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Abstract

In this work, we introduce the Prototypical Trans-
former (ProtoFormer), a general and unified
framework that approaches various motion tasks
from a prototype perspective. ProtoFormer seam-
lessly integrates prototype learning with Trans-
former by thoughtfully considering motion dy-
namics, introducing two innovative designs. First,
Cross-Attention Prototyping discovers prototypes
based on signature motion patterns, providing
transparency in understanding motion scenes.
Second, Latent Synchronization guides feature
representation learning via prototypes, effectively
mitigating the problem of motion uncertainty.
Empirical results demonstrate that our approach
achieves competitive performance on popular mo-
tion tasks such as optical flow and scene depth.
Furthermore, it exhibits generality across various
downstream tasks, including object tracking and
video stabilization. Our code is available here.

1. Introduction

“All is flux, nothing is stationary.”
— Heraclitus (Plato, 402 BC)

The aphorism attributed to Heraclitus underscores the foun-
dation of physics in the natural world. The quest to un-
derstand motion holds the potential to unveil the intricate
secrets of intelligence (Hawkins & Blakeslee, 2004), shed-
ding light on the systematic construction of artificial entities.
However, the proliferation of excessively granular motion
tasks has catalyzed a fervor for specialized models in the
realm of deep learning, standing in stark contrast to the en-
during scientific tradition — a generic solution to elegantly
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Figure 1 ProtoFormer as a unified framework considers
motion as different levels of dynamics granularity (e.g., instance-

driven flow, pixel-anchored depth, ezc). Il M are prototypes.

describe physical phenomena in the universe. The follow-
ing question naturally arises: @ Can we discover a unified
model that serves as a comprehensive motion learner?

Motion learning tasks essentially encompass pixel-level dy-
namics and correspondence (e.g., optical flow and depth
scene estimation). A prevalent challenge in these tasks is
the presence of photometric and geometric inconsistencies
(e.g., shadow and occlusion), which introduce significant
uncertainty during the matching process (Xiong et al., 2021;
Zhao et al., 2020). Consequently, the accuracy of pixel-wise
feature matching is compromised, detrimentally impacting
the learning of the underlying motion representation. To
address this challenge, a promising solution lies in prototype
learning (Smith & Minda, 2002; Jiang et al., 2012), where
motion measurements are categorized into discrete exem-
plars. In each exemplar, a prototype functions as a central
archetype, capturing the essential attributes of its associ-
ated motion patterns observed in the data. The clustering of
similar patterns around prototypes can effectively minimize
the impact of noise and outlier pixels in feature matching,
thereby significantly mitigating the issue of uncertainty. In
this context, we can approach question @ by exploring: @
How can we design a model that incorporates the principles
of prototype learning in motion tasks?

Recently, the Transformer architecture has attained ubiqui-
tous adoption, enjoying unambiguous acclaim in both the
domains of vision and language (Zhu et al., 2021; Yang
et al., 2023; Kim et al., 2021). Its accomplishments are
underpinned by the attention mechanism, endowing models
with the capability to selectively attend to salient entities
within input data. The capacity to generate context-aware
feature representations represents a substantial enhancement
of the model’s effectiveness, enabling it to apply as a general
solution to diverse vision tasks. Inspired by its encouraging
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success, our inquiry naturally delves into a more specific
dimension: @ How to incorporate the prototype learning
capacity into the architecture of Transformer?

To this demand, we employ Prototypical TransFormer
(ProtoFormer) as a unified solution on various motion tasks.
Specifically, ProtoFormer incorporates prototype learning
with Transformer. The method begins by tokenizing images
features into patches, where the features are initialized into
distinct prototypes. These prototypes are then recursively
updated via Cross-Attention Prototyping (§3.2.1) to capture
representative motion characteristics via clustering. After
assignments and updates, Latent Synchronization (§3.2.2)
builds up prototype-feature association, aiming at denoising
and mitigating motion ambiguity. The refined features are
later fed into the decoder for task-specific predictions.

Taking the innovations together, ProtoFormer exhibits sev-
eral compelling attributes. @ Architectural elegance:
Leveraging a prototype-guided Transformer architecture,
ProtoFormer can handle heterogeneous motion tasks at dif-
ferent levels of dynamics granularity within the unified fash-
ion (see Fig. 1). ® Predictive robustness: Prototype learn-
ing can inherently diminish the noisy outliers through its
density criterion (§2). Anchored by the recursively refined
prototypes, feature learning can be further guided towards
more robust representations (§3.2.2). Consequently, it of-
fers a viable solution to the challenge of motion ambiguity
(see Fig. 3 and Fig. 4). ® Systemic explainability: The
density-based nature from recursive prototyping offers intu-
itive visual demonstration of motion prototypes (see Fig. 5
and Fig. S1 in Appendix), enabling direct interpretation of
various dynamic patterns sketched by the system.

We conduct a set of comprehensive experiments to evaluate
the effectiveness of our approach. In §4.1, ProtoFormer
presents compelling results on optical flow. For example,
our approach distinctly outperforms CRAFT, achieving 0.48
and 0.69 on the clean and final pass of Sintel, respectively.
In §4.2, we further show the superior performance on depth
scene estimation (e.g., 18.6% improvement in Sintel com-
pared to AdaBins). Also, visual evidence in §4.3 demon-
strates the systemic explainability, which displays direct
prototype-pixel correlations. Results on various downstream
tasks including object tracking (§S5) and video stabilization
(§S6) are detailed in the Appendix. We hope our research
could provide foundational insights into related fields.

2. Related Work

Motion Task. Motion tasks involve intricate processes,
encompassing the identification, modeling, and prediction
of motion patterns in objects and scenes. These tasks are
foundational to diverse computer vision applications, in-
cluding vehicle and pedestrian motion detection (Shen et al.,
2023; Khalifa et al., 2020; Marathe et al., 2021; Liang et al.,

2022b; Xu et al., 2022a; Cui et al., 2024), abnormal activ-
ity detection (Li et al., 2021b; Tudor Ionescu et al., 2017;
Zhou et al., 2019), and video compression (Gao et al., 2022;
Hu et al., 2021; Lu et al., 2019). In the domain of motion
tasks, optical flow (Ranjan & Black, 2017; Sun et al., 2018;
Teed & Deng, 2020; Huang et al., 2022; Shi et al., 2023; Lu
et al., 2024) and depth estimation (Bhat et al., 2021; Patil
et al., 2022), stand out as particularly representative, signifi-
cantly influencing downstream tasks like object tracking and
video stabilization. Current endeavors predominantly focus
on task-specific solutions, resulting in duplicated research
efforts and suboptimal hardware utilization. In contrast,
ProtoFormer stands as a distinctive exploration, aiming to
integrate motion tasks under a unified paradigm. This en-
deavor conceptually differentiates us from existing arts in
the field.

Prototype Learning. Traditionally, prototype learning in
machine learning establishes a metric space where features
are distinguished by computing their distances/densities
to prototypical representations (Lee et al., 2023). Early
methods include classical approaches like support vector
machines (Cortes & Vapnik, 1995), random forest (Breiman,
2001), logistic regression (Hastie et al., 2009), etc. With the
advent of deep neural networks (DNNs), prototype-based
deep learning models find broad applications in few-shot
learning (Dong & Xing, 2018; Wang et al., 2019; Liu et al.,
2020b; Yang et al., 2020; Li et al., 2021a; Wang et al., 2022),
zero-shot learning (Jetley et al., 2015; Xu et al., 2020), text
classification (Farhangi et al., 2022), and explainable classi-
fiers (Wang et al., 2023; Zhou et al., 2022; Qin et al., 2023).
In the context, we argue: movements within the same object
or proximate regions exhibit noteworthy similarities, form-
ing a collective of prototypes. Integrating prototype learning
into the model design facilitates the natural encapsulation
of diverse dynamic characteristics, enhancing the model’s
ability to comprehend motion in various contexts.

Moreover, human vision deploys a sophisticated prototyp-
ing ability, skillfully focusing on relevant parts of the visual
tableau while filtering out extraneous elements (Simon &
Newell, 1971; Rudin et al., 2022; Giese & Poggio, 2003).
This feat is realized through Region-of-Interest (Rol) cluster-
ing (Meyer et al., 2004; Mantini et al., 2012), disassembling
discrete pixel entities into salient conceptual groupings.
This hierarchical process synthesizes elementary visual ele-
ments, like lines, forms, and hues, into complex abstractions
representing objects, vistas, and individuals (Kepes, 1995).
In an effort to mimic the human visual system, we con-
ceptualize prototype learning from a clustering perspective,
iteratively updating and exploring representative prototypes
to capture nuanced motion characteristics.

Transformer Architecture. The transformative impact of
Transformers in natural language processing (NLP) (Brown
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Figure 2: (a) Overall pipeline of ProtoFormer (§3.2). Movement of a small part of an object within an image is being considered
as a rigid motion. In our approach, we use prototypes to understand or predict this kind of motion pattern. (b) In each layer of the
Cross-Attention Prototyping (see §3.2.1), there are N sequential iterations encompassing the assignment of feature-prototypes (i.e.,
E-step) and the subsequent updating of these prototypes (i.e., M-step) via Eq. 5. (c) Concurrently, the Latent Synchronization process
(see §3.2.2) associates the feature representations via the freshly updated motion prototypes, (see Eq. 7). For (b) and (c), we apply optical
flow for illustration, which demonstrates straightforward systemic explainability. More visualization results are shown in §4.3.

et al., 2020; Devlin et al., 2018; Liu et al., 2020a; Raffel
et al., 2020; Vaswani et al., 2017) has spurred their extensive
application in vision-related tasks, including image classi-
fication (Dosovitskiy et al., 2021; Liu et al., 2022; 2021;
Wang et al., 2023), and image segmentation (Strudel et al.,
2021; Wang et al., 2021a;d; Zheng et al., 2021). Transform-
ers excel in visual applications, outperforming convolutional
neural networks (CNNs) (Han et al., 2023a; 2024). This su-
periority arises from their ability to capture extensive token
dependencies in a global context, a limitation of concurrent
CNN-based methods that focus on local interactions within
convolutional layers (Han et al., 2022; Khan et al., 2022;
Lin et al., 2022; Han et al., 2023a; Cai et al., 2022). The
unique attention design in Transformers enables the under-
standing of global spatial relationships, making them ideal
for motion-related tasks where extensive spatial interconnec-
tions are pivotal. By amalgamating the attention mechanism
with prototype learning, we aim to harness Transformers’
representational prowess to unravel intricate patterns in mo-
tion tasks, offering a unified, Transformer-based solution.

3. Methodology

By going through existing literature (§2), the integration
of prototype learning with the Transformer architecture
presents a promising avenue to various motion tasks. In
this section, we first revisit Transformer architecture and
reformulate its attention mechanism as prototype learning
(§3.1). Based on this insight, we introduce ProtoFormer
(§3.2), including two pivotal contributions: Cross-Attention
Prototyping (§3.2.1) and Latent Synchronization (§3.2.2),
answering question @. We elaborate our method below.

3.1. Preliminary

In our study, we re-conceptualize the Transformer’s atten-
tion mechanism through the lens of classical clustering;
while the traditional attention map is obtained by comput-
ing the similarity between all query-key pairs (Zhou et al.,
2021a; Han et al., 2023b), our approach introduces a density-
based cross-attention estimation, specifically designed to
accommodate motion characteristics by aggregating local
rigid motion patterns into distinct prototype clusters.

Classic clustering, a widely embraced paradigm, entails
segregating m observations into & distinct groups. It ensures
that each observation is aligned with only one cluster that it
most closely associates with, based on the highest likelihood
or minimal distance (e.g., proximity to the mean). Formally,
clustering can be optimized iteratively between two phases:

» Assignment Phase allocates each observation to the cluster
where it exhibits the maximal probability of belonging or
the least spatial separation.

* Centroid Recalculation Phase recalculates the centroids
of the clusters to reflect the new configuration of the ob-
servations within each cluster.

These two phases persist until a point of convergence is
reached, indicated either by a cessation in the modifica-
tion of assignments or by changes that fall beneath a pre-
determined threshold, thus implying cluster stabilization.

From a mathematical perspective, assume 6 as the cen-
troids (Wang et al., 2023) of the clusters, with x € X
representing an individual observation:

ot — argmaxE(prX(xw("))) (1)
0



Prototypical Transformer as Unified Motion Learners

Here, (™) denotes the n-th iteration deduced centroid; p(-)
represents the posterior probability of the data assignments.

3.2. ProtoFormer

The primary objective for ProtoFormer is to optimize the
expected likelihood function in the context of clustering
within a unified motion solution as:

0 = Zp (X10;) - P(0x,6;), )

where 6 symbolizes the centroid representations. We recog-
nize the centroid € as Prototype, which is our optimization
target. K represents the total cluster count. The probabil-
ity p(X10;) € (0,1) are the mixing coefficients for each
cluster k € IC, adhering to the constraint ), p(z|6x) = 1.
The projected prototype representation P(-) describes the
learnable dense vector from a shared parametric family from
k-th prototype. This function aggregates across all clusters
KC, with each projected prototype P (6, 6;) denoting the

new projected representations on its respective cluster. Hk
demonstrates the updated prototype considering the pro-
totype representation of 6, and the posterior probability
p(X|0k) (i.e., the conditional likelihood of grouping the
data X’ given prototype parameterization 6y).

3.2.1. CROSS-ATTENTION PROTOTYPING VIA EM
CLUSTERING

To realize prototyping as a unified motion solution on Trans-
former, we reformulate the conventional Transformer’s self-
attention (Vaswani et al., 2017) into our novel prototypical
cross-attention, optimized via Expectation-M aximization
(EM) clustering. The designed optimization provides a
density-based estimation to compute the maximum likeli-
hood for p; and 6y, utilizing posterior probabilities.

E-Step: For each observation z; € X, E-Step computes the
n-th iteration posterior probabilities py(x;), indicating its
affiliation to center 6, with the logit vector s, j, iteratively
as:
(o \_ Seon Pl 6")
Py (2?7,) - K (n)

-~ 3
Zj:l Saii P(z 2793( ))

sg)k, 6" are the parameters estimated at the n-th iteration.
M-Step: Each cluster 6, obtains its maximum likelihood
estimations p,(cn) and 9,&”) from projected sub-sample repre-

sentations P’, updated as:

1 N K )
NZZ n

o = Pl 67). @

In practice, given feature embeddings I € RTW>*P and set

initial cluster centers P(®) as K prototypes, we encapsu-

late the discussed EM clustering process within a Cross-
Attention Prototyping layer (see Fig. 2(b)) with N iterations:

N — softmaXK(QP(n) (K",
M<n)VI€]RKXD

E-step:

5
M-step: P"HY) = ©

I

where n € {1,--- ,N}. M € [0,1]K*HW is the “soft”
pixel-prototype assignment matrix, representing probabil-
ity maps of prototypes. QF € RE*P is the query vec-
tor projected from the prototype representation P, and
VI KT ¢ REWXD are the value and key vectors projected
from the image features I, respectively. Our proposed layer
can thus update the prototyping membership M (ie., E-
step) and the prototypes P (i.e., M-step) iteratively. The
key characteristic of this approach is its assurance of an in-
cremental convergence in the likelihood function with each
iteration (see Eq. 4). In essence, the E-step evaluates the
current membership of the data representations based on ex-
isting prototypes, while the M -step refines the prototypes to
align with pixels, ensuring a steady progression towards op-
timal clustering. By performing cross-attention prototyping
on the source and target images separately, it addresses the
complexities associated with motion uncertainty and photo-
metric inconsistency. We also modify the default softmax
operator from HW to K, mimicking the EM clustering.

The proposed layer enjoys several compelling features:

* Convergence: EM clustering monotonically improves
the marginal likelihood and is empirically validated to
converge towards a local optimum (Vattani, 2009; Ikotun
et al., 2023; Balakrishnan et al., 2017), given a sufficient
number of iterations (Proof is provided in Appendix §54).

Proposition 1. Suppose that the EM operator is contrac-
tive with parameter x € (0, 1) on the ball By(r; ), and
the initial vector 6(°) belongs to By (r; #). For a given iter-
ation NV, when the sample size m is large enough to ensure

en (55 N) (1 — k)r. Then the EM iterates {6 ”)}n 0
based on % samples per round satisfy the bound that:

m6)
N’ N

167 = 8]]2 < k"6 —é|\2+ —em( (6)
In this context, our proposed Cross-Attention Prototyping
leverages the strengths of recursive clustering, iterated
over N steps. This approach significantly enhances the
likelihood of converging to an optimal configuration for
motion partitioning (see §4.3).

» Transparency: Prototyping emerges as an indispensable
mechanism for contextual understanding from motion
scenes, recognizing and grouping similar patterns and
movements. It clusters pixels as prototypes that display
homogeneity in characteristics such as flow or depth. By
aggregating entities that exhibit shared attributes, the pro-
totypes are able to describe the intrinsic dynamics. Fur-
thermore, prototyping provides a foundational schema for
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motion comprehension, wherein each prototype embodies
a microcosm of the objects within the scene, encapsulat-
ing unique elements and their interrelations.

* Efficiency: Cross-Attention Prototyping operates with a
time complexity of O(NKHW D), showing a signifi-
cant improvement over the self-attention mechanism with
O(H?W?D) (see §4.3). The foundation lies in the rela-
tionship that NK < HW (e.g., 60 vs 25920 in the first
stage with image of 960 x 432 resolution). This differ-
ence becomes especially pronounced in pyramid architec-
tures (Wang et al., 2021c; Liu et al., 2021; Liang et al.,
2023; 2024), where the total number of N K tends to be
substantially smaller than H W, particularly in the early
stages of the network. In each iteration, only the query
matrix @ requires an update; the key K and value V
matrices are computed just once. This selective updating
significantly reduces the computational load particularly
beneficial in handling large-scale data in high-dimensional
feature spaces.

3.2.2. PROTOTYPE-FEATURE CORRESPONDING BY
LATENT SYNCHRONIZATION

We further refine the feature representations, synchroniz-
ing the projection of K prototypes into a H x W feature
representation. This approach aligns the prototype represen-
tations with motion features (see Fig. 2(c)).

The main technique lies in the Feed-Forward Network (FFN)
that incorporates with a masked cross-attention mechanism:

I = FEN(Cross-Attention(Q”, K, VZ , Mp)),  (7)

where M p stands for the feature assignment mask maps
based on the similarity of corresponding prototypes P. I
represents the refined feature, Q7 denotes the query projec-
tion derived from the input image feature, K and V¥’ repre-
sent the key and value projections sourced from the learning
prototypes, respectively. Latent Synchronization primar-
ily aims at augmenting the feature learning for prototype-
feature association, reducing motion ambiguity. It facilitates
the extraction and encapsulation of each feature representa-
tion’s latent distribution within its own prototype.

Latent Synchronization enjoys appealing characteristics:

* Blended Paradigm: Latent Synchronization blends unsu-
pervised prototype mining (§3.2.1) and supervised feature
representation learning (§3.2.2) in a synergy — local sig-
nificant motion patterns are automatically explored to fa-
cilitate density-based prototyping; the supervisory signal
from task-specific heads directly optimizes the represen-
tation, which in turn boosts meaningful prototyping.

* Prototype-Anchored Learning: Density-based prototype
learning computes reliable probabilities in prototype as-
signment recursively (Eq. 5). Anchored by the updated

prototypes, the feature is further guided towards more
robust representations via prototype-feature association
(Eq. 7). Consequently, the motion patterns are more likely
to center around areas of high data density, which in turn
boosts robustness towards motion ambiguity.

3.3. Implementation Details

ProtoFormer is built upon Twins architecture (Chu et al.,
2021). Detailed training and testing configurations are pro-
vided in §S1. The key components (see Fig. 2) are:

* Feature Encoder contains two stages with window sizes of
4 and 8, respectively, which convert input images into fea-
tures. We follow the common practice (Chu et al., 2021)
and utilize two blocks within each stage. In addition,
we reformulate the vanilla self-attention into our cross-
attention prototyping layers (§3.2.1) to recursively update
the initialized prototypes. Once these prototypes have
been updated, the latent synchronization layer (§3.2.2)
augments the feature learning via prototype-feature asso-
ciation, reducing motion ambiguity.

* Task Decoder is designed for task-specific motion predic-
tions. We follow the design (Huang et al., 2022; Zhou
et al., 2021b) for flow and depth.

 Cross-Attention Prototyping reformulates the vanilla self-
attention layers by the E'M cross-attention clustering pro-
cess for prototyping learning (§3.2.1). Within each Cross-
Attention Prototyping layer, twenty prototypes and three
iterations are conducted as default (§4.3).

* Latent Synchronization updates the feature map in accor-
dance with the prototypes present in the latent feature
space (§3.2.2) by applying Feed-Forward Networks and
incorporating a masked cross-attention mechanism.

4. Experiments

We comprehensively examine the performance and unity
of our proposed ProtoFormer on two representative motion
tasks, including optical flow (see §4.1) and scene depth (see
§4.2). In our pursuit of a unified solution for motion-related
tasks, we not only underscore the merit of such integra-
tion but also exhibit superior performance, and to further
enhance the paradigmatic generalization, we broaden its
application to object tracking (§S5) and video stabilization
(§S6) in Appendix, reaching competitive performance.

4.1. Experiments on Optical Flow

Datasets. Following the previous works (Huang et al.,
2022; Dong et al., 2023), we first train the proposed method
on FlyingChair (Dosovitskiy et al., 2015) and FlyingTh-
ings (Mayer et al., 2016), and then fine-tune it on a large
combination of datasets (C+T+S+K+H) to allow evaluation
on the Sintel and KITTI-2015 benchmarks.

Metrics. To facilitate a fair comparison, we adopt the com-
monly used metric, the average end-point-error (F1-epe),
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.. Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)
Training R Clean| Final| | Fl-epe] Fl-all| | Clean| Final | Fl-all |
A Perceiver 10 (Jaegle et al., 2022) 1.81 242 4.98 - - - -
RAFT-A (Sun et al., 2021) 1.95 2.57 4.23 - - - -
RAFT (Teed & Deng, 2020) 1.43 2.71 5.04 17.4 - - -
Separable Flow (Zhang et al., 2021) 1.30 2.59 4.60 15.9 - - -
GMA (Jiang et al., 2021) 1.30 2.74 4.69 17.1 - - -
AGFlow (Luo et al., 2022b) 1.31 2.69 4.82 17.0 - - -
KPA-Flow (Luo et al., 2022a) 1.28 2.68 4.46 15.9 - - -
C+T DIP (Zheng et al., 2022) 1.30 2.82 4.29 13.7 - - -
GMFlowNet (Zhao et al., 2022) 1.14 2.71 4.24 15.4 - - -
GMFlow (Xu et al., 2022b) 1.08 2.48 7.77 234 - - -
CRAFT (Sui et al., 2022) 1.27 2.79 4.88 17.5 - - -
FlowFormer (Huang et al., 2022) 1.01 2.40 4.09 14.7 - - -
SKFlow (Zhai et al., 2022) 1.22 2.46 4.27 15.5 - - -
MatchFlow (Dong et al., 2023) 1.14 2.71 4.19 13.6 - - -
ProtoFormer (Ours) 1.04 2.43 4.08 14.6 - - -
RAFT (Teed & Deng, 2020) 0.76 1.22 0.63 1.5 1.61 2.86 5.10
RAFT-A (Sun et al., 2021) - - - - 2.01 3.14 4.78
Separable Flow (Zhang et al., 2021) 0.69 1.10 0.69 1.60 1.50 2.67 4.64
GMA (Jiang et al., 2021) 0.62 1.06 0.57 1.2 1.39 247 5.15
AGFlow (Luo et al., 2022b) 0.65 1.07 0.58 1.2 143 247 4.89
KPA-Flow (Luo et al., 2022a) 0.60 1.02 0.52 1.1 1.35 2.36 4.60
C+T+S+K+H | DIP (Zheng et al., 2022) - - - - 1.44 2.83 4.21
GMFlowNet (Zhao et al., 2022) 0.59 0.91 0.64 1.51 1.39 2.65 4.79
GMFlow (Xu et al., 2022b) - - - - 1.74 2.90 9.32
CRAFT (Sui et al., 2022) 0.60 1.06 0.58 1.34 1.45 242 4.79
Flowformer (Huang et al., 2022) 0.48 0.74 0.53 1.11 1.20 2.12 4.68
SKFlow (Zhai et al., 2022) 0.52 0.78 0.51 0.94 1.28 2.23 4.87
MatchFlow (Dong et al., 2023) 0.51 0.81 0.59 1.3 1.33 2.64 4.72
ProtoFormer (Ours) 0.48 0.69 0.50 1.09 1.06 2.07 4.35

Table 1: Quantitative results on standard Sintel and KITTI flow benchmarks. ‘A’ denotes the Autoflow dataset; ‘C + T" denotes
training on the FlyingChairs and FlyingThings datasets only; ‘C + T + S + K + H’ fine-tunes on a combination of Sintel, KITTI, and
HDIK training sets. Error metrics are lower is better with "]", and accuracy metrics are higher is better with "{". Same for Table 2.

measuring the average ly distance between the prediction
and ground truth, and the percentage of outliers over all
pixels (F1-all), which describes the error exceeding 3 pixels
or 5% w.r.t. the ground truth, for optical flow estimation.
Quantitative Results. Table 1 reports the evaluation results
of our model on the Sintel and KITTI datasets. The results
under the ‘C+T’ setting reflect the generalization capability
of our ProtoFormer, where it achieves 1.04 and 2.43 on the
clean and final pass of Sintel, improving the recently popular
CRAFT (Sui et al., 2022) by 0.23 and 0.36. After training
under the mixed setting of ‘C+T+S+K+H’, the proposed
prototype-based model achieves 1.06 and 2.07 on the clean
and final pass of Sintel and 4.35 F1-epe on KITTI.
Qualitative Results. Fig. 3 shows the qualitative results
on the Sintel flow dataset. As seen, ProtoFormer shows
more global and finer details on both object and motion
boundaries, without being affected by the shadows and tex-
tureless surfaces. In the first and fourth examples, our model
recovers full shape and fine details remarkably well, e.g.,
on bamboo and weapons. This is in stark contrast to other
methods, which struggle with producing clear predictions,
primarily due to challenges posed by occlusions and vari-
ations in illumination. In the second and third examples,
we show the significantly consistent estimation of the oc-
cluded and textureless regions, e.g., the backpack and birds
in the sky. The highlighted regions with red boxes prove the

efficacy of ProtoFormer in object clustering and avoiding
motion ambiguity. More results are shown in Fig. S2.

4.2. Experiments on Scene Depth

Datasets. Similar to optical flow, we evaluate ProtoFormer
on both real and synthetic datasets, using KITTI (Geiger
et al., 2013) and MPI Sintel (Butler et al., 2012a) for evalua-
tion. As an autonomous driving dataset consisting of 61 out-
door scenes of various modalities, we use the KITTI Eigen
depth split, which contains a standard depth estimation split
proposed by Eigen et al. (Eigen et al., 2014) consisting of 32
scenes for training and 29 scenes for testing. The MPI Sintel
is a long synthetic stereo sequence with a large motion and
depth range and contains a total of 35 rendered sequences.
Metrics. We follow the standard metrics of absolute relative
error (Abs Rel), root mean square error (RMSE), and the
percentage of inlier pixels with §; < 7 (7 = 1.25).
Quantitative Results. Table 2 shows the test results on Sin-
tel and KITTI. Our model achieved the best performance on
most of the error and accuracy metrics, proving its powerful
feature representation and generalization ability to differ-
ent scenarios. Compared with recent directly supervised
depth estimation methods (Eigen et al., 2014; Fu et al., 2018;
Bhat et al., 2021), ProtoFormer demonstrates significantly
superior capability, benefited from the incorporation of pro-
totypical learning and cross-attention architecture. Even
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Figure 3: Qualitative results on the Sintel. The red boxes highlight the regions compared. Matchflow (Dong et al., 2023) appears
blurry and ambiguous on textureless and occluded objects, while Flowformer (Huang et al., 2022) fails to recover complete and detailed
information. Ours can estimate clear and complete flow motion, which is closer to ground truth.

without using additional constraints and priors such as sur-
face normal and piecewise planarity in (Yin et al., 2019;
Patil et al., 2022), our model improves the performance of
concurrent P3Depth in error by a large margin on KITTIL.
Furthermore, our approach demonstrates superior perfor-
mance compared to methods that implement self-supervised
consistency and strategies (Godard et al., 2017; Zhang et al.,
2023). This underscores the efficacy of our model, which
exhibits exceptional adaptability and learning capacity for
fine-tuning across more general motion-related tasks.

Method Sintel KITTI

AbsRel | RMSE| SqRel| |AbsRel| RMSE| & 1
Eigen et al. 0797  0.834  0.703 | 0203 6307 0.702
Godard et al. - - - 0.114 4935 0.861
Fu et al. - - - 0072 2727 0932
Yin et al. 0.746 0611 0652 | 0072 3258 0938
AdaBins 0730 0572 0.647 | 0067 2960 0.949
P3Depth 0653 039  0.571 0.071 2842 0.953
Ours 0.594 048 0538 | 0062 2716 0.949

Table 2: Quantitative results on Sintel and KITTI depth
datasets. With both test data unseen by the model, we can achieve
leading performance over state-of-the-art methods (Eigen et al.,
2014; Godard et al., 2017; Fu et al., 2018; Yin et al., 2019; Bhat
et al., 2021; Patil et al., 2022).

Qualitative Results. Fig. 4 shows the qualitative depth
comparison on the KITTI Eigen depth datasets. Our Proto-
Former demonstrates superior capability in delineating ob-
ject surface contours, particularly in scenarios involving
dynamic entities such as pedestrians and vehicles, as well as
in capturing the finer details of objects like traffic signs and
light poles. For example, for the moving pedestrians and
vehicles in Sample 1 and Sample 3, ProtoFormer estimates a
more consistent and complete depth on object surfaces and
provides a clearer boundary than P3Depth (Patil et al., 2022)

and AdaBins (Bhat et al., 2021). For the plant stand and traf-
fic poles in Sample 2, Sample 3 and Sample 4, our methods
separates other methods evidently from the noisy and com-
plex scene backgrounds. These demonstrated the superiority
of incorporating prototype learning into depth training to
perceive geometric consistent and mitigate motion ambigu-
ity. More visual evidences are provided in Fig. S3.

4.3. Diagnostic Experiments

This section ablates ProtoFormer’s key components and con-
figurations. More ablations are included in Appendix §S3.
Key Components Analysis. We study the major compo-
nents of ProtoFormer: Cross-Attention Prototyping (§3.2.1)
and Latent Synchronization (§3.2.2). A Base model
is designed without considering prototype updating and
prototype-feature assignment. Shown in Table 3a, Base
reaches 0.55 and 0.81 in average EPE. After adding Cross-
Attention Prototyping, substantial improvements are ob-
served (i.e., 0.55 — 0.51 in clean pass), suggesting the
efficacy of prototyping updating even without explicit
prototype-feature assignment. Incorporating Latent Synchro-
nization into Base can observe a noticeable performance
gain (i.e., 0.81 — 0.77 in final pass). Finally, the integration
of the two techniques culminates in peak performance.
Cross-Attention Prototyping. We then study the effi-
cacy of Cross-Attention Prototyping by comparing to differ-
ent updating methods, including cosine similarity, conven-
tional cross-attention (Vaswani et al., 2017), Criss cross-
attention (Huang et al., 2019) and K-Means (Yu et al.,
2022). From the efficient and effective perspectives, Cross-
Attention Prototyping outperforms competitive methods (see
Table 3b). We further study the iteration step N in Table 3c,
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Figure 4: Qualitative depth comparison results on the KITTL The red boxes indicate the highlighted regions. P3Depth (Patil et al.,
2022) and AdaBins (Bhat et al., 2021) have limited receptive fields and do not consider conceptual object-level groupings, thus producing
discontinuous and ambiguous predictions. While ours can estimate consistent and sharp depths, which is closer to ground truth.

Table 3: A set of ablative studies on optical flow (see §4.3). The best performances are marked in bold.

Algorithm Component ‘ #Params ‘ Sintel clean Sintel final Variant Prototype Updating Strategy #Params | Sintel clean Sintel final
Base 9.63M 0.55 0.81 Cosine Similarity 10.28M 0.51 0.75
- _‘7_ é;o;s—k;ténﬁ&n}’;ogo{y[;iﬁg7 711.571\/[7 - 70.75I - - (7).?47 - Va'mlla Cross—Attefltlon (Vaswani et al., 2017) | 14.88M 0.50 0.73
L S h L. 10.26M 0.53 077 Criss Cross-Attention (Huang et al., 2019) 14.56M 0.50 0.72
-+ Latent Synchronization : ' ' K-Means (Yu et al., 2022) 1181M | 049 071
ProtoFormer (All included) 11.90M 0.48 0.69 Cross-Attention Prototyping (Eq. 5) 11.90M 0.48 0.69
(a) Key Component Analysis (b) Cross-Attention Prototyping
#Iterations (/V) | #Params | Sintel clean Sintel final #Prototypes (K) | #Params | Sintel clean Sintel final Latent Synchronization #Params | Sintel clean Sintel final
1 0.52 0.75 10 8.95M 0.53 0.78 None 11.27M 0.51 0.74
2 11.90M 0.49 0.71 50 9.78M 0.51 0.73 Vanilla FC Layer 11.64M 0.50 0.73
3 . 0.48 0.69 100 11.90M 0.48 0.69 FC w/ Similarity (Ma et al., 2023) | 11.76M 0.49 0.71
4 0.48 0.68 200 14.21M 0.49 0.71 Ours (Eq. 7) 11.90M 0.48 0.69

(c) Number of Iterations

suggesting that the error progressively decreases from 0.52
to 0.48 when increasing N from 1 to 4, and saturates at 4.
Considering the computation time, we set N = 3 to strike
the balance between performance and computational cost.
The number of prototypes K plays a pivotal role in defining
the central grouping points for motion features. We there-
fore investigate the variant of K in Table 3d.

Latent Synchronization. Next, we study our Latent Syn-
chronization in Table 3e. With a standard setting without
any prototype-feature corresponding (i.e., None), the model
reports 0.74 in final pass. After applying a vanilla fully-
connected layer to update the feature, the error decreases
to 0.73. Though inspiring, our proposed Latent Synchro-
nization with carefully anchored prototypes yields advanced
performance across all ablative methods (i.e., 0.69).

Systemic Explainability. Finally, we investigate the
prototype-feature corresponding map on optical flow in
Fig. 5. The systemic explainability hinges on the Proto-
types, which emerge through the integration of probability
density estimation within our cross-attention prototyping
layer. The recursively optimized prototypes encapsulate the
most characteristic features of the motion patterns within
their respective density centers. Through the visualization of

(d) Number of Prototypes

(e) Latent Synchronization

Figure 5: Visualization of proto-feature mapping, which
demonstrates distinct prototypes with similar representations.

feature correspondence estimation derived from the updated
prototypes, we enhance the interpretability of the network
and transparency of the model’s decision-making process.

5. Conclusion

We propose Prototypical TransFormer (ProtoFormer), a uni-
fied solution for motion tasks. The motivation of integrating
Transformer and prototype learning leads us to innovate
conventional self-attention, and propose Cross-Attention
Prototyping. Our Latent Synchronization further refines
the feature representations via prototype-feature association.
Comprehensive empirical results show that ProtoFormer
enjoys elegant architectural design, superior performance
and systemic explainability. As a whole, we conclude that
the findings from this work impart essential understandings
and necessitate further exploration within this realm.
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Ethical Aspects. We provide asset licenses and consents for
the datasets we applied in our paper in supplementary ma-
terial. All the datasets are publicly available for academic
usage. Since our work does not involve data augmenta-
tion or the creation of new datasets, ethical concerns or
biases within our proposed ProtoFormer are significantly
minimized. We should also highlight that the introduction
of prototypical learning offers a significant advantages in
addressing photometric inconsistency, which in turn reduces
the possible biases during training when lighting condition
is restricted.

Future Societal Consequences. ProtoFormer introduces
a universal understanding for motion tasks via prototyp-
ical learning, possessing strong performance gains over
several state-of-the-art baselines. On positive side, our ap-
proach is valuable in various real-world applications (e.g.,
autonomous driving (Cheng et al., 2023c; Prakash et al.,
2021; Cheng et al., 2023b; Shao et al., 2023; Cheng et al.,
2022; 2023a), robotics navigation (Dev et al., 1997; Look-
ingbill et al., 2007; Song et al., 2022)), benefited from its
transparency and efficiency. Regarding potential negative
social impacts, it is noteworthy that our ProtoFormer, akin
to other discriminative classifiers, encounters challenges
in addressing out-of-distribution/open-set problems (Liang
et al., 2022a). Its utility in open-world scenarios should be
further examined.
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SUMMARY OF THE APPENDIX

This supplementary contains additional experimental results
and discussions of our ICML 2024 submission: Prototypi-
cal Transformer as Unified Motion Learners, organized as
follows:

* §S1 provides detailed training configuration and testing
configuration on optical flow and scene depth estima-
tion.

* §S2 provides more qualitative results and comparisons
for optical flow and scene depth estimation.

* §S3 offers comprehensive ablation studies on scene
depth estimation.

* §S4 provides detailed Proof on the guarantees of £ M
convergence.

 §S5 includes additional experiments on object tracking.

» §S6 includes additional experiments on video stabiliza-
tion.

e §S7 discusses the Pseudo codes.

S1. Training and Testing Configuration

Our training methodology for ProtoFormer was adapted
from established optical flow training protocols (Jiang et al.,
2021; Huang et al., 2022). Initially, the model underwent
a pre-training phase on the FlyingChairs dataset (Dosovit-
skiy et al., 2015), followed by an additional 120, 000 iter-
ations on the FlyingThings dataset (Mayer et al., 2016), a
procedure we denote as “C+T.” Subsequently, the model
underwent fine-tuning on a combined dataset encompass-
ing FlyingThings (Mayer et al., 2016), Sintel (Butler et al.,
2012b), KITTI-2015 (Geiger et al., 2013), and HD1K (Kon-
dermann et al., 2016), referred to as “C+T+S+K+H”. To op-
timize performance specifically for the KITTI-2015 bench-
mark (Geiger et al., 2013), we conducted a further fine-
tuning phase on the KITTI-2015 dataset for 50, 000 itera-
tions. The training employed AdamW (Loshchilov & Hut-
ter, 2019) optimizer and a one-cycle learning rate scheduler,
with the peak learning rate set at 2.5 x 10~ for the Fly-
ingChairs dataset and 1.25 x 10~* for the other datasets.
Recognizing the sensitivity of transformer positional en-
codings to variations in image size, we adopted an image
processing approach akin to that used in Perceiver 10 (Jae-
gle et al., 2022). This involved cropping image pairs for
flow estimation and subsequently tiling them to reconstruct
complete flows. For depth prediction, we adhere to the archi-
tecture and configurations analogous to those employed for
optical flow, as delineated in the respective headers. We ini-
tially adopt the VKITTI (Cabon et al., 2020) as a pretraining,
and subsequently canonical Eigen split (Eigen et al., 2014)
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and MPI Sintel dataset (Butler et al., 2012b) to refine the
model through fine-tuning, noted for its distinct edges and
diverse motion intensities. No additional data augmentation
was used for the testing of all tasks.

Loss Function. For optical flow, A sequence loss is utilized
for the training, which is defined over the sequence of flow
predictions. For depth prediction, square root of the scale
invariant logarithmic loss (SILog) is utilized for the training.

LaSOT TrackingNet
Ricied Success T Precision 1 | Success T Precision 1
SiamFC (Bertinetto et al., 2016) 33.6 339 57.1 66.3
MDNet (Nam & Han, 2016) 39.7 373 60.6 56.6
ECO (Danelljan et al., 2017) 324 30.1 554 49.2
KYS (Bhat et al., 2020) 55.4 55.8 74.0 68.8
Ocean (Zhang et al., 2020) 52.6 52.6 70.3 68.8
TrDiMP (Wang et al., 2021b) 63.9 61.4 78.4 73.1
TransT (Chen et al., 2021) 64.9 69.0 814 80.3
UniTrack (Wang et al., 2021e) 35.1 32.6 59.1 51.2
UTT (Ma et al., 2022) 64.6 67.2 79.7 77.0
UTT + Ours 64.8 67.4 80.0 712

Table S1: Quantitative results on LaSOT and TrackingNet
datasets. We are able to achieve competitive performance
over state-of-the-art methods.

S2. More Qualitative Results

We show more qualitative results on the main tasks, optical
flow and scene depth, in Fig. S2 and Fig. S3.

S3. Ablation Studies on Scene Depth
Estimation

In §4.3, we ablate comprehensively under the optical flow
setting. In this section, we further report ablation studies on
scene depth estimation for completeness.

Key Components Analysis. We study the two major
components of ProtoFormer: Cross-Attention Prototyping
(§3.2.1) and Latent Synchronization (§3.2.2). Same to our
paper, the Base model is designed without considering
prototype updating and prototype-feature assignment. In
Table S2a, Base reaches 0.074 in Abs Rel and 2.835 in
RMSE. Adding Cross-Attention Prototyping gets substantial
improvements (i.e., 0.074 — 0.067 in Abs Rel). Consider-
ing Latent Synchronization brings a performance gain (i.e.,
0.074 — 0.071). Finally, the integration of these two tech-
niques reaches peak performance as ProtoFormer, which is
consistent to the tendency in our paper.

Cross-Attention Prototyping. We also study the efficacy
of Cross-Attention Prototyping design by comparing to dif-
ferent updating methods. For efficient and effective perspec-
tives, our Cross-Attention Prototyping outperforms competi-
tive methods (see Table S2b). We further study the iteration
step IV in Table S2c, suggesting that when increasing N
from 1 to 4, the error progressively decreases from 0.070 to
0.061, and almost saturates at 4. Considering the computa-
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Figure S1: Visualization of proto-feature mapping in depth. The map shows distinct prototypes with similar representations,

indicating straightforward explainability.

Table S2: Ablative studies on scene depth (see §S3).

Algorithm Component ‘ #Params ‘ Abs Rel RMSE Variant Prototype Updating Strategy ‘ #Params | Abs Rel RMSE
Base 063M | 0074 2835 Cosine Similarity 1028M | 0.066 2.775
S e S Tl el Vanilla Cross-Attention (Vaswani et al., 2017) | 14.88M | 0.066  2.767
+ Cross-Attention Prototyping | 11.57M | 0.067 2742 Criss Cross-Attention (Huang etal,2019) | 14.56M | 0.065  2.750
+ Latent Synchronization 10.26M | 0.071  2.819 K-Means (Yu et al., 2022) 11.81M | 0063 2743
ProtoFormer (All included) 11.90M | 0.062 2.716 Cross-Attention Prototyping 11.90M | 0.062 2716

(a) Key Component Analysis (b) Cross-Attention Prototyping

#lterations () [ #Params | Abs Rel RMSE _#Prototypes () | #Params [ Abs Rel RMSE et [#Params | Abs Rel RMSE
1 0.070  2.801 10 8.95M 0.070  2.775 None 1127M | 0.067 2732

2 I1oom | 0065 2737 >0 9-78M | 0.067 2734 yupijig FC Layer 1164M | 0.064 2.724

3 0.062 2716 100 HL9OM | 0062 2.716  ge ) Similarity (Ma et al., 2023) | 11.76M | 0.063  2.718

4 0.061 2.713 200 1421M | 0.064 2.720 Ours 11.90M | 0062 2716

(c) Number of Iterations

tion time in iterations, we set N = 3 to strike the optimal
balance between performance and computation. Consistent
to our paper, we investigate the variant of K (i.e., number
of prototypes) in Table S2d. We select the preferred setting
at K = 100.

Latent Synchronization. We further study our Latent Syn-
chronization in Table S2e. With a standard setting without
any feature-prototype corresponding, the model achieves
0.067 in Abs Rel. Applying a vanilla fully-connected layer
increases the performance to 0.064. Though inspiring, our
proposed Latent Synchronization with carefully anchored
prototypes yields advanced performance across all ablative
methods (i.e., 0.062).

S4. Proof on the Guarantees of EM
Convergence

We first introduce the regularity condition, including a Eu-
clidean ball of radius r around the fixed point 6, set as:

Ba(r:0) := {eeQ | ||9—é\|2§r}. ®)

For simplicity, we define § = argmax, U(-|#) while we
have introduced our unified motion solution in Eq. 2.

For First-order Stability (FOS), the functions U (-|6) satisfy
condition FOS(vy) over By (r; 0) if:
VUM (:(6)) = VUM ([))][2 <210 = bll>, O

for all @ € Ba(r; é). With radius v = 0, the condition of

(d) Number of Prototypes
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(e) Latent Synchronization
Eq. 9 is always held at the fixed point 6. Extend further, by

allowing for an always positive ~, given fixed point 6, Eq. 9
would always hold in a local neighborhood Bz (r; ).

Under these conditions, we further guarantee the £'M oper-
ator to be locally contraction.

Theorem 1. For v > 0, and having 0 < v < ), suppose the
function U(-|6) is A-strongly concave and FOS(y) holds for
Ba(r;6), we have the EM operator M is contractive over
By (r; 6) as:

13£(8) = Bl < 116 — 8]l (10)

for all @ € By(r;0). Intuitively, we can conduct that for
any initial point (9 € B, (r;0), {0(") }20:0 exhibits linear
convergence. Formally, we have:

167 b1l < (3)"116° — 6l an

foralln € {1,2, ..., N}. Here we define n in a finite set for
intuitive reference below.

Acknowledging the preliminary conditions in Theorem 1,
we further present the proof for Proposition 1 below.

Proof. For any iteration n € {1,2, ..., N}, we have:

1My (07) = MOl < ent( 57). (1)
with probability at least 1 — %. Consequently, by a union

bound over N, Eq. 12 holds uniformly with probability at
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Figure S2: More qualitative comparison on the KITTI test set. The red boxes highlight the regions compared. Our
method estimates more consistent and detailed flows.
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Figure S3: More qualitative comparison on the Sintel test set. The red boxes highlight the regions compared. Our method
contributes to clearer depths without being affected by shadows or occlusions.
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Figure S4: Qualiative results on object tracking on LaSOT dataset. With our enhanced method, the original ambiguous
tracking due to illuminant changes and heavy occlusion becomes more accurate.
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Figure S5: Qualiative results on video stabilization. With our method enhanced, the original unstable video frames
become much smoother and clearer.
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least 1 — 4. It suffices to show that

m

N ) N)7
for each iteration n € {1,2, ..., N}. When Eq. 13 holds, we
can iteratively show that:

107 = ll2 < w110 = Oll2 + ear( (13)

[«

a a m
167 — |2 < &]|6"1 —6]]2 + EM(N’ N)
R 1) m
< (n=2) _ m 9 o
SR {f€|0 9H2 +-€A1(]Vw JV) +-€A4(]Vw JV)
ity m
< kM)p©® _ g n w2
< x| |2 + nEZOH em( )
A 1 m 0
< k7]190) _ R
< k"||0 0||2+1—56M(N7N)
(14)

The final step follows by summing the geometric series.

Thus, we need to prove Eq. 13 via induction on the iteration
number. Start with n = 1, we have:

100 = Bl[o = || My (0©) = M(67))]]2

(1) < |IM(6) = bl[2 + || Myn (67) = M(6D)]l2
- )
ID) < x|[M(6©) — 4 n2
(D) < /M) = 6]z + x5, 1),

15)

where step (I) follows by the triangle inequality, step (IT)
follows from Eq. 13, and the contractivity of the operator
applied to (°) € By(r;0). In the induction from n — n+1,
suppose that ||§(®) — f||; < r, and the bound holds (i.e.,
Eq. 13) for iteration n. The same augment then implies that
the bound fromAEq. 13 also holds for iteration n + 1, and
that [|9(**+1) — 4|5 < r, thus completing the proof. O

Method | Distortion Value 1 | Stability Score
StabNet (Wang et al., 2018) 0.83 0.75
StabNet + Ours 0.85(0.02 1) 0.80 (0.05 1)
PWStableNet (Zhao & Ling, 2020) 0.79 0.80
PWStableNet + Ours 0.82 (0.03 1) 0.83 (0.03 1)

Table S3: Quantitative results on DeepStab dataset. We
are able to achieve competitive performance over current
methods.

S5. Experiments on Object Tracking

To further support our proposed ProtoFormer as a general so-
lution to various tasks, we extend our design to object track-
ing following (Ma et al., 2022). Intuitively, we follow (Ma
et al., 2022) and integrate the encoder and decoder into one
object transformer where we replace the self-attention into
our proposed cross-attention prototyping.

We evaluate our method on the testing splits of LaSOT (Fan
et al., 2019) and TrackingNet (Muller et al., 2018) follow-
ing common practices (Ma et al., 2022; Chen et al., 2023).
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Specifically, LaSOT (Fan et al., 2019) includes 1,400 se-
quences: 1, 120 for training and 280 for testing, respectively.
TrackingNet (Muller et al., 2018) contains 30K sequences
with 511 sequences for testing. Success and Precision met-
rics are applied for performance evaluation. We follow the
same training schedule as (Ma et al., 2022) for fairness. As
seen in Table S1, our approach achieves competitive results
to current methods (e.g., 0.2% and 0.2% higher than UTT
on Success and Precision on LaSOT dataset, respectively).
Qualitative results are shown in Fig S4.

Algorithm 1 Pseudo-code of Cross-attention Prototyping
in a PyTorch-like style.

wan

feats: output feature embeddings from regular
projection, shape: (batch_size, channels,
height, width)

P_0: initial cluster centers by adaptive pooling
from the features, shape: (batch_size,
num_clusters, dimension)

P: cluster centers, shape: (batch_size,

num_clusters, dimension)
iteration number for recursive prototyping
layer

nun

N:

# One-step cross-attention prototyping in Eg.5
def one_prototyping layer(Q, K, V):

# E-step

output = torch.matmul (Q, K.transpose (-2,

M = torch.nn.functional.softmax (output,
-2)

-1))
dim

# M-step
P = torch.matmul (M, V)
return P

# Iteratively cross-attention prototyping layer
def Cross_Attention_Prototyping(feats, P_0, N):

nn.Linear (P_0)

nn.Linear (feats)

nn.Linear (feats)

P_0 + one_prototyping_layer (Q,

U< =m0

K, V)

for _

Q
P

in range(N - 1):
nn.Linear (P)
P + one_prototyping_ layer (Q,

K, V)

return P

S6. Experiments on Video Stabilization

We further evaluate our method on video-based downstream
task — video stabilization, following common training con-
figurations from (Wang et al., 2018; Zhao & Ling, 2020;
Lu et al., 2023). Specifically, DeepStab (Wang et al., 2018)
contains 61 pairs of synchronized videos with diverse cam-
era movements. Distortion Value and Stability Score are
applied for performance evaluation. In Table S3, we re-
port the results comparing to competitive methods (i.e.,
StabNet (Wang et al., 2018), PWStableNet (Zhao & Ling,
2020)). Specifically, we follow TransFlow (Lu et al., 2023),
aggregating the learned features from TransFlow’s encoder
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Algorithm 2 Pseudo-code of Latent Synchronization in a
PyTorch-like style.

LRIN

feats: output feature embeddings from regular

projection, shape: (batch_size, channels,
height, width)
P: prototypes, shape: (batch_size, num_prototypes,
dimension)

nun

# Latent sychronization in Eg.6
def latent_sychronization(feats, P):

max_value, max_index = similarity (feats, P).
max (dim = 1, keepdim = True)

mask = torch.zeros_ like (similarity(feats, P))

mask.scatter (1, max_index, 1.)

Q = nn.Linear (feats)
K = nn.Linear (P)
V = nn.Linear (P)

feats += FFN(attention_layer(Q, K, V,
attn_mask = mask))

return feats

(i.e., replacing the origin attention with our proposed cross-
attention prototyping and latent synchronization) and the
original encoder together for the later regressor. Significant
performance boost can be observed in both Distortion Value
and Stability Score. Qualitative results are shown in Fig S5.

S7. Pseudo-codes

ProtoFormer is implemented in Pytorch (Paszke et al., 2019).
Experiments are conducted on eight NVIDIA A100-40GB
GPUs. We provide the pseudo codes of our proposed Proto-
Former Cross-Attention Prototyping in Algorithm 1 and
Latent Synchronization in Algorithm 2.

21



