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ABSTRACT

Talking-head animation focuses on generating realistic facial videos from audio
input. Following Generative Adversarial Networks (GANs), diffusion models
have become the mainstream, owing to their robust generative capacities. How-
ever, inherent limitations of the diffusion process often lead to inter-frame flicker
and slow inference, restricting their practical deployment. To address this, we
introduce AvatarSync, an autoregressive framework on phoneme representations
that generates realistic and controllable talking-head animations from a single ref-
erence image, driven directly by text or audio input. To mitigate flicker and ensure
continuity, AvatarSync leverages an autoregressive pipeline that enhances tempo-
ral modeling. To ensure controllability, we introduce phonemes, which are the ba-
sic units of speech sounds, and construct a many-to-one mapping from text/audio
to phonemes, enabling precise phoneme-to-visual alignment. Additionally, to fur-
ther accelerate inference, we adopt a two-stage generation strategy that decouples
semantic modeling from visual dynamics, and incorporate a customized phoneme-
frame causal attention mask to support multi-step parallel acceleration. Extensive
experiments show that AvatarSync outperforms existing talking-head animation
methods in visual fidelity, temporal consistency, and computational efficiency,
providing a scalable and controllable solution.

1 INTRODUCTION

Talking-head animation |Guo et al.|(2024); |[Hu| (2024)); 'Tian et al.| (2024b); |Chen et al.| (2025); [Meng
et al.| (2024); [Lu et al.| (2021); Wei et al.| (2024); |Chu et al.| (2025)); [Zhen et al.| (2025)); [Wang et al.
(2025) is a representative multimodal generation task that demands fine-grained alignment between
audio and visual outputs. Leveraging advancements in artificial intelligence, this technique syn-
thesizes realistic, speech-synchronized facial motion from static images and audio inputs. This
technology finds widespread applications in areas such as video dubbing, virtual avatars, and digital
entertainment |Prajwal et al.| (2020). Despite significant progress, efficiently generating high-quality,
lifelike, and fine-grained talking-head animations in real time remains a formidable challenge.

In the field, two primary paradigms have emerged: Generative Adversarial Networks (GANs)|Good-
fellow et al.|(2020) and diffusion models|[Ho et al.| (2020). GANs-based methods Zhen et al.|(2023));
Cheng et al.| (2022); [Wang et al.| (2023)); Zhang et al.| (2023ba) offer advantages in inference speed
and computational efficiency. However, they often suffer from visual artifacts and struggle to main-
tain identity consistency, limiting their applicability in high-fidelity scenarios. Recently, diffusion
models [Rombach et al.| (2022); |Wang et al.| (2024a); J1 et al.| (2024); Lin et al.| (2025); |L1 et al.
(2024); Jiang et al.| (2024) have gained attention due to their superior visual fidelity in image gen-
eration tasks. Several works (such as EMO [Tian et al.| (2024b)), Hallo Xu et al.| (20244)); (Cui et al.
(2024), and EchoMimic |Chen et al.| (2025) Meng et al.[(2024))) have extended diffusion models to
talking-head animation. These approaches generally produce clearer and more stable visual results.
Nonetheless, the reliance of diffusion models on multi-step denoising processes leads to slow infer-
ence and high computational cost, which severely hinders their deployment in real-time applications.
To address these issues, recent efforts |Ji et al.[(2024)); [Li et al.| (2024) have explored strategies, such
as sampling path control, to improve inference efficiency. However, diffusion-based approaches still
suffer from fundamental limitations, including inter-frame flicker, unnatural facial dynamics, and
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Figure 1: Comparison of GANs-based, diffusion-based, and our autoregressive method. The left and middle
panels summarize key limitations of GANs and diffusion models. The right panel illustrates the advantages of
our autoregressive method.

poor real-time performance. As illustrated in Figure [I] although both GANs-based and diffusion-
based methods have made significant progress, achieving a better balance among computational
efficiency, generation consistency, and visual fidelity remains a major challenge in this field.

To this end, we introduce AvatarSync, an autoregressive framework on phoneme representations that
generates realistic and controllable talking-head animations from a single reference image, driven
by text or audio input. As illustrated in Figure[3] AvatarSync adopts a two-stage generation strategy,
combining a Facial Keyframe Generation (FKG) module with the inter-frame interpolation module
to synthesize natural facial dynamics. In the first stage, by leveraging this many-to-one relationship,
the FKG module extracts character-level phoneme sequences from text or audio input. Subsequently,
the phoneme sequences and reference image are respectively tokenized using a text tokenizer Ding
et al.|(2021) and a visual tokenizer trained with either VQ [Van Den Oord et al.| (2017); [Esser et al.
(2021)) or LFQ Yu et al.| (2023)). These phoneme and visual tokens are then aligned and concatenated
into a unified sequence, enabling an autoregressive transformer model to produce a sparse set of
keyframes under a Phoneme-Frame Causal Attention Mask.

In the second stage, we propose a timestamp-aware adaptive strategy built upon a selective state
space model, to enable efficient temporal modeling and precise audio-visual alignment. The inter-
polation module leverages explicit timestamp information embedded in keyframes to flexibly control
motion intensity across variable frame intervals. In addition, to facilitate global context aggregation,
adjacent keyframes are encoded as interleaved token sequences and processed through state space
modeling. As a result, the system synthesizes natural and temporally coherent facial dynamics.

To support practical deployment, we structurally optimize the inference pipeline to significantly im-
prove computational efficiency without compromising generation quality. AvatarSync outperforms
conventional systems in most real-world scenarios, delivering a smooth and responsive user experi-
ence. Notably, AvatarSync establishes a new modeling paradigm and methodological framework for
talking-head multimodal generation task. In summary, our main contributions are listed as follows:

* We propose AvatarSync, an autoregressive framework on phoneme representations that
generates talking-head animations from a single reference image, driven by text or au-
dio. By leveraging the many-to-one mapping from text/audio to phonemes, we con-
struct phoneme-to-visual alignment. This design enables AvatarSync to support editable,
segment-level, and fine-grained control over video generation.

* We introduce a two-stage hierarchical generation strategy that decouples semantics from
visual dynamics. The first stage, Facial Keyframe Generation (FKG), models phoneme-
aligned semantics, while the second stage interpolates intermediate frames to enhance tem-
poral coherence and visual smoothness. This design mitigates error accumulation, supports
localized editing, and enables parallel inference for improved efficiency.

* In FKG, we design a Phoneme-Frame Causal Attention Mask to enhance phoneme-frame
alignment and employ a composite loss integrating perceptual, identity, and facial similar-
ity. For interpolation, we propose a timestamp-aware adaptive strategy based on selective
state space modeling, enabling temporal inference and audio-visual synchronization.

* We conduct comprehensive evaluations of Avatarsync on two benchmark datasets, CMLR
and HDTF, covering Chinese and English. As shown in Table [T and Figure ] AvatarSync
consistently outperforms existing advanced audio-driven talking-head animation models in
terms of computational efficiency, facial fidelity, and motion consistency.
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2 RELATED WORK

2.1 TALKING HEAD GENERATION

Audio-driven talking-head generation has emerged as a key research topic in multimodal content
generation, demonstrating significant practical value in applications such as video dubbing and vir-
tual avatars. Prevailing approaches can be broadly categorized into two classes: GANs-based meth-
ods|Zhou et al.| (20195 2021)); Meshry et al.| (2021); |Das et al.|(2020);Chen et al.|(2019); Zhang et al.
(2023a) and diffusion-based methods Wang et al.| (2024a); |Ji et al.|(2024); |Lin et al.|(2025); L1 et al.
(2024); Jiang et al|(2024); Xu et al.| (2024b). In the following, we provide a systematic review of
recent advances and representative characteristics of each class.

GANs-based methods. GANs-based methods are widely recognized for their computational effi-
ciency and rapid inference. However, early approaches struggle with maintaining identity consis-
tency and accurate lip synchronization. To address this, methods, such as SadTalker Zhang et al.
(2023a) and FaceVid2Vid [Wang et al.| (2021}, adopt multi-stage inference pipelines that decouple
audio-to-motion and motion-to-video modeling. While this improves generation quality, it signifi-
cantly increases computational overhead and system complexity. Moreover, the decoupled modeling
leads to unnatural generation results, where only the mouth moves while the rest of the face remains
static, compromising realism and temporal continuity.

Diffusion-based methods. Diffusion-based approaches typically integrate ReferenceNet, temporal
modeling layers, and audio-attention modules into a single unified framework. These methods en-
able vivid talking head generation from a single image, but come with high computational costs and
often suffer from unstable mouth motion. To reduce the overhead, MuseTalk |[Zhang et al.| (2024b))
combines diffusion with GANs. OmniHuman-1 |Lin et al.| (2025) further proposes a hybrid train-
ing scheme based on a Diffusion Transformer architecture. While these methods partially alleviate
slow inference and low visual fidelity, they do not overcome diffusion’s inherent limitations, leaving
generated videos with artifacts such as ghosting and inter-frame flicker.

2.2  VISUAL GENERATION BASED ON LARGE LANGUAGE MODELS

In recent years, large language models (LLMs) |Achiam et al.[(2023); [Touvron et al.| (2023)); |[Liang
et al.|(2024) have extended to the domain of visual content generation. Compared to diffusion mod-
els that rely on multi-step denoising, LLM-based visual generation methods offer superior scalability
and inference efficiency for multimodal tasks.

LLM-based visual generation approaches can be broadly categorized into two types: masked lan-
guage models (MLMs) and autoregressive language models (AR-LMs). MLMs enable efficient
training and fast sampling by predicting randomly masked tokens in parallel. In image generation,
MaskGIT (Chang et al.|(2022)) progressively refines images by predicting missing tokens, achieving
both high quality and computational efficiency. Subsequently, this approach is extended to the video
domain. MAGVIT-v2 proposes an embedding method for iterative masked video token modeling.

AR-LMs predict tokens sequentially, modeling the conditional probability of each token given its
preceding context. In image synthesis, LlamaGen |Sun et al.|(2024) employs an autoregressive Trans-
former to generate semantically aligned, detail-rich images, while VAR [Tian et al.|(2024a)) adopts a
coarse-to-fine generation strategy to iteratively refine multi-scale representations. In video genera-
tion, VideoPoet|Kondratyuk et al.[(2023) processes multimodal inputs through region-wise tokeniza-
tion. CogVideo|Hong et al.|(2022), Show-o Xie et al.|(2024) and EMU3 [Wang et al.| (2024b) further
extend autoregressive modeling to text-to-video generation, proposing multimodal architectures.
Recently, a few studies (Chu et al.| (2025)); [Zhen et al.[(2025) have also explored transformer-based
architectures specifically for talking-head generation, achieving promising results in both visual re-
alism and controllability. These methods directly encode audio sequences and reference images
using standard Transformer architectures to generate video frames. However, these methods typi-
cally entail high computational demands and inference complexity, limiting practical deployment.

Furthermore, as LLMs |Khanuja et al.| (2024); |[Fang et al.| (2024); [Shahmohammadi et al.[(2023) are
increasingly adopted in natural language processing, token-level parallelization strategies for accel-
erating autoregressive inference have rapidly gained traction in visual generation Leviathan et al.
(2023)); He et al.[ (2024); |[Fu et al.| (2024). These approaches require no model retraining, offering
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Figure 2: Inter-frame Flicker Visualization. Left: reference frame; subsequent panels show pixel-wise differ-
ences between consecutive frames, where scattered high-difference regions reveal temporal flicker.

strong generalizability and deployment flexibility. In summary, LLM-based methods represent a
promising direction for achieving real-time, high-fidelity, and controllable talking-head generation.

3 METHOD

3.1 PRELIMINARY OF INTER-FRAME FLICKER

As illustrated in Figure[2] diffusion-based video generation methods often exhibit inter-frame flicker,
manifesting as temporal inconsistencies or identity shifts between adjacent frames. In the following,
we provide a theoretical analysis based on Denoising Diffusion Probabilistic Models formulation.

Consider the DDPM reverse process for generating a single image frame fc(()t) from Gaussian noise:

x ~N,1), %) = frxl, ™) (1)

where ¢ indexes the frame index, c(*) is the conditioning input, and fo(+) denotes the denoising
trajectory defined by the model. Even under fixed c(*) = c across all frames, the sampled latent

(t)
T

variables x~.” are independent:

Cov(x{, x{™) = 0 )

As aresult, the output frames fcét) and fc(()tﬂ) are conditionally uncorrelated, resulting in inter-frame

variability. Formally, the output distribution is:
po(y|c) = / po(RY X e) - M(xP; 0, 1) dxY) 3)

Since ng) and ngﬂ) are independently and identically sampled from the standard Gaussian prior,

adjacent frames are marginally independent even under identical conditioning. Consequently, the
generated frame sequence {Xét) I, is prone to exhibit a lack of temporal coherence.

While some diffusion models, such as DDIM [Song et al.| (2020), DiT |Peebles & Xie (2023)), and

models employing 3D convolutions |Ho et al.[(2022), have begun to model temporal dependencies

in the denoising process, the independent sampling of the initial noise ng) for each frame still leads

to insufficient temporal coherence in the generated videos. To mitigate this, guided noise injection
methods|Li et al.|(2024)) have been proposed. However, the inherent stochasticity of the initial noise
poses a significant challenge to fully resolving the issue of inter-frame flickering.

Autoregressive models generate video frames as a single and unified token sequence. Let X =

{xgl), e :CEKT)} denote a flattened sequence of 71" video frames, where each frame contains K dis-
crete tokens. Here, x; denotes the i-th token in the flattened sequence, and £§»t)
token in frame ¢. The model estimates |Ashish| (2017):

refers to the j-th

N
P(X) =[] P(xilz<i,c) (4)
=1

For any token x§t) in frame ¢, its generation depends on all tokens from previous frames and prior

tokens within the same frame:

PO, D 0, al?) o) ®

Here, when ¢t = 1 or 5 = 1, the corresponding conditioning sets are empty. Therefore, compared to
diffusion models, autoregressive models generate frames sequentially with strong contextual condi-
tioning, exhibiting a strong inductive bias toward temporal coherence.
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3.2 MODEL DESIGN

The overall framework of AvatarSync is depicted in Figure|3| It mainly consists of three parts: (1)
an image tokenizer for quantizing the reference image into visual tokens, and an audio ASR tool for
processing the input speech into a phoneme sequence; (2) a two-stage generation model based on an
autoregressive framework, designed to effectively model phoneme-conditioned multimodal inputs
and synthesize high-quality visual outputs; (3) a decoder for performing downstream tasks. In the
following, we focus on detailing the first and second components of the system.

Tokenization. AvatarSync is flexible for handling multimodal input, supporting both text-image and
audio-image modalities for video generation. (1) For text input, the input text is first converted into
a phoneme sequence, leveraging the stable many-to-one mapping to facilitate accurate mouth-shape
generation. Subsequently, a standard tokenizer transforms the phoneme sequence into discrete to-
kens. (2) For audio input, we employ automatic speech recognition (ASR) tools to extract phoneme-
level alignments with timestamps, which are then tokenized into discrete phoneme tokens. (3) For
an image input, we adopt a pre-trained vision foundation model, such as Open-MAGVIT2 Luo et al.
(2024), to extract image features. To capture fine-grained facial details, we employ MMPose for
facial landmark detection and adjust the input image’s aspect ratio.

Auto-regressive Model. Following prior work |Yan et al.| (2021); [Kondratyuk et al.| (2023), text,
audio and images prompts are projected into the feature space of a large language model (LLM). As
illustrated in Figure |3| our autoregressive model follows a pipelined generation process consisting
of two stages: Facial Keyframe Generation (FKG) and the inter-frame interpolation module.

(1) The model generates T keyframes in accordance with the sequential order of the input
phoneme. The Facial Keyframe Generation (FKG) module receives phoneme representations en-
coded by a tokenizer and structures the input sequence as: {{Phoneme} [B] {Framei}, ...,
{Framer, }}. In addition, we introduce a Phoneme-Frame Causal Attention Mask, which restricts
each keyframe to its paired phonemes and masking cross-frame attention to avoid leakage. Specif-
ically, when generating each keyframe, the model attends only to its corresponding phoneme infor-
mation, enabling precise phoneme-to-frame mapping and temporally aligned phoneme modeling. In
practice, the model conditions on both phoneme information and the reference image, and employs
a parallel strategy to simultaneously predict T keyframes.

(2) The interpolation module operates on phonemes, timestamps, and known keyframes. Drawing
on VFIMamba Zhang et al.| (2024a)), we introduce a timestamp-aware adaptive strategy built upon
a selective state space model, enabling efficient temporal modeling and precise audio-visual align-
ment. Specifically, guided by phoneme-timestamp pairs, intermediate frames are inserted between
keyframes. Additionally, at each interpolation step, adjacent keyframes are encoded into interleaved
token sequences and processed via state space modeling, enabling efficient global context aggrega-
tion with linear complexity. This design progressively refines frame durations based on phoneme
rhythm, ensuring temporal coherence, synchronization with audio, and stable output frame rates.
Furthermore, interpolations between different keyframe pairs can be performed in parallel, signifi-
cantly improving inference efficiency.

3.3 FACIAL TRAINING STRATEGY

In training AvatarSync, we decouple semantic accuracy from visual refinement. The FKG module
is optimized for semantic precision, while the interpolation module focuses on temporal coherence
and visual smoothness. For the FKG training, we employ a composite loss function that integrates
reconstruction, perceptual similarity, identity preservation, and facial appearance fidelity. To miti-
gate the instability caused by simultaneous optimization of multiple objectives, we adopt a phased
training strategy. The training objective of the first stage is to learn abstract facial inpainting using a
single loss function:

Erecon = Z logP (/Ubreal ‘ X) (6)

where v is the ground-truth token at position i, and P(-) represents the predicted probability

distribution over the token vocabulary. In the second stage of training, we operate in the decoded
pixel space and incorporate three loss terms: LPIPS Perceptual loss [Li et al.| (2024); Zhang et al.
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Figure 3: The overall framework of AvatarSync. The pipeline first normalizes text/audio into a compact
phoneme token sequence via a many-to-one mapping, and tokenizes the reference image into visual tokens.
Next, a two-stage autoregressive generator performs Facial Keyframe Generation under a Phoneme-Frame
Causal Attention Mask, then inserts intermediate frames using a timestamp-aware selective that interleaves
keyframes for linear-time global context. Finally, the decoder reconstructs RGB frames to animate character.

(2018), Identity Consistency loss, and Facial Similarity loss to enhance visual quality.

1 2
‘Clpips = zl: wy - m hzu:) ||Fl(Igen)h,w - Fl(Irea])h,wHQ N
where Fj(-) denotes the feature map from the layer [, and H;, W are its height and width.
| XN
‘Cld = N Z (1 - Cos(f;en, ieal)) * Wid (8)
i=1
where fgien and f?_, are identity embeddings of the i-th generated and real image, respectively.

N
1 i i
['FS' = N ‘_E - 05 . dcos( gen>s real) : wfs (9)

where d..s(-, ) measures the cosine distance in the FaceNet512 embedding space. The overall
optimization objective for this stage is:

»Ctotal =Ar- Erecon + XA »Clpz'ps + A3 »Cld + A »CFS (10)
3.4 DATA PREPARATION

To support keyframe generation, we construct two phoneme-to-frame aligned training datasets: the
Chinese Mandarin Lip Reading (CMLR) dataset[Zhao et al.| (2019;[2020) and the English-speaking
HDTF dataset|/Zhang et al.|(2021)), enabling cross-lingual modeling. Initially, we apply ASR tools to
extract phonemes and their corresponding timestamps from the audio tracks, and use them to retrieve
the aligned video frames. Facial regions are then detected and cropped to obtain phoneme-aligned
face images. In addition, due to the low resolution of the CMLR dataset, we incorporate the GFP-
GAN face enhancement algorithm to perform four-times super-resolution reconstruction. Finally, to
reduce encoder training complexity, we further map abstract phonemes to concrete, character-level
units. This preprocessing results in two phoneme-image paired datasets. Notably, we compare two
strategies for facial region extraction: Face-Centric Cropping and Pose-Driven Landmark Cropping.
Based on empirical results (see Table[3]in Appendix [A.3), we adopt the pose-driven method.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Details. We train AvatarSync on a mixed dataset that combines the super-resolved Chinese
CMLR dataset and the original English HDTF dataset, with a standard 95:5 train-test split applied to
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Table 1: Quantitative comparison on CMLR and HDTF datasets. This table evaluates various methods on
two benchmarks: the Chinese CMLR and English HDTF datasets. For the metrics, lower is better for FID,
FVD, LPIPS, and Sync-D ({), while higher is better for PSNR and SSIM (7). The best-performing result is
highlighted in bold, and the second-best is underlined.

CMLR HDTF
Method Type
FID|{ FVD| LPIPS| PSNR?T SSIMt Sync-D| FID| FVDJ] LPIPS| PSNRtT SSIM?T Sync-DJ

SadTalker GAN 20.65 233.81 0.304+0.00 15.38  0.55 091 31.06 323.22 0.364+0.07 21.60 0.83 572
V-Express  Diffusion 28.21 1010.22 0.36+0.01 13.83  0.45 0.86  33.53 864.10 0.3940.08 20.62 0.81 5.29
Hallo Diffusion 21.58 414.04 0.30+0.01 15.62 0.56 1.26  33.11 564.51 0.394+0.08 21.82 0.84 5.05
Hallo2 Diffusion 22.45 610.51 0.314+0.01 15.50 0.56 0.76  31.28 335.54 0.384+0.08 22.06 0.84 6.37
EchoMimic Diffusion 21.50 1588.41 0.26+0.03 16.67 0.58 0.89  27.39 363.45 0.264+0.05 2040 0.83 2.63
Sonic Diffusion 2275 27422 0.31%+0.01 1522 0.55 225 28.02 262.16 0.384+0.08 21.61 0.83 7.65

AvatarSync Autoregressive 17.11 189.24 0.07+£0.01 24.14  0.86 098  23.69 251.89 0.21+0.06 23.34 0.89 1.26

Hallo @ Hallo2 1 Echomimic @ Sonic M V-Express M SadTalker [ AvatarSync (ours)
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Figure 4: Generation Time Comparison. AvatarSync scales nearly linearly with phoneme count, while others

exhibit exponential growth. At 20 phonemes, it is 2.4 times faster than Hallo and remains the most efficient.

Generation Time (seconds)

each benchmark before mixing. The training is conducted for a total of 10,000 steps on this mixed
dataset, using a total of 8§ NVIDIA V100 and 2 NVIDIA L20 GPUs. At the core of the training
stage, we introduce a custom Phoneme-Frame Causal Attention Mask and utilize a meticulously
designed composite loss function to fine-tune the pre-trained model weights. For optimization, we
employ the Adam optimizer with a learning rate of 2 x 10~%, complemented by a cosine annealing
schedule. To ensure memory efficiency, we enable 16-bit mixed-precision training, accelerated by
the DeepSpeed ZeRO-2 framework. The complete training procedure is detailed in Appendix[A.2]

Evaluation Metrics. We evaluate generation quality using six key metrics. For perceptual realism,
Fréchet Inception Distance (FID), Fréchet Video Distance (FVD), and Learned Perceptual Image
Patch Similarity (LPIPS) assess the perceptual quality of the generated videos, where lower is better.
For frame-level fidelity, Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio
(PSNR) measure reconstruction accuracy against the ground truth, where higher is better. Finally,
Synchronization-D (Sync-D) quantifies the audio-visual lip alignment, with a lower score indicating
more precise synchronization.

Compared Baselines. We compare AvatarSync with state-of-the-art audio-driven talking-head
methods, including both GANs-based and diffusion-based approaches. Additionally for GANs-
based models, we consider SadTalker |[Zhang et al.| (2023a), which generates 3D motion from au-
dio using a 3DMM and conditional VAE. Diffusion-based baselines include V-Express Wang et al.
(2024a), Hallo Xu et al.| (2024a), Hallo2 |Cui et al.| (2024), EchoMimic |Chen et al.| (2025), and
Sonic \Ji et al.| (2024). These models leverage various strategies such as multimodal attention, hier-
archical diffusion, landmark/audio conditioning, and long-range temporal modeling.

4.2 QUANTITATIVE EVALUATION

Comparison on CMLR dataset. As presented in Table [I} our proposed AvatarSync establishes
a new state-of-the-art (SOTA) on the Chinese CMLR dataset. In this experiment, we evaluate the
model’s ability to generalize across multiple half-body portrait inputs, subject to the constraint of
maintaining input—output consistency. Specifically, it achieves leading scores in generation realism
and temporal coherence, marked by an FID of 17.11 and an FVD of 189.24. The state-of-the-
art FVD score provides direct quantitative evidence of suppressed inter-frame flicker, confirming
the temporal stability of our generated videos. Furthermore, AvatarSync excels in reconstruction
fidelity, attaining top results across LPIPS (0.07), PSNR (24.14), and SSIM (0.86). This exceptional
frame-level accuracy is crucial for identity preservation, eliminating identity drift and highlighting
the model’s ability to produce outputs with high perceptual quality and fidelity.
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Figure 5: Qualitative comparison on the CMLR and HDTF dataset. (a) Top: ground-truth frames. Middle:
results from baseline models. Bottom: Each phoneme (represented as pinyin for Chinese) is aligned with its
corresponding frame. (b) Inter-frame flicker visualization, where pixel-wise differences between consecutive
frames highlight temporal inconsistencies across methods.

Comparison on HDTF dataset. AvatarSync demonstrates exceptional cross-lingual generaliza-
tion, establishing a new SOTA on the English HDTF dataset by surpassing baselines on all six
metrics (Table[T). It achieves leading scores for generation realism (FID: 23.69, FVD: 251.89) and
reconstruction fidelity (LPIPS: 0.21, PSNR: 23.34, SSIM: 0.89). These results indicate robust re-
construction quality, and its SOTA Sync-D score (1.26) further confirms its precise cross-lingual
lip synchronization. These results demonstrate AvatarSync’s capacity to generate high-fidelity, syn-
chronized talking-head videos, validating its strong synthesis capabilities in English.

Scalability and Generation Speed. To directly confront the critical bottleneck of slow infer-
ence common in existing GANs and diffusion-based approaches, we evaluated the scalability of
AvatarSync. As shown in Figure [d] our model demonstrates exceptional efficiency. Its generation
time exhibits a near-linear relationship with the input phoneme count, while competitor models show
exponential scaling that quickly becomes computationally prohibitive. This efficiency advantage is
significant; for instance, at just 20 phonemes, AvatarSync is already 2.4 times faster than Hallo.
Crucially, this linear scalability is achieved without sacrificing the high visual quality. This makes
our model uniquely practical for generating long, unconstrained talking head videos and marks a
significant step towards real-time applications.

4.3 QUALITATIVE EVALUATION

Qualitative comparisons in Figure [5a]reveal two primary failure modes in existing methods. First,
methods like SadTalker and Hallo produce blurry reconstructions with imprecise lip articulation,
while EchoMimic generates nearly static mouth shapes, all indicating poor audio-visual correla-
tion. Second, others like V-Express and Sonic suffer from severe structural degradation, introducing
warping artifacts in the lower face that render outputs unusable. In contrast, AvatarSync generates
precise, dynamic mouth shapes that accurately track phonemes while preserving high-fidelity fa-
cial anatomy. This dual capability eliminates the articulatory imprecision, blurring, and distortion
endemic to prior work, setting a new standard for realistic talking avatars.

Beyond per-frame quality, we evaluate temporal stability via inter-frame difference heatmaps in
Figure [5b] The results indicate that diffusion-based methods exhibit severe and widespread flicker
across the entire frame. In contrast, AvatarSync’s pixel changes are minimal and strictly localized
to the articulating mouth and jaw. This stability is inherent to autoregressive architecture, which
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conditions each frame on prior ones to enforce temporal coherence. The sequential dependency
eliminates the stochastic variations that cause flicker, ensuring SOTA temporal coherence.

4.4 ABLATION STUDIES

Attention Mechanisms. To validate the ) . )

necessity of the Phoneme-Frame Causal Table 2: Ablation of Attention Mechanisms on CMLR.
Attention Mask, we conducted an ablation ID  Setting FID|] FVD, LPIPS| PSNRT SSIM?
study on attention mechanisms using the Non-Causal 15.63 287.95 0.07+£0.01 2441  0.86
CMLR dataset. Based on the scope of ac- 3 (A 1047 2lozy Doraath 208 o
cessible phoneme, four distinct attention One-to-One  17.11  189.24 0.07+0.01 24.14  0.86
configurations were compared: (1) Non-

Causal Global Attention, (2) Causal Accumulative Attention, (3) Limited History Attention (sliding
window size=2), (4) One-to-One Attention. The results are detailed in Table@

B -

Although the Non-Causal Global Attention excels on frame-level metrics (FID/PSNR), its reliance
on future information renders it unsuitable for real-time streaming tasks. Among the causal models,
our chosen One-to-One Attention achieves the optimal trade-off between frame-level fidelity and
temporal coherence, thus demonstrating the most robust overall performance. Detailed definitions
of each mechanism are provided in Appendix [A-4]

Loss Components. Our ablation study on four key loss terms: token-level cross-entropy (CE),
pixel-level LPIPS, identity consistency, and facial similarity. Results (see Table f]in Appendix [A-3))
show that while each component improves over the CE-only baseline, their combination yields con-
sistently stronger performance. Notably, excluding identity or facial similarity losses leads to a
marked drop in generation quality, highlighting their importance in preserving identity.

Phoneme-based Representation Learning (PRL). PRL converts raw text into compact phoneme
sequences, drastically shrinking the modeling space from vast vocabularies to a small, finite, and
unified set of phonemes, simplifying processing for both alphabetic and logographic languages. As
shown in Figure[6] ablation studies on the CMLR dataset confirm PRL’s effectiveness: face recon-
struction loss drops by 41.8%, total loss by 9.6%, and non-reconstruction terms by 21.5%. Operating
in this efficient phoneme space significantly reduces training costs and accelerates inference speed.

— Baseline (w/o PRL) 275 — Baseline (w/o PRL)
—— Ours (w/ PRL)

—— Ours (w/ PRL) 41.8%

21.5%

Total Loss

200 300 4000 5000 o 000 2000 3000 4000 so00  Towl
Training Steps Training Steps =

Figure 6: Loss comparison with and without PRL.

5 CONCLUSION

We introduce AvatarSync, an autoregressive framework on phoneme representations for talking-
head animation generation. The method addresses two major limitations of diffusion-based ap-
proaches: (1) inter-frame flickers in generated videos; and (2) low training and inference efficiency.
By leveraging the stable many-to-one mapping from text/audio to phonemes, AvatarSync enables
accurate lip synchronization with lightweight design and editable controllability. To further improve
temporal coherence and inference efficiency, we design a two-stage hierarchical generation strategy
that decouples phoneme semantics from visual dynamics, incorporating a Phoneme-Frame Causal
Attention Mask and a timestamp-aware interpolation module. Experimental results on the CMLR
and HDTF datasets demonstrate that AvatarSync outperforms existing methods in visual fidelity,
motion consistency, and inference speed, showing strong potential for real-time applications. Fu-
ture work will leverage large-scale codebooks and MoE frameworks to achieve robust multilingual
generalization, enabling a new generation of lifelike and interactive digital human applications.
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ETHICS STATEMENT

In developing AvatarSync, a phoneme-guided autoregressive talking-head generation framework, we
are committed to adhering to ethical principles and promoting responsible Al usage. We recognize
potential risks, including deepfake abuse, impersonation, and unauthorized manipulation of personal
media, and emphasize the necessity of applying this technology in contexts that respect privacy,
consent, and individual rights.

REPRODUCIBILITY STATEMENT

To encourage transparency and responsible research, our code and pretrained models will be publicly
released for academic and educational purposes, while we strongly discourage harmful applications
such as misinformation, defamation, or harassment. Furthermore, we advocate for ongoing research
on detection mechanisms and safeguard strategies to mitigate misuse, ensuring that AvatarSync
contributes positively to society and aligns with ethical and legal standards.
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A APPENDIX

A.1 DETAILS OF CMLR SUPER-RESOLUTION

The scarcity of high-quality, large-scale Chinese talking-head datasets poses a significant challenge
to research in this domain. The CMLR dataset stands as one of the few publicly available Chinese
datasets for this task, offering a crucial resource for research. However, its inherent low resolution
results in blurry facial features and a lack of crucial detail in the lip region. This directly com-
promises the training efficacy and evaluation reliability of models that require high-fidelity visual
mput.

To address this limitation and establish a more robust benchmark, we employed the GFPGAN
face enhancement algorithm to perform a comprehensive four-times super-resolution reconstruction
across the entire CMLR dataset. A visual comparison of the frames before and after this enhance-
ment is presented in Figure[7]and ]

Furthermore, to foster future research and benefit the community, we will open-source this enhanced,
high-resolution version of the CMLR dataset.

~
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Figure 8: Enhanced Video Frames after Super-Resolution.

A.2 TRAINING DETAILS

We trained the model on a mixed dataset that combines the super-resolved CMLR dataset (Chinese)
and the original HDTF dataset (English). The training was conducted for a total of 10,000 steps on
this mixed dataset.

Figures [T0a] [T0B} [I0c] [T0d] [T0¢] and [T0f] illustrate the progression of various loss functions during

training, demonstrating the convergence behavior and the contribution of individual loss components
to the total loss.

A.3 FACE CROPPING STRATEGIES ABLATION DETAILS

Cropping Strategy. We compare two preprocessing methods: Face-Centric Cropping and Pose-
Driven Landmark Cropping. The former leads to unstable generation due to scale and background
variations. In contrast, the landmark-based approach ensures tighter alignment and better lip dy-
namics. In addition, the choice of face cropping strategy significantly impacts the final generation
quality. Therefore, we conducted this ablation study to validate our choice of the Pose-Driven Land-
mark Cropping strategy over the baseline Face-Centric Cropping. Both qualitative and quantitative
results confirm the superiority of our approach.

Qualitatively, as shown in Figure[9] our method yields tighter facial alignment and more consistent
lip dynamics, resulting in enhanced visual coherence and identity preservation. Quantitatively, Ta-
ble[3]shows our strategy yields a lower (better) Identity Similarity Score (ISS) between the generated
faces and the ground-truth video on a majority of the face recognition models (3 out of 4).
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Figure 9: Visual comparison of face preprocessing methods.

Model Face-Centric Cropping Landmark-Based Cropping
Subset ArcFace FaceNet FaceNet512 VGG-Face | ArcFace FaceNet FaceNet512 VGG-Face
sl 0.2958  0.1608 0.1931 0.2899 0.3250  0.2175 0.2360 0.3399
s2 0.2189  0.1672 0.1278 0.2885 0.2077  0.1886 0.1011 0.2236
s3 0.2576  0.1715 0.1079 0.2899 0.2873  0.1784 0.0752 0.2012
s4 0.3698 0.3415 0.2198 0.3643 0.3628  0.2822 0.1922 0.3465
s5 0.3137  0.2790 0.1677 0.3588 0.3015 0.1978 0.1319 0.2626
Total 0.2912  0.2240 0.1632 0.3183 0.2968  0.2129 0.1472 0.2748

Table 3: Identity similarity (ISS) comparison under different cropping strategies. Lower ISS values indicate
greater identity similarity. Bold numbers in the Total row indicate better-performing cropping strategy per
model.

Given its superior performance in both visual quality and quantitative identity preservation, we
adopted the Pose-Driven Landmark Cropping strategy for all experiments.

A.4 ATTENTION MECHANISMS ABLATION DETAILS

To validate the necessity and design rationale of our proposed Phoneme-Frame Causal Attention
Mask, we conducted a key ablation study on the super-resolved CMLR dataset. We designed and
compared four distinct attention configurations, which primarily differ in the scope of phonetic
information accessible to the model during the generation of each frame. The details of these four
attention mechanisms are as follows:

(1) Non-Causal Full Attention. When generating any frame, the model can access the entire
input phoneme sequence from beginning to end. This configuration sees “future” information, mak-
ing it unsuitable for streaming generation tasks. Its results are typically considered a theoretical
performance upper bound.

(2) Causal Accumulative Attention. When generating the ¢-th frame, the model can access all his-
torical phonemes from the Ist to the current ¢-th. This represents a standard autoregressive (causal)
attention mechanism.

(3) Limited History Attention. When generating the i-th frame (for ¢ > 1), the model utilizes a
sliding window of size 2, accessing only the current i-th and the previous (i — 1)-th phonemes. This
strategy aims to provide limited local context while maintaining high computational efficiency.

(4) One-to-One Attention. When generating the i-th frame, the model strictly accesses only the
corresponding i-th phoneme. This is the strictest form of causality, ensuring that the generation of
each frame depends solely on the currently aligned input, without reliance on any historical or future
information.
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. Loss Functions Evaluation Metrics

Configuration Exp.

CE LPIPS  Identity  Facial FID| LPIPS| PSNR?T SSIM7

Baseline 1 v 28.1361 0.0365 25.0786 0.8837

2 v v 16.6485 0.0128 32.5706 0.9615

+ Single Additional Loss 5 v v 16.1956 0.0138 32.0478 0.9620

6 v v 16.4723 0.0131 32.4699 0.9653

3 v v v 15.6558 0.0151 31.9085 0.9632

+ Double Additional Losses 4 v v v 18.1449 0.0162 31.8410 0.9623

7 v v v 13.4429 0.0133 32.4377 0.9643

Full Model 8 v v v v 13.8603 0.0136 33.1348 0.9666

Table 4: Ablation study on different loss function combinations. CE: Cross-Entropy Loss; LPIPS: Learned
Perceptual Image Patch Similarity; Identity: Identity Consistency Loss; Facial: Facial Similarity Loss. |:
lower is better; 1: higher is better. Bold = best; underlined = second best per column.

A.5 Loss FUNCTION ABLATION DETAILS

To validate the effectiveness of each component in our proposed composite loss function, we con-
duct a detailed ablation study, with the full results presented in Table d] In this study, we establish
a baseline model trained exclusively with a token-level cross-entropy (CE) loss. We then incre-
mentally incorporate our other proposed loss terms: the pixel-level LPIPS perceptual loss, identity
consistency loss, and facial similarity loss.

The experimental results clearly demonstrate that while each loss component individually yields
performance gains over the baseline, the optimal overall generation quality is achieved only through
their combination. Particularly noteworthy is the finding that removing either the identity consis-
tency or the facial similarity loss from the full model leads to a marked degradation in generation
quality. This underscores their critical roles in preserving subject identity and enhancing visual
realism.

THE USE OF LARGE LANGUAGE MODELS(LLMS)

We utilized a large language model as a general-purpose writing assistant during the preparation of
this paper. Its role was strictly limited to improving grammar, spelling, and overall language clarity.
The authors are fully responsible for the research ideation, data, analysis, and final content of this
manuscript.
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Figure 10: Training loss curves on the mixed dataset (CMLR + HDTF). The plots illustrate the convergence

of various loss components over 10,000 training steps. Key metrics include reconstruction objectives, face-
specific metrics, and autoregressive losses.
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