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Abstract

Recent works on neural network pruning advocate
that reducing the depth of the network is more ef-
fective in reducing run-time memory usage and
accelerating inference latency than reducing the
width of the network through channel pruning.
In this regard, some recent works propose depth
compression algorithms that merge convolution
layers. However, the existing algorithms have
a constricted search space and rely on human-
engineered heuristics. In this paper, we propose a
novel depth compression algorithm which targets
general convolution operations. We propose a
subset selection problem that replaces inefficient
activation layers with identity functions and opti-
mally merges consecutive convolution operations
into shallow equivalent convolution operations
for efficient end-to-end inference latency. Since
the proposed subset selection problem is NP-hard,
we formulate a surrogate optimization problem
that can be solved exactly via two-stage dynamic
programming within a few seconds. We evalu-
ate our methods and baselines by TensorRT for
a fair inference latency comparison. Our method
outperforms the baseline method with higher ac-
curacy and faster inference speed in MobileNetV2
on the ImageNet dataset. Specifically, we achieve
1.41x speed-up with 0.11%p accuracy gain in
MobileNetV2-1.0 on the ImageNet.

1. Introduction

Deep learning with Convolutional Neural Network (CNN)
has achieved outstanding results in various fields such as
image classification, object detection, image segmentation,
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and generation (Tan & Lel 2019; Wang et al., [2021} Isensee
et al., 2021; |Rombach et al., 2022). However, the success
of CNNss in such fields is accompanied by the challenge of
increased complexity and inference latency. For real-world
applications, accelerating the inference latency of CNNSs is
of great practical importance, especially when deploying
the models on edge devices with limited resources.

To this end, a line of research called channel pruning has
been introduced to remove unnecessary channels in CNNs
to accelerate the wall-clock time in the edge device while
preserving the performance of the CNNs (Wen et al., 2016}
Tiwari et al.l 2021 |Shen et al., [2022)). However, with the
advancement of hardware technology for parallel compu-
tation, channel pruning which reduces the width of neural
networks has become less effective than removing entire
layers in terms of latency (Jordao et al., 2020; (Chen & Zhaol,
2018;  Xu et al., [2020; [Fu et al.| [2022).

In contrast, layer pruning, which prunes entire layers, has
been proposed to reduce the depth of neural networks. Layer
pruning also significantly reduces the run-time memory us-
age and achieves effective speed-up in many edge devices
compared to channel pruning (Xu et al.| 2020). However,
layer pruning is more aggressive than channel pruning in
terms of reducing the number of parameters and FLOPs,
thereby resulting in a more severe accuracy drop compared
to channel pruning methods. Instead of naively removing
an entire layer, [Fu et al.|(2022)) present a depth compres-
sion algorithm called DepthShrinker which integrates layers
by replacing inefficient consecutive depth-wise convolution
and point-wise convolution with an efficient dense convolu-
tion operation in MobileNetV2 (Sandler et al.l 2018]). This
compression algorithm results in depth reduction with low
run-time memory usage and fast inference latency similar to
layer pruning. However, the depth compression algorithm
does not suffer from a commensurate accuracy drop.

Although DepthShrinker has shown promising results in
reducing the depth of the network while preserving the per-
formance, the method is limited to constricted search space
as it only considers merging within the Inverted Residual
Block (Fu et al.,[2022; |Sandler et al., 2018). Furthermore,
the method relies on human-engineered heuristics for layer
merging which is unlikely to scale to other architectures. To
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Figure 1. Illustration of depth compression for a five-layer CNN, Ozﬂ
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A={3}
S =1{2,3}

o1 o fg,. The original network is on the default setting when

A =S =1{1,2,3,4} (above). When A = {3} and S = {2, 3}, the activation layer not in A is replaced with identity functions (middle).
Then, the network is merged into the shallow network which functions identically (below).

this end, we introduce a novel optimization-based frame-
work for general convolution merging framework that is not
restricted to the design of the network and does not rely on
manually designed heuristics. We formulate a depth com-
pression optimization problem that replaces inefficient acti-
vation layers with identity functions and optimally merges
consecutive convolution operations for optimal latency.

Our optimization problem is NP-Hard and its objective re-
quires a prohibitively exhaustive training of the neural net-
work. Thus, we formulate a surrogate optimization problem
by approximating the objective as the linear sum of the
accuracy change induced by each network block. The sur-
rogate optimization problem can be exactly optimized via
dynamic programming on a given network architecture with
a given latency. Furthermore, we evaluate the latency of the
network with TensorRT for a fair comparison (Vanholder,
2016). Our experiments show that the proposed method out-
performs the baseline method in both the accuracy and the
inference latency in MobileNetV2 on ImageNet dataset. We
release the code at https://github.com/snu-mllab/
Efficient-CNN-Depth-Compressionl

2. Related Works

Channel Pruning Channel pruning originally aims to
reduce computation FLOPs by removing less important
channels (L1 et al., 2017; |He et al., {20195 2018a; |Liu et al.,
2019t [He et al., [2018b} |[You et al.| [2019; Hu et al., 2016}
Gao et al., 2021)). Specifically, Aflalo et al.[(2020) formulate
a knapsack problem for channel pruning with an explicit
FLOPs constraint. For practitioners, however, end-to-end
inference wall-clock time is the most important metric. In
light of this, [Shen et al.|(2022) build a latency lookup table
and proposes a knapsack problem for channel pruning with
a latency constraint.

Network Morphism Our work is partially inspired by
network morphism which morphs a trained parent network
into a child network that functions identically (Chen et al.,
20165 |Wei et al., 2016). Here, the child network is larger
than the parent network and is finetuned after morphing.
Instead, we aim to find the parent network where some
activation layers are removed, thereby morphing the parent
network into the child network which has a faster inference
time and functions almost identically to the parent network.

Depth Reduction There are two lines of research that re-
duce the depth of neural networks: layer-pruning and depth
compression. In layer pruning, Jordao et al.| (2020) and
Chen & Zhao| (2018)) evaluate the importance of layers by
the amount of discriminative information in each feature
map. In depth compression, DepthShrinker points out the
inefficiency of depth-wise convolutions during inference in
the edge device and proposes a depth compression algorithm
that replaces inefficient consecutive depth-wise convolution
and point-wise convolution inside the Inverted Residual
Block with an efficient dense convolution (Fu et al., [2022;
Howard et al.| 2017; [Sandler et al., 2018)). We generalize
depth compression space to cover any general convolution
operations. Also, while DepthShrinker requires full train-
ing of the network during the search phase to identify the
unnecessary activations, our method employs importance
evaluation which can be efficiently computed in an embar-
rasingly parallel fashion. Furthermore, we propose a novel
two-stage dynamic programming algorithm which simulta-
neously finds the optimal set of selected activation layers
and the optimal set of layers to be merged in a few seconds.

TensorRT Choosing the appropriate implementation of
the network to measure the inference latency is crucial for a
fair comparison. For instance, a batch normalization (BN)
module can be fused into the preceding convolution layer
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without compromising accuracy and accelerating the infer-
ence latency. In this regard, we utilize TensorRT to optimize
trained network architectures with various techniques such
as BN fusion, precision calibration and dynamic memory
management (Vanholder, 2016).

3. Preliminary

Consider a L-layer CNN which consists of alternating con-
volution layer fy, and activation layer o; with the layer
index I € [L]. Each convolution layer is parametrized
by convolution kernel parameter §; € RC -1 xCxKixKi
where C)_1, C, K; represent the number of input channels,
the number of output channels, and the kernel size, respec-
tively. The CNN can be represented as a composite function

OzL—1 010 fp, : RHoXWoxKoxKo _y RHLXWixKLxKy
where H;, W; are the height and width of [-th feature map

and O denotes an iterated function composition. We set
the last activation layer (o) to identity function (id).

Note, any consecutive convolution operations can be re-
placed by an equivalent convolution operation with a larger
kernel due to the associative property. We denote this pro-
cess as merging. For example, consider two consecutive
convolutional layers, fg, and fy,, applied to an input image
X (i.e. fo,(fo,(X))). This can also be computed using
an equivalent merged convolutional layer fy,@9, Where ®
denotes convolution with proper padding. Further merging
details can be found in Appendix [E]

4. Method

We first formulate an optimal subset selection problem for
depth compression under a given latency constraint. Subse-
quently, we propose a surrogate objective for the objective
in the optimal subset selection problem and formulate a cor-
responding surrogate optimization problem, which can be
exactly solved via two-stage dynamic programming (DP).

4.1. Optimal Subset Selection Problem for Depth
Compression

Any neighboring convolutional layers can be merged into an
equivalent convolutional layer, often resulting in a latency
speed-up from the depth compression of the CNN. In this
regard, we aim to optimize the replacement of a subset of
activation layers with id in order to reduce the latency of
the resulting network while preserving its performance.

However, merging every consecutive series of convolutional
layers into a single large layer may not be the optimal merge
in terms of latency. In certain cases, it is possible that
merging certain convolutional layers has a detrimental effect
on the latency of a network. To illustrate, consider merging
two consecutive 1 x 1 convolutional layers, with the first

layer having 100 input channels and 1 output channel and
the second layer having 1 input channel and 100 output
channels. Then the merged convolutional layer results in a
1 x 1 convolution with 100 input channels and 100 output
channels. This merge significantly increases the latency of
a merged convolutional layer, thereby canceling out any
benefits gained from the depth compression.

To address this, we propose two ordered set variables, A
and S to be simultaneously optimized. A indicates the
layer indices where the activation layer is kept intact and
not replaced with an identity function, and S indicates the
layer indices where we do not merge. It is important to note
that .S includes A, since the activation layers that are not
id can not be merged. Figure|[T]illustrates how network is
merged according to .S and A. Our goal is to optimize for
the ordered set A and S in order to reduce the latency of the
resulting network while preserving its performance.

Thus, our objective can be formulated as follows:

ACSC[L—1] Pt

L
maximize max Acc ( O (LTa()or+ (1 —14(l))id) o fgl>
(1a)

subject to
IS|+1
7| O Malsi)os, + (1 —Ta(s:))id) o f5, | < To
=1
(1b)

0; = @ 0, Vi € [|S|+1] and 5541 =L, so =0,

l=s;1+1

where (s;) Li‘l denotes the elements of S and Acc(-) and

T'(+) denote the accuracy and latency of the network, respec-
tively. The objective in Equation (Ta) describes the accuracy
of the network where the activation layer is replaced by id if
the layer index is not in A. The constraint in Equation (Ib)
describes the latency constraint of the network, which is
merged according to .S. Note, the networks in Equation (Ta))
and Equation (Ib) function identically.

We can simplify the constraint in Equation by express-
ing the total latency of the network as the sum of the latency
of each merged convolution layer as each layer is sequen-
tially connected. Additionally, we ignore the latency from
each activation layer since the latency incurred by activation
layers is negli gible{ﬂ Then, the total latency of the merged
network in the constraint can be simplified as follows:

"Deactivating 50 ReLUs in MobileNetV2 results in less than
a 1% change in end-to-end inference time on RTX 2080 Ti in
TensorRT format.
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[S]+1
T ( Q (La(si)or + (1 —1a(s;))id) oféq,)

[S|+1 |S1+1

~S T ((L,(s,;)a, (1= La(s:))id) oféi) ~S T (féi) .

i=1 i=1

As a shorthand, we denote T'(fp) where 6’ = @{:i 1t
as T'[i, j]. Note that fy is the merged convolution oper-
ation equivalent to O{:H ) fo,- Thus, the latency con-
straint, Equation (Ib), can be compactly expressed as
Dsinsiefopusuiry s, si] < To.

4.2. Formulation with the Surrogate Objective

Directly optimizing Equation (I) requires training of the
whole network for all combinations of A and S which is
NP-hard. Therefore, we propose a surrogate objective for
the objective in Equation (Ta). Through this approach, Equa-
tion (1]) can be reformulated into an optimal subset selection
problem which can be exactly solved via DP.

The network in Equation (1a) can be equivalently repre-

|A]+1 aj
sented as O 0q, © O fo, ) where ag =
Jj=1 J l:aj_1+1

0,aj4)41 = L, and (aj)ljill denote the elements of A in

the ascending order. We can observe that A partitions the

a;
l=a;1+1 fel'
Therefore, Equation (La) can be reformulated as the accu-
racy change from the original network as follows:

lA|+1 a
s (Goe (O )
j=1 l:aj_1+1
L
—mgxxAcc <Oazofel> , 2

=1

network into contiguous network blocks, O

L
where maxgy Acc ( Ol—l o0 f9l> is the accuracy of the
original network which is a constant.

Each contiguous block results in an accuracy change from
the original network. However, the exact estimation of the
accuracy change resulting from all possible combinations of
contiguous network blocks remains impractical due to the
exponential number of possible combinations of contiguous
network blocks and the requirement of training the neural
network for each one. Therefore, we propose the sum of the
accuracy change caused by each contiguous network block,

a; .
Oz “ fo, as a proxy for the accuracy change resulting
=ai-1
from contiguous network blocks in Equation (2)).
We denote I[i, j] as the accuracy change when the activation

layers between the ¢+ 1-th and j-th layers in the original
network are replaced with id. Concretely,

L J i
I3, j] = meaxAcc O oy 0 fg,00; 0 O fo, 0 oy 0 fe,
-1

I=j+1 l=i+1 1
j+1t0L layers i+1to ] layers 1 to 4 layers
L
— max Acc O oo fe, | - 3)
0
=1

Note that computing I[-, -] can be efficiently done in embar-
rassingly parallel fashion. We define the surrogate objec-
tive for Equation 1) as } . a,efoyuaviry Ilai-1, 5]
Then the optimization problem in Equation (1)) becomes

Imaximize > Iaj1,a;] @)
aj1,a; E{0YUAU{L}

subject to Z

8i—1,8:€{0}USU{L}

T[Sifl, Sl] < Tp.

4.3. Optimization via Dynamic Programming

We first define an ordered set for the indices to be merged
for the optimal inference time for the contiguous network
block between k+1-th layer and I-th layer as Sy [k, {] and
the optimal inference time as Tt [k, I]. Concretely,

Tooilk, 1] = i
ontlk; 1 SC{kt o i1} E%USU{Z}
Si—1,8i

Tlsi1, 8]

(5a)

Sopt[k, l] = T[Si,h Sz]

argmin Z

Sk} o s e{kPUSU{l}
(5b)

For the base case, Top |k, k] = 0 and Soy [k, k] = (). Then,
Topt[k, 1] and Sk, 1] can be computed via dynamic pro-
gramming algorithm as described in Algorithm ]

We formulate a sub-optimization problem of Equation (@)
with respect to an intermediate layer index, [ < L and a
latency constraint, ¢ > Tt [0, ]

. Tlan s a.

maximize > (a1, ;] (6)
aj,l,ajG{O}UAU{l}

subject to Z T[si-1,8i]) < t.

si—1,8: €{0YUSU{l}

Then, we define the optimal ordered sets A and S in the
sub-optimization problem as A[l, ¢] and S|I, ¢]. Here, A[l, t]
indicates activation layers to keep until layer [ given the
latency budget ¢, and S[I, ] indicates layers to merge un-
til layer [ given the latency budget t. Then, A[L, Ty] and
S[L, Ty) represent the optimal set A and .S of the surrogate
optimization problem, Equation (@), respectively.

For the base case, we set A[0,t] = S[0,t] = 0. Then, we
compute the ordered sets A[l, t] and S[l, ] according to the
dynamic programming (DP) recurrence relation defined by
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Algorithm 1 Finding Optimal Latency with DP

Algorithm 2 Solving the Surrogate Objective with DP

input 7, L
Initialize Top [k, 1] <= 0, Sope[k, 1] <= O for0 < k <1<
L
for! =1to L do
fork =0tol—1do
m < argmin (Ton [k, m'] + Tm/, 1])
k<m’<l
Toptlk, 1) < Tope[k, m] + T'[m, 1]
if m ¢ {k} then
Sopt [k, 1] <= Sopi[k, m] U {m}
end if
end for
end for
output 7oy, Sopt

All, 8] = Alk, t—Top[k, 0] U {k : k > 0} (Ta)
S[l,t] = STk, t—Top[k, ] U {k : k > 0} U Sop[k, 1], (7b)

k = argmax
0<k/ <1

Iaj1, ay]
aj1,a; E{0YUA[R t—Top [k’ 1]JU{K’ 1}

subject to  Top[0, k'] + Top[k', 1] < t,

where k is the maximum element of A[l,t]. Therefore,
A[l,t] is an empty set when k= 0. Figure [2illustrates DP
computation example in detail.

The j-th activation layer of our target network for depth
compression is either the j-th activation layer in the vanilla
network (o) or an identity function (id). Thus, if o; = id,
the j-th activation layer in the target network is inherently
an identity function. For instance, in MobileNetV2, the
identity function serves as the activation layer at the end
of each Inverted Residual Block, and the corresponding ac-
tivation layers in our target network are bound to be the
identity functions (Sandler et al.,|2018)). On the other hand,
non-linear activation layers at the end of the Inverted Resid-
ual Block can improve the performance of the networks
compressed from MobileNetV2 (Fu et al., [2022). To this
end, we incorporate the network blocks that have non-linear
activation layers at the end of the Inverted Residual Block
into the DP formulation. We provide a detailed explanation

in Appendix

4.4. Theoretical Analysis

Proposition .| shows that Equation ([7) exactly computes
A[l,t] and S[l, t]. The detailed procedure for implementing
the DP recurrence relation can be found in Algorithm@ﬂ At
the start of Algorithm 2] we compute the ordered set for the
indices to be merged for the optimal inference time for the

2We denote Zuj,l,aje{o}uA[l,t]u{L} Iaj-1,a;] as D[l,t] in
Algorithm 2] for brevity.

input 7y, L, T, 1
Initialize D[l,t] <+ 0, A[l,t] + 0, S[l,t] + @ V¢,
Topt, Sopt < Algorithm[I] (7T, L)
for [ =1to L do
for t = T, [0,1] + 1 to Tj) do
k < argmax (D[k', t — Ton [k, 1] + I (K, 1))
0<k’<I
subject to Top [0, k'] + Top [k, 1] < t
tlast < Topt[kv l]
DJl,t] + D[k,t — tis] + I[k, ]
Al t] + Alk,t — tag] U {k : k > 0}
S[l,t] < Slk,t — tia) U {k : k > 0} U Sopi[k, 1]
end for
end for
OUtpl‘It A[L7 CZ—‘O}) S[Lv CZ-‘()]

contiguous network block between k+-1-th layer and [-th
layer and the optimal inference time at Algorithm [I] where
the time complexity for the DP recurrences is O(L?). In
Algorithm |2} the time complexity for the DP recurrences is
O(L*Ty), thus the total time complexity is O(L3 + L2Ty).

Proposition 4.1. A[l,t] and S[l, t] computed from the DP
recurrence relations, Equation are the optimal sets A
and S of Equation (6)), respectively.

Proof. Refer to Appendix O

For a given set of the optimal indices where activation layers
are not replaced with identity functions, A[l, t] and the net-
work replaced according to A[l, t], Proposition shows
that S|, ¢] is the optimal S which merges the network into
the optimal structure in terms of latency.

Proposition 4.2. S|l,t] computed from the DP recurrence
relations, Equation is the optimal S which minimizes
the latency of the network when A[l, t] is fixed. Concretely,
S|[L,t] is the optimal S of the optimization problem:

min Z T[8i-1, Si]- )
AlLACSCA] si1,8:€{0}USU{I}
Proof. Refer to Appendix [A] O

5. Experimental Results

We evaluate our method on various datasets and network
architectures. We first introduce implementation details for
the overall process in the experiments. Then, we present an
evaluation of our method on various scales of networks and
datasets to demonstrate its effectiveness. Furthermore, we
conduct ablation studies on the search space of our proposed
method and the ordered set S.
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Figure 2. Illustration of DP table construction based on the recur-
rence relation (Equation ). D3, 21] is computed upon the solu-
tions of the previous sub-problems (D]0, 1], D[1, 7], D[2, 10]).

5.1. Implementation Details

Measurement We first evaluate the latency of each con-
tiguous network block, T'[¢, j], individually. The latency of
the network is subject to the format which it is implemented
on. We utilize TensorRT to convert the network into its
optimal form and measure the latency for a fair comparison.

Then, we measure the change of the accuracy incurred by
each contiguous network block, [, j], for Equation . As
the number of possible contiguous network blocks is of the
order of N2, where N is the number of activations, we need
to train O(N?) networks to obtain the accuracy change of
every contiguous network block. For efficiency, we approxi-
mate the first term in Equation (3) using the accuracy of the
network trained for a few epochs after replacing the activa-
tion layers between the 7+ 1-th and j-th layers with identity
functions. Specific details on evaluating the importance of
each block and the methodologies used to normalize the
importance values can be found in the Appendix [B]

Dynamic Programming Given the latency of each con-
tiguous network block, T'[¢, j], and the accuracy change
caused by each contiguous network block, I[i, j], we can

solve Equation (@) for the time constraint 7, with Algo-
rithm 2] In Algorithm[2] we assume the time constraint T
and time index t to be integers. In practice, we multiply
every occurrence of ¢ and Ty by a constant factor and round
the multiplied values to integer.

Finetune and Merge After obtaining the optimal ordered
sets A and S in Equation (@), we replace the activation layers
not present in A with identity functions. In order to exactly
merge the network in the inference phase, it is necessary to
ensure that sufficient padding is applied to the first convo-
lution layers within the target contiguous network blocks
to be merged. To this end, we reorder the zero padding
according to the set S first, then finetune the network until
convergence. We detail this padding reordering technique
in Appendix At the test time, we merge the finetuned
network following S and evaluate the latency.

During finetuning, we follow the identical training proto-
col with the DepthShrinker for finetuning (Fu et al., [2022).
In detail, we finetune the network for 180 epochs using
cosine learning rate decay with the SGD optimizer. We
further adopt label smoothing, random erasing and Ran-
dAugment following |Fu et al.| (2022), except in the case of
MobileNetV2-1.0 on ImageNet where additional augmen-
tation did not improve performance (Miiller et al., [2019;
Zhong et al., 2017} |Cubuk et al., |2020).

Evaluation We employ R7X2080 Ti GPU when evaluat-
ing the latency of each contiguous network block. Then, we
evaluate the end-to-end inference latency of merged archi-
tectures on various GPUs including TITAN Xp, RTX2080 Ti,
RTX 3090, and Tesla V100. Also, we evaluate the inference
latency of the networks in two distinct formats: 1) TensorRT
exported model (FP32) and 2) PyTorch model (Vanholder,
2016} [Paszke et al.;2017). To ensure a fair comparison, we
fuse the batch normalization (BN) modules with the pre-
vious convolution layers when we measure latency in the
PyTorch format, as the depth compression algorithm results
in a different number of BN modules.

5.2. Depth Compression Results

We apply our depth compression method to the Mo-
bileNetV2 architecture on ImageNet-100 and ImageNet
dataset, starting from the public pretrained weight (Sandler|
et al.| 2018; Tian et al.||2020; Russakovsky et al., 2015).

5.2.1. IMAGENET-100

We first experiment with our depth compression method on
the ImageNet-100 dataset, which is a subset of ImageNet
consisting of 100 classes. We bring the list of the subclasses

3We apply the same padding reordering technique when we
reproduce the baseline work, DepthShrinker.
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Table 1. Accuracy and latency of compressed architectures ap-
plied to MobileNetV2-1.0 and MobileNetV2-1.4 on ImageNet-100
dataset. Compression methods use the latency information of RTX
2080 Ti and is measured on RTX 2080 Ti with batch size of 128.
We report the average accuracy of the three runs of finetuning.

TensorRT  w/o TensorRT
Network Acc (%) Lat. (ms) Lat. (ms)
MBV2-1.0 87.58 19.25 40.61
DS-A-1.0 87.58 14.74 27.59
Ours 87.69 12.53 23.02
DS-B-1.0 87.31 12.33 22.99
Ours 87.45 12.11 22.29
DS-C-1.0 85.92 11.20 20.76
Ours 86.73 11.14 20.62
DS-D-1.0 85.30 10.49 18.78
Ours 85.91 9.62 16.82
MBV2-14 88.88 29.94 61.68
DS-A-1.4 88.01 19.61 35.06
Ours 88.41 19.48 34.01
DS-B-1.4 86.99 19.21 31.63
Ours 87.58 18.22 30.77
DS-C-14 86.73 17.47 29.73
DS-D-1.4 86.05 17.50 27.99
Ours 87.18 16.26 27.42
DS-E-1.4 85.29 15.67 26.08
Ours 85.93 14.65 22.96

from [Tian et al|(2020). The size of the image is prepro-
cessed to 224 x 224 and the dataset contains approximately
1200 images per class. We apply our depth compression
method to both MobileNetV2-1.0 and MobileNetV2-1.4
starting from the pretrained weight and compare it to the
architectures proposed in DepthShrinker.

When implementing the DepthShrinker on the ImageNet-
100 dataset, we bring the architectures in DepthShrinker
and finetune from the pretrained weight after substituting
the last classifier to match the number of classes (Fu et al.,
2022). Then we measure the latency of the merged network.

Table [I] summarizes the depth compression results in
MobileNetV2-1.0 and MobileNetV2-1.4. Our method con-
sistently outperforms the baseline at every compression ratio
in MobileNetV2-1.0 and MobileNetV2-1.4. In particular,
we achieve 1.08x speedup in TensorRT compiled format
with 1.13%p higher accuracy compared to DS-D-1.4. Also,
we achieve 1.18x speedup with 0.11%p higher accuracy in
TensorRT compiled format compared to DS-A-1.0.

Table 2. Accuracy and latency of compressed architectures applied
to MobileNetV2-1.0 on ImageNet dataset. Compression methods
use the latency information of RTX 2080 Ti and is measured on
RTX 2080 Ti with batch size of 128. t denotes the accuracy of
the pretrained weight used in DepthShrinker, and we use the same
pretrained weight for a fair comparison.

TensorRT  w/o TensorRT
Network Acc (%) Lat. (ms) Lat. (ms)
MBV2-1.0  72.89f 19.26 40.71
DS-A-1.0 72.37 14.82 27.53
Ours 72.83 13.67 25.09
DS-B-1.0 71.96 12.42 22.92
Ours 72.13 12.38 21.74
DS-C-1.0 70.87 11.28 20.77
Ours 71.44 10.90 19.75
DS-D-1.0 69.43 10.53 18.82
Ours 70.65 9.88 16.55

Additionally, we evaluate the wall-clock inference time on
various GPU platforms other than RTX 2080 Ti. The compre-
hensive result of the latency on different GPUs can be found
in Appendix|C.2] Furthermore, we reproduce the full search-
ing stage of DepthShrinker on top of the ImageNet-100
dataset and compare our method against the resulting archi-
tecture which we also provide the results in Appendix

5.2.2. IMAGENET

We apply our depth compression method to MobileNetV2-
1.0 and MobileNetV2-1.4 on the full ImageNet dataset (Rus-
sakovsky et al., [2015)) and compare with the architectures
proposed in DepthShrinker (Fu et al., 2022ﬂ Note that ev-
ery method uses the latency information of the RTX 2080 Ti
with TensorRT and is measured on different model formats
and GPU platforms.

We use the same pretrained weight with DepthShrinker
for a fair comparison and report the accuracy of it for the
vanilla network. It is worth noting that this accuracy value
differs from the one reported by [Fu et al.| (2022) because
they reported the accuracy of the vanilla network from their
baseline work instead of the pretrained weight they started
from. We report the accuracy of the pretrained weight to
precisely convey the effect of the compression methods.

Table [2] demonstrates that our method consistently outper-
forms the baseline in MobileNetV2-1.0 architecture on the
ImageNet dataset. Specifically, our method attains 1.08 x

“DepthShrinker’s official implementation omits merging the
first Inverted Residual Block; following their paper, we merge it if
their pattern removes the activation in this block.
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Table 3. Accuracy and latency of compressed architectures applied to MobileNetV2-1.4 on ImageNet dataset. Compression methods use
the latency information of RTX 2080 Ti. The latency of the compressed network architecture is measured on TITAN Xp, RTX 2080 Ti, RTX
3090, and Tesla V100 with batch size of 128. t denotes the accuracy of the pretrained weight used in DepthShrinker, and we use the same

pretrained weight for a fair comparison.

TensorRT Latency (ms)

w/o TensorRT (ms)

Network Acc (%) TITANXp RTX2080Ti RTX 3090 Tesla V100 RTX 2080 Ti
MobileNetV2-1.4  76.28" 42.13 29.93 20.79 24.35 61.64
MBV2-1.4-DS-A 74.42 26.87 19.62 13.54 16.13 35.05
Ours 74.68 25.77 18.63 12.88 15.89 32.35
MBV2-1.4-DS-B 74.06 25.30 19.20 13.21 15.82 31.63
Ours 74.19 24.69 18.10 12.32 15.15 31.34
MBV2-1.4-DS-C 73.30 23.97 17.48 12.07 14.48 29.69
MBV2-1.4-DS-D 72.99 22.81 17.51 12.01 14.30 27.93
Ours 73.46 22.40 16.39 11.15 13.64 27.54
MBV2-1.4-DS-E 72.34 21.04 15.71 10.81 12.97 26.01
Ours 72.57 20.49 15.03 10.29 12.86 25.84

speedup with 0.46%p higher accuracy compared to DS-
A-1.0. We present the comprehensive table including the
latency on different GPUs in Appendix

Table [3] shows the result of applying our method to
MobileNetV2-1.4. The result demonstrates that our method
outperforms the baseline method in every compression ratio
and across all model formats and GPU platforms. In partic-
ular, our method achieves 1.07x speedup in TensorRT com-
piled format with higher accuracy compared to MBV2-1.4-
DS-C. Compared to the pretrained network, our compressed
network achieves 1.61x speedup in TensorRT compiled
format and 1.91 x speedup without TensorRT with 1.60%p
accuracy drop.

We further present the results of applying knowledge dis-
tillation from the pretrained weight when we finetune the
compressed networks. Table ] shows that adopting the
knowledge distillation technique further boosts the accuracy
of the compressed networks. Specifically for MobileNetV2-
1.0, our method achieves 1.41x speedup in TensorRT for-
mat and 1.62x speedup in PyTorch without losing accuracy
from the pretrained weight.

5.3. Ablation Study on Ordered Set to be Merged

Recall the definition of A and S: A indicates locations
where the activation layer is not replaced with an identity
function and S indicates indices where we do not merge.
The set .S always includes A since the activation layers that
are not id cannot be merged. One could argue that we can
merge the layers with respect to A, without separately com-
puting the optimal merge pattern .S. In this ablation study,
we compare the inference time of the merged network ac-

Table 4. Accuracy and latency of compressed architectures applied
to MobileNetV2 on ImageNet dataset adopting knowledge distilla-
tion technique. Compression methods use the latency information
of RTX 2080 Ti and the latency is measured on RTX 2080 Ti with
batch size of 128. | denotes the accuracy of the pretrained weight
used in DepthShrinker, and we use the same pretrained weight for
a fair comparison.

TensorRT  w/o TensorRT
Network Acc (%) Lat. (ms) Lat. (ms)
MBV2-1.0  72.89f 19.26 40.71
DS-A-1.0 72.76 14.82 27.53
Ours 73.00 13.67 25.09
MBV2-1.4  76.28F 29.93 61.64
DS-A-1.4 75.08 19.62 35.05
Ours 75.16 18.80 32.78

cording to A and S. Figure[3|shows that the network merged
according to S is about 30% faster than the network merged
according to A. This demonstrates that jointly optimizing
over A and S simultaneously is crucial for optimal depth
compression.

5.4. An Illustration of the Larger Search Space

The scope of the DepthShrinker is restricted to the cases
where merging operation occurs within the Inverted Resid-
ual Block (Fu et al.,[2022). On the other hand, our merging
algorithm can handle any series of convolution operations
and is agnostic to any specific block structure. For instance,
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Figure 3. Latency comparison between the network that is merged
according to A and the network that is merged according to .S
for different time constraint 7. A and S are the optimal solu-
tions of Equation (@) where I[-,-] and T[-,] are evaluated for
MobileNetV2-1.0 on ImageNet dataset.

our method finds the architecture that merges across the
blocks, which DepthShrinker cannot find as shown in Fig-
ure[d] Our method allows us to merge more general series
of layers enabling us to discover a more diverse kind of
efficient structure.

6. Conclusion

We propose an efficient depth compression algorithm to
reduce the depth of neural networks for the reduction in
run-time memory usage and fast inference latency. Our
compression target includes any general convolution opera-
tions, whereas existing methods are limited to consecutive
depth-wise convolution and point-wise convolution within
Inverted Residual Block. We propose a subset selection
problem which replaces inefficient activation layers with
identity functions and optimally merges consecutive convo-
lution operations into shallow equivalent convolution opera-
tions for fast end-to-end inference latency. Since the optimal
depth subset selection problem is NP-hard, we formulate a
surrogate optimization problem which can be exactly solved
via two-stage dynamic programming within a few seconds.
We evaluate our methods and baselines by TensorRT for a
fair inference latency comparison. Our method outperforms
Depthshrinker with a higher accuracy and faster inference
speed in MobileNetV2 on the ImageNet dataset. Specifi-
cally, we achieve 1.41x speed-up with 0.11%p accuracy
gain in MobileNetV2-1.0 on the ImageNet.
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A. Proof

Proposition A.1. A[l,t],and S[l,t] computed from the DP recurrence relations, Equation (1)) are the optimal sets A and S
of Equation (6), respectively.

Proof. For given (lg,t), we suppose for all | < Iy and ¢t < tg, (A[l,¢],S[l,t]) computed from the DP recurrence,
Equation (7) are the optimal (A, S) of Equation (6), respectively. When (I, t) = (lo, to),

Z Tsi1, 8] = Z T[si1, Si] (by Equation (7))

Si—1,Si E{O}US[ZQ 7to]U{lg} Si—1,S4 G{O}US[kO 7t0_710pt[k0 JO]]U{kO}USupl [k:() 7l0]U{l0}
= Z T[Si_l, Si] + Z T[S’i—la Si]
8i-1,8:€{0YUS[ko,to—Top[ko,lo]]U{ko} si-1,81€{ko}USop[ko,lo]U{lo}
= > T[si1, 8i] + Topt Ko, lo] (by Equation (5B))

Si—1,54 E{O}Us[kg 7t0—Topl[k0 ,lo]]U{kU}

(to — Top[Fo, lo]) + Topi[ko, lo] = to,
(by the optimality assumption for ko < ly and to — Top[ko, , lo] < to)

A

where
ko = argmax Z Ilaj1,a;]
OSK<E L a; €{0YUALR to-Tom k' To]JU{K 1}
subject to Top [0, k'] + Top [k, 1] < to.

Assume that (A[lo, tol, S[lo, to]) obtained using Equation (7) are not optimal (A, .S) and (A*, S*) are the optimal (4, S) of
Equation (6) when (I,¢) = (ly, o). Then,

Z Iaja,a5] > Z Iaj,a;] (%a)
aj1,a;€{0FUA*U{lo} aj1,a;€{0YUA[lo,to]U{lo}

Z T[Sz;l, Si] < 1o, (9b)

si—1,8:€{0YUS*U{lo}
where A* C §* C [l — 1].

A* is not an empty set due to Equation and

Z Iaj1,a;] = Z Iaj1,a;] (by Equation (7a))
aj1,a; €{0}YUA[lo,to]U{lo} ajo1,a; €{0YUA[ko,to—Top[ko,lo]]U{ko,lo }
> Iaj,a;] (by the definition of kq)
ajo1,a; €{0FUA[0,t0~Top[0,10]]U{0,10 }
= Z Ilaj1,a;]). (by the base case condition)

aj_l,ajG{O}U(Bu{lo}
Then, let k* be the maximum value of set A*.
We define A" = A* \ {k*}, S_,. = {s € " | s < k*},and S, . = {s € S* | s > k*}. The upper bound of

>k
T(S.,.,0,k*) is given as follows:

T[Si_l, Si] = Z T[Si_l, 51] — Z T[Si_l, Si]

si1,8:€{0}US., . U{k"} si1,5:€{0}US*U{lo} si1,si€{k* JUSL . U{lo}
< Z T[si1, 8i) — Top[k", lo)] (by Equation (5a))
Sifl,sie{O}US*U{lo}
< tg — Top[k™, lo]. (by Equation (9b))

11
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Therefore, the optimality assumption of A[k*,ty — Ton[k*, lo]] in Equation @ leads to the inequality:

Iajq,a;] > > a1, a]. (10)
ajfl,aje{O}UA[k*,to*Topl[k*,lo]]U{k*} aj,hajE{O}UA’U{k:*}
Thus,
Z I[aj_l, aj] = Z I[aj_l, aj] (by Equation )
aj-1,a; G{O}UA[lo,to]U{l(]} aj—1,a; G{O}UA[kD,t()fTopl[kO’lO]]U{k)OJO}
> Iaj,a;) (by the definition of kq)
aj,17aj6{O}UA[k*,to—T0pl[k*,lo]]U{k*Jo}
= Z I[aj_l,aj} +I[I€*,Z0]
aj1,a; E{O}UA[E* ,to—Top[k*,lo]]U{k*}
> Z Iajq,a;] + I[E*, o] (by Equation (I0))

aj1,a;E{0YUA'U{k*}

= Z I[aj_l,aj] = Z I[aj—laaj]'

ajfl,ajE{O}UA’U{k*,lo} aj717aj€{O}UA*U{lo}

This contradicts with Equation (9a). Therefore, our assumption that (A[lo, to], S[lo, to]) obtained using DP recurrence
relation are not optimal (4, S) of Equation (6) is false. Thus, (A[l, ¢], S[L, t]) are optimal (A, S) of Equation (6). O

Proposition A.2. S|[l,t] computed from the DP recurrence relations, Equation (1)) is the optimal S which minimizes the
latency of the network when All,t] is fixed. Concretely, S|l,t] is the optimal S of the optimization problem:

min Tlsia, sil. "
All#]CSC[1-1] s S,E%usu{l} e

Proof. When l=1, S[l,t] = () which satisfies Equation by Equation (7b). For given (o, o), we suppose for all [ < I,
and t < t, Equation is satisfied. Then, we assume that S|, ] obtained using Equation is not optimal S and S*
are the optimal S of Equation when (1,t) = (lo, o). Then, A[lg,t5] € S* and

Z T[Si_h Si] > Z T[Si_l, Si] (12)

si—1,8:€{0}US[lo,to]U{lo} si—1,8;€{0}US*U{lp}

We can divide two cases whether A[ly, %] is an empty set or not.

Casel: A[ly, to] is an empty set  S|[lo, to] = Sen[0, lo] by Equation (7b). Then, So [0, lo] is the optimal S of Equation
when (I,t) = (lp,to) which contradicts with our assumption that S[lo, to] is not optimal S of Equation when
(1,t) = (lo, to).

Case2: Allp, to] is not an empty set Let k( be the maximum value of set A[lg, to]. Then, we define A" = Allg, to] \ {ko}.
Sl =1s€ 85" [ s<ko},and S, = {s € S*|s> ko}. By the definition, A[ko, to — Top[ko, lo]] € S, - Then, by

>ko
the optimality assumption for kg < lo and to — Top ko, lo] < to,

Z T[si, 58] > Z T[si1, si)- (13)

si-1,5:€{0}USL, Ufko} 5i-1,8:€{0}US[ko,to—Topt[ko,lo]]U{ko }

12
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Z T[Si_l, 81] = Z T[Si_l, 51] + Z T[Si_l, Si}

Sifl,SiG{O}US*U{lo} Sifl,Sie{O}US;kOU{ko} si,l,sie{ko}US;kou{lg}

Z T[Sz;l, Si] + Z T[Sifla 5%]
8i1,8:€{0YUS ko, to—Top[ko,lo]]U{ko} si1,8i€{ko}USL , U{lo}
(by Equation (I3))
Z T[si,si] + Z T[si1, si]
5i-1,8;€ {O}US[ko ,to —Tl,pl[ko ,lo]]U{kO} 5i-1,8;€ {ko}US\,p[U{lo}

(by Equation (5Db))
Z Tsi1, 8i]

si-1,5:€{0}US[ko,to—Topt[ko,lo]]U{ko }USopU{lo }

= Z T[Sifl, Sz] (by Equation )

si-1,8;€{0}US[lo,to]U{lo}

Y

Y

v

This contradicts with Equation . Therefore, our assumption that S[ly, o] obtained using DP recurrence relation is not
optimal S of Equation when (I, ¢) = (lo, to) is false. Thus, S[l, t] is optimal S of Equation (1) O

B. Measuring the Importance

Algorithm 3 Finding Optimal Importance with DP Algorithm 4 Solving the Extended Surrogate Objective
input [ input 7y, L, T, 1
Initialize Ion [k, 1, a,b] < 0, B[k, 1] < 0 Vk,l,a,b Initialize DI, ¢, a] < 0, A[l,¢] + 0, S[l,t] < 0 VI, t,a
I[k,1,0,b] + —oc0 Vk,l,b,0) # id. Topt, Sopt <— Algorithm[T](T', L)
I[k,l,a,0] < —c0 Vk,l,a,01 #id Iopt, Bopt <— Algorithm 3| (1)
I[k,l,a,0] + —c0 Vk,l,a,0p =0, =id for ! =1to L do
fori =1to L do for ¢t = Ty [0,1] + 1 to Tp do
fork=0tol—1do fora =0to1do
for (a, b) in [(0, 0), (0, 1), (1,0), (1,1)] do k,a < argmax (D [k, t — Ton[K', 1], '] + Lo (K', 1,0/, a))
m < argmax (Iope[k, m’, a,0] + I[m',1,0,b]) 0<k' <1
k<m/<l a’e{0,1}
Iopt[k, 1, a, b] + Iop[k,m’, a,0] + I[m’,1,0,b] subject to Top [0, k'] + Top [/, 1] < t
if m ¢ {k’} then tlast <— Tepl[k7 l]
Bopt[k‘, l] — Bopt[k‘, m] @] {m} D[l7 t: CL] «— D[kat - tlasly a] + Iopt[k7 l7 a, a}
end if All,t,a] + Alk,t — ta, ] U{k : k>0 A o =1}
end for S[l,t] <= STk, t — tias] U {k : k > 0} U Sopi[k, ]
end for B[l, t] — B[k, t— tlast} (@] {k k> 0} U Bop[[k, l]
end for end for
output oy, Bopt end for
end for
ans < argmax(A[L, Ty, a])
ae{0,1}

Olltpllt A[L, To7 alasl], S[L, To]7 B[L, To]

B.1. Extension on the Importance

In Section[d] the j-th activation layer of our target network for depth compression is either the j-th activation layer in the
vanilla network (o) or an identity function (id). Thus, if o; = id, the j-th activation layer in the target network is inherently
an identity function. For instance, MobileNetV?2 has an identity function as an activation layer at the end of each Inverted
Residual Block and the corresponding activation layers in our target network are bound to be id (Sandler et al.||2018). On
the other hand, non-linear activation layers at the end of the Inverted Residual Block can improve the performance of the
networks compressed from MobileNetV2 (Fu et al., 2022). To this end, we extend the search space of our method by further
introducing the network blocks that have a non-linear activation layer at these positions and incorporating them into the DP
formulation.
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Consider a network block from i+1-th layer to j-th layer. We introduce discrete variables d;, d; € {0, 1} to indicate whether
the first and the last activation layer of the network block are identity functions or not, respectively. If o; and o; are not
identity functions, then we limit d; and d; to 1, respectively. Then, we redefine the importance of the network block between
i+1-th layer to j-th layer as I, j,d;, d;].

Concretely, we redefine the importance as follows:

L i—1
I[i, j,di, d;] = meaxACC O o1 0 fg, 0(djo+ (1 —dj)id) o O fo, o(dio+ (1 —d;)id)o fy, o Oal o fo,
_ \—,—/ \_v_/
=i+l j-th activation ‘l i+l , i-th activation .
j+1to L layers 141 to j layers 1 to ¢ layers

L
— meaXAcc (Oal o f9l> , (14)

I=1
where o is the activation layer that is not an identity function.

Due to the redefinition of importance, we propose an alternative surrogate for objective in Equation (Ta) as follows:

I(A,B) = Z I[bja,b5,14(bj—1), 1a(b))], (15)

bj—1,b;€{0}UBU{L}

where A C B C [L —1]. A denotes the positions of activations which are not identity functions and B denotes the boundary
points of the contiguous network blocks for objective approximation. Then, the objective extends to

Jnaximize > ITbj1,bj, La(bj-1), La(b;)] (16)
bjfl,bjE{O}UBU{L}

subject to Z T[84-1, si] < To.
Si717SiE{O}USU{L}

Note, Equation (T6) can be exactly solved with DP algorithm analogously by Algorithm 4]

B.2. Possible Combinations of Network Blocks

In MobileNetV2, we empirically observed that the network blocks with identity functions on both edges unnecessarily
degrade the performance by excessively reducing the number of activation functions in the compressed network. To address
this issue, we set the importance value of the network blocks to negative infinity if o; = 0; = id, d; = 0 and exclude them
in the DP algorithm.

Furthermore, we only consider blocks that we can merge into a single layer; thus, the skip-connections in MobileNetV2
considerably reduce the number of possible blocks. We also avoid merging in scenarios where a convolutional layer with a
kernel size larger than 1 follows the stride 2 convolutional layer since it leads to a significant increase in kernel size (Fu
et al., 2022)). In MobileNetV2, we have 171 different blocks to measure the latency (7'[¢, j|) and 315 different blocks to
measure the importance (I[¢, j, d;, d;]).

B.3. Evaluating and Normalizing the Importance

When we evaluate the importance value in Equation (14)), we approximate the first term by substituting the activation
layers within the block to identity functions and training the network for a few epochs from the pretrained weight. The
second term is considered as the accuracy of the pretrained weight itself. In MobileNetV2, we approximate the first term in
Equation by training the deactivated network for a single epoch. If the block size is one (i.e., K — | = 1), we re-initialize
the corresponding block and measure the accuracy drop after training it from the pretrained weight.

When we approximate the first term in Equation with the accuracy attained after training it for a few epochs, we tend to
calculate a lower importance value than the actual definition of the importance value. This effect is reflected independently
for each block; thus, the more block we construct the network with, the more we underestimate the actual importance of the
network. Therefore, it is crucial to normalize the importance values by adding an appropriate value to the importance of
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each block to address this issue. To this end, we add the constant multiple of the average importance of the blocks of size
one to normalize the importance of each block.

Concretely, we define the set D as

L
D= {Acc (one—epoch (f)) — meaxAcc (901 o f9l> ‘
L i—1
f= O e fgl o (di+10 + (]. — dl+1)1d) o for o (dZO' + (1 - dz)ld) o OO’[ o fgl
l=i+1 =1
fori € [L - 1],9/ = init(@i), and d;,d;+; € {0, 1}},

where one—epoch( - ) denotes the network trained for single epoch and init( - ) denotes the initializing function. Then,
we normalize the importance value by

1], k, a, b <—I[l,k,a,b]—|%| Y Aace,
AacceD

where « is the hyperparameter.

C. Additional Experiments
C.1. Reproducing the Search Phase of DepthShrinker on ImageNet-100

We reproduce the search phase of DepthShrinker on top of the ImageNet-100 dataset and search the patterns that match the
compression ratio in the original paper (Fu et al., [2022). In MobileNetV2-1.0, we sweep through the number of activated
blocks among 12, 9, and 7 and denote them ‘DS-AR-1.0’, ‘DS-BR-1.0’, and ‘DS-CR-1.0’, respectively. In MobileNetV2-1.4,
we sweep through the number of activated blocks among 11, 8, and 6 and name them ‘DS-AR-1.4’, ‘DS-BR-1.4", and
‘DS-CR-1.4’, respectively. Table [5aand Table [Sb| summarize the results of comparing our method to the reproduced result
of DepthShrinker for MobileNetV2-1.0 and MobileNetV2-1.4 on the ImageNet-100 dataset, respectively. Our method
outperforms the baseline performance in TensorRT format regardless of the type of network and compression ratio.

C.2. Inference Time Transfer Results on Different GPUs

In this section, we present the results of measuring the end-to-end inference time across different GPU devices. The
compression of networks utilizes the latency information obtained from the RTX 2080 Ti GPU. We report the latency on

Table 5. Accuracy and latency of compressed architectures applied to MobileNetV2-1.0 and MobileNetV2-1.4 on ImageNet-100 dataset.
Compression methods use the latency information of RTX 2080 Ti and the latency is measured on the RTX 2080 Ti with batch size of 128.
We report the average accuracy of the three runs of finetuning.

(a) MobileNetV2-1.0 (b) MobileNetV2-1.4
TensorRT  w/o TensorRT TensorRT  w/o TensorRT
Network Acc (%) Lat. (ms) Lat. (ms) Network Acc (%) Lat. (ms) Lat. (ms)
MBV2-1.0 87.58 19.25 40.61 MBV2-14 88.88 29.94 61.68
DS-AR-1.0 86.89 11.86 21.14 DS-AR-1.4 87.57 19.55 34.58
Ours 86.93 11.35 20.65 Ours 88.05 19.31 33.08
DS-BR-1.0 86.45 11.73 19.44 DS-BR-1.4 86.23 18.22 28.77
Ours 86.53 11.08 19.97 Ours 87.18 16.26 27.42
DS-CR-1.0 85.38 10.47 16.54 DS-CR-1.4 84.85 17.21 26.07
Ours 85.91 9.62 16.82 Ours 85.93 14.65 22.96

15



Efficient Latency-Aware CNN Depth Compression via Two-Stage Dynamic Programming

Table 6. Accuracy and latency of compressed architectures applied to MobileNetV2-1.0 and MobileNetV2-1.4 on ImageNet-100 dataset.
The latency of the compressed network architecture is measured on TITAN Xp, RTX 2080 Ti, RTX 3090, and Tesla V100 with batch size of
128. We report the average accuracy of the three runs of finetuning.

(a) MobileNetV2-1.0

TensorRT Latency (ms) w/o TensorRT (ms)
Network Acc (%) TITANXp RTX2080Ti RTX3090 Tesla V100 RTX 2080 Ti
MobileNetV2-1.0 87.58 26.98 19.25 13.31 15.49 40.61
MBV2-DS-A 87.58 19.92 14.74 9.70 11.71 27.59
Ours 87.69 17.90 12.53 8.74 10.22 23.02
MBV2-DS-B 87.31 18.02 12.33 8.73 10.03 22.99
Ours 87.45 16.93 12.11 8.43 9.93 22.29
MBV2-DS-C 85.92 15.59 11.20 7.84 9.08 20.76
Ours 86.73 15.27 11.14 7.77 9.18 20.62
MBV2-DS-D 85.30 14.38 10.49 7.27 8.56 18.78
Ours 85.91 13.45 9.62 6.71 8.06 16.82

(b) MobileNetV2-1.4

TensorRT Latency (ms) w/o TensorRT (ms)
Network Acc (%) TITANXp RTX2080Ti RTX3090 Tesla V100 RTX 2080 Ti
MobileNetV2-1.4 88.88 42.15 29.94 20.67 24.29 61.68
MBV2-1.4-DS-A 88.01 26.90 19.61 13.54 16.05 35.06
Ours 88.41 26.53 19.48 13.28 16.45 34.01
MBV2-1.4-DS-B 86.99 25.27 19.21 13.19 15.96 31.63
Ours 87.58 24.60 18.22 12.48 15.39 30.77
MBV2-1.4-DS-C 86.73 23.64 17.47 12.08 14.52 29.73
MBV2-1.4-DS-D 86.05 22.69 17.50 12.00 14.48 27.99
Ours 87.18 22.03 16.26 11.07 13.50 27.42
MBV2-1.4-DS-E 85.29 20.94 15.67 10.87 13.03 26.08
Ours 85.93 19.35 14.65 9.77 12.27 22.96

Table 7. Accuracy and latency of compressed architectures applied to MobileNetV2-1.0 on ImageNet dataset. The latency of the
compressed network architecture is measured on TITAN Xp, RTX 2080 Ti, RTX 3090, and Tesla V100 with batch size of 128. { denotes the
accuracy of the pretrained weight used in DepthShrinker, and we use the same pretrained weight for a fair comparison.

TensorRT Latency (ms) w/o TensorRT (ms)
Network Acc (%) TITANXp RTX2080Ti RTX 3090 Tesla VIOO RTX 2080 Ti
MobileNetV2-1.0  72.89% 27.03 19.26 13.39 15.50 40.71
MBV2-DS-A 72.37 20.01 14.82 9.69 11.76 27.53
Ours 72.83 19.53 13.67 9.64 11.16 25.09
MBV2-DS-B 71.96 17.80 12.42 8.75 10.07 22.92
Ours 72.13 18.43 12.38 8.67 10.27 21.74
MBV2-DS-C 70.87 15.76 11.28 7.87 9.12 20.77
Ours 71.44 15.23 10.90 7.69 8.98 19.75
MBV2-DS-D 69.43 14.38 10.53 7.27 8.56 18.82
Ours 70.65 14.21 9.88 6.99 8.31 16.55

TITAN Xp, RTX 2080 Ti, RTX 3090, and Tesla V100. Table@] and Table @] summarize the accuracy and the latency of the
networks compressed on the ImageNet-100 dataset. We further present the results of compressing MobileNetV2-1.0 on
ImageNet dataset in Table|/} Our method outperforms the baseline in the majority of the settings.
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C.3. Comparison with Channel Pruning Baselines

In this section, we compare our depth compression

Table 8. Accuracy and latency of compressed architectures applied to
MobileNetV2-1.0 and MobileNetV2-1.4 on ImageNet dataset. The

method with the channel pruning baselines. We start

latency is measured on RTX 2080 Ti with batch size of 128.

from the same pretrained weight and finetune with the

. . . . . . TensorRT  w/o TensorRT

identical training protocol described in Section[5.1] In Network Acc (%) Lat. (ms) Lat. (ms)

MobileNetV2-1.0, we compare with uniform L' prun-

ing and AMC (He et al., 2018b). For the uniform ! MBV2-1.0 72.89 19.26 40.71

pruning, we leave 75% of the output channels based Uniform L1 72.65 15.05 32.10

on L'-norm in the first convolution layer of each In- AMC (70% FLOPs)  72.01 14.40 30.81

verted Residual Block and leave the other convolution Ours 72.83 13.67 25.09

layers in the block (Li et al., |2017; |Liu et al.,|2019). For

AMC, we prune each convolutional layer according to MBV2-1.4 76.28 29.93 61.64

the channel ratio of the AMC network (70% FLOPs). In Uniform L! 74.80 20.86 42.25

MobileNetV2-1.4, we compare with uniform L' pruning Ours 75.16 19.76 35.07
nd MetaPruning (Li 1../2019). For the uniform L' .

lﬁ)rlcllninegt,aweulea\l(/;e(65l%:el([)ta"1 tl’le ?)u?;ut ((:)h;nfl:ls \:/)ith the lc\)/[l?rtsPrumng-l.Ox ;223 iézg gi;g

same protocol. For MetaPruning, we prune each convo-

lutional layer according to the channel ratio of the MetaPruning network (MetaPruning-1.0x). It is worth noting that we
finetune from a pretrained weight pruned based on the L!-norm in reproducing the MetaPruning, while the original method
trains the network from scratch. We choose to reproduce this way since it leads to better accuracy. Table [8|demonstrates that
our method outperforms the channel pruning baselines consistently.

C.4. Depth Compression Results on VGG19 Network

In this section, we present the results of applying our depth com-

pression method to the VGG19 network on the ImageNet dataset
(Simonyan & Zisserman, 2015 Russakovsky et al.l 2015). We
compress the depth of the network utilizing the latency information
of RTX 2080 Ti and measure the latency on the same RTX 2080
Ti. We finetune the network for 20 epochs using cosine learning
rate decay with the SGD optimizer. As a result, we attain 1.44 x
speed-up without losing any accuracy.

C.5. FLOPs and Run-time Memory Results

In this section, we report the FLOPs and the peak run-time
memory usage of our compressed networks compared to the
baseline method DepthShrinker (Fu et al.|[2022). We present the
results of applying compression methods to MobileNetV2-1.0
on the ImageNet dataset. We highlight that our method directly
optimizes for the wall clock inference time and therefore did
not optimize for the FLOPs. Although our method does not
strictly have fewer FLOPs than the baseline method, our method
outperforms the baseline in peak run-time memory, which is
related to real-hardware efficiency. It is worth noting that the
FLOPs values we report differ from the baseline works because
we report the FLOPs at the test time after fusing the batch nor-
malization layers into the convolutional layers (Fu et al., [2022;
Sandler et al., 2018). Furthermore, DepthShrinker’s official
implementation omits to merge the first Inverted Residual Block
in the ‘DS-A-1.0’ network; we measure the test time FLOPs

Table 9. Accuracy and latency of compressed architectures
applied to VGG19 on ImageNet dataset. The latency is
measured on RTX 2080 Ti with batch size of 64.

Network  Accuracy (%) Latency (ms)

VGGI19 74.24 131
Ours 74.99 111
74.33 91
73.00 84

Table 10. FLOPs and run-time memory usage of compressed
architectures applied to MobileNetV2-1.0 on ImageNet
dataset. Memory usage is measured with batch size of 128.

Run-time
Network Acc (%) MFLOPs Mem. (GB)
MBV2-1.0 72.89 302 6.88
DS-A-1.0 72.37 315 4.21
Ours 72.83 291 3.93
DS-B-1.0 71.96 258 3.63
Ours 72.13 282 3.35
DS-C-1.0 70.87 248 3.31
Ours 71.44 247 3.16
DS-D-1.0 69.43 243 2.95
Ours 70.65 247 2.55

after we merge it following their paper (Fu et al.,|2022). We report the FLOPs at the test time because the objective of our
method is to obtain an efficient network with low latency at the test time.
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Table 13. Hyperparameters used in our method. We use « in normalizing the importance value and use Ty as the constraint of Equation (T).

Dataset Table (Network) Acc (%) « To  Dataset Table (Network) Acc () « To
ImageNet-100  Table[[|(MBV2-1.0) ~ 87.69 1.8 230 ImageNet TableR|(MBV2-1.0) 7283 16 250
87.45 1.8 220 72.13 1.6 22.1
86.73 1.8 20.5 71.44 1.6 20.0
85.91 1.8 175 70.65 1.6 18.0
Table (MBV2—1.4) 88.41 1.6 28.0 Table(MBV2—1.4) 74.68 1.2 270
87.58 1.6 26.0 74.19 1.2 26.0
87.18 1.6 23.0 73.46 1.2 230
85.93 1.6 20.0 72.57 1.2 20.0
C.6. Latency on CPU Device Table 11. Accuracy and CPU latency of compressed

. . architectures applied to MobileNetV2-1.0 on ImageNet
In this section, we present the CPU latency of our compressed net- ..o o0 The latency is measured on 5 Intel Xeon Gold

works compared to the baseline method DepthShrinker (Fu et al. 5220R CPU cores with batch size of 128.
2022). We present the results of applying compression methods

Network Accuracy (%) Latency (ms)
to MobileNetV2-1.0 on the ImageNet dataset. We measure the la- MBVLIO 7289 1386
tency on 5 Intel Xeon Gold 5220R CPU cores with batch size of 128. DS-A-1.0 7237 837
Our method attains higher accuracy with lower latency compared to Ours 72.83 10
DepthShrinker, regardless of the compression ratio. Specifically, our gi;f"'o ;;?g ;;2
method attains 1.95x speed-up with 0.06%p accuracy drop from the DS-C-1.0 7087 644
pretrained weight and attains 1.18 x speed-up with higher accuracy Ours 7144 566
compared to DS-A-1.0. 33;? o 2322 i%

C.7. Analysis on the Latency Reduction Table 12. Analysis on the latency reduction from removing activation

After finetuning the network, two different factors can layers and merging convolutional layers. The latency is measured on
contribute to the reduction in latency at the test time. ~ R7X 2080 Ti with batch size of 128.

The first factor involves replacing the activation layer TensorRT  w/o TensorRT

with the identity function, and the second is merging con- Network Acc (%) Lat. (ms) Lat. (ms)

secutive convolutional layers. We present the results of Original 72.89 19.55 41.03

the latency reduction incurred by these two factors in Ta- . o

bl Whil . L all b After removing activation 72.13 19.55 35.15
e[12] While removing activations partially contributes After merging convolution 1250 71.88

to a latency reduction without TensorRT, its impact be- - —

comes negligible in TensorRT format. This is because After removing activation 70.65 19.55 33.69

ghg ’ After merging convolution 9.92 16.60

TensorRT fuses non-linear activation layers with the pre-
ceding convolutional layers (Vanholder, 2016). In the main paper, we optimize the inference time of the network in the
TensorRT implementation and do not consider the latency of the activation layer in our formulation.

D. Hyperparameters

In this section, we present the values of hyperparameters that can reproduce the results of our method in Table[T3] Specifically,
our method has two hyperparameters « and T}, in optimizing the ordered set A and S. First hyperparameter o works in
normalizing importance value of each block. Appendix describes the detailed process of normalizing the importance
value of each block using the hyperparameter . Second hyperparameter 7 serves the inference time constraint when we
solve the Equation ().

During finetuning, we finetune the network for 180 epochs using cosine learning rate decay with the SGD optimizer
and batch size of 256. For the networks compressed on the ImageNet-100 and the compressed MobileNetV2-1.4 on the
ImageNet, we finetune using the base learning rate of 0.1, weight decay of le-5 and adopt the label smoothing, random
erasing and RandAugment following the |[Fu et al.| (2022) (Miiller et al.l 2019} Zhong et al.| 2017} |(Cubuk et al., [2020). For
the compressed MobileNetV2-1.0 on ImageNet dataset, we use the base learning rate of 0.05, weight decay of le-5 without
adopting further improved augmentation techniques, since they did not improve the performance.
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Figure 5. Illustration comparing the output from two different types of padding applied to two consecutive 3 X 3 convolution operations
with the output from a merged 5 x 5 convolution operation. The boundary of the output feature map obtained from applying zero padding
of size 1 before each 3 x 3 convolution is distinct from that of the output feature map obtained from the merged 5 x 5 convolution.
Conversely, if zero padding of size 2 is applied to the first 3 X 3 convolution, the output feature map is equivalent to the output feature
map obtained from the merged 5 x 5 convolution.

E. Merging Convolutional Layers in Modern CNN
E.1. Skip Addition

We address the details to apply the merging for the convolution operations in modern CNNs with skip addition and padding.
Consider a skip addition, f(z) + = where f(-) is a network block and X is an input feature map. When f(-) is a single
convolution operation, f(x)+x can be replaced by an equivalent convolution operation (Ding et al., 2021). In light of this,
our method fuses the skip addition into f(-) only if f(z) is merged into a single convolution operation.

E.2. Padding Reordering Technique

DepthShrinker’s scope of merging convolution operations is restricted to cases where the kernel size of at least one of the
convolution operations to be merged is 1 (Fu et al.| [2022). To include more general cases of merging where the kernel
size of both convolution operations is greater than 1, we need to address the details of padding. In this paper, we limit our
considerations to zero padding for the exact merging and apply sufficient zero padding to prevent the computation disparities
at the boundaries before and after merging.

Consider a feature map X (), upon which two consecutive 3 x 3 convolution operations, utilizing kernels #; and 6y, are
applied to produce an output feature map X +2). The output generated by the first convolution operation utilizing kernel 6;
is denoted as X (1), As shown in Figure when zero padding of size 1 is applied prior to each of the 3 x 3 convolution
operations, the boundary of the output resulting from the merged 5 x 5 convolution operation, utilizing kernel 6,3 ® 6,
differs from that of X +2)_ Insufficient zero padding results in a computation skip at the boundary of X 1) which in turn
leads to a discrepancy between the computation at the boundary of X (+2) and the output feature map of the merged 5 x 5
convolution operation. Conversely, when zero padding of size 2 is applied prior to the first 3 X 3 convolution operation,
the output feature map of the two consecutive 3 X 3 convolution operations is equivalent to the output feature map of the
merged 5 X 5 convolution operation.

In light of this, after we optimize the optimal ordered set A and S, we fix the activation layers following A and reorder the
padding of the convolutional layers according to S before the finetuning process. After finetuning, we merge the network at
the test time without losing any accuracy.
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