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ABSTRACT

Talking-head animation focuses on generating realistic facial videos from audio
input. Following Generative Adversarial Networks (GANs), diffusion models
have become the mainstream, owing to their robust generative capability. How-
ever, inherent limitations of the diffusion process often lead to inter-frame flicker
and slow inference, hindering their practical use in talking-head animation. To
address this, we introduce AvatarSync, an autoregressive framework on phoneme
representations that generates realistic and controllable talking-head animations
from a single reference image, driven by text or audio input. To mitigate flicker
and ensure continuity, AvatarSync leverages an autoregressive pipeline that en-
hances temporal modeling. In addition, to ensure controllability, we introduce
phonemes that are the basic units of speech sounds, and construct a many-to-
one mapping from text/audio to phonemes, enabling precise phoneme-to-visual
alignment. To further accelerate inference, we adopt a two-stage generation strat-
egy that decouples semantic modeling from visual dynamics, incorporating a
Phoneme-Frame Causal Attention Mask and a timestamp-aware adaptive strat-
egy to support parallel inference. Extensive experiments conducted on Chinese
(CMLR) and English (HDTF) benchmarks show that AvatarSync substantially
reduces inter-frame flicker and outperforms existing methods in visual fidelity,
temporal consistency, and computational efficiency, providing a scalable solution.

1 INTRODUCTION

Talking-head animation Guo et al. (2024); Hu (2024); Tian et al. (2024b); Chen et al. (2025); Meng
et al. (2024); Lu et al. (2021); Wei et al. (2024); Chu et al. (2025); Zhen et al. (2025); Wang et al.
(2025) is a representative multimodal generation task that demands fine-grained alignment between
audio and visual outputs. Leveraging advancements in artificial intelligence, this technique syn-
thesizes realistic, speech-synchronized facial motion from static images and audio inputs. This
technology finds widespread applications in areas such as video dubbing, virtual avatars, and digital
entertainment Prajwal et al. (2020). Despite significant progress, efficiently generating high-quality,
lifelike, and fine-grained talking-head animations in real time remains a formidable challenge.

In the field, two primary paradigms have emerged: Generative Adversarial Networks (GANs) Good-
fellow et al. (2020) and diffusion models Ho et al. (2020). GAN-based methods Zhen et al. (2023);
Cheng et al. (2022); Wang et al. (2023); Zhang et al. (2023b;a) offer advantages in inference speed
and computational efficiency. However, they often suffer from visual artifacts and struggle to main-
tain identity consistency, limiting their applicability in high-fidelity scenarios. Recently, diffusion
models Rombach et al. (2022); Wang et al. (2024a); Ji et al. (2024); Lin et al. (2025); Li et al.
(2024); Jiang et al. (2024) have gained attention due to their superior visual fidelity in image gen-
eration tasks. Several works (such as EMO Tian et al. (2024b), Hallo Xu et al. (2024a); Cui et al.
(2024), and EchoMimic Chen et al. (2025) Meng et al. (2024)) have extended diffusion models to
talking-head animation. These approaches generally produce clearer and more stable visual results.
Nonetheless, the reliance of diffusion models on multi-step denoising processes leads to slow infer-
ence and high computational cost, which severely hinders their deployment in real-time applications.
To address these issues, recent efforts Ji et al. (2024); Li et al. (2024) have explored strategies, such
as sampling path control, to improve inference efficiency. However, diffusion-based approaches still
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Figure 1: Comparison of GAN-based, diffusion-based, and our autoregressive method. The left and middle
panels summarize key limitations of GAN and diffusion models. The right panel illustrates the advantages of
our autoregressive method.

suffer from fundamental limitations, including inter-frame flicker, unnatural facial dynamics, and
poor real-time performance. As illustrated in Figure 1, although both GAN-based and diffusion-
based methods have made significant progress, achieving a better balance among computational
efficiency, generation consistency, and visual fidelity remains a major challenge in this field.

To this end, we introduce AvatarSync, an autoregressive framework on phoneme representations that
generates realistic and controllable talking-head animations from a single reference image, driven
by text or audio input. As illustrated in Figure 3, AvatarSync adopts a two-stage generation strategy,
combining a Facial Keyframe Generation (FKG) module with the inter-frame interpolation module
to synthesize natural facial dynamics. In the first stage, by leveraging this many-to-one relationship,
the FKG module extracts character-level phoneme sequences from text or audio input. Subsequently,
the phoneme sequences and reference image are respectively tokenized using a text tokenizer Ding
et al. (2021) and a visual tokenizer trained with either VQ Van Den Oord et al. (2017); Esser et al.
(2021) or LFQ Yu et al. (2023). These phoneme and visual tokens are then aligned and concatenated
into a unified sequence, enabling an autoregressive transformer model to produce a sparse set of
keyframes under a Phoneme-Frame Causal Attention Mask.

In the second stage, we propose a timestamp-aware adaptive strategy built upon a selective state
space model, to enable efficient temporal modeling and precise audio-visual alignment. The inter-
polation module leverages explicit timestamp information embedded in keyframes to flexibly control
motion intensity across variable frame intervals. In addition, to facilitate global context aggregation,
adjacent keyframes are encoded as interleaved token sequences and processed through state space
modeling. As a result, the system synthesizes natural and temporally coherent facial dynamics.

To support practical deployment, we structurally optimize the inference pipeline to significantly im-
prove computational efficiency without compromising generation quality. AvatarSync outperforms
conventional systems in most real-world scenarios, delivering a smooth and responsive user experi-
ence. Notably, AvatarSync establishes a new modeling paradigm and methodological framework for
talking-head multimodal generation task. In summary, our main contributions are listed as follows:

• To substantially reduce inter-frame flicker, we propose AvatarSync, an autoregressive
framework on phoneme representations that generates talking-head animations from a sin-
gle reference image, driven by text or audio. By leveraging the many-to-one mapping from
text/audio to phonemes, we construct phoneme-to-visual alignment. This design enables it
to support editable, segment-level, and fine-grained control over video generation.

• We introduce a two-stage hierarchical generation strategy that decouples semantics from
visual dynamics. The first stage, Facial Keyframe Generation (FKG), models phoneme-
aligned semantics, while the second stage interpolates intermediate frames to enhance tem-
poral coherence and visual smoothness. This design mitigates error accumulation, supports
localized editing, and enables parallel inference for improved efficiency.

• In FKG, we design a Phoneme-Frame Causal Attention Mask to enhance phoneme-frame
alignment and employ a composite loss integrating perceptual, identity, and facial similar-
ity. For interpolation, we propose a timestamp-aware adaptive strategy based on selective
state space modeling, enabling temporal inference and audio-visual synchronization.

• We conduct comprehensive evaluations of AvatarSync on two benchmark datasets, CMLR
and HDTF, covering Chinese and English. As shown in Table 1 and Figure 10, AvatarSync
consistently outperforms existing advanced audio-driven talking-head animation models in
terms of computational efficiency, facial fidelity, and motion consistency.
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2 RELATED WORK

2.1 TALKING HEAD GENERATION

Audio-driven talking-head generation has emerged as a key research topic in multimodal content
generation, demonstrating significant practical value in applications such as video dubbing and vir-
tual avatars. Prevailing approaches can be broadly categorized into two classes: GAN-based meth-
ods Zhou et al. (2019; 2021); Meshry et al. (2021); Das et al. (2020); Chen et al. (2019); Zhang et al.
(2023a) and diffusion-based methods Wang et al. (2024a); Ji et al. (2024); Lin et al. (2025); Li et al.
(2024); Jiang et al. (2024); Xu et al. (2024b). In the following, we provide a systematic review of
recent advances and representative characteristics of each class.

GAN-based methods. GAN-based methods are widely recognized for their computational effi-
ciency and rapid inference. However, early approaches struggle with maintaining identity consis-
tency and accurate lip synchronization. To address this, methods, such as SadTalker Zhang et al.
(2023a) and FaceVid2Vid Wang et al. (2021), adopt multi-stage inference pipelines that decouple
audio-to-motion and motion-to-video modeling. While this improves generation quality, it signifi-
cantly increases computational overhead and system complexity. Moreover, the decoupled modeling
leads to unnatural generation results, where only the mouth moves while the rest of the face remains
static, compromising realism and temporal continuity.

Diffusion-based methods. Diffusion-based approaches typically integrate ReferenceNet, temporal
modeling layers, and audio-attention modules into a single unified framework. These methods en-
able vivid talking head generation from a single image, but come with high computational costs and
often suffer from unstable mouth motion. To reduce the overhead, MuseTalk Zhang et al. (2024b)
combines diffusion with GANs. OmniHuman-1 Lin et al. (2025) further proposes a hybrid train-
ing scheme based on a Diffusion Transformer architecture. While these methods partially alleviate
slow inference and low visual fidelity, they do not overcome diffusion’s inherent limitations, leaving
generated videos with artifacts such as ghosting and inter-frame flicker.

2.2 VISUAL GENERATION BASED ON LARGE LANGUAGE MODELS

In recent years, large language models (LLMs) Achiam et al. (2023); Touvron et al. (2023); Liang
et al. (2024) have extended to the domain of visual content generation. Compared to diffusion mod-
els that rely on multi-step denoising, LLM-based visual generation methods offer superior scalability
and inference efficiency for multimodal tasks.

LLM-based visual generation approaches can be broadly categorized into two types: masked lan-
guage models (MLMs) and autoregressive language models (AR-LMs). MLMs enable efficient
training and fast sampling by predicting randomly masked tokens in parallel. In image generation,
MaskGIT Chang et al. (2022) progressively refines images by predicting missing tokens, achieving
both high quality and computational efficiency. Subsequently, this approach is extended to the video
domain. MAGVIT-v2 proposes an embedding method for iterative masked video token modeling.

AR-LMs predict tokens sequentially, modeling the conditional probability of each token given its
preceding context. In image synthesis, LlamaGen Sun et al. (2024) employs an autoregressive Trans-
former to generate semantically aligned, detail-rich images, while VAR Tian et al. (2024a) adopts a
coarse-to-fine generation strategy to iteratively refine multi-scale representations. In video genera-
tion, VideoPoet Kondratyuk et al. (2023) processes multimodal inputs through region-wise tokeniza-
tion. CogVideo Hong et al. (2022), Show-o Xie et al. (2024) and EMU3 Wang et al. (2024b) further
extend autoregressive modeling to text-to-video generation, proposing multimodal architectures.
Recently, a few studies Chu et al. (2025); Zhen et al. (2025) have also explored transformer-based
architectures specifically for talking-head generation, achieving promising results in both visual re-
alism and controllability. These methods directly encode audio sequences and reference images
using standard Transformer architectures to generate video frames. However, these methods typi-
cally entail high computational demands and inference complexity, limiting practical deployment.

Furthermore, as LLMs Khanuja et al. (2024); Fang et al. (2024); Shahmohammadi et al. (2023) are
increasingly adopted in natural language processing, token-level parallelization strategies for accel-
erating autoregressive inference have rapidly gained traction in visual generation Leviathan et al.
(2023); He et al. (2024); Fu et al. (2024). These approaches require no model retraining, offering
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Figure 2: Inter-frame Flicker Visualization. Left: reference frame; subsequent panels show pixel-wise differ-
ences between consecutive frames, where scattered high-difference regions reveal temporal flicker.

strong generalizability and deployment flexibility. In summary, LLM-based methods represent a
promising direction for achieving real-time, high-fidelity, and controllable talking-head generation.

3 METHOD

3.1 PRELIMINARY OF INTER-FRAME FLICKER

As illustrated in Figure 2, diffusion-based video generation methods often exhibit inter-frame flicker,
manifesting as temporal inconsistencies or identity shifts between adjacent frames. In the following,
we provide a theoretical analysis based on Denoising Diffusion Probabilistic Models formulation.
Consider the DDPM reverse process for generating a single image frame x̂

(t)
0 from Gaussian noise:

x
(t)
T ∼ N (0, I), x̂

(t)
0 = fθ(x

(t)
T , c(t)) (1)

where t indexes the frame index, c(t) is the conditioning input, and fθ(·) denotes the denoising
trajectory defined by the model. Even under fixed c(t) = c across all frames, the sampled latent
variables x(t)

T are independent:
Cov(x(t)

T ,x
(t+1)
T ) = 0 (2)

As a result, the output frames x̂(t)
0 and x̂

(t+1)
0 are conditionally uncorrelated, resulting in inter-frame

variability. Formally, the output distribution is:

pθ(x̂
(t)
0 |c) =

∫
pθ(x̂

(t)
0 |x(t)

T , c) · N (x
(t)
T ;0, I) dx

(t)
T (3)

Since x
(t)
T and x

(t+1)
T are independently and identically sampled from the standard Gaussian prior,

adjacent frames are marginally independent even under identical conditioning. Consequently, the
generated frame sequence {x̂(t)

0 }Tt=1 is prone to exhibit a lack of temporal coherence.

While some diffusion models, such as DDIM Song et al. (2020), DiT Peebles & Xie (2023), and
models employing 3D convolutions Ho et al. (2022), have begun to model temporal dependencies
in the denoising process, the independent sampling of the initial noise x(t)

T for each frame still leads
to insufficient temporal coherence in the generated videos. To mitigate this, guided noise injection
methods Li et al. (2024) have been proposed. However, the inherent stochasticity of the initial noise
poses a significant challenge to fully resolving the issue of inter-frame flickering.

Autoregressive models generate video frames as a single and unified token sequence. Let X =

{x(1)
1 , ..., x

(T )
K } denote a flattened sequence of T video frames, where each frame contains K dis-

crete tokens. Here, xi denotes the i-th token in the flattened sequence, and x
(t)
j refers to the j-th

token in frame t. The model estimates Ashish (2017):

P (X) =

N∏
i=1

P (xi|x<i, c) (4)

For any token x
(t)
j in frame t, its generation depends on all tokens from previous frames and prior

tokens within the same frame:

P (x
(t)
j |x(1)

1 , ..., x
(t−1)
K , x

(t)
1 , ..., x

(t)
j−1, c) (5)

Here, when t = 1 or j = 1, the corresponding conditioning sets are empty. Therefore, compared to
diffusion models, autoregressive models generate frames sequentially with strong contextual condi-
tioning, exhibiting a strong inductive bias toward temporal coherence.
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3.2 MODEL DESIGN

The overall framework of AvatarSync is depicted in Figure 3. It mainly consists of three parts: (1)
an image tokenizer for quantizing the reference image into visual tokens, and an audio ASR tool for
processing the input speech into a phoneme sequence; (2) a two-stage generation model based on an
autoregressive framework, designed to effectively model phoneme-conditioned multimodal inputs
and synthesize high-quality visual outputs; (3) a decoder for performing downstream tasks. In the
following, we focus on detailing the first and second components of the system.

Tokenization. AvatarSync is flexible for handling multimodal input, supporting both text-image and
audio-image modalities for video generation. (1) For text input, the input text is first converted into
a phoneme sequence, leveraging the stable many-to-one mapping to facilitate accurate mouth-shape
generation. Subsequently, a standard tokenizer transforms the phoneme sequence into discrete to-
kens. (2) For audio input, we employ automatic speech recognition (ASR) tools to extract phoneme-
level alignments with timestamps, which are then tokenized into discrete phoneme tokens. (3) For
an image input, we adopt a pre-trained vision foundation model, such as Open-MAGVIT2 Luo et al.
(2024), to extract image features. To capture fine-grained facial details, we employ MMPose for
facial landmark detection and adjust the input image’s aspect ratio.

Auto-regressive Model. Following prior work Yan et al. (2021); Kondratyuk et al. (2023), text,
audio and image prompts are projected into the feature space of a large language model (LLM). As
illustrated in Figure 3, our autoregressive model follows a pipelined generation process consisting of
two stages: Facial Keyframe Generation (FKG) and the inter-frame interpolation module. Notably,
unlike the two-stage designs in prior work Harvey et al. (2022); Wei et al. (2024), our framework
aligns keyframes explicitly with phoneme units rather than uniformly sampling in time, and the
second stage interpolates frames within these phoneme-aligned intervals using their timestamps.

(1) The model generates Ts keyframes in accordance with the sequential order of the input
phoneme. The Facial Keyframe Generation (FKG) module receives phoneme representations en-
coded by a tokenizer and structures the input sequence as: {{Phoneme} [B] {Frame1}, ...,
{FrameTs}}. In addition, we introduce a Phoneme-Frame Causal Attention Mask, which restricts
each keyframe to its paired phonemes and masking cross-frame attention to avoid leakage. Specif-
ically, when generating each keyframe, the model attends only to its corresponding phoneme infor-
mation, enabling precise phoneme-to-frame mapping and temporally aligned phoneme modeling. In
practice, the model conditions on both phoneme information and the reference image, and employs
a parallel strategy to simultaneously predict Ts keyframes.

(2) The interpolation module operates on phonemes, timestamps, and known keyframes. Drawing
on VFIMamba Zhang et al. (2024a), we introduce a timestamp-aware adaptive strategy built upon
a selective state space model, enabling efficient temporal modeling and precise audio-visual align-
ment. Specifically, guided by phoneme-timestamp pairs, intermediate frames are inserted between
keyframes. Additionally, at each interpolation step, adjacent keyframes are encoded into interleaved
token sequences and processed via state space modeling, enabling efficient global context aggrega-
tion with linear complexity. This design progressively refines frame durations based on phoneme
rhythm, ensuring temporal coherence, synchronization with audio, and stable output frame rates.
Furthermore, interpolations between different keyframe pairs can be performed in parallel, signifi-
cantly improving inference efficiency.

3.3 FACIAL TRAINING STRATEGY

In training AvatarSync, we decouple semantic accuracy from visual refinement. The FKG module
is optimized for semantic precision, while the interpolation module focuses on temporal coherence
and visual smoothness. For the FKG training, we employ a composite loss function that integrates
reconstruction, perceptual similarity, identity preservation, and facial appearance fidelity. To miti-
gate the instability caused by simultaneous optimization of multiple objectives, we adopt a phased
training strategy. The training objective of the first stage is to learn abstract facial inpainting using a
single loss function:

Lrecon = −
∑
i

logP
(
vreali | x

)
(6)

where vreali is the ground-truth token at position i, and P (·) represents the predicted probability
distribution over the token vocabulary. In the second stage of training, we operate in the decoded
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Figure 3: The overall framework of AvatarSync. The pipeline first normalizes text/audio into a phoneme
token sequence via a many-to-one mapping, and tokenizes the reference image into visual tokens. Next, a two-
stage autoregressive generator performs Facial Keyframe Generation under a Phoneme-Frame Causal Attention
Mask, and inserts intermediate frames using a timestamp-aware module that interleaves keyframes for linear-
time global context. Finally, the decoder reconstructs RGB frames to animate character.

pixel space and incorporate three loss terms: LPIPS Perceptual loss Li et al. (2024); Zhang et al.
(2018), Identity Consistency loss, and Facial Similarity loss to enhance visual quality.

Llpips =
∑
l

wl ·
1

HlWl

∑
h,w

∥Fl(Igen)h,w − Fl(Ireal)h,w∥22 (7)

where Fl(·) denotes the feature map from the layer l, and Hl, Wl are its height and width.

LId =
1

N

N∑
i=1

(
1− cos(f i

gen, f
i
real)

)
· wid (8)

where f i
gen and f i

real are identity embeddings of the i-th generated and real image, respectively.

LFS =
1

N

N∑
i=1

0.5 · dcos(f i
gen, f

i
real) · wfs (9)

where dcos(·, ·) measures the cosine distance in the FaceNet512 embedding space. The overall
optimization objective for this stage is:

Ltotal = λ1 · Lrecon + λ2 · Llpips + λ3 · LId + λ4 · LFS (10)

3.4 DATA PREPARATION

To support keyframe generation, we construct two phoneme-to-frame aligned training datasets: the
Chinese Mandarin Lip Reading (CMLR) dataset Zhao et al. (2019; 2020) and the English-speaking
HDTF dataset Zhang et al. (2021), enabling cross-lingual modeling. Initially, we apply ASR tools
to extract phonemes and their corresponding timestamps from the audio tracks, and use them to
retrieve the aligned video frames. Facial regions are then detected and cropped to obtain phoneme-
aligned face images. In addition, due to the low resolution of CMLR, we incorporate the GFPGAN
face enhancement algorithm to perform four-times super-resolution reconstruction. To reduce en-
coder training complexity, we further map abstract phonemes to concrete, character-level units. For
coarticulation, we explicitly introduce special mappings for specific coarticulation patterns (e.g.,
two characters are jointly pronounced). This preprocessing results in two phoneme-image paired
datasets. Notably, we compare two strategies for facial region extraction: Face-Centric Cropping
and Pose-Driven Landmark Cropping. Based on empirical results (see Table 4 in Appendix A.3),
we adopt the pose-driven method.
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Table 1: Quantitative comparison on CMLR and HDTF datasets. SadTalker is GAN-based, the other baselines
are diffusion models, and AvatarSync (ours) is autoregressive.

Method CMLR HDTF

FID↓ FVD↓ LPIPS↓ PSNR↑ SSIM↑ CSIM↑ Sync-C↓ Sync-D↓ FID↓ FVD↓ LPIPS↓ PSNR↑ SSIM↑ CSIM↑ Sync-C↓ Sync-D↓

SadTalker 30.96 618.74 0.42 14.50 0.48 0.79 0.91 14.29 37.20 316.78 0.26 18.85 0.74 0.82 5.72 11.83
V-Express 32.54 821.95 0.46 12.99 0.39 0.70 0.83 13.71 40.13 779.19 0.27 18.29 0.72 0.88 5.29 12.79
AniPortrait 32.46 711.30 0.47 14.71 0.49 0.69 0.89 14.99 40.19 614.01 0.28 18.52 0.72 0.88 5.61 11.30
Hallo 30.84 630.53 0.43 14.62 0.49 0.71 1.20 14.99 44.48 520.72 0.25 18.94 0.75 0.88 5.05 11.62
Hallo2 35.10 570.12 0.44 14.59 0.49 0.75 0.80 14.67 42.77 340.83 0.25 19.04 0.75 0.89 6.37 11.91
EchoMimic 33.09 1225.10 0.42 14.87 0.48 0.69 0.89 13.97 38.11 301.33 0.29 18.11 0.73 0.85 2.63 12.88
Sonic 31.58 953.30 0.43 14.39 0.47 0.68 2.25 12.84 32.89 379.13 0.26 18.55 0.74 0.90 7.65 12.70
StableAvatar 39.38 741.36 0.46 14.41 0.49 0.79 0.92 14.83 35.39 700.82 0.28 18.41 0.72 0.85 5.34 12.56
AvatarSync 25.19 503.29 0.40 15.07 0.49 0.85 0.94 10.90 29.72 260.65 0.24 18.69 0.73 0.95 2.57 10.39

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Details. We train AvatarSync on a mixed dataset that combines the super-resolved Chinese
CMLR dataset and the original English HDTF dataset, with a standard 95:5 train-test split applied to
each benchmark before mixing. The training is conducted for a total of 10,000 steps on this mixed
dataset, using a total of 8 NVIDIA V100 and 2 NVIDIA L20 GPUs. At the core of the training
stage, we introduce a custom Phoneme-Frame Causal Attention Mask and utilize a meticulously
designed composite loss function to fine-tune the pre-trained model weights. For optimization, we
employ the Adam optimizer with a learning rate of 2× 10−4, complemented by a cosine annealing
schedule. To ensure memory efficiency, we enable 16-bit mixed-precision training, accelerated by
the DeepSpeed ZeRO-2 framework. The complete training procedure is detailed in Appendix A.2.

Evaluation Metrics. We evaluate the models with eight complementary metrics. For perceptual
quality and identity preservation, FID, FVD, LPIPS, and CSIM are computed in deep feature space,
where lower FID/FVD/LPIPS and higher CSIM are better. For frame-level fidelity, PSNR and SSIM
assess reconstruction accuracy with respect to the ground-truth frames in pixel space (higher is
better). Finally, Sync-C and Sync-D quantify audio–visual lip synchronization (lower is better).

Compared Baselines. We compare AvatarSync with SOTA audio-driven talking-head methods,
including both GAN-based and diffusion-based approaches. For GAN-based models, we consider
SadTalker Zhang et al. (2023a). Diffusion-based baselines include V-Express Wang et al. (2024a),
AniPortrait Wei et al. (2024), Hallo Xu et al. (2024a), Hallo2 Cui et al. (2024), EchoMimic Chen
et al. (2025), Sonic Ji et al. (2024), and StableAvatar Tu et al. (2025). These models leverage various
strategies such as multimodal attention, hierarchical diffusion, and landmark/audio conditioning.

4.2 QUANTITATIVE EVALUATION

Table 2: Inference efficiency on
3.9s clips at 512×512 resolution.

Method Latency(s)↓ RTF↓

SadTalker 78.90 20.13
V-Express 167.90 42.83
AniPortrait 575.50 146.81
Hallo 444.30 113.34
Hallo2 427.50 109.06
EchoMimic 512.70 130.79
Sonic 190.40 48.57
StableAvatar 187.00 47.70
AvatarSync 58.00 14.80

Comparison on CMLR and HDTF. As shown in Table 1,
AvatarSync consistently achieves state-of-the-art performance on
both the Chinese CMLR and English HDTF datasets. Specifically,
on CMLR, it achieves the best scores in generation realism and tem-
poral coherence (FID, FVD). The state-of-the-art FVD score pro-
vides direct quantitative evidence of suppressed inter-frame flicker.
Furthermore, it also matches or surpasses all baselines in reconstruc-
tion metrics (LPIPS, PSNR, SSIM) and identity similarity (CSIM),
achieving the lowest Sync-D and competitive Sync-C. On HDTF,
AvatarSync achieves state-of-the-art performance in six key met-
rics, which indicates accurate identity preservation and precise lip
synchronization. These results demonstrate that AvatarSync can generate high-quality talking-head
videos and exhibits strong generalization ability across languages.

Inference Efficiency. In AvatarSync, the inter-frame module processes each keyframe pair in par-
allel, reducing the complexity from O

(∑
i Li

)
to O

(
maxi Li

)
, where Li is the length of interval

i. With Ts roughly uniformly spaced keyframes, this design yields up to a (Ts − 1)× theoretical
speedup over a naive generator and supports multi-GPU deployment. To further evaluate the in-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

tízhǔshìzhǎnfā    yǔpínghé

Ground 
Truth

SadTalker

V-Express

AniPortrait

Hallo

Hallo2

EchoMimic

Sonic

StableAvatar

Ours

Phoneme

(a)

Temporal Frame SequenceReference 
Image

SadTalker

V-Express

Hallo

Hallo2

EchoMimic

Sonic

Ours

Ground 
Truth

StableAvatar
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(b)
Figure 4: Qualitative comparison on the CMLR and HDTF dataset. (a) Top: ground-truth frames. Middle:
results from baseline models. Bottom: Each phoneme (represented as pinyin for Chinese) is aligned with its
corresponding frame. (b) Inter-frame flicker visualization, where pixel-wise differences between consecutive
frames highlight temporal inconsistencies across methods.

ference efficiency of AvatarSync, we compare it with existing GAN and diffusion-based methods.
Under 3.9s clips at 512 × 512 resolution, Table 2 shows that AvatarSync achieves the lowest la-
tency (58.0s) and real-time factor (RTF 14.8). As shown in Figure 10 in Appendix A.8, our model’s
latency exhibits a near-linear relationship with the input phoneme count, while competitors show ex-
ponential scaling. The parallelizable design makes our model practical for long talking-head videos.

4.3 QUALITATIVE EVALUATION

Qualitative comparisons in Figure 4a reveal two primary failure modes in existing methods. First,
methods such as SadTalker, AniPortrait, and StableAvatar produce blurry reconstructions with im-
precise lip articulation, while EchoMimic generates nearly static mouth shapes, all indicating weak
audio-visual correlation. Second, others like V-Express, Hallo, Hallo2, and Sonic suffer from struc-
tural degradation, introducing warping artifacts in the lower face that render outputs unusable. In
contrast, AvatarSync generates precise, dynamic mouth shapes that accurately track phonemes while
preserving high-fidelity facial anatomy. This dual capability eliminates the articulatory imprecision,
blurring, and distortion endemic to prior work, setting a new standard for realistic talking avatars.

Beyond per-frame quality, we evaluate temporal stability via inter-frame difference heatmaps in
Figure 4b. The results indicate that diffusion-based methods exhibit severe and widespread flicker
across the entire frame. In contrast, AvatarSync’s pixel changes are minimal and strictly localized
to the articulating mouth and jaw. This stability is inherent to autoregressive architecture, which
conditions each frame on prior ones to enforce temporal coherence. The sequential dependency
eliminates the stochastic variations that cause flicker, ensuring SOTA temporal coherence.

4.4 HUMAN EVALUATION

We conducted a human evaluation to assess the quality of generated animations. Thirty participants
rated nine state-of-the-art methods across four dimensions: Flicker, body movement realism, tem-
poral coherence, and lip synchronization, using a 5-point Likert scale. To ensure fair comparison,
videos were randomly presented, providing insights into subjective perceptions of animation quality
and natural expression alignment. As shown in Figure 9 in Appendix A.7, our method achieved the
highest overall score, with strong scores across all dimensions (4.8 ± 0.41, 3.8 ± 0.48, 4.4 ± 0.50,
3.6 ± 0.62) and low variance in scores, which indicates robust and consistent performance.
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4.5 ABLATION STUDIES

Table 3: Ablation of Attention Mechanisms on CMLR.

ID Setting FID↓ FVD↓ LPIPS↓ PSNR↑ SSIM↑ Sync-C↓

1 Non-Causal 15.63 287.95 0.07±0.01 24.41 0.86 1.21
2 Causal Acc. 19.47 210.25 0.07±0.01 23.35 0.86 1.24
3 Lim. Hist. 19.56 186.68 0.07±0.01 23.83 0.86 1.32
4 One-to-One 17.11 189.24 0.07±0.01 24.14 0.86 1.32

Attention Mechanisms. To validate
the necessity of the Phoneme-Frame
Causal Attention Mask, we conducted
an ablation study on attention mecha-
nisms using the CMLR dataset. Based
on the scope of accessible phoneme,
four distinct attention configurations
were compared: (1) Non-Causal Global Attention, (2) Causal Accumulative Attention, (3) Lim-
ited History Attention (sliding window size=2), (4) One-to-One Attention (Ours). As shown in
Table 3, One-to-One Attention (Ours) achieves the optimal trade-off between frame-level fidelity
and temporal coherence demonstrating the most robust overall performance. Detailed definitions of
each mechanism are provided in Appendix A.4.

Frame Allocation Strategies. To verify the contribution of the timestamp-aware adaptive strategy,
we compare three frame allocation strategies on CMLR: Random, Fixed, and Dynamic (ours). As
summarized in Table 5 in Appendix A.5, the timestamp-aware adaptive strategy achieves the best
performance on seven metrics, which confirms that it improves temporal coherence and lip synchro-
nization without degrading reconstruction quality.

Loss Components. Our ablation study on four key loss terms: token-level cross-entropy (CE),
pixel-level LPIPS, identity consistency, and facial similarity. Results (see Table 6 in Appendix A.6)
show that while each component improves over the CE-only baseline, their combination yields con-
sistently stronger performance. Notably, excluding identity or facial similarity losses leads to a
marked drop in generation quality, highlighting their importance in preserving identity.

Phoneme-based Representation Learning (PRL). To assess whether phonemes are necessary as
intermediate conditioning units, we compare two audio-driven configurations on the Chinese CMLR
dataset: a baseline that conditions keyframe generation on audio features aligned with word-level
units in the transcript, and a PRL configuration that uses the same audio aligned at the phoneme
level. As shown in Fig. 5, phoneme-level conditioning respectively reduces the face reconstruction,
total, and non-reconstruction losses by 41.8%, 9.6%, and 21.5%, indicating that phoneme-level
conditioning provides finer-grained and more stable speech–lip alignment.
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Figure 5: Loss comparison with and without PRL.

5 CONCLUSION

We introduce AvatarSync, an autoregressive framework on phoneme representations for talking-
head animation generation. The method addresses two major limitations of diffusion-based ap-
proaches: (1) inter-frame flickers in generated videos; and (2) low training and inference efficiency.
By leveraging the stable many-to-one mapping from text/audio to phonemes, AvatarSync enables
accurate lip synchronization with lightweight design and editable controllability. To further improve
temporal coherence and inference efficiency, we design a two-stage hierarchical generation strategy
that decouples phoneme semantics from visual dynamics, incorporating a Phoneme-Frame Causal
Attention Mask and a timestamp-aware interpolation module. Experimental results on the CMLR
and HDTF datasets demonstrate that AvatarSync substantially reduces inter-frame flicker and con-
sistently outperforms existing methods in visual fidelity, temporal consistency, and inference speed.
Future work will leverage large-scale codebooks and MoE frameworks to achieve robust multilin-
gual generalization, enabling a new generation of lifelike and interactive digital human applications.
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ETHICS STATEMENT

In developing AvatarSync, a phoneme-guided autoregressive talking-head generation framework, we
are committed to adhering to ethical principles and promoting responsible AI usage. We recognize
potential risks, including deepfake abuse, impersonation, and unauthorized manipulation of personal
media, and emphasize the necessity of applying this technology in contexts that respect privacy,
consent, and individual rights.

REPRODUCIBILITY STATEMENT

To encourage transparency and responsible research, our code and pretrained models will be publicly
released for academic and educational purposes, while we strongly discourage harmful applications
such as misinformation, defamation, or harassment. Furthermore, we advocate for ongoing research
on detection mechanisms and safeguard strategies to mitigate misuse, ensuring that AvatarSync
contributes positively to society and aligns with ethical and legal standards.
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A APPENDIX

A.1 DETAILS OF CMLR SUPER-RESOLUTION

The scarcity of high-quality, large-scale Chinese talking-head datasets poses a significant challenge
to research in this domain. The CMLR dataset stands as one of the few publicly available Chinese
datasets for this task, offering a crucial resource for research. However, its inherent low resolution
results in blurry facial features and a lack of crucial detail in the lip region. This directly com-
promises the training efficacy and evaluation reliability of models that require high-fidelity visual
input.

To address this limitation and establish a more robust benchmark, we employed the GFPGAN
face enhancement algorithm to perform a comprehensive four-times super-resolution reconstruction
across the entire CMLR dataset. A visual comparison of the frames before and after this enhance-
ment is presented in Figure 6 and 7.

Furthermore, to foster future research and benefit the community, we will open-source this enhanced,
high-resolution version of the CMLR dataset.

Figure 6: Original Video Frames from the Dataset.

Figure 7: Enhanced Video Frames after Super-Resolution.

A.2 TRAINING DETAILS

We trained the model on a mixed dataset that combines the super-resolved CMLR dataset (Chinese)
and the original HDTF dataset (English). The training was conducted for a total of 10,000 steps on
this mixed dataset.

Figures 11a, 11b, 11c, 11d, 11e, and 11f illustrate the progression of various loss functions during
training, demonstrating the convergence behavior and the contribution of individual loss components
to the total loss.

A.3 FACE CROPPING STRATEGIES ABLATION DETAILS

Cropping Strategy. We compare two preprocessing methods: Face-Centric Cropping and Pose-
Driven Landmark Cropping. The former leads to unstable generation due to scale and background
variations. In contrast, the landmark-based approach ensures tighter alignment and better lip dy-
namics. In addition, the choice of face cropping strategy significantly impacts the final generation
quality. Therefore, we conducted this ablation study to validate our choice of the Pose-Driven Land-
mark Cropping strategy over the baseline Face-Centric Cropping. Both qualitative and quantitative
results confirm the superiority of our approach.

Qualitatively, as shown in Figure 8, our method yields tighter facial alignment and more consistent
lip dynamics, resulting in enhanced visual coherence and identity preservation. Quantitatively, Ta-
ble 4 shows our strategy yields a lower (better) Identity Similarity Score (ISS) between the generated
faces and the ground-truth video on a majority of the face recognition models (3 out of 4).
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Ground Truth Image

Face-Centric Margin-Based Cropping

Pose-Driven Landmark-Based Face Cropping

Reference 
Image

(a) Face-Centric Cropping

Ground Truth Image

Face-Centric Margin-Based Cropping

Pose-Driven Landmark-Based Face Cropping

Reference 
Image

(b) Pose-Driven Landmark Cropping

Figure 8: Visual comparison of face preprocessing methods.

Subset
Model Face-Centric Cropping Landmark-Based Cropping

ArcFace FaceNet FaceNet512 VGG-Face ArcFace FaceNet FaceNet512 VGG-Face

s1 0.2958 0.1608 0.1931 0.2899 0.3250 0.2175 0.2360 0.3399
s2 0.2189 0.1672 0.1278 0.2885 0.2077 0.1886 0.1011 0.2236
s3 0.2576 0.1715 0.1079 0.2899 0.2873 0.1784 0.0752 0.2012
s4 0.3698 0.3415 0.2198 0.3643 0.3628 0.2822 0.1922 0.3465
s5 0.3137 0.2790 0.1677 0.3588 0.3015 0.1978 0.1319 0.2626

Total 0.2912 0.2240 0.1632 0.3183 0.2968 0.2129 0.1472 0.2748

Table 4: Identity similarity (ISS) comparison under different cropping strategies. Lower ISS values indicate
greater identity similarity. Bold numbers in the Total row indicate better-performing cropping strategy per
model.

Given its superior performance in both visual quality and quantitative identity preservation, we
adopted the Pose-Driven Landmark Cropping strategy for all experiments.

A.4 ATTENTION MECHANISMS ABLATION DETAILS

To validate the necessity and design rationale of our proposed Phoneme-Frame Causal Attention
Mask, we conducted a key ablation study on the super-resolved CMLR dataset. We designed and
compared four distinct attention configurations, which primarily differ in the scope of phonetic
information accessible to the model during the generation of each frame. The details of these four
attention mechanisms are as follows:

(1) Non-Causal Full Attention. When generating any frame, the model can access the entire
input phoneme sequence from beginning to end. This configuration sees ”future” information, mak-
ing it unsuitable for streaming generation tasks. Its results are typically considered a theoretical
performance upper bound.

(2) Causal Accumulative Attention. When generating the i-th frame, the model can access all his-
torical phonemes from the 1st to the current i-th. This represents a standard autoregressive (causal)
attention mechanism.

(3) Limited History Attention. When generating the i-th frame (for i > 1), the model utilizes a
sliding window of size 2, accessing only the current i-th and the previous (i− 1)-th phonemes. This
strategy aims to provide limited local context while maintaining high computational efficiency.

(4) One-to-One Attention. When generating the i-th frame, the model strictly accesses only the
corresponding i-th phoneme. This is the strictest form of causality, ensuring that the generation of
each frame depends solely on the currently aligned input, without reliance on any historical or future
information.
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Table 5: Ablation of frame allocation strategies on CMLR.

Method FID↓ FVD↓ LPIPS↓ PSNR↑ SSIM↑ CSIM↑ Sync-C↓ Sync-D↓
Random 24.82 553.39 0.40 15.07 0.49 0.85 1.09 14.11
Fixed 24.56 522.32 0.41 15.04 0.49 0.84 0.94 14.08
Dynamic (ours) 25.19 503.29 0.40 15.07 0.49 0.85 0.94 10.90

A.5 ABLATION ON FRAME ALLOCATION STRATEGIES

To further analyze the inter-frame module, we compare three frame allocation strategies while keep-
ing the keyframe generator (FKG) and all other components fixed:

(1) Random. For each keyframe pair, the number of in-between frames is randomly sampled under
the constraint that the total number of frames matches the target video length.

(2) Fixed. A fixed number of in-between frames is inserted for every keyframe pair, ignoring the
actual temporal interval between them.

(3) Dynamic (ours). The proposed timestamp-aware adaptive strategy allocates the number of
in-between frames proportionally to the temporal interval between keyframes, while enforcing a
globally consistent frame rate.

As shown in Table 5, the Dynamic strategy achieves clearly better temporal performance than
Random strategy and Fixed strategy, with a lower FVD (503.29) and a markedly reduced Sync-D
(10.90), while keeping FID, LPIPS, PSNR, SSIM, and CSIM at a comparable level. This confirms
that the timestamp-aware adaptive allocation improves temporal coherence and phoneme-level lip
synchronization without sacrificing reconstruction quality.

A.6 LOSS FUNCTION ABLATION DETAILS

To validate the effectiveness of each component in our proposed composite loss function, we con-
duct a detailed ablation study, with the full results presented in Table 6. In this study, we establish
a baseline model trained exclusively with a token-level cross-entropy (CE) loss. We then incre-
mentally incorporate our other proposed loss terms: the pixel-level LPIPS perceptual loss, identity
consistency loss, and facial similarity loss.

The experimental results clearly demonstrate that while each loss component individually yields
performance gains over the baseline, the optimal overall generation quality is achieved only through
their combination. Particularly noteworthy is the finding that removing either the identity consis-
tency or the facial similarity loss from the full model leads to a marked degradation in generation
quality. This underscores their critical roles in preserving subject identity and enhancing visual
realism.

A.7 HUMAN EVALUATION RESULTS

To assess subjective perceptual quality, we conducted a user study comparing AvatarSync with nine
state-of-the-art audio-driven talking-head methods. Thirty participants were asked to rate the gen-
erated videos along four dimensions: Flicker, Temporal Coherence, Body Movement Realism, and
Lip Synchronization, using a 5-point Likert scale (higher is better). For each audio clip, the videos
from different methods were shuffled and anonymized to avoid ordering and naming bias.

Figure 9 reports the mean and standard deviation of the scores. AvatarSync achieves the highest
average rating on all four dimensions (4.8 ± 0.41 for Flicker, 3.8 ± 0.48 for Body Movement
Realism, 4.4 ± 0.50 for Temporal Coherence, and 3.6 ± 0.62 for Lip Synchronization), consistently
outperforming competing approaches with relatively low variance across subjects. These results
corroborate the quantitative metrics, indicating that AvatarSync produces visually stable, natural,
and well-synchronized talking-head videos from a human perspective.
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Figure 9: Human evaluation results on four aspects: Flicker, Temporal Coherence, Body Movement Realism,
and Lip Synchronization. Bars show the mean opinion scores and error bars denote standard deviation over
30 participants. AvatarSync (ours) obtains the highest overall score, with strong performance across all dimen-
sions.

A.8 ANALYSIS OF INFERENCE EFFICIENCY

To complement the latency comparison in Table 2, we further visualize how inference time scales
with the input length for different methods. Specifically, we vary the number of phonemes from
2 to 20 and measure the average generation time for 512 × 512 videos on the same hardware.
Figure 10 shows that AvatarSync exhibits an almost linear growth with respect to the phoneme count,
whereas several diffusion-based baselines grow super-linearly and quickly become impractical at
longer durations. For example, at 20 phonemes, AvatarSync is about 2.4× faster than Hallo and
remains the most efficient among all competing methods. This is consistent with the theoretical
parallelism analysis in Sec. 4.2.

THE USE OF LARGE LANGUAGE MODELS(LLMS)

We utilized a large language model as a general-purpose writing assistant during the preparation of
this paper. Its role was strictly limited to improving grammar, spelling, and overall language clarity.
The authors are fully responsible for the research ideation, data, analysis, and final content of this
manuscript.
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Figure 10: Generation Time Comparison. AvatarSync scales nearly linearly with phoneme count, while others
exhibit exponential growth.

Configuration Exp. Loss Functions Evaluation Metrics

CE LPIPS Identity Facial FID↓ LPIPS↓ PSNR↑ SSIM↑

Baseline 1 ✓ 28.1361 0.0365 25.0786 0.8837

+ Single Additional Loss
2 ✓ ✓ 16.6485 0.0128 32.5706 0.9615
5 ✓ ✓ 16.1956 0.0138 32.0478 0.9620
6 ✓ ✓ 16.4723 0.0131 32.4699 0.9653

+ Double Additional Losses
3 ✓ ✓ ✓ 15.6558 0.0151 31.9085 0.9632
4 ✓ ✓ ✓ 18.1449 0.0162 31.8410 0.9623
7 ✓ ✓ ✓ 13.4429 0.0133 32.4377 0.9643

Full Model 8 ✓ ✓ ✓ ✓ 13.8603 0.0136 33.1348 0.9666

Table 6: Ablation study on different loss function combinations. CE: Cross-Entropy Loss; LPIPS: Learned
Perceptual Image Patch Similarity; Identity: Identity Consistency Loss; Facial: Facial Similarity Loss. ↓:
lower is better; ↑: higher is better. Bold = best; underlined = second best per column.
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Figure 11: Training loss curves on the mixed dataset (CMLR + HDTF). The plots illustrate the convergence
of various loss components over 10,000 training steps. Key metrics include reconstruction objectives, face-
specific metrics, and autoregressive losses.
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