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Abstract

Despite remarkable success in a variety of applications, it is well-known that deep
learning can fail catastrophically when presented with out-of-distribution data.
Toward addressing this challenge, we consider the domain generalization problem,
wherein predictors are trained using data drawn from a family of related training
domains and then evaluated on a distinct and unseen test domain. We show that
under a natural model of data generation and a concomitant invariance condition,
the domain generalization problem is equivalent to an infinite-dimensional con-
strained statistical learning problem; this problem forms the basis of our approach,
which we call Model-Based Domain Generalization. Due to the inherent chal-
lenges in solving constrained optimization problems in deep learning, we exploit
nonconvex duality theory to develop unconstrained relaxations of this statistical
problem with tight bounds on the duality gap. Based on this theoretical motivation,
we propose a novel domain generalization algorithm with convergence guarantees.
In our experiments, we report improvements of up to 30% over state-of-the-art
domain generalization baselines on several benchmarks including ColoredMNIST,
Camelyon17-WILDS, FMoW-WILDS, and PACS. Our code is publicly available
at the following link: https://github.com/arobey1/mbdg.

1 Introduction
Despite well-documented success in numerous applications [1–4], the complex prediction rules
learned by modern machine learning methods can fail catastrophically when presented with out-
of-distribution (OOD) data [5–9]. Indeed, rapidly growing bodies of work conclusively show that
state-of-the-art methods are vulnerable to distributional shifts arising from spurious correlations
[10–12], adversarial attacks [13–17], sub-populations [18–21], and naturally-occurring variation
[22–24]. This failure mode is particularly pernicious in safety-critical applications, wherein the
shifts that arise in fields such as medical imaging [25–28], autonomous driving [29–31], and robotics
[32–34] are known to lead to unsafe behavior. And while some progress has been made toward
addressing these vulnerabilities, the inability of modern machine learning methods to generalize to
OOD data is one of the most significant barriers to deployment in safety-critical applications [35, 36].

In the last decade, the domain generalization community has emerged in an effort to improve the
OOD performance of machine learning methods [37–40]. In this field, predictors are trained on data
drawn from a family of related training domains and then evaluated on a distinct and unseen test
domain. Although a variety of approaches have been proposed for this setting [41, 42], it was recently
shown that that no existing domain generalization algorithm can significantly outperform empirical
risk minimization (ERM) [43] over the training domains when ERM is properly tuned and equipped
with state-of-the-art architectures [44, 45] and data augmentation techniques [46]. Therefore, due to
the prevalence of OOD data in safety critical applications, it is of the utmost importance that new
algorithms be proposed which can improve the OOD performance of machine learning methods.

In this paper, we introduce a new framework for domain generalization which we call Model-Based

Domain Generalization (MBDG). The key idea in our framework is to first learn transformations
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that map data between domains and then to subsequently enforce invariance to these transformations.
Under a general model of covariate shift and a novel notion of invariance to learned transformations,
we use this framework to rigorously re-formulate the domain generalization problem as a semi-infinite
constrained optimization problem. We then use this re-formulation to prove that a tight approximation
of the domain generalization problem can be obtained by solving the empirical, parameterized dual
for this semi-infinite problem. Finally, motivated by these theoretical insights, we propose a new
algorithm for domain generalization; extensive experimental evidence shows that our algorithm
advances the state-of-the-art on a range of benchmarks by up to thirty percentage points.

Contributions. Our contributions can be summarized as follows:
• We propose a new framework for domain generalization in which invariance is enforced to

underlying transformations of data which capture inter-domain variation.
• Under a general model of covariate shift, we rigorously prove the equivalence of the domain

generalization problem to a novel semi-infinite constrained statistical learning problem.
• We derive data-dependent duality gap bounds for the empirical parameterized dual of this

semi-infinite problem, proving that tight approximations of the domain generalization problem
can be obtained by solving this dual problem under the covariate shift assumption.

• We introduce a primal-dual style algorithm for domain generalization in which invariance is
enforced over unsupervised generative models trained on data from the training domains.

• We empirically show that our algorithm significantly outperforms state-of-the-art baselines
on several standard benchmarks, including ColoredMNIST, Camelyon17-WILDS, and PACS.

2 Related work
Domain generalization. The rapid acceleration of domain generalization research has led to an
abundance of principled algorithms, many of which distill knowledge from an array of disparate fields
toward resolving OOD failure modes [47–50]. Among such works, one prominent thrust has been to
learn predictors which have internal feature representations that are consistent across domains [51–
62]. This approach is also popular in the field of unsupervised domain adaptation [63–67], wherein it
is assumed that unlabeled data from the test domain is available during training [68–70]. Also related
are works that seek to learn a kernel-based embedding of each domain in an underlying feature space
[71, 72], and those that employ Model-Agnostic Meta Learning [73] to adapt to unseen domains
[42, 74–81]. Recently, another prominent direction has been to design weight-sharing [82–85] and
instance re-weighting schemes [86–88]. Unlike any of these approaches, we explicitly enforce hard
invariance-based constraints on the underlying statistical domain generalization problem.

Data augmentation. Another approach to improve OOD performance is to augment the available
training data. Among such methods, perhaps the most common is to leverage various forms of data
augmentation [89–96]. Recently, several approaches have used style-transfer techniques and image-
to-image translation networks [97–104] to augment the training domains with artificially-generated
data [105–112]. Alternatively, rather than generating new data, [113–115] all remove textural features
in the data to encourage domain invariance. Unlike the majority of these works, we do not perform
data augmentation directly on the training objective; rather, we derive a principled primal-dual style
algorithm which enforces invariance constraints on data generated by unsupervised generative models.

3 Domain generalization
The domain generalization setting is characterized by a pair of random variables (X,Y ) over instances
x 2 X ✓ Rd and corresponding labels y 2 Y , where (X,Y ) is jointly distributed according to
an unknown probability distribution P(X,Y ). Ultimately, the objective in this setting is to learn
a predictor f such that f(X) ⇡ Y , meaning that f should be able to predict the labels y of
corresponding instances x for each (x, y) ⇠ P(X,Y ). However, unlike in standard supervised
learning tasks, the domain generalization problem is complicated by the assumption that one cannot
sample directly from P(X,Y ). Rather, it is assumed that we can only measure (X,Y ) under different
environmental conditions, each of which corrupts or varies the data in a different way. For example,
in medical imaging tasks, these environmental conditions might correspond to the imaging techniques
and stain patterns used at different hospitals; this is illustrated in Figure 1a.

To formalize this notion of environmental variation, we assume that data is drawn from a set of
environments or domains Eall (see Figure 1b). Concretely, each domain e 2 Eall can be identified with
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(a) In domain generalization, the
data are drawn from a family of re-
lated domains. For example, in the
Camelyon17-WILDS dataset [20],
which contains images of cells, the
domains correspond to different
hospitals where these images were
captured.

(b) Each data point in a domain
generalization task is observed in a
particular domain e 2 Eall. The set
of all domains Eall can be thought
of as an abstract space lying in Rp.
In Camelyon17-WILDS, this space
Eall corresponds to the set of all
possible hospitals.

(c) We assume that the variation
from domain to domain is charac-
terized by an underlying genera-
tive model G(x, e), which trans-
forms the unobserved random vari-
able X 7! G(X, e) := Xe, where
Xe represents X observed in any
domain e 2 Eall.

Figure 1: An overview of the domain generalization problem setting used in this paper.

a pair of random variables (Xe
, Y

e), which together denote the observation of the random variable
pair (X,Y ) in environment e. Given samples from a finite subset Etrain ( Eall of domains, the goal
of the domain generalization problem is to learn a predictor f that generalizes across all possible
environments, implying that f(X) ⇡ Y . This can be summarized as follows:
Problem 3.1 (Domain generalization). Let Etrain ( Eall be a finite subset of training domains, and
assume that for each e 2 Etrain, we have access to a dataset De := {(xe

j , y
e
j )}

ne
j=1 sampled i.i.d. from

P(Xe
, Y

e). Given a function class F and a loss function ` : Y ⇥ Y ! R�0, our goal is to learn
a predictor f 2 F using the data from the datasets De that minimizes the worst-case risk over the
entire family of domains Eall. That is, we want to solve the following optimization problem:

minimize
f2F

max
e2Eall

EP(Xe,Y e) `(f(X
e), Y e). (DG)

In essence, in Problem 3.1 we seek a predictor f 2 F that generalizes from the finite set of training
domains Etrain to perform well on the set of all domains Eall. However, note that while the inner
maximization in (DG) is over the set of all training domains Eall, by assumption we do not have access
to data from any of the domains e 2 Eall\Etrain, making this problem challenging to solve. Indeed, as
generalizing to arbitrary test domains is impossible [116], further structure is often assumed on the
topology of Eall and on the corresponding distributions P(Xe

, Y
e).

Disentangling the sources of variation across environments. The difficulty of a particular domain
generalization task can be characterized by the extent to which the distribution of data in the unseen
test domains Eall\Etrain resembles the distribution of data in the training domains Etrain. For instance,
if the domains are assumed to be convex combinations of the training domains, as is often the
case in multi-source domain generalization [117–119], Problem 3.1 can be seen as an instance of
distributionally robust optimization [120]. More generally, in a similar spirit to [116], we identify
two forms of variation across domains: covariate shift and concept shift. These shifts characterize
the extent to which the marginal distributions over instances P(Xe) and the instance-conditional
distributions P(Y e|Xe) differ between domains. We capture these shifts in the following definition:
Definition 3.2 (Covariate shift & concept shift). Problem 3.1 is said to experience covariate shift if
environmental variation is due to differences between the set of marginal distributions over instances
{P(Xe)}e2Eall . On the other hand, Problem 3.1 is said to experience concept shift if environmental
variation is due to changes amongst the instance-conditional distributions {P(Y e|Xe)}e2Eall .

The growing domain generalization literature encompasses a great deal of past work, wherein both of
these shifts have been studied in various contexts [121–125]. Indeed, as this literature has grown, new
benchmarks have been developed which span the gamut between covariate and concept shift [126].
However, a large-scale empirical study recently showed that no existing algorithm can significantly
outperform ERM across these standard domain generalization benchmarks when ERM is carefully
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implemented [46]. As ERM is known to fail in the presence natural distribution shifts [127], this result
highlights the critical need for new algorithms that can go beyond ERM toward solving Problem 3.1.

4 Model-based domain generalization
In what follows, we introduce a new framework for domain generalization that we call Model-Based

Domain Generalization (MBDG). In particular, we prove that when Problem 3.1 is characterized
solely by covariate shift, then under a natural invariance-based condition, Problem 3.1 is equivalent
to an infinite-dimensional constrained statistical learning problem, which forms the basis of MBDG.

Formal assumptions for MBDG. In general, domain generalization tasks can be characterized by
both covariate and concept shift. However, in this paper, we restrict the scope of our theoretical
analysis to focus on problems in which inter-domain variation is due solely to covariate shift through
an underlying model of data generation. Formally, we assume that the data in each domain e 2 Eall is
generated from the underlying random variable pair (X,Y ) via an unknown function G.
Assumption 4.1. Let �e denote a Dirac distribution for e 2 Eall. We assume that there exists1 a
measurable function G : X ⇥ Eall ! X , which we refer to as a domain transformation model, that
parameterizes the inter-domain covariate shift via P(Xe) =d

G# (P(X)⇥ �e) 8e 2 Eall, where #
denotes the push-forward measure and =d denotes equality in distribution.

Informally, this assumption specifies that there should exist a function G that relates the random
variables X and X

e via X 7! G(X, e) = X
e. In past work, this particular setting in which the

instances Xe measured in an environment e are related to the underlying random variable X has been
referred to as domain shift [128, §1.8]. In our medical imaging example, the domain shift captured
by a domain transformation model would characterize the mapping from the underlying distribution
P(X) over different cells to the distribution P(Xe) of images of these cells observed at a particular
hospital; this is illustrated in Figure 1c, wherein inter-domain variation is due to varying colors and
stain patterns encountered at different hospitals. On the other hand, in this example example, the
label y ⇠ Y describing whether a given cell contains a cancerous tumor should not depend on the
lighting and stain patterns used at different hospitals. In this sense, while in other applications, e.g.
the datasets introduced in [10], the instance-conditional distributions can vary across domains, in this
paper we assume that inter-domain variation is solely characterized by the domain shift due to G.
Assumption 4.2 (Domain shift). We assume that inter-domain variation is solely characterized by
domain shift in the marginal distributions P(Xe), as described in Assumption 4.1. As a consequence,
we assume that the instance-conditional distributions P(Y e|Xe) are stable across domains, meaning
that Y e and Y are equivalent in distribution and that for each x 2 X and y 2 Y , it holds that

P(Y = y|X = x) = P(Y e = y|Xe = G(x, e)) 8e 2 Eall. (1)

Pulling back Problem 3.1. The structure imposed on Problem 3.1 by Assumptions 4.1 and 4.2 pro-
vides a concrete way of parameterizing large families of distributional shifts in domain generalization
problems. Indeed, the utility of these assumptions is that when taken together, they provide the basis
for pulling-back Problem 3.1 onto the underlying distribution P(X,Y ) via the domain transformation
model G. This insight is captured in the following proposition:
Proposition 4.3. Under Assumptions 4.1 and 4.2, Problem 3.1 is equivalent to

minimize
f2F

max
e2Eall

EP(X,Y ) `(f(G(X, e)), Y ). (2)

The proof of this fact is a straightforward consequence of the decomposition P(Xe
, Y

e) = P(Y e|Xe)·
P(Xe) in conjunction with Assumptions 4.1 and 4.2 (see Appendix C.2). Note that this result allows
us to implicitly absorb each of the domain distributions P(Xe

, Y
e) into the domain transformation

model. Thus, the outer expectation in (2) is defined over the underlying distribution P(X,Y ). On the
other hand, just as in (DG), this problem is still a challenging statistical min-max problem. To this
end, we next introduce a new notion of invariance with respect to domain transformation models,
which allows us to reformulate the problem in (2) as a semi-infinite constrained optimization problem.

1Crucially, although we assume the existence of a domain transformation model G, we emphasize that for
many problems, it may be impossible to obtain or derive a simple analytic expression for G. This topic will be
discussed at length in Section 6 and in Appendix G.
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A new notion of model-based invariance. Common to much of the domain generalization literature
is the idea that predictors should be invariant to inter-domain changes. For instance, in [10] the authors
seek to learn an equipredictive representation � : X ! Z [129], i.e. an intermediate representation
that satisfies P(Y e1 |�(Xe1)) = P(Y e2 |�(Xe2)) 8e1, e2 2 Eall. Despite compelling theoretical
motivation for this approach, it has been shown that current algorithms which seek equipredictive
representations do not significantly improve over ERM [130–133]. With this in mind and given
the additional structure introduced in Assumptions 4.1 and 4.2, we introduce a new definition of
invariance with respect to the variation captured by the underlying domain transformation model G.
Definition 4.4 (G-invariance). Given a domain transformation model G, we say a classifier f is
G-invariant if it holds for all e 2 Eall that f(x) = f(G(x, e)) almost surely when x ⇠ P(X).

Concretely, this definition says that a predictor f is G-invariant if environmental changes under
G(x, e) cannot change the prediction returned by f . Intuitively, this notion of invariance couples
with the definition of domain shift, in the sense that we expect that a prediction should return the
same prediction for any realization of data under G. Thus, whereas equipredictive representations
are designed to enforce invariance of in an intermediate representation space Z , Definition 4.4 is
designed to enforce invariance directly on the predictions made by f . In this way, in the setting of
Figure 1, G-invariance would imply that the predictor f would return the same label for a given
cluster of cells regardless of the hospital at which these cells were imaged.

Formulating the MBDG optimization problem. The G-invariance property described in the
previous section is the key toward reformulating the min-max problem in (2). Indeed, the following
proposition follows from Assumptions 4.1 and 4.2 and from the definition of G-invariance.
Proposition 4.5. Under Assumptions 4.1 and 4.2, if we restrict the domain F of Problem 3.1 to the
set of G-invariant predictors, then Problem 3.1 is equivalent to the following constrained problem:

P
? ,minimize

f2F

R(f) , EP(X,Y ) `(f(X), Y ) (MBDG)

subject to f(x) = f(G(x, e)) a.e. x ⇠ P(X) 8e 2 Eall.

Here a.e. stands for “almost everywhere” and R(f) is the statistical risk of a predictor f with respect
to the underlying random variable pair (X,Y ). Note that unlike (2), (MBDG) is not a composite
optimization problem, meaning that the inner maximization has been eliminated. In essence, the
proof of Proposition 4.6 relies on the fact that G-invariance implies that predictions should not change
across domains (see Appendix C.2). The optimization problem in (MBDG) forms the basis of our
Model-Based Domain Generalization framework. To explicitly contrast this problem to Problem 3.1,
we introduce the following concrete problem formulation for Model-Based Domain Generalization.
Problem 4.6 (Model-Based Domain Generalization). As in Problem 3.1, let Etrain ( Eall be a finite
subset of training domains and assume that we have access to datasets De 8e 2 Etrain. Then under
Assumptions 4.1 and 4.2, the goal of Model-Based Domain Generalization is to use the data from the
training datasets to solve the semi-infinite constrained optimization problem in (MBDG).

Problem 4.6 offers a principled perspective on Problem 3.1 when data varies WRT an underlying
domain transformation model. However, just as solving the min-max problem of Problem 3.1 is
known to be difficult, the problem in (MBDG) is also challenging to solve for several reasons:

(C1) The G-invariance constraint in (MBDG) is strict and thus challenging to enforce.
(C2) Problem 4.6 is a constrained problem over an infinite-dimensional functional space F .
(C3) We do have access to the set of all domains Eall or to the underlying distribution P(X,Y ).
(C4) We also generally do not have access to the underlying domain transformation model G.

In the ensuing sections, we explicitly address each of these challenges toward developing a tractable
method for approximately solving Problem 4.6 with guarantees on optimality. In particular, we
discuss challenges (C1), (C2), and (C3) in Section 5. We then discuss (C4) in Section F.

5 Data-dependent duality gap for MBDG
In this section, we offer a principled analysis of Problem 4.6. In particular, we first address (C1)
by introducing a tight relaxation of the G-invariance constraint. Next, to resolve the fundamental
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difficulty involved in solving constrained statistical problems highlighted in (C2), we formulate the
parameterized dual problem, which is unconstrained and thus more suitable for learning with deep
neural networks. Finally, to address (C3), we introduce an empirical version of the parameterized
dual problem and explicitly characterize the data-dependent duality gap between this problem and
Problem 4.6. At a high level, this analysis results in an unconstrained optimization problem which is
guaranteed to produce a solution that is close to the solution of Problem 3.1 (see Theorem 5.3). In
this section, we have chosen to present our results somewhat informally by deferring preliminary
results, regularity assumptions, and proofs to the appendices.

Addressing (C1) by relaxing the G-invariance constraint. One of the most fundamental challenges
in solving Problem 4.6 is the difficulty of enforcing the G-invariance equality constraint. To alleviate
some of this difficulty, we introduce the following relaxation of Problem 4.6:

P
?(�) , minimize

f2F

R(f) s.t. Le(f) , EP(X) d
�
f(X), f(G(X, e))

�
 � 8e 2 Eall (3)

where � > 0 is a fixed margin the controls the extent to which we enforce G-invariance and
d : P(Y)⇥P(Y)! R�0 is a distance metric over the space of probability distributions on Y . While
at first glance this problem may appear to be a significant relaxation of the MBDG optimization
problem in (MBDG), when � = 0 and under mild conditions on d, the two problems are equivalent in
the sense that P ?(0) = P

? (see Proposition B.1). Indeed, we note that the conditions we require on
d are not restrictive, and include the KL-divergence and more generally the family of f -divergences.
Moreover, when the margin � is strictly larger than zero, under the assumption that the perturbation
function P

?(�) is L-Lipschitz continuous, we show in Remark B.2 that |P ?�P ?(�)|  L�, meaning
that the gap between the problems is relatively small when � is chosen to be small. In particular,
when strong duality holds for (MBDG), this Lipschitz constant L is equal to the L

1 norm of the
optimal dual variable for (MBDG) (see Remark B.4).

Addressing (C2) by formulating the parameterized dual problem. As written, the relaxation
in (3) is an infinite-dimensional constrained optimization problem over a functional space F (e.g.
L
2 or the space of continuous functions). Optimization in this infinite-dimensional function space

is not tractable, and thus we follow the standard convention by leveraging a finite-dimensional
parameterization of F , such as the class of deep neural networks [134, 135]. The approximation
power of such a parameterization can be captured in the following definition:
Definition 5.1 (✏-parameterization). Let H ✓ Rp be a finite-dimensional parameter space. For ✏ > 0,
a function ' : H⇥ X ! Y is said to be an ✏✏✏-parameterization of F if it holds that for each f 2 F ,
there exists a parameter ✓ 2 H such that EP(X) k'(✓, x)� f(x)k

1
 ✏.

The benefit of using such a parameterization is that optimization is generally more tractable in the
parameterized space A✏ := {'(✓, ·) : ✓ 2 H} ✓ F . However, typical parameterizations often lead to
nonconvex problems, wherein methods such as SGD cannot guarantee constraint satisfaction. And
while several heuristic algorithms have been designed to enforce constraints over common parametric
classes [136–141], these approaches cannot provide guarantees on the underlying statistical problem
of interest [142]. Thus, to provide guarantees on the underlying statistical problem in Problem 4.6,
given an ✏-parameterization ' of F , we consider the following saddle-point problem:

D
?
✏ (�) , maximize

�2P(Eall)
min
✓2H

R(✓) +

Z

Eall

[Le(✓)� �] d�(e). (4)

where P(Eall) is the space of normalized probability distributions over Eall and � 2 P(Eall) is the
(semi-infinite) dual variable. Here we have slightly abused notation to write R(✓) = R('(✓, ·)) and
Le(✓) = Le('(✓, ·)). One can think of (4) as the dual problem to (3) solved over the parametric
space A✏. Notice that unlike Problem 4.6, the problem in (4) is unconstrained, making it much more
amenable for optimization over the class of deep neural networks. Moreover, under mild conditions,
the optimality gap between (3) and (4) can be explicitly bounded as follows:
Proposition 5.2 (Parameterization gap). Let � > 0 be given. Under mild regularity assumptions (see
Assumption C.1 in Appendix C.3) on ` and d, there exists a small universal constant k such that

P
?(�)  D

?
✏ (�)  P

?(�) + ✏k

⇣
1 +

���?
pert

��
L1

⌘
, (5)

where �
?
pert is the optimal dual variable for a perturbed version of (3) in which the constraints are

tightened to hold with margin � � k✏.
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Algorithm 1 Model-Based Domain Generalization (MBDG)
1: Hyperparameters: Primal step size ⌘p > 0, dual step size ⌘d � 0, margin � > 0
2: repeat
3: for minibatch {(xj , yj)}mj=1 in training dataset do
4: x̃j  GENERATEIMAGE(xj) 8j 2 [m] . Generate model-based images
5: distReg(✓) (1/m)

Pm
j=1 d('(✓, xj),'(✓, x̃j)) . Calculate distance regularizer

6: loss(✓) (1/m)
Pm

j=1 ` (xj , yj ;'(✓, ·)) . Calculate classification loss
7: ✓  ✓ � ⌘pr✓[ loss(✓) + � · distReg(✓) ] . Primal step for ✓
8: � [�+ ⌘d (distReg(✓)� �)]+ . Dual step for �
9: end for

10: until convergence
11:
12: procedure GENERATEIMAGE(x)
13: Sample e ⇠ N (0, I) . e is a latent code for MUNIT
14: return G(x, e) . Return image produced by MUNIT
15: end procedure

In this way, solving the parameterized dual problem in (4) provides a solution that can be used to
recover a close approximation of the primal problem in (3). To see this, observe that Prop. 5.2 implies
that |D?

✏ (�)� P
?(�)|  ✏k(1 + ||�?

pert||L1). This tells us that the gap between P
?(�) and D

?
✏ (�) is

small when we use a tight ✏-parameterization of F .

Addressing (C3) by bounding the empirical duality gap. The parameterized dual problem in (4)
gives us a principled way to address Problem 4.6 in the context of deep learning. However, complicat-
ing matters is the fact that we do not have access to the full distribution P(X,Y ) or to data from any
of the domains in Eall\Etrain. In practice, it is ubiquitous to solve optimization problems such as (4)
over a finite sample of N data points drawn from P(X,Y )2. More specifically, given {(xj , yj)}Nj=1

drawn i.i.d. according to (X,Y ), we consider the empirical counterpart of (4):

D
?
✏,N,Etrain

(�) , maximize
�(e)�0, e2Etrain

min
✓2H

⇤̂(✓,�) , R̂(✓) +
1

|Etrain|
X

e2Etrain

h
L̂e(✓)� �

i
�(e) (6)

where R̂(✓) and L̂e(✓) are the empirical counterparts of R(f) and L(f). Notably, the duality gap
between the solution to (6) and (MBDG) can be explicitly bounded as follows.
Theorem 5.3 (Data-dependent duality gap). Let ✏ > 0 be given, and let ' be an ✏-parameterization of
F . Under mild regularity assumptions on ` and d and assuming that A✏ has finite VC-dimension,
with probability 1� � over the N samples from P(X,Y ) we have that

|P ? �D
?
✏,N,Etrain

(�)|  L� + ✏k

⇣
1 +

���?
pert

��
L1

⌘
+O

⇣p
log(N)/N

⌘
(7)

where L is the Lipschitz constant of P ?(�) and k and �
?
pert are as defined in Proposition 5.2.

The key message to take away from Theorem 5.3 is that given samples from P(X,Y ), the duality gap
incurred by solving the empirical problem in (6) is small when (a) the G-invariance margin � is small,
(b) the parametric space A✏ is a close approximation of F , and (c) we have access to sufficiently
many samples. Thus, assuming that Assumptions 4.1 and 4.2 hold, the solution to Problem 3.1 is
closely-approximated by the solution to the empirical, parameterized dual problem in (6).

6 MBDG: A principled algorithm for domain generalization
Motivated by these theoretical insights, we now introduce a new domain generalization algorithm
which is widely applicable to problems with or without covariate shift. Our algorithm consists of
two steps. First, we learn an approximation of the underlying domain transformation model G(x, e)
using the data from the training domains Etrain. Next, we leverage G toward solving the unconstrained
dual optimization problem in (6) via a primal-dual iteration.

2Indeed, in practice we do not have access to any samples from P(X,Y ). In Section 6, we argue that the N
samples from P(X,Y ) can be replaced by the

P
e2Etrain

ne samples drawn from the training datasets De.
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Learning domain transformation models from data. Regarding challenge (C4), critical to our
approach is having access to the domain transformation model G. For the vast majority of settings, the
underlying function G(x, e) is not known a priori and cannot be represented by a simple expression.
For example, obtaining a closed-form expression for a model that captures the variation in coloration,
brightness, and contrast in the dataset shown in Figure 1 would be very challenging. While in general
it is impossible to learn the true underlying domain transformation model when one only has access to
data from the training domains, we argue that a realistic approximation of the underlying model can
be learned from this data. To this end, to learn a domain transformation model, we train multimodal
image-to-image translation networks on the training data. These networks are designed to transform
samples from one dataset so that they resemble a diverse collection of images from another dataset.
In particular, in each of the experiments in Section 7, we use the MUNIT architecture introduced in
[102] to parameterize learned domain transformation models. As shown in Figure 5 and in Appendix
G, models trained using the MUNIT architecture learn accurate and diverse transformations of the
training data, which often generalize to generate images from new domains.

Primal-dual iteration. Given a learned approximation G(x, e) of the underlying domain transfor-
mation model, the next step in our procedure is to use a primal-dual iteration [143] toward solving
(6) using the datasets De. We note that while our theory calls for data drawn from P(X,Y ), the
G-invariance condition implies that when (6) is feasible, '(✓, x) ⇡ '(✓, xe) when x ⇠ P(X),
x
e ⇠ Pe(X), and x

e = G(x, e). Therefore, the data from [e2EtrainDe is a useful proxy for data drawn
from P(X,Y ). As the outer maximization in (6) is a linear program in �, the primal-dual iteration
can be characterized by alternating between the following steps:

✓
(t+1) 2 ⇢- argmin

✓2H

⇤̂(✓,�(t)) (8) �
(t+1)(e) 

h
�
(t)(e) + ⌘

⇣
L̂e(✓)� �

⌘i

+
(9)

Here [·]+ = max{0, ·}, ⌘ is the dual step size, and ⇢- argmin denotes a solution that is ⇢-close to
being a minimizer, i.e. we should that have ⇤̂(✓(t+1)

,�
(t))  min✓2H ⇤̂(✓,�(t)) + ⇢. We call (8)

the primal step, and we call (9) the dual step. Furthermore, it can be shown that if this iteration is run
for sufficiently many steps and with small enough step size, the iteration convergences with high
probability to a solution which closely approximates the solution to Problem 4.6.
Theorem 6.1 (Primal-dual convergence). Assuming that ` and d are [0, B]-bounded, H has finite
VC-dimension, and under mild regularity conditions on (6), the primal-dual pair (✓(T )

,�
(T )) obtained

after running the alternating primal-dual iteration in (8) and (9) for T steps with step size ⌘, where

T =

⇠
1

2⌘

⇡
+ 1 and ⌘  2

|Etrain|B2
(10)

satisfies |P ? � ⇤̂(✓(T )
, µ

(T ))|  K(⇢,, ✏) +O(
p

log(N)/N). Here  is a constant that captures
the regularity of (6) (see Appendix C.6) and K(⇢,, ✏) is a small constant depending on ⇢, , and ✏.

This means that by solving the empirical dual problem for sufficiently many steps, we can reach a
solution that is close to solving the Model-Based Domain Generalization problem in Problem 4.6.

Implementation of MBDG. In practice, because (a) it may not be tractable to find a ⇢-minimizer
over H at each iteration and (b) there may be a large number of domains in Etrain, we propose two
modifications of the primal-dual iteration in which we replace (8) with a stochastic gradient step and
we use only one dual variable for all of the domains; we call this algorithm MBDG (see Algorithm 1).
We provide results in Appendix E where one dual variable is used per training domain.

7 Experiments

We now evaluate the performance of MBDG on a range of standard domain generalization benchmarks.
In the main text, we present results on ColoredMNIST, Camelyon17-WILDS, FMoW-WILDS, and
PACS; we defer results on VLCS to the supplemental. For ColoredMNIST, PACS, and VLCS, we use
the DomainBed package [46], facilitating comparison to a range of baselines. Model selection for
each of these datasets was performed using hold-one-out cross-validation. For Camelyon17-WILDS
and FMoW-WILDS, we use the repository provided with the WILDS dataset suite, and we perform
model-selection using the out-of-distribution validation set provided in the WILDS repository. Further
details concerning hyperparameter tuning and model selection are deferred to Appendix E.
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Table 1: ColoredMNIST. We report accuracies for ColoredM-
NIST. Model-selection was performed via cross-validation.

Algorithm +90% +80% -90% Avg
ERM 50.0 ± 0.2 50.1 ± 0.2 10.0 ± 0.0 36.7
IRM 46.7 ± 2.4 51.2 ± 0.3 23.1 ± 10.7 40.3
GroupDRO 50.1 ± 0.5 50.0 ± 0.5 10.2 ± 0.1 36.8
Mixup 36.6 ± 10.9 53.4 ± 5.9 10.2 ± 0.1 33.4
MLDG 50.1 ± 0.6 50.1 ± 0.3 10.0 ± 0.1 36.7
CORAL 49.5 ± 0.0 59.5 ± 8.2 10.2 ± 0.1 39.7
MMD 50.3 ± 0.2 50.0 ± 0.4 9.9 ± 0.2 36.8
DANN 49.9 ± 0.1 62.1 ± 7.0 10.0 ± 0.1 40.7
CDANN 63.2 ± 10.1 44.4 ± 4.5 9.9 ± 0.2 39.1
MTL 44.3 ± 4.9 50.7 ± 0.0 10.1 ± 0.1 35.0
SagNet 49.9 ± 0.4 49.7 ± 0.3 10.0 ± 0.1 36.5
ARM 50.0 ± 0.3 50.1 ± 0.3 10.2 ± 0.0 36.8
VREx 50.2 ± 0.4 50.5 ± 0.5 10.1 ± 0.0 36.9
RSC 49.6 ± 0.3 49.7 ± 0.4 10.1 ± 0.0 36.5

MBDA 72.0 ± 0.1 50.7 ± 0.1 22.5 ± 0.0 48.3
MBDG-DA 72.7 ± 0.2 71.4 ± 0.1 33.2 ± 0.1 59.0
MBDG-Reg 73.3 ± 0.0 73.7 ± 0.0 27.2 ± 0.1 58.1

MBDG 73.7 ± 0.1 68.4 ± 0.0 63.5 ± 0.0 68.5

Figure 2: Tracking dual variables.
We show the values of distReg(✓)
and the dual variables � for the each
MBDG models in Table 1. The mar-
gin � = 0.025 is shown in red.

7.1 ColoredMNIST

Figure 3: Regularized MBDG.
We show the regularization
value for each domain in
ColoredMNIST for a fixed dual
variable � = 1.0.

We first consider the ColoredMNIST dataset [10], which is a
standard domain generalization benchmark created by colorizing
subsets of the MNIST dataset [144]. This dataset contains three
domains, each of which is characterized by a different level of
correlation between the label and digit color. As shown in Table
1, the MBDG algorithm improves over each baseline by nearly
30%. To understand the reasons behind this improvement, we
consider three ablation studies on ColoredMNIST.

Tracking the dual variables. For the three MBDG classifiers
in Table 1, we plot the regularization term distReg(✓) and the
corresponding dual variable at each training step in Figure 2.
Observe that for the +90% and +80% domains, the dual variables
decay to zero, as the constraint is satisfied early on in training.
On the other hand, the constraint for the -90% domain is not satisfied early on in training, and in
response, the dual variable increases, gradually forcing constraint satisfaction. As we shown in the
next subsection, without the dual update step, the constraints may never be satisfied (see Figure 3).

Regularization vs. dual ascent. A common trick for encouraging constraint satisfaction is to
introduce soft constraints by adding a regularizer multiplied by a fixed multiplier to the objective.
While this approach yields a related problem to (6) (see Appendix B.4) where the dual variables are
fixed, there are few formal guarantees for this approach. Moreover, we show in Table 1 that when the
dual variable is fixed during training (MBDG-Reg in Table 1), the performance drops significantly
vis-a-vis MBDG. Notice that relative to Figure 2, the value of distReg(✓) is much larger than the
margin, meaning that the constraint is not being satisfied.

Ablation on data augmentation. To study the efficacy of the MBDG algorithm, we consider two
natural alternatives MBDG: (1) ERM with data augmentation through the learned model G(x, e)
(MBDA); and (2) MBDG with data augmentation through G(x, e) on the training objective (MBDG-
DA). As shown at the bottom of Table 1, while these variants significantly outperform the baselines,
they not perform nearly as well as MBDG. Thus, while data augmentation can in some cases improve
performance, the primal-dual iteration is a much more effective tool for enforcing invariance.

7.2 Camelyon17-WILDS and FMoW-WILDS

We next consider the Camelyon17-WILDS and FMoW-WILDS datasets from the WILDS family of
domain generalization baselines [20]. Table 2 shows that on Camelyon17-WILDS, MBDG improves
by more than 20 percentage points over the state-of-the-art baselines.
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Figure 4: Known vs. learned mod-
els G(x, e). We compare the perfor-
mance of MBDG for known models
(first five columns) against a model
that was trained with the data from the
training domains using MUNIT.

Figure 5: Samples from learned models G(x, e). We
show samples from domain transformation models learned
from the training data via the MUNIT architecture for
Camelyon17-WILDS, FMOW-WILDS, and PACS.

Table 2: WILDS datasets. We report accuracies
for Camelyon17 and FMoW. For both datasets, we use
the out-of-distribution validation set provided in the
WILDS repository to perform model selection.

Algorithm Camelyon17-WILDS FMoW-WILDS
ERM 73.3 ± 9.9 51.3 (0.4)
IRM 60.9 ± 15.3 51.1 (0.4)
ARM 62.1 ± 6.4 47.9 (0.3)
CORAL 59.2 ± 15.1 49.6 (0.5)

MBDG 94.8 ± 0.4 52.3 ± 0.5

Figure 6: Measuing invariance. We mea-
sure the invariance of ERM, IRM, and
MBDG to images generated by a model
G learned for Camelyon17-WILDS.

Measuring G-invariance of trained classifiers. In Section 4, we restricted our attention predictors
satisfying the G-invariance condition. To test whether our algorithm successfully enforces G-
invariance when G is learned from data, we measure the distribution of distReg(✓) over all of the
instances from the training domains of Camelyon17-WILDS for ERM, IRM, and MBDG. In Figure 6,
observe that whereas MBDG is quite robust to changes under G, ERM and IRM are not nearly as
robust. This property is key to the ability of MBDG to learn invariant representations across domains.

Ablation on learning models vs. data augmentation. Rather than learning G from data, a heuristic
alternative is to replace the GENERATEIMAGE procedure in Algorithm 1 with standard data aug-
mentation transformations. In Figure 4, we investigate this approach with five different forms of
data augmentation: B+C (brightness and contrast), CJ (color jitter), and three variants of RandAug-
ment [145] (RA, RA-Geom, and RA-Color). More details concerning these data augmentation
schemes are given in Appendix E. The bars in Figure 4 show that although these schemes offer strong
performance in our MBDG framework, the learned model trained using MUNIT performs best.

7.3 PACS

Table 3: PACS. We report classification accuracies for PACS.
Model-selection was performed via cross-validation.

Algorithm A C P S Avg
ERM 83.2 ± 1.3 76.8 ± 1.7 97.2 ± 0.3 74.8 ± 1.3 83.0
MTL 85.6 ± 1.5 78.9 ± 0.6 97.1 ± 0.3 73.1 ± 2.7 83.7
RSC 83.7 ± 1.7 82.9 ± 1.1 95.6 ± 0.7 68.1 ± 1.5 82.6

MBDG 80.6 ± 1.1 79.3 ± 0.2 97.0 ± 0.4 85.2 ± 0.2 85.6

In this subsection, we highlight se-
lected results for the PACS dataset.
Due to spatial limitations, we re-
port the top-performing baselines in
the main text, and defer the full set
of results to Appendix E. Notably,
MBDG beats the current SOTA by
nearly 2% when averaged over the
four domains. Of note in Table 3 is
the result on the “sketch” (S) subset, wherein MBDG improves by more than 10% over the baselines.
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