shrivastava. Learned spatial repre-
 607 sentations for few-shot talking-head synthesis. In *Proceedings of the IEEE/CVF international*
 608 *conference on computer vision*, pp. 13829–13838, 2021.

609 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 610 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

612 KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri, and CV Jawahar. A lip sync expert is
 613 all you need for speech to lip generation in the wild. In *Proceedings of the 28th ACM international*
 614 *conference on multimedia*, pp. 484–492, 2020.

615 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 616 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 617 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

619 Hassan Shahmohammadi, Adhiraj Ghosh, and Hendrik Lensch. Vipe: Visualise pretty-much every-
 620 thing. *arXiv preprint arXiv:2310.10543*, 2023.

621 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 622 *preprint arXiv:2010.02502*, 2020.

624 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 625 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint*
 626 *arXiv:2406.06525*, 2024.

627 K Tian, Y Jiang, Z Yuan, et al. Visual autoregressive modeling: Scalable image generation via next-
 628 scale prediction. *Advances in neural information processing systems*, 37:84839–84865, 2024a.

630 Linrui Tian, Qi Wang, Bang Zhang, and Liefeng Bo. Emo: Emote portrait alive generating ex-
 631 pressive portrait videos with audio2video diffusion model under weak conditions. In *European*
 632 *Conference on Computer Vision*, pp. 244–260. Springer, 2024b.

633 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 634 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 635 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

637 Shuyuan Tu, Yueming Pan, Yinning Huang, Xintong Han, Zhen Xing, Qi Dai, Chong Luo, Zuxuan
 638 Wu, and Yu-Gang Jiang. Stableavatar: Infinite-length audio-driven avatar video generation. *arXiv*
 639 *preprint arXiv:2508.08248*, 2025.

640 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 641 *neural information processing systems*, 30, 2017.

642 Cong Wang, Kuan Tian, Jun Zhang, Yonghang Guan, Feng Luo, Fei Shen, Zhiwei Jiang, Qing Gu,
 643 Xiao Han, and Wei Yang. V-express: Conditional dropout for progressive training of portrait
 644 video generation. *arXiv preprint arXiv:2406.02511*, 2024a.

646 Jiadong Wang, Xinyuan Qian, Malu Zhang, Robby T Tan, and Haizhou Li. Seeing what you said:
 647 Talking face generation guided by a lip reading expert. In *Proceedings of the IEEE/CVF Confer-*
 648 *ence on Computer Vision and Pattern Recognition*, pp. 14653–14662, 2023.

648 Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot free-view neural talking-head synthesis
 649 for video conferencing. In *Proceedings of the IEEE/CVF conference on computer vision and*
 650 *pattern recognition*, pp. 10039–10049, 2021.

651

652 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 653 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 654 *arXiv preprint arXiv:2409.18869*, 2024b.

655

656 Yuchi Wang, Junliang Guo, Jianhong Bai, Runyi Yu, Tianyu He, Xu Tan, Xu Sun, and Jiang Bian.
 657 Instructavatar: Text-guided emotion and motion control for avatar generation. In *Proceedings of*
 658 *the AAAI Conference on Artificial Intelligence*, volume 39, pp. 8132–8140, 2025.

659

660 Huawei Wei, Zejun Yang, and Zhisheng Wang. Aniportrait: Audio-driven synthesis of photorealistic
 661 portrait animation. *arXiv preprint arXiv:2403.17694*, 2024.

662

663 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 664 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 665 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

666

667 Mingwang Xu, Hui Li, Qingkun Su, Hanlin Shang, Liwei Zhang, Ce Liu, Jingdong Wang, Yao Yao,
 668 and Siyu Zhu. Hallo: Hierarchical audio-driven visual synthesis for portrait image animation.
 669 *arXiv preprint arXiv:2406.08801*, 2024a.

670

671 Sicheng Xu, Guojun Chen, Yu-Xiao Guo, Jiaolong Yang, Chong Li, Zhenyu Zang, Yizhong Zhang,
 672 Xin Tong, and Baining Guo. Vasa-1: Lifelike audio-driven talking faces generated in real time.
 673 *Advances in Neural Information Processing Systems*, 37:660–684, 2024b.

674

675 Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
 676 vq-vae and transformers. *arXiv preprint arXiv:2104.10157*, 2021.

677

678 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 679 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 680 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.

681

682 Guozhen Zhang, Chuxnu Liu, Yutao Cui, Xiaotong Zhao, Kai Ma, and Limin Wang. Vfimamba:
 683 Video frame interpolation with state space models. *Advances in Neural Information Processing*
 684 *Systems*, 37:107225–107248, 2024a.

685

686 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 687 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 688 *computer vision and pattern recognition*, pp. 586–595, 2018.

689

690 Wenxuan Zhang, Xiaodong Cun, Xuan Wang, Yong Zhang, Xi Shen, Yu Guo, Ying Shan, and Fei
 691 Wang. Sadtalker: Learning realistic 3d motion coefficients for stylized audio-driven single image
 692 talking face animation. In *Proceedings of the IEEE/CVF conference on computer vision and*
 693 *pattern recognition*, pp. 8652–8661, 2023a.

694

695 Yue Zhang, Minhao Liu, Zhaokang Chen, Bin Wu, Yubin Zeng, Chao Zhan, Yingjie He, Junxin
 696 Huang, and Wenjiang Zhou. Musetalk: Real-time high quality lip synchronization with latent
 697 space inpainting. *arXiv preprint arXiv:2410.10122*, 2024b.

698

699 Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie Fan. Flow-guided one-shot talking face gen-
 700 eration with a high-resolution audio-visual dataset. In *Proceedings of the IEEE/CVF conference*
 701 *on computer vision and pattern recognition*, pp. 3661–3670, 2021.

702

703 Zhimeng Zhang, Zhipeng Hu, Wenjin Deng, Changjie Fan, Tangjie Lv, and Yu Ding. Dinet: De-
 704 formation inpainting network for realistic face visually dubbing on high resolution video. In
 705 *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 3543–3551, 2023b.

706

707 Ya Zhao, Rui Xu, and Mingli Song. A cascade sequence-to-sequence model for chinese mandarin
 708 lip reading. In *Proceedings of the 1st ACM International Conference on Multimedia in Asia*, pp.
 709 1–6, 2019.

702 Ya Zhao, Rui Xu, Xinchao Wang, Peng Hou, Haihong Tang, and Mingli Song. Hearing lips: Im-
703 proving lip reading by distilling speech recognizers. In *Proceedings of the AAAI Conference on*
704 *Artificial Intelligence*, volume 34, pp. 6917–6924, 2020.

705
706 Dingcheng Zhen, Shunshun Yin, Shiyang Qin, Hou Yi, Ziwei Zhang, Siyuan Liu, Gan Qi, and Ming
707 Tao. Teller: Real-time streaming audio-driven portrait animation with autoregressive motion
708 generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
709 21075–21085, 2025.

710 Rui Zhen, Wenchao Song, Qiang He, Juan Cao, Lei Shi, and Jia Luo. Human-computer interaction
711 system: A survey of talking-head generation. *Electronics*, 12(1):218, 2023.

712 Hang Zhou, Yu Liu, Ziwei Liu, Ping Luo, and Xiaogang Wang. Talking face generation by ad-
713 versarially disentangled audio-visual representation. In *Proceedings of the AAAI conference on*
714 *artificial intelligence*, volume 33, pp. 9299–9306, 2019.

715 Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy, Xiaogang Wang, and Ziwei Liu. Pose-
716 controllable talking face generation by implicitly modularized audio-visual representation. In
717 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4176–
718 4186, 2021.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 DETAILS OF CMLR SUPER-RESOLUTION**
759

760 The scarcity of high-quality, large-scale Chinese talking-head datasets poses a significant challenge
761 to research in this domain. The CMLR dataset stands as one of the few publicly available Chinese
762 datasets for this task, offering a crucial resource for research. However, its inherent low resolution
763 results in blurry facial features and a lack of crucial detail in the lip region. This directly com-
764 promises the training efficacy and evaluation reliability of models that require high-fidelity visual
765 input.

766 To address this limitation and establish a more robust benchmark, we employed the GFPGAN
767 face enhancement algorithm to perform a comprehensive four-times super-resolution reconstruction
768 across the entire CMLR dataset. A visual comparison of the frames before and after this enhance-
769 ment is presented in Figure 6 and 7.

770 Furthermore, to foster future research and benefit the community, we will open-source this enhanced,
771 high-resolution version of the CMLR dataset.

772
773
774
775
776
777
778
Figure 6: Original Video Frames from the Dataset.779
780
781
782
783
784
785
786
Figure 7: Enhanced Video Frames after Super-Resolution.787 **A.2 TRAINING DETAILS**
788

789 We trained the model on a mixed dataset that combines the super-resolved CMLR dataset (Chinese)
790 and the original HDTF dataset (English). The training was conducted for a total of 10,000 steps on
791 this mixed dataset.

792 Figures 11a, 11b, 11c, 11d, 11e, and 11f illustrate the progression of various loss functions during
793 training, demonstrating the convergence behavior and the contribution of individual loss components
794 to the total loss.

795 **A.3 FACE CROPPING STRATEGIES ABLATION DETAILS**
796

797 **Cropping Strategy.** We compare two preprocessing methods: Face-Centric Cropping and Pose-
798 Driven Landmark Cropping. The former leads to unstable generation due to scale and background
799 variations. In contrast, the landmark-based approach ensures tighter alignment and better lip dy-
800 namics. In addition, the choice of face cropping strategy significantly impacts the final generation
801 quality. Therefore, we conducted this ablation study to validate our choice of the Pose-Driven Land-
802 mark Cropping strategy over the baseline Face-Centric Cropping. Both qualitative and quantitative
803 results confirm the superiority of our approach.

804 Qualitatively, as shown in Figure 8, our method yields tighter facial alignment and more consistent
805 lip dynamics, resulting in enhanced visual coherence and identity preservation. Quantitatively, Ta-
806 ble 4 shows our strategy yields a lower (better) Identity Similarity Score (ISS) between the generated
807 faces and the ground-truth video on a majority of the face recognition models (3 out of 4).

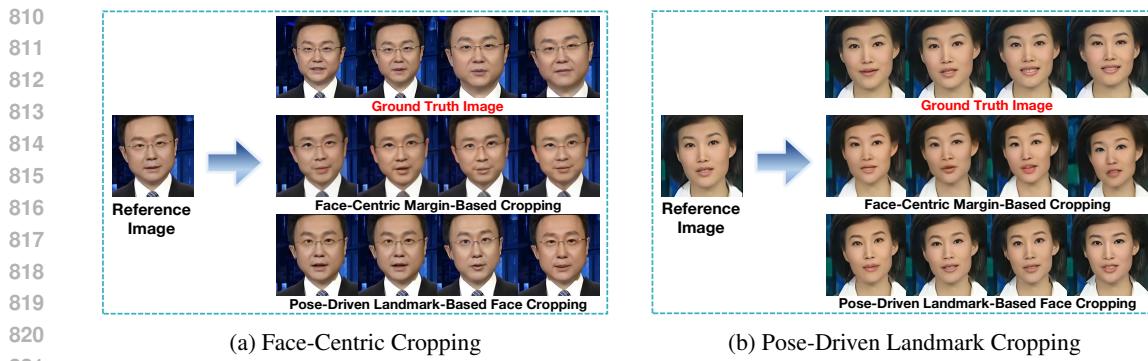


Figure 8: Visual comparison of face preprocessing methods.

Subset \ Model	Face-Centric Cropping				Landmark-Based Cropping			
	ArcFace	FaceNet	FaceNet512	VGG-Face	ArcFace	FaceNet	FaceNet512	VGG-Face
s1	0.2958	0.1608	0.1931	0.2899	0.3250	0.2175	0.2360	0.3399
s2	0.2189	0.1672	0.1278	0.2885	0.2077	0.1886	0.1011	0.2236
s3	0.2576	0.1715	0.1079	0.2899	0.2873	0.1784	0.0752	0.2012
s4	0.3698	0.3415	0.2198	0.3643	0.3628	0.2822	0.1922	0.3465
s5	0.3137	0.2790	0.1677	0.3588	0.3015	0.1978	0.1319	0.2626
Total	0.2912	0.2240	0.1632	0.3183	0.2968	0.2129	0.1472	0.2748

Table 4: Identity similarity (ISS) comparison under different cropping strategies. Lower ISS values indicate greater identity similarity. **Bold numbers** in the **Total** row indicate better-performing cropping strategy per model.

Given its superior performance in both visual quality and quantitative identity preservation, we adopted the Pose-Driven Landmark Cropping strategy for all experiments.

A.4 ATTENTION MECHANISMS ABLATION DETAILS

To validate the necessity and design rationale of our proposed Phoneme-Frame Causal Attention Mask, we conducted a key ablation study on the super-resolved CMLR dataset. We designed and compared four distinct attention configurations, which primarily differ in the scope of phonetic information accessible to the model during the generation of each frame. The details of these four attention mechanisms are as follows:

(1) Non-Causal Full Attention. When generating any frame, the model can access the entire input phoneme sequence from beginning to end. This configuration sees "future" information, making it unsuitable for streaming generation tasks. Its results are typically considered a theoretical performance upper bound.

(2) Causal Accumulative Attention. When generating the i -th frame, the model can access all historical phonemes from the 1st to the current i -th. This represents a standard autoregressive (causal) attention mechanism.

(3) Limited History Attention. When generating the i -th frame (for $i > 1$), the model utilizes a sliding window of size 2, accessing only the current i -th and the previous $(i - 1)$ -th phonemes. This strategy aims to provide limited local context while maintaining high computational efficiency.

(4) One-to-One Attention. When generating the i -th frame, the model strictly accesses only the corresponding i -th phoneme. This is the strictest form of causality, ensuring that the generation of each frame depends solely on the currently aligned input, without reliance on any historical or future information.

Table 5: Ablation of frame allocation strategies on CMLR.

Method	FID \downarrow	FVD \downarrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	CSIM \uparrow	Sync-C \downarrow	Sync-D \downarrow
Random	24.82	553.39	0.40	15.07	0.49	0.85	1.09	14.11
Fixed	24.56	522.32	0.41	15.04	0.49	0.84	0.94	14.08
Dynamic (ours)	25.19	503.29	0.40	15.07	0.49	0.85	0.94	10.90

A.5 ABLATION ON FRAME ALLOCATION STRATEGIES

To further analyze the inter-frame module, we compare three frame allocation strategies while keeping the keyframe generator (FKG) and all other components fixed:

(1) Random. For each keyframe pair, the number of in-between frames is randomly sampled under the constraint that the total number of frames matches the target video length.

(2) Fixed. A fixed number of in-between frames is inserted for every keyframe pair, ignoring the actual temporal interval between them.

(3) Dynamic (ours). The proposed timestamp-aware adaptive strategy allocates the number of in-between frames proportionally to the temporal interval between keyframes, while enforcing a globally consistent frame rate.

As shown in Table 5, the Dynamic strategy achieves clearly better temporal performance than Random strategy and Fixed strategy, with a lower FVD (503.29) and a markedly reduced Sync-D (10.90), while keeping FID, LPIPS, PSNR, SSIM, and CSIM at a comparable level. This confirms that the timestamp-aware adaptive allocation improves temporal coherence and phoneme-level lip synchronization without sacrificing reconstruction quality.

A.6 LOSS FUNCTION ABLATION DETAILS

To validate the effectiveness of each component in our proposed composite loss function, we conduct a detailed ablation study, with the full results presented in Table 6. In this study, we establish a baseline model trained exclusively with a token-level cross-entropy (CE) loss. We then incrementally incorporate our other proposed loss terms: the pixel-level LPIPS perceptual loss, identity consistency loss, and facial similarity loss.

The experimental results clearly demonstrate that while each loss component individually yields performance gains over the baseline, the optimal overall generation quality is achieved only through their combination. Particularly noteworthy is the finding that removing either the identity consistency or the facial similarity loss from the full model leads to a marked degradation in generation quality. This underscores their critical roles in preserving subject identity and enhancing visual realism.

A.7 HUMAN EVALUATION RESULTS

To assess subjective perceptual quality, we conducted a user study comparing AvatarSync with nine state-of-the-art audio-driven talking-head methods. Thirty participants were asked to rate the generated videos along four dimensions: Flicker, Temporal Coherence, Body Movement Realism, and Lip Synchronization, using a 5-point Likert scale (higher is better). For each audio clip, the videos from different methods were shuffled and anonymized to avoid ordering and naming bias.

Figure 9 reports the mean and standard deviation of the scores. AvatarSync achieves the highest average rating on all four dimensions (4.8 ± 0.41 for Flicker, 3.8 ± 0.48 for Body Movement Realism, 4.4 ± 0.50 for Temporal Coherence, and 3.6 ± 0.62 for Lip Synchronization), consistently outperforming competing approaches with relatively low variance across subjects. These results corroborate the quantitative metrics, indicating that AvatarSync produces visually stable, natural, and well-synchronized talking-head videos from a human perspective.

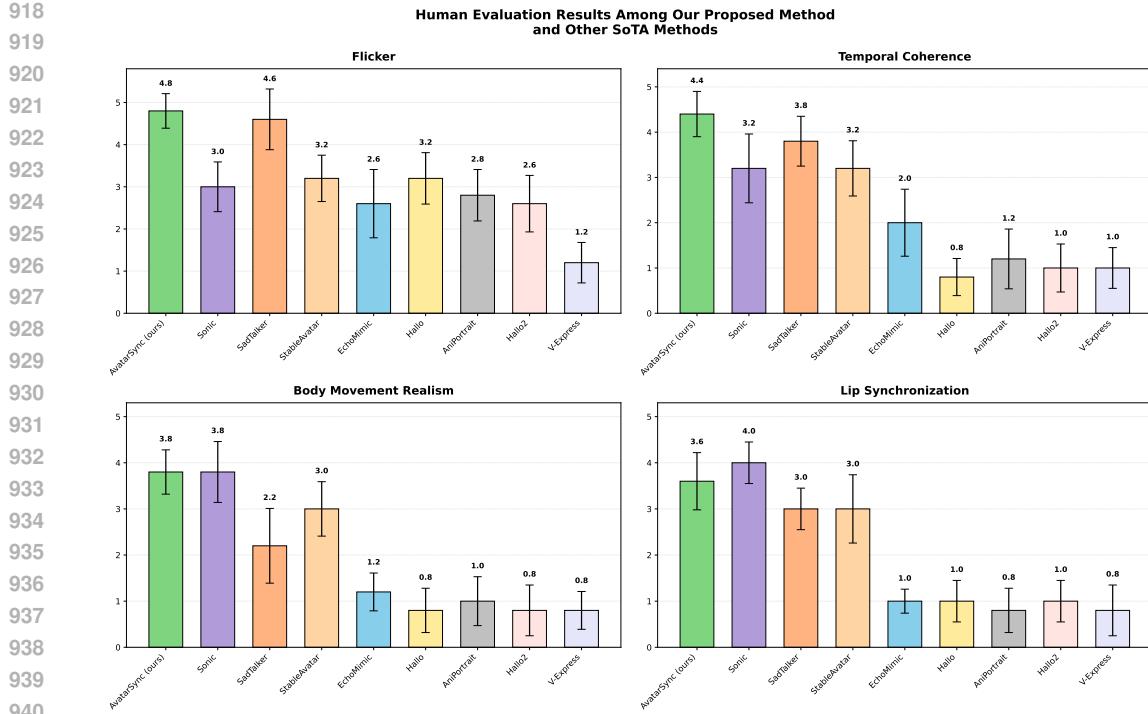


Figure 9: Human evaluation results on four aspects: Flicker, Temporal Coherence, Body Movement Realism, and Lip Synchronization. Bars show the mean opinion scores and error bars denote standard deviation over 30 participants. AvatarSync (ours) obtains the highest overall score, with strong performance across all dimensions.

A.8 ANALYSIS OF INFERENCE EFFICIENCY

To complement the latency comparison in Table 2, we further visualize how inference time scales with the input length for different methods. Specifically, we vary the number of phonemes from 2 to 20 and measure the average generation time for 512×512 videos on the same hardware. Figure 10 shows that AvatarSync exhibits an almost linear growth with respect to the phoneme count, whereas several diffusion-based baselines grow super-linearly and quickly become impractical at longer durations. For example, at 20 phonemes, AvatarSync is about $2.4 \times$ faster than Hallo and remains the most efficient among all competing methods. This is consistent with the theoretical parallelism analysis in Sec. 4.2.

THE USE OF LARGE LANGUAGE MODELS(LLMs)

We utilized a large language model as a general-purpose writing assistant during the preparation of this paper. Its role was strictly limited to improving grammar, spelling, and overall language clarity. The authors are fully responsible for the research ideation, data, analysis, and final content of this manuscript.

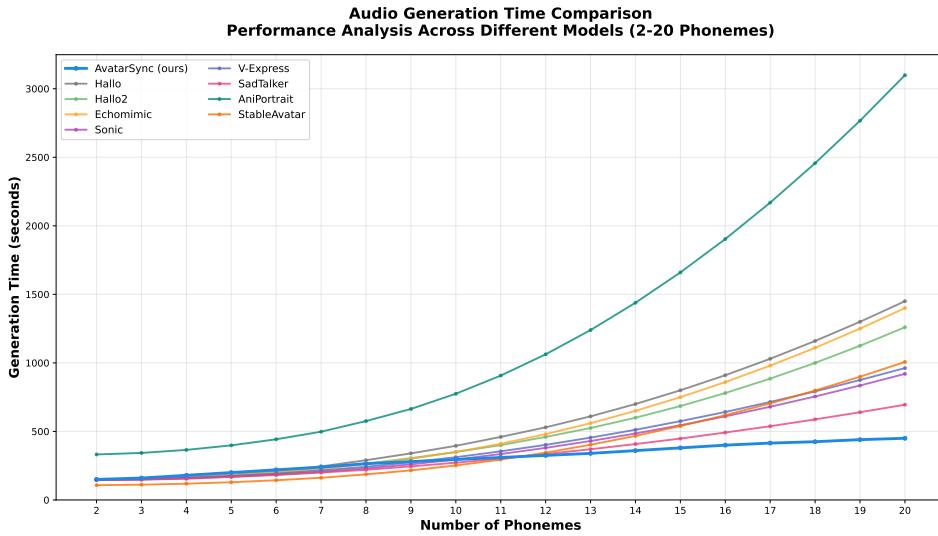


Figure 10: Generation Time Comparison. AvatarSync scales nearly linearly with phoneme count, while others exhibit exponential growth.

Configuration	Exp.	Loss Functions				Evaluation Metrics			
		CE	LPIPS	Identity	Facial	FID \downarrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow
Baseline	1	✓				28.1361	0.0365	25.0786	0.8837
	2	✓	✓			16.6485	0.0128	32.5706	0.9615
+ Single Additional Loss	5	✓		✓		16.1956	0.0138	32.0478	0.9620
	6	✓			✓	16.4723	<u>0.0131</u>	32.4699	<u>0.9653</u>
	3	✓	✓	✓		15.6558	0.0151	31.9085	0.9632
+ Double Additional Losses	4	✓	✓		✓	18.1449	0.0162	31.8410	0.9623
	7	✓		✓	✓	13.4429	0.0133	32.4377	0.9643
Full Model	8	✓	✓	✓	✓	<u>13.8603</u>	0.0136	33.1348	0.9666

Table 6: Ablation study on different loss function combinations. **CE**: Cross-Entropy Loss; **LPIPS**: Learned Perceptual Image Patch Similarity; **Identity**: Identity Consistency Loss; **Facial**: Facial Similarity Loss. \downarrow : lower is better; \uparrow : higher is better. **Bold** = best; underlined = second best per column.

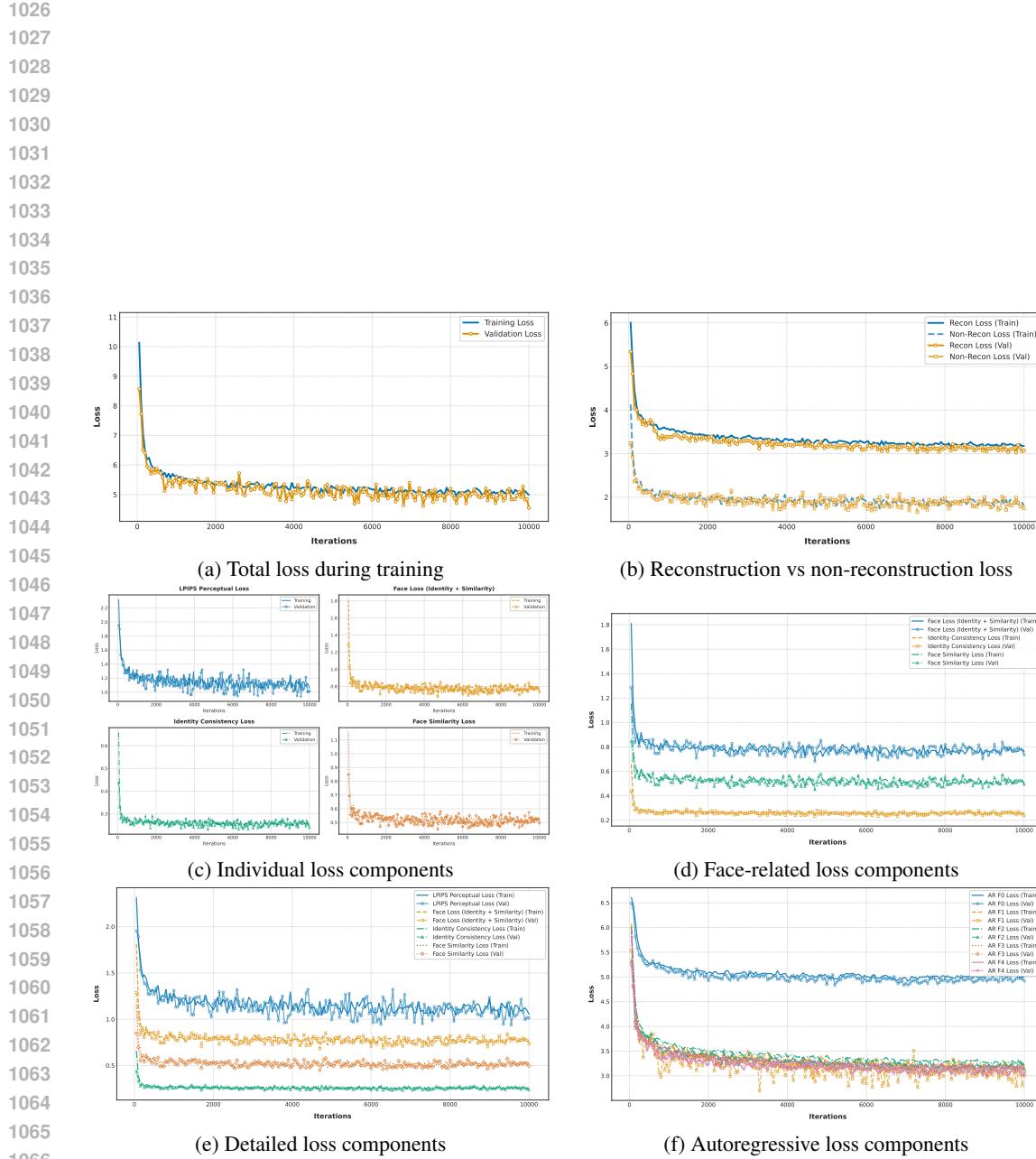


Figure 11: Training loss curves on the mixed dataset (CMLR + HDTF). The plots illustrate the convergence of various loss components over 10,000 training steps. Key metrics include reconstruction objectives, face-specific metrics, and autoregressive losses.