
Under review as submission to TMLR

LanPaint: Training-Free Diffusion Inpainting with Asymp-
totically Exact and Fast Conditional Sampling

Anonymous authors
Paper under double-blind review

Abstract

Diffusion models excel at joint pixel sampling for image generation but lack efficient training-
free methods for partial conditional sampling (e.g., inpainting with known pixels). Prior
works typically formulate this as an intractable inverse problem, relying on coarse varia-
tional approximations, heuristic losses requiring expensive backpropagation, or slow stochas-
tic sampling. These limitations preclude (1) accurate distributional matching in inpaint-
ing results, (2) efficient inference modes without gradient, and (3) compatibility with fast
ODE-based samplers. To address these limitations, we propose LanPaint: a training-free,
asymptotically exact partial conditional sampling method for ODE-based and rectified flow
diffusion models. By leveraging carefully designed Langevin dynamics, LanPaint enables
fast, backpropagation-free Monte Carlo sampling. Experiments demonstrate that our ap-
proach achieves superior performance with precise partial conditioning and visually coherent
inpainting across diverse tasks.

Figure 1: Demonstration of LanPaint-5 (5 inner iterations) inpainting results on HiDream-L1 (HiDream.ai,
2025), Flux.1 dev (Labs, 2024), SD 3.5 (Esser et al., 2024) and XL (Podell et al., 2023). Images are generated
through ComfyUI (Comfy Org, 2025) with Euler sampler (Karras et al., 2022) (30 steps). All samples
generated from a fixed seed (seed=0) producing a batch of 4 distinct random latents to avoid cherry-picking.
These results demonstrate LanPaint’s practical effectiveness across modern diffusion architectures, including
both rectified flow (HiDream, Flux, SD 3.5) and denoising (SD XL) models.

1

Under review as submission to TMLR

1 Introduction

Denoising Diffusion Probabilistic Models (DDPM) (Sohl-Dickstein et al., 2015; Song & Ermon, 2019a; Song
et al., 2020c; Ho et al., 2020; Rombach et al., 2021; Betker et al., 2023) have emerged as powerful generative
frameworks that produce high-quality outputs through iterative denoising. Subsequent advances in ODE-
based deterministic samplers (Karras et al., 2022; Lu et al., 2022; Zhao et al., 2023), as well as equivalent
rectified flow models (Lipman et al., 2022; Liu et al., 2022b; Gao et al., 2025) have dramatically improved
DDPM’s efficiency, reducing sampling steps from hundreds to dozens. These innovations, combined with
community-trained model variants, have broadened the scope and quality of generative visual arts.

While diffusion models excel at whole-image sampling, their global denoising mechanism inherently limits
partial conditional sampling given partially known pixels. Mathematically, for a pretrained model p(z) with
arbitrary splitting z = (x, y), sampling x ∼ p(x|y) in a training-free way remains a fundamental challenge
for diffusion models. Current approaches fall into two categories: (1) Sequential Monte Carlo (SMC) methods
(Trippe et al., 2022; Wu et al., 2024). They depend on stochastic DDPM sampling, making them incompatible
with deterministic ODE samplers and computationally expensive; and (2) Langevin Dynamics Monte Carlo
(LMC) methods (Lugmayr et al., 2022; Cornwall et al., 2024). They can be treated as iterative denoising and
renoising, making them compatible with ODE samplers. But they suffer from convergence issues (Cornwall
et al., 2024) and local maxima trapping - a key limitation we analyze in this work.

Another line of work formulates inpainting as a linear inverse problem, where observed pixels y = Hz + ϵ
arise from a known degenerate operator H and Gaussian noise ϵ. These methods approximate the intractable
posterior q(z|y) using the diffusion prior p(z) through either heuristic losses (∥y − Hz∥2

2) or DDIM-based
variational inference (Chung et al., 2022a;b; Grechka et al., 2024; Kawar et al., 2022; Zhang et al., 2023a;
Janati et al., 2024; Ben-Hamu et al., 2024). While linear inverse problem is applicable to other generative
models (e.g., GANs (Goodfellow et al., 2014)) and tasks like deblurring, they fundamentally address a
different problem: The posterior q(z|y) is a heuristic approximation that aims to construct a visually plausible
z = (x, y) without requiring z to follow exactly the joint distribution p(z) modeled by the pretrained diffusion
model.

Training-based approaches (Zhang et al., 2023b; Mayet et al., 2024; Zhuang et al., 2024) also address condi-
tional sampling and achieve good performance. However, these methods require training specialized networks
or modules for each model architecture, making them impractical for adoption across business and commu-
nity models of diverse architecture, hindering their ecosystem development.

In this work, we propose LanPaint, a training-free and efficient partial conditional sampling method based
on Langevin Dynamics Monte Carlo, tailored for ODE-based diffusion samplers and rectified flow models.
LanPaint achieves asymptotically exact partial conditional sampling without heuristics. It introduces two
core innovations: (1) Bidirectional Guided (BiG) Score, which enables mutual adaptation between inpainted
and observed regions, avoids local maxima traps caused by ODE-samplers with large diffusion step sizes. This
significantly improves inpainting quality; and (2) Fast Langevin Dynamics (FLD), an accelerated Langevin
sampling scheme that yields high-fidelity results in just 5 inner iterations per step, drastically reducing
computational costs compared to prior Langevin methods. Experiments confirm that LanPaint outperforms
existing training-free approaches, delivering high-quality inpainting and outpainting results for both pixel-
space and latent-space models.

2 Related Works

2.1 ODE-based Sampling Methods and Rectified Flow

Vanilla DDPMs are slow, requiring numerous denoising steps. Acceleration strategies like approximate
diffusion processes (Song et al., 2020c; Liu et al., 2022a; Song et al., 2020a; Zhao et al., 2023) and advanced
ODE solvers (Karras et al., 2022; Lu et al., 2022; Zhao et al., 2023) convert stochastic DDPM sampling into
deterministic ODE flows, enabling larger time steps and faster generation, dominating current diffusion model
sampling. Rectified flow (Lipman et al., 2022; Liu et al., 2022b), a recent alternative, is a reparameterization

2

Under review as submission to TMLR

of ODE-based diffusion models with improved numerical properties. As shown by (Gao et al., 2025), it also
belongs to the ODE sampling family.

2.2 Training-Free Partial Conditional Sampling with Diffusion Models

While DDPMs have achieved significant success, they lack inherent support for partial conditional sampling
with partial observations.

LMC One family of work tackling this problem is Langevin dynamics Monte Carlo (LMC). This approach
was pioneered by RePaint (Lugmayr et al., 2022), which employs a "time travel" mechanism of iterative
denoising and renoising steps. This mechanism was later shown (Cornwall et al., 2024) to be equivalent to
LMC. A crucial advantage of this formulation is that it enables easy switching between stochastic and ODE
sampling, by simply switching the denoising step from SDE to ODE.

The original RePaint framework relies on computationally intensive DDPM sampling and suffers from con-
vergence issues. TFG (Cornwall et al., 2024) addresses the convergence issue by reformulating RePaint’s
"time travel" mechanism as an independent Langevin dynamics. However, their approach remains confined to
DDPMs and does not extend to more efficient ODE-based solvers. (Janati et al., 2024) also used Langevin
dynamics for linear inverse problems to reduce bias in optimizing the heuristic loss ∥y − Hz∥2

2, but the
heuristic prevents accurate partial conditional sampling.

In this work, we first adapt both RePaint and the Langevin dynamics approach from (Cornwall et al.,
2024) to an ODE sampler as our baseline. Through this implementation, we identify their common limita-
tion—susceptibility to local maxima trapping—and subsequently address it with our proposed bidirectional
guidance.

SMC Alternative approaches based on Sequential Monte Carlo (Wu et al., 2024; Trippe et al., 2022) provide
exact partial conditional sampling but remain computationally expensive, requiring hundreds of steps and
large filtering particle sets. While (Wu et al., 2024) developed a more efficient SMC variant, their method
still depends on DDPM’s probabilistic framework, making it incompatible with deterministic ODE-based
solvers.

Linear Inverse Problems Methods based on linear inverse problems target plausible inpainting results
rather than exact partial conditional sampling. These approaches infer z from observations y under the
model y = Hz + ϵ, where H is a known degenerate operator and ϵ represents Gaussian noise.

One approach minimizes heuristic losses ∥y−Hz∥2
2, as in MCG (Chung et al., 2022b), DPS (Chung et al.,

2022a), GradPaint (Grechka et al., 2024), DCPS (Janati et al., 2024), and D-Flow (Ben-Hamu et al., 2024).
However, most of these methods are tailored for stochastic DDPM samplers without easy migration to ODE
sampler (e.g. DCPS), requiring costly full-model differentiation or expensive optimization (e.g., line search
in D-Flow). For our baselines, we select only those compatible with ODE samplers and free from line search.

Another approach uses variational inference in the DDIM framework, such as DDRM (Kawar et al.,
2022). CoPaint (Zhang et al., 2023a) and MMPS (Rozet et al., 2024) also adopt variational inference
and expectation-maximization to improve the optimization of heuristic losses and enhance stability. While
DDIM enables fast deterministic sampling, its variational approximations introduce limitations.

While we include these inverse problem baselines for comparison, they differ fundamentally from partial
conditional sampling. Linear inverse problems (effective for inpainting) do not enforce matching the joint
distribution between inpainted and known regions—a core requirement of our approach. Moreover, mini-
mizing the heuristic loss typically requires 2–4 times more GPU memory than standard inference, making
it prohibitive for production-level models on consumer GPU. Accordingly, these baselines are included as
supplementary reference points rather than essential benchmarks.

3

Under review as submission to TMLR

2.3 Trained Partial Conditional Sampling with Diffusion Models

While joint diffusion models lack inherent partial conditional sampling capability, inpainting can be achieved
by training conditional diffusion models with external guidance. Approaches like ControlNet (Zhang et al.,
2023b) (using depth/canny maps), TD-Paint (Mayet et al., 2024), and PowerPaint (Zhuang et al., 2024)
demonstrate this, but require training specialized modules for each architecture, limiting their practical
adoption across diverse diffusion models. This training-dependent paradigm hinders ecosystem development
around new large-scale models, highlighting the need for generalizable, architecture-agnostic inpainting so-
lutions.

3 Background

3.1 Langevin Dynamics

Langevin Dynamics is a Monte Carlo sampling technique. For a target distribution p(z), the dynamics is
governed by the stochastic differential equation (SDE):

dzτ = s(zτ) dτ +
√

2 dWτ , (1)

where s(z) = ∇z log p(z). It asymptotically converges to the stationary distribution zτ ∼ p(z) as τ → ∞
(Appendix B). However, this method risks trapping samples at local likelihood maxima of p(z).

3.2 DDPM and ODE Based Sampling

DDPMs learn a target distribution p(z) by reconstructing a clean data point z0 ∼ p(z) from progressively
noisier versions. The forward diffusion process gradually contaminates z0 with Gaussian noise. A discrete-
time formulation of this process is:

zi =
√

ᾱti z0 +
√

1− ᾱti ϵ̄i, 1 ≤ i ≤ n, (2)

where ϵ̄i ∼ N (0, I) is Gaussian noise. This arises from discretizing the continuous-time Ornstein–Uhlenbeck
(OU) process:

dzt = − 1
2 zt dt + dW, (3)

where ᾱt = e−t and dW is a Brownian motion increment (Appendix C). The OU process ensures zt transi-
tions smoothly from the data distribution p(z) to pure noise N (0, I).

To sample from p(z), we reverse the diffusion process. Starting from noise zT ∼ N (0, I), the SDE and ODE
backward diffusion processes are:

SDE: dzt′ =
(1

2 zt′ + s(zt′ , T − t′)
)

dt′ + dWt′ ; ODE: dzt′ = 1
2 (zt′ + s(z, T − t′)) dt′. (4)

where t′ ∈ [0, T] is the backward time, t = T − t′, and s(z, t) = ∇z log pt(z) is the score function of the
random variable zt, which guides noise removal. The score function is usually learnt as a denoising neural
network (Appendix C, D). The recent popular flow matching model, though commonly thought as a different
architecture, also falls into this category (Appendix E).

3.3 Inpainting as Partial Conditional Sampling

Unlike many works treating inpainting as solving an ill-posed inverse problem, we treat inpainting as a
partial conditional sampling problem for diffusion models: given a joint distribution of images (DDPM),
how to sample one part given the other part of the image. Partial conditional sampling in DDPMs poses a
significant challenge due to the inaccessibility of the conditional score function. A DDPM is trained to model
a joint distribution p(z) = p(x, y). But partial conditional sampling aims to generate x ∼ p(x | y = yo).
During sampling process, DDPM’s denoising network is trained to provide these joint scores:

sx(x, y, t) = ∇x log pt(x, y); sy(x, y, t) = ∇y log pt(x, y), (5)

4

Under review as submission to TMLR

for every time t. However, the conditional score

sx|y0 = ∇x log pt(x | y0) = ∇x log pt(x, y | y0), (6)

which is required for direct sampling from p(x | y0), remains inaccessible. (The second equality holds because
x and y are conditionally independent given y0.)

Decoupling Approximation Rather than tracking the unknown distribution pt(x, y | y0), we can approx-
imate it as an alternative distribution qt(x, y | y0):

pt(x, y | y0) ≈ qt(x, y | y0) = pt(x | y) · pt(y | y0). (7)

This decoupling introduces dependencies between xt and yt—unlike the original DDPM framework, where
xt and yt remain independent given yo. However, the approximation (≈) becomes exact (=) at t = 0
because pt=0(y | y0) = δ(y− y0), ensuring the final output precisely follows p(x | y = y0).

Here, pt(y | yo) is analytically known from the forward process pt(y | yo) = N
(
y |
√

ᾱtyo, (1− ᾱt)I
)
, while

pt(x | y) shares the same score sx as the joint distribution in Eq.5. This makes the approximation tractable
in practice. The only problem that remains is how to let the DDPM generate samples from qt(x, y | y0)
instead of pt(x, y) during the sampling process.

The Replace Method During backward sampling with t′ = T − t, (Song & Ermon, 2019b) approximately
sample xt′ , yt′ ∼ qT −t′(x, y | y0) by replacing unconditionally sampled yt′ with

yt′ ∼ pT −t′(y | yo) (8)

for each time step of a sampling process. It correctly samples yt′ , but fails to ensure xt′ ∼ pT −t′(x|y). This
yields a mix between unconditional and partial conditional sampling

(xt′ , yt′) ∼ Between [pT −t′(x, y)] and [qT −t′(x, y | y0)]. (9)

While straightforward, this method is inaccurate. In inpainting tasks, for example, it may create sharp
boundaries between the conditioned and unconditioned regions (Lugmayr et al., 2022).

RePaint (Lugmayr et al., 2022) improves over the Replace Method by introducing a “time traveling” step
that refines xt′ . Between two backward diffusion time t′

i = T − ti and t′
i+1 = T − ti+1, it performs multiple

inner iterations, alternating between forward and backward diffusion steps:

x(k+1)
t′

i
= Forwardti+1→ti︸ ︷︷ ︸

via Eq.3

◦ Backwardt′
i
→t′

i+1︸ ︷︷ ︸
Eq.4 (SDE) and sx

(x(k)
t′

i
). (10)

Meanwhile, yt′ is still replaced at each step by Eq.8. As this work focuses on ODE sampling, we replace
RePaint’s SDE backward steps with an ODE backward (Euler ODE sampler (Karras et al., 2022)), and
name this adaptation Repaint-Euler.

By adding forward and backward together, Repaint effectively simulates a Langevin dynamics Eq.1 with
dτ = t′

i+1 − t′
i, whose stationary distribution is pti

(x | y). Therefore after sufficient iterations, RePaint
asymptotically produces samples from qt(x, y | y0).

RePaint’s key limitation is that its step size dτ is fixed by the backward sampling schedule. A small number of
sampling steps leads to overly large step sizes, causing divergence, while too many steps result in excessively
small step sizes, preventing convergence to a stationary state.

Langevin Dynamics Methods Recent work (Cornwall et al., 2024) replaces forward-backward iteration
with Langevin dynamics, enabling flexible step sizes. However, two key limitations remain: (1) Samples
xt′ often get trapped in local maxima of pt(x | y) (Fig.3); (2) Slow convergence necessitates many costly
inner-loop iterations per diffusion step, reducing efficiency.

5

Under review as submission to TMLR

4 Methodology

4.1 Bidirectional Guided (BiG) Score

In RePaint and Langevin-based approaches, the inpainted region xt′ is iterated towards high likelihood
region of pT −t′(x | y), but yt′ remains unaware of xt′ . This one-way dependency creates a critical flaw: if
xt′ enters a suboptimal region, yt′ cannot receive corrective feedback, resulting in local maxima trapping
of xt′(Fig.3). To escape such local optima, we propose jointly optimizing xt′ and yt′ through bidirectional
feedback: while xt′ is refined by yt′ (as in prior work), yt′ is also updated under the guidance of xt′ while
preserving observed content.

To achieve this, we observe that Eq.7 is a special case of the following equivalent but more general form

pt(x, y | yo) ≈ 1
Z

pt(x | y) pt(y|yo)1+λ

pt(y)λ , (11)

with λ > −1 as the guidance scale and Z is a normalizing constant. At t = 0, the approximation (≈)
still becomes exact (=). It is because p0(y | yo) = δ(y−yo) is a delta distribution that remains invariant
(up to normalization) when multiplied by other functions. Therefore pt=0(y|yo)1+λ

pt=0(y)λ still represents δ(y− yo),
enforcing that the sampled y0 equals yo. The x component of its score function is still sx in Eq.5, while the
y component score can be approximated by the BiG score

gλ

(
x, y, t

)
=
[
(1 + λ)

√
ᾱtyo − y
1− ᾱt︸ ︷︷ ︸

Score of p(yt|yo)

−λ sy
(
x, y, t

)︸ ︷︷ ︸
Score of p(yt|xt)

]
, (12)

which is obtained by substituting pt(y) = pt(x,y)
pt(x|y) into Eq.11 then discarding the unknown term∇y log pt(x|y).

It successfully incorporates information of xt as a guidance of the yt sampling process.

The BiG score’s behavior depends on λ: when λ = −1, it reduces to unconditional sampling; at λ = 0, it
matches RePaint-like inpainting; and for λ > 0, it enhances inpainting by penalizing unconditional scores
sy. Larger λ values strengthen the corrective feedback from xt, helping yt to escape local optima more
effectively.

The BiG score can be implemented by simulating the following Langevin dynamics:

dxt′ = sx(xt′ , yt′ , T − t′)dτ +
√

2 dWx
t′ , dyt′ = gλ

(
xt′ , yt′ , T − t′)︸ ︷︷ ︸

BiG score

dτ +
√

2 dWy
t′ , (13)

Though the unknown ∇y log pt(x|y) term is discarded when deriving the BiG score, it still yields asymptot-
ically exact conditional samples given partial observation, as this term is negligible (See Fig.8, Appendix.F)
near t = 0 compared to the score of pt(y|y0), as the following theorem states:
Theorem 4.1 (Asymptotic Exact Conditional Sampler). Under the dynamics of Eq.13, the joint state
(xt, yt) converges to the distribution

xt, yt ∼
1
Z

pt(x | y) pt(y|yo)1+λ

pt(y)λ +O(
√

1− ᾱt), (14)

where Z is a normalizing constant. Consequently, at t = 0, the marginal x0 ∼ p0(x | yo) is an exact
conditional sample, provided the Langevin dynamics converge. (Proof in Appendix F)

In summary, the BiG score enables bidirectional feedback between xti
and yti

, avoiding local maxima
trapping while preserving the exactness of conditional sampling.

4.2 Fast Langevin Dynamics (FLD)

Solving Langevin dynamics (Eq.13) is challenging: direct discretization requires trading step size against
performance. Large steps accelerate convergence but introduce significant errors that yield noisy results,

6

Under review as submission to TMLR

while small steps cause impractically slow convergence. We therefore seek an accelerated scheme with a
stable solver, ensuring fast convergence to the stationary distribution while tolerating larger steps.

For fast convergence to the stationary distribution, existing approaches include Underdamped Langevin
Dynamics (ULD) (Duncan et al., 2017; Cheng et al., 2018), preconditioning (AlRachid et al., 2018), and
HFHR (Li et al., 2022). We exclude Metropolis-Hastings and Hamiltonian Monte Carlo, as their acceptance-
rejection steps require multiple score evaluations per step—which is too expensive compared to standard
Langevin dynamics’ single evaluation.

After balancing interpretability, stability, and accuracy (Appendix G), we propose Fast Langevin Dynamics
(FLD)—a variant of ULD defined by:

dzτ = qτ dτ

dqτ = Γ
(
−qτ dτ + s(zτ , t) dτ +

√
2 dWτ

) (15)

where τ is the "time" of Langevin dynamics, zτ = (xτ , yτ) contains both the inpainted/known region, Γ
is the friction coefficient, qτ is the momentum. This dynamics is solved numerically using the FLD solver
Eq.115, which computes zτ+∆τ analytically from zτ . Details about FLD and its solver are discussed in
Appendix G and Algorithm 4.

The FLD and its solver incorporates two key design features: (1) It introduces momentum qτ into the
Langevin dynamics. Comparing with Eq.1 reveals that Eq.15 represents a time-averaged Langevin dynamics
with decay rate Γ. This time averaging acts as momentum by incorporating memory of previous states,
thereby accelerating convergence towards the stationary distribution. (2) We introduce a diffusion damp-
ing force when solving FLD numerically to enhance stability. The diffusion damping force is introduced by
decomposing the score function as s(zτ , t) = Ct(zτ)− Atzτ in the FLD solver. The term Ct(zτ) is treated
as constant over a numerical time interval [τ, τ + ∆τ], while the diffusion damping force −Atzτ serves
as a regularization inspired by the forward diffusion process, ensuring that zτ+∆τ remains finite and stable,
even for large ∆τ .

To understand how the diffusion damping force is related to the diffusion model and enhances stability,
consider At = (1− ᾱt)−1. As ∆τ →∞, zτ+∆τ remains finite and stable, following:

lim
∆τ→∞

zτ+∆τ ∼ N
(√

ᾱtẑ0, 1− ᾱt

)
, (16)

where ẑ0 = zτ +(1−ᾱt)s√
ᾱt

is the Tweedie estimator for the clean image. This matches the forward diffusion
process in Eq.2, ensuring stability. Thus, large time steps can accelerate convergence without compromising
output stability.

A key property of FLD is that it preserves the stationary distribution of the original Langevin dynamics, as
shown in the following theorem.
Theorem 4.2 (Stationary Distribution). Under the fast Langevin dynamics Eq.15, the joint state (z, q) has
a stationary distribution given by

(z, q) ∼ p(z) × N (q | 0, Γ). (17)

Hence, z alone retains the same stationary distribution as the original Langevin dynamics Eq.1. (Proof in
Appendix H)

4.3 Rectified Flow Model Compatibility

We have introduced LanPaint using variance-preserving (VP) notation (Song et al., 2020c), corresponding
to the forward diffusion process in Eq.2. However, LanPaint is not limited to VP notation; it is general
enough to apply to other mathematically equivalent diffusion frameworks, such as variance-exploding and
rectified flow notations (Liu et al., 2022b), by converting the score function into an eps-prediction or velocity
prediction function, respectively. Detailed conversions among VP, variance-exploding, and rectified flow
notations are provided in Appendix E.

7

Under review as submission to TMLR

Figure 2: Comparison of inpainting methods for conditional distribution sampling (known y, inpaint x).
Left: Ground truth Gaussian samples. Middle: KL divergence versus diffusion steps across methods ("-10"
denotes 10 inner iterations where applicable). Right: Effect of inner iterations at 20 diffusion steps. The
dashed line at KL=0.01 highlights the performance gap between asymptotically exact methods and heuristic
approaches.

5 Experiments

5.1 Conditional Gaussian: Exactness of LanPaint

We validate the exactness of LanPaint on a synthetic 2D conditional Gaussian benchmark with an analytically
known ground truth distribution and score function. This setup eliminates diffusion model training effects,
allowing for an isolated comparison of sampling methods.

The task conditions on the y component to infer the x component. We compute the mean and covariance
matrix of 50,000 samples and compare them with the ground truth distribution using KL divergence. Fig.2
shows the method comparisons across three plots: Ground Truth, KL Divergence vs. Diffusion Steps, and
KL Divergence vs. Inner Iteration Steps. We adopt the same step size for Langevin-based methods (TFG
and LanPaint).

Fig.2 also demonstrates that LanPaint achieves near-zero KL divergence with the fewest diffusion steps and
inner iteration steps, outperforming other methods. Fig.2 (right) also highlights that fast Langevin dynamics
(FLD) alone, without BiG score, significantly accelerates convergence compared to the TFG method adopting
the original Langevin dynamics.

A key observation is that heuristic linear inverse problem approaches (MCG, DPS, CoPaint, DDRM) cannot
achieve KL divergence below 0.01 (dashed line) even with a large number of steps or iterations, while
exact conditional sampling methods (RePaint, TFG, LanPaint) succeed. This performance gap reflects
their fundamental methodological difference: the former optimize heuristic objectives rather than the true
distribution.

5.2 Mixture of Gaussian: Local Maxima Trapping

Figure 3: Local maxima trapping in inpainting x given known y using Euler sampler (Karras et al., 2022).
Red dots show unlikely samples trapped at local maxima of p(x|y = 1.55) (along the dashed line). Fewer
diffusion steps (right → left) increase trapping—a key limitation of fast ODE sampler. Left panel shows
LanPaint’s BiG score mitigates this issue. Methods perform 10 inner iterations/step (LanPaint, Langevin)

8

Under review as submission to TMLR

We validate LanPaint on a 500-component Gaussian mixture benchmark with analytical ground truth dis-
tribution. Its samples are demonstrated in Fig.4. The task is framed as 2D inpainting: given observed
y-coordinates, infer masked x-values.

The multi-modal Gaussian mixture distribution poses a significant challenge for inpainting with ODE sam-
plers. As shown in Fig.3, Langevin-based inpainting tends to concentrate samples at the "corners" of the
distribution—local maxima of p(x|y)—despite their low joint likelihood (x, y). This trapping phenomenon is
not unique to Langevin methods; Fig.4 shows that other approaches also produce samples clustered at the
corners, where the distribution appears blurred.

Figure 4: Inpainted samples and KL divergence for inpainting methods on a Gaussian mixture distribution.
The top-left panel displays ground truth samples; other panels show inpainted samples of various methods.
("-5" and "-10" denotes 5 or 10 inner iterations where applicable)

Such trapping occurs due to insufficient information flow from the inpainted component x to the observed
y. During diffusion sampling, x optimizes solely for p(x|y), with no mechanism to penalize low p(y|x). This
motivates our BiG score Eq.12, which propagates information from x to y, steering samples away from low
joint-likelihood regions, as shown in Fig.3.

Fig.4 compares sampling results and KL divergences across methods. Due to local maxima trapping, no
method achieves zero KL divergence. However, LanPaint achieves significantly lower divergence than alter-
natives, demonstrating its effectiveness in mitigating trapping and producing accurate inpainting that closely
matches the ground truth distribution.

5.3 Latent and Pixel Space Model: CelebA and ImageNet

We evaluate the inpainting performance of LanPaint on the CelebA-HQ-256 (Liu et al., 2015) and ImageNet-
256 (Deng et al., 2009) datasets, leveraging pre-trained latent (Rombach et al., 2021) and pixel space (Dhari-
wal & Nichol, 2021) diffusion models, respectively. The experiments assess reconstruction quality across
various mask geometries, including box, half, checkerboard, and outpainting. Following the same setting
as the previous works (Kawar et al., 2022; Chung et al., 2022b), perceptual fidelity is quantified through
LPIPS (Zhang et al., 2018) and FID metrics, calculated on 1,000 validation images per dataset. Results are
presented in Tables 1 and 2. We also provide qualitative visualization of generated samples in Fig.5 and
Fig.6. All methods employ consistent parameters across tasks and masks, utilizing a 20-step Euler Discrete
Sampler. Further details about parameters are provided in Appendix A.

LanPaint consistently achieves superior LPIPS and FID scores across most test scenarios, demonstrating
robustness, particularly in challenging checkerboard and outpainting tasks. In contrast, methods such as
DPS (Chung et al., 2022a) and CoPaint (Zhang et al., 2023a), designed for stochastic sampling with 250–500
steps, exhibit reduced performance in the 20-step ODE setting.

Notably, DPS and CoPaint’s removing of the manifold constraint from MCG (Chung et al., 2022b) com-
promises their stability, leading to poorer performance compared to MCG, which remains robust among

9

Under review as submission to TMLR

Table 1: LPIPS and FID comparison on CelebA-HQ-256 for various inpainting and outpainting setups.
Euler Discrete Sampler, 20 steps. Lower LPIPS and FID values indicate better perceptual similarity and
feature distribution similarity to the ground truth, respectively. Numerical suffixes (-5, -10) denote inner
iterations (network evaluations per sampling step, except for CoPaint which requires multiple evaluations
per inner iteration). Time per sample and memory overhead (extra memory required during inference) are
also reported. Evaluations were conducted on a single RTX 3090.

Box Half Checkerboard Outpaint Time MemOver
Method LPIPS FID LPIPS FID LPIPS FID LPIPS FID s/image MB/image
Heuristic Methods
Replace 0.131 31.7 0.303 30.3 0.162 42.1 0.514 89.5 0.3 81
CoPaint-2 0.180 43.6 0.346 35.7 0.252 79.8 0.546 107.6 1.7 248
CoPaint-3 0.172 41.7 0.331 34.4 0.225 66.6 0.532 99.5 2.5 248
DDRM 0.128 32.4 0.308 33.5 0.148 30.0 0.537 94.6 0.3 81
MCG 0.130 31.6 0.302 30.2 0.162 42.4 0.513 80.7 0.8 248
DPS 0.181 44.1 0.345 35.4 0.275 90.6 0.534 99.9 0.8 247
Asymptotically Exact Methods
Repaint-Euler-5 0.115 34.5 0.282 39.4 0.137 29.8 0.526 96.2 1.4 81
Repaint-Euler-10 0.112 34.6 0.272 41.0 0.134 31.0 0.511 95.9 2.6 81
TFG-5 0.119 31.9 0.299 35.9 0.132 25.5 0.531 91.0 1.5 81
TFG-10 0.114 33.2 0.288 38.5 0.128 26.3 0.530 91.5 2.6 81
LanPaint-5 (ours) 0.105 27.9 0.268 30.4 0.108 20.5 0.493 82.3 1.6 81
LanPaint-10 (ours) 0.103 29.5 0.272 32.2 0.107 21.3 0.489 85.1 2.9 81

Table 2: LPIPS and FID comparison on ImageNet for various inpainting and outpainting setups. Euler
Discrete Sampler, 20 steps. Lower LPIPS and FID values indicate better perceptual similarity and feature
distribution similarity to the ground truth, respectively. Numerical suffixes (-5, -10) denote inner iterations
(network evaluations per sampling step, except for CoPaint which requires multiple evaluations per inner
iteration). Time per sample and memory overhead (extra memory required during inference) are also re-
ported. Evaluations were conducted on a single RTX 3090.

Box Half Checkerboard Outpaint Time MemOver
Method LPIPS FID LPIPS FID LPIPS FID LPIPS FID s/image MB/image
Heuristic Methods
Replace 0.229 75.7 0.380 69.0 0.406 146.4 0.565 98.2 1.9 581
CoPaint-2 0.234 85.1 0.379 63.4 0.319 186.3 0.565 102.1 15.7 5444
CoPaint-3 0.228 76.9 0.371 60.8 0.276 146.9 0.557 94.8 22.4 5445
DDRM 0.216 67.2 0.385 60.2 0.214 58.1 0.570 81.6 1.9 583
MCG 0.225 83.5 0.378 82.2 0.429 152.9 0.561 106.8 6.4 5445
DPS 0.252 107.5 0.392 77.2 0.510 275.7 0.572 112.1 6.4 5440
Asymptotically Exact Methods
Repaint-Euler-5 0.216 62.8 0.385 56.5 0.137 31.4 0.579 82.9 11.8 581
Repaint-Euler-10 0.215 61.0 0.383 53.5 0.135 32.8 0.564 79.8 20.5 581
TFG-5 0.235 69.3 0.418 67.6 0.317 78.6 0.654 92.1 11.9 595
TFG-10 0.234 66.5 0.433 64.5 0.247 53.9 0.682 89.4 21.7 595
LanPaint-5 0.180 49.3 0.323 49.3 0.127 24.1 0.508 68.6 11.3 599
LanPaint-10 0.171 46.4 0.314 44.7 0.117 21.2 0.486 62.0 20.8 599

heuristic methods. This contradicts prior findings in stochastic DDPM sampling, where removing the man-
ifold constraint typically enhances performance.

On CelebA, Replace (Song & Ermon, 2019b) marginally outperforms LanPaint in FID for the half-mask
scenario (30.3 vs. 30.4), a result attributed to FID’s high variance when large inpainted regions deviate
significantly from the original images. This variance is exacerbated by the use of 1,000 validation images, as
opposed to the typical 30,000 for highly divergent sets, similarly affecting outpainting results. Consequently,
FID scores for half and outpainting masks should be interpreted cautiously.

10

Under review as submission to TMLR

Figure 5: Visual comparisons on ImageNet-256 for center box, half, outpaint and checkerboard masks (top
to bottom). Numbers 5 and 10 denote the inner iteration counts for RePaint, TFG, and LanPaint. The
bottom row zooms into the checkerboard results (fourth row), highlighting LanPaint’s superior coherence
and texture fidelity compared to baselines, which exhibit visible checkerboard artifacts.

Figure 6: Comparative visualization of in-painted images in CelebA-HQ-256 dataset for center box, half,
outpaint and checkerboard masks (top to bottom). Sampler: EulerDiscrete, 20 Step. For visualization
purposes, masks are shown on the original pixel images, although they were applied within the 64× 64× 4
latent space during the inpainting process.

Beyond perceptual metrics, computational efficiency is critical for practical deployment. We report time
per sample and memory overhead (MemOver), defined as the additional GPU memory required during
inference beyond model loading (i.e., maximum GPU memory during inference minus maximum before
inference). Evaluations were conducted on a single RTX 3090. On CelebA-HQ-256, LanPaint-10 delivers
top-tier performance with time and memory overhead comparable to Repaint and TFG. On ImageNet-
256, LanPaint-10 uses 20.8 s/image and 599 MB/image, comparable to Repaint (20.5 s, 581 MB) while
achieving superior LPIPS and FID scores. Notably, LanPaint’s memory overhead is low compared to heuristic
methods requiring backpropagation for gradient computation, such as MCG, DPS, and CoPaint (5445 MB
on ImageNet), whose overhead scales with model size, rendering them less practical for large models where
loading alone nearly exhausts GPU memory. These results highlight LanPaint’s effective balance of high
fidelity and resource efficiency.

5.4 Ablation Study

Table 3 presents the ablation study of LanPaint’s major components: the BiG score and FLD, along with the
impact of step size on performance. The study is conducted on two datasets, CelebA-HQ-256 and ImageNet,
using box inpainting tasks (Other masks share similar trends). Results are reported for five different step sizes
(0.02, 0.05, 0.1, 0.15, and 0.2) with LPIPS and FID metrics, where lower values indicate better performance.
Sensitivity of other parameters is provided in Fig.7.

11

Under review as submission to TMLR

For the ImageNet dataset, the ablation study demonstrates that both the BiG score and FLD significantly
contribute to overall performance. Without FLD, the Langevin dynamics diverge as the step size increases
from 0.05 to 0.15, resulting in progressively worse performance metrics. However, incorporating FLD sup-
presses this divergence, enabling the use of larger step sizes and improving performance. The BiG score
enhances performance by facilitating bidirectional information flow between the inpainted and known re-
gions, while FLD supports larger step sizes, accelerating the convergence of the Langevin dynamics and
yielding better results with the same number of iteration steps.

In contrast, for the CelebA-HQ-256 dataset, performance metrics exhibit low sensitivity to step size varia-
tions. The BiG score is the primary driver of performance improvement over the original Langevin dynamics,
with the method remaining robust across step size changes. This stability is attributed to the robustness of
CelebA-HQ-256’s latent space, which, unlike pixel space sampling, is less affected by subtle variations in the
sampling process.

Table 3: Ablation study of LanPaint-10’s components on CelebA-HQ-256 and ImageNet with box inpainting.
Results for different step sizes (0.02, 0.05, 0.1, 0.15, 0.2) are shown with LPIPS and FID metrics. Lower
values are better.

Step Size 0.02 Step Size 0.05 Step Size 0.1 Step Size 0.15 Step Size 0.2
Method LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID
CelebA-HQ-256
None (Langevin) 0.121 28.9 0.115 28.4 0.111 29.2 0.114 30.9 0.108 30.1
+ BiG score 0.110 26.1 0.104 26.5 0.102 28.5 0.103 28.7 0.103 30.0
+ FLD 0.121 28.6 0.115 28.9 0.112 29.9 0.116 31.7 0.109 30.5
+ (BiG score + FLD) 0.111 26.7 0.105 26.6 0.103 28.5 0.103 29.5 0.103 30.2
ImageNet
None (Langevin) 0.220 66.7 0.223 65.1 0.314 81.6 0.441 125.9 0.475 141.1
+ BiG score 0.205 58.6 0.213 58.0 0.303 76.0 0.431 121.4 0.474 140.0
+ FLD 0.217 68.3 0.205 60.7 0.195 56.9 0.188 54.4 0.181 51.4
+ (BiG score + FLD) 0.201 58.9 0.190 52.7 0.179 48.1 0.171 46.4 0.167 45.1

5.5 Production-Level Model Evaluation Across Architectures: Stable Diffusion, Flux, and HiDream

Previous evaluations of LanPaint were limited to academic benchmarks, leaving its performance on real-world
production diffusion models—with their diverse architectures and higher resolutions—unexamined. Notably,
to the best of our knowledge, no prior training-free inpainting methods, except variants of the replace method
(built in ComfyUI), have demonstrated such validation in their publications or been implemented by third
parties for this purpose.

To assess LanPaint’s effectiveness on modern generative models, we implemented it on HiDream-L1
(HiDream.ai, 2025), Flux.1 Dev (Labs, 2024), Stable Diffusion 3.5 (Esser et al., 2024), and Stable Diffu-
sion XL (Podell et al., 2023). Images were generated using ComfyUI (Comfy Org, 2025) with the Euler
sampler (Karras et al., 2022) (30 steps), a fixed seed of 0, and a batch size of 4 to ensure reproducibility
and avoid cherry-picking. These experiments demonstrate LanPaint’s practical efficacy across diverse diffu-
sion architectures, including rectified flow models (HiDream-L1, Flux.1, Stable Diffusion 3.5) and denoising
diffusion probabilistic models (Stable Diffusion XL). Additionally, we have released LanPaint as a publicly
available, plug-and-play extension for ComfyUI.

Fig.1 showcases the inpainting results. We also provide more examples in Appendix I. LanPaint consistently
produces seamless inpainting across both DDPM-based (Stable Diffusion XL) and rectified flow-based (Stable
Diffusion 3.5, Flux.1, HiDream-L1) architectures, highlighting its robust generalization capabilities.

Limitation and Future work

LanPaint’s exactness comes at a cost: it heavily relies on the score interpretation of diffusion models. This
interpretation, while applicable to various architectures such as variance-preserving, variance-exploding,

12

Under review as submission to TMLR

and flow matching, is valid only for models trained from scratch, not for distilled models trained without
denoising or flow matching. Our experience shows that LanPaint’s performance degrades with distilled
models. Future studies on distillation methods that preserve the score interpretation of diffusion models are
desired. A distillation method that captures LanPaint’s capabilities within a model is also of interest, as it
could significantly accelerate LanPaint.

LanPaint assumes noise-free observations yo. Adapting it to handle noisy observations with a specified noise
level is feasible but requires modifying the conditional distribution pt(y | yo) in Eq.11. This adaptation
represents a promising direction for future research.

In this paper, we primarily focus on image inpainting. However, LanPaint, as a conditional sampling method
independent of data modality, can be applied to diverse domains, including text, audio, video, and scientific
applications such as protein scaffolding and fluid field reconstruction.

Broader Impact Statement

LanPaint’s efficient image inpainting boosts creative applications but risks misuse in generating deepfakes
or misinformation. We advocate watermarking, provenance tracking, and community regulation to mitigate
harm, as discussed in (Denton, 2021) and (Franks & Waldman, 2018).

References
Houssam AlRachid, Letif Mones, and Christoph Ortner. Some remarks on preconditioning molecular dy-

namics. The SMAI Journal of computational mathematics, 4:57–80, 2018.

Brian. D. O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications,
12:313–326, 1982.

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow: Differentiating
through flows for controlled generation. arXiv preprint arXiv:2402.14017, 2024.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang,
Joyce Lee, Yufei Guo, et al. Improving image generation with better captions, 2023.

Xiang Cheng, Niladri S Chatterji, Peter L Bartlett, and Michael I Jordan. Underdamped langevin mcmc:
A non-asymptotic analysis. In Conference on learning theory, pp. 300–323. PMLR, 2018.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion posterior
sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022a.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for inverse
problems using manifold constraints. Advances in Neural Information Processing Systems, 35:25683–25696,
2022b.

Comfy Org. Comfyui: A powerful and modular stable diffusion gui and backend. https://github.com/
comfyanonymous/ComfyUI, 2025. Documentation available at https://docs.comfy.org.

ComfyUI Wiki. How to inpaint an image in comfyui, 2025. URL https://comfyui-wiki.com/en/tutorial/
basic/how-to-inpaint-an-image-in-comfyui. Accessed: 2025-07-18.

Lewis Cornwall, Joshua Meyers, James Day, Lilly S Wollman, Neil Dalchau, and Aaron Sim. Training-free
guidance of diffusion models for generalised inpainting, 2024. URL https://openreview.net/forum?id=
AC1QLOJK7l.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009. doi: 10.1109/CVPR.2009.5206848.

13

https://github.com/comfyanonymous/ComfyUI
https://github.com/comfyanonymous/ComfyUI
https://docs.comfy.org
https://comfyui-wiki.com/en/tutorial/basic/how-to-inpaint-an-image-in-comfyui
https://comfyui-wiki.com/en/tutorial/basic/how-to-inpaint-an-image-in-comfyui
https://openreview.net/forum?id=AC1QLOJK7l
https://openreview.net/forum?id=AC1QLOJK7l

Under review as submission to TMLR

Emily Denton. Ethical considerations of generative ai. Invited Talk in Workshop: Synthetic Data Generation:
Quality, Privacy, Bias, International Conference on Learning Representations (ICLR) 2021, 2021. URL
https://iclr.cc/virtual/2021/3714. Accessed: 2025-08-10.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. ArXiv, abs/2105.05233,
2021.

Andrew B Duncan, Nikolas Nüsken, and Grigorios A Pavliotis. Using perturbed underdamped langevin
dynamics to efficiently sample from probability distributions. Journal of Statistical Physics, 169:1098–
1131, 2017.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi,
Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first international conference on machine learning, 2024.

Denis J. Evans and Gary Morriss. The microscopic connection, pp. 33–78. Cambridge University Press,
2008.

Mary Anne Franks and Ari Ezra Waldman. Sex, lies, and videotape: Deep fakes and free speech delusions.
Md. L. Rev., 78:892, 2018.

Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin Patrick Murphy, and Tim Sali-
mans. Diffusion models and gaussian flow matching: Two sides of the same coin. In The Fourth Blogpost
Track at ICLR 2025, 2025. URL https://openreview.net/forum?id=C8Yyg9wy0s.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

Asya Grechka, Guillaume Couairon, and Matthieu Cord. Gradpaint: Gradient-guided inpainting with dif-
fusion models. Computer Vision and Image Understanding, 240:103928, 2024.

HiDream.ai. Hidream-i1: A 17b parameter open-source image generative foundation model. https://
huggingface.co/HiDream-ai/HiDream-I1-Full, 2025. Additional details available at https://github.
com/HiDream-ai/HiDream-I1.

Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. ArXiv, abs/2006.11239,
2020.

Yazid Janati, Badr Moufad, Alain Durmus, Eric Moulines, and Jimmy Olsson. Divide-and-conquer posterior
sampling for denoising diffusion priors, 2024. URL https://arxiv.org/abs/2403.11407.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. ArXiv, abs/2206.00364, 2022.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration models.
Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Ruilin Li, Hongyuan Zha, and Molei Tao. Hessian-free high-resolution nesterov acceleration for sampling.
In International Conference on Machine Learning, pp. 13125–13162. PMLR, 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for
generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on manifolds.
ArXiv, abs/2202.09778, 2022a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

14

https://iclr.cc/virtual/2021/3714
https://openreview.net/forum?id=C8Yyg9wy0s
https://huggingface.co/HiDream-ai/HiDream-I1-Full
https://huggingface.co/HiDream-ai/HiDream-I1-Full
https://github.com/HiDream-ai/HiDream-I1
https://github.com/HiDream-ai/HiDream-I1
https://arxiv.org/abs/2403.11407
https://github.com/black-forest-labs/flux

Under review as submission to TMLR

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver
for guided sampling of diffusion probabilistic models. ArXiv, abs/2211.01095, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver
for guided sampling of diffusion probabilistic models. Machine Intelligence Research, pp. 1–22, 2025.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint:
Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11461–11471, 2022.

Tsiry Mayet, Pourya Shamsolmoali, Simon Bernard, Eric Granger, Romain Hérault, and Clement Chate-
lain. Td-paint: Faster diffusion inpainting through time aware pixel conditioning. arXiv preprint
arXiv:2410.09306, 2024.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis, 2023.

Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10674–10685, 2021.

François Rozet, Gérôme Andry, François Lanusse, and Gilles Louppe. Learning diffusion priors from observa-
tions by expectation maximization. Advances in Neural Information Processing Systems, 37:87647–87682,
2024.

Jascha Narain Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. ArXiv, abs/1503.03585, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. ArXiv,
abs/2010.02502, 2020a.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020b.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In
Neural Information Processing Systems, 2019a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019b.

Yang Song, Jascha Narain Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. ArXiv, abs/2011.13456,
2020c.

Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and Tommi
Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem.
arXiv preprint arXiv:2206.04119, 2022.

George E. Uhlenbeck and Leonard Salomon Ornstein. On the theory of the brownian motion. Physical
Review, 36:823–841, 1930.

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and asymp-
totically exact conditional sampling in diffusion models. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Ling Yang, Zhilong Zhang, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang, Ming-
Hsuan Yang, and Bin Cui. Diffusion models: A comprehensive survey of methods and applications. ACM
Computing Surveys, 2022.

15

Under review as submission to TMLR

Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi S Jaakkola, and Shiyu Chang. Towards coherent
image inpainting using denoising diffusion implicit models. 2023a.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847,
2023b.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 586–595, 2018.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-corrector
framework for fast sampling of diffusion models. ArXiv, abs/2302.04867, 2023.

Junhao Zhuang, Yanhong Zeng, Wenran Liu, Chun Yuan, and Kai Chen. A task is worth one word: Learning
with task prompts for high-quality versatile image inpainting. In European Conference on Computer
Vision, pp. 195–211. Springer, 2024.

A More Ablation and Implementation Details

Mask Types The box mask covers a central region spanning from 1/4 to 3/4 of both the height (H) and
width (W) of the image. The half mask covers the right half of the image. The outpaint mask covers the
area outside the box mask, serving as its complement. The checkerboard mask forms a grid pattern with
each square sized at 1/16 of the original image dimensions. For latent space operations, these masks are
applied to the encoded latent representations of the image.

LanPaint We implement LanPaint using the diffusers package, following Algorithm 4. Hyperparameters
are configured as follows: γ = 15, α = 0., and λ = 8 for all image inpainting tasks, drawing loosely from
the insights gained through sensitivity analysis in Fig.7. The notation LanPaint-5 and LanPaint-10 denotes
N = 5 and N = 10 sampling steps, respectively. The step size η is set to 0.15 for both Celeb-A and ImageNet.
The impact of step size is ablated in Table 3, with the impact of other parameters discussed in Fig.7. We
have also provided impact of different samplers in Table.4.

Figure 7: Impact of expected noise α, guidance scale λ, and friction γ on LanPaint-10’s LPIPS for ImageNet
box inpainting at stepsize 0.15, evaluated on a validation set of 100 images. Expected noise α most affects
LPIPS, ideally 0 for image inpainting. Guidance scale λ significantly improves performance from 0 (no
guidance) to 4, with an optimal range of 6–10. The friction parameter γ has a less significant effect; in
practice, we use a prescribed value of γ = 15 without finetuning, sharing this value across all tasks.

TFG TFG ((Cornwall et al., 2024)) corresponds to pure Langevin sampling. It is implemented via the
Euler-Maruyama discretization, with step size schedule dτ = η

√
1− ᾱt with η = 0.04 as reported in their

paper.

16

Under review as submission to TMLR

Table 4: Ablation study on the impact of different diffusion samplers (Euler, DPM++Karras(Lu et al.,
2025), and DDIM (Song et al., 2020b)) for various heuristic and asymptotically exact inpainting methods.
Performance is evaluated using LPIPS (lower is better) and FID (lower is better) metrics on 1,000 images
from the CelebA and ImageNet datasets with box mask.

CelebA ImageNet
Euler DPM++ DDIM Euler DPM++ DDIM

Method LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID
Heuristic Methods
Replace 0.131 31.7 0.119 26.7 0.130 31.5 0.229 75.7 0.234 75.1 0.228 75.6
CoPaint-2 0.180 43.6 0.186 45.8 0.169 41.1 0.234 85.1 0.233 84.5 0.297 89.1
CoPaint-3 0.172 41.7 0.181 44.3 0.163 38.9 0.228 76.9 0.228 78.9 0.288 82.1
DDRM 0.128 32.4 0.135 34.8 0.127 32.2 0.216 67.2 0.215 68.9 0.211 65.3
MCG 0.130 31.6 0.113 25.9 0.124 29.7 0.225 83.5 0.266 88.1 0.253 86.7
DPS 0.181 44.1 0.166 40.2 0.179 43.7 0.252 107.5 0.248 103.0 0.249 108.2
Asymptotically Exact Methods
Repaint-5 0.115 34.5 0.127 41.7 0.114 34.2 0.216 62.8 0.342 133.6 0.211 60.8
Repaint-10 0.112 34.6 0.409 223.3 0.111 34.4 0.215 61.0 0.604 174.5 0.211 59.7
TFG-5 0.119 31.9 0.113 31.9 0.118 31.4 0.235 69.3 0.281 83.7 0.234 69.7
TFG-10 0.114 33.2 0.108 33.2 0.112 31.2 0.234 66.5 0.305 89.5 0.235 65.8
LanPaint-5 (ours) 0.105 27.9 0.097 23.7 0.104 28.0 0.180 49.3 0.201 56.2 0.178 48.6
LanPaint-10 (ours) 0.103 29.5 0.097 26.9 0.103 29.3 0.171 46.4 0.205 55.1 0.172 45.6

DDRM Our implementation of DDRM follows Equations (7) and (8) in Kawar et al. (Kawar et al.,
2022), with σy = 0, V = I, and si = 1 for observed regions y and si = 0 for inpainted regions x. The
hyperparameters η = 0.7 and ηb = 1 are selected based on the optimal KID scores reported in Table 3 of the
reference.

MCG We implement MCG as described in Algorithm 1 of Chung et al. (Chung et al., 2022b), using
α = 0.1/∥y − P x̂0∥ as recommended in Appendix C. An alternative choice, α = 0.1/∥y − P x̂0∥, was
evaluated but resulted in significantly poorer performance on ImageNet, as shown in Table 5. Consequently,
we opted against using this alternative.

DPS We adopt DPS (Chung et al., 2022a) using α = 1/∥y− P x̂0∥ as recommended in Appendix D.

Table 5: Ablation study of DPS and MCG on CelebA-HQ-256 and ImageNet with box inpainting. Results
for different alpha values (0.1, 1.0) are shown with LPIPS and FID metrics. Lower values are better.

Alpha 0.1 Alpha 1.0
Method LPIPS FID LPIPS FID
CelebA-HQ-256
MCG 0.130 31.6 0.125 30.1
DPS 0.190 41.5 0.181 44.1
ImageNet
MCG 0.226 83.5 0.240 79.5
DPS 0.251 110.7 0.252 107.5

RePaint We implement RePaint based on Algorithm 1 in Lugmayr et al. (Lugmayr et al., 2022), with
modifications to accommodate fast samplers. While the original method was designed for DDPM, we adapt
it by replacing the backward sampling step (Line 7) with a Euler Discrete Sample step. Additionally, we set
the jump step size to 1 instead of the default 10 backward steps recommended in Appendix B of the original
work. This adjustment is necessary because fast samplers typically operate with only around 20 backward
sampling steps, making larger jump sizes impractical.

17

Under review as submission to TMLR

B Diffusion Process and Langevin Dynamics

Diffusion Process forms the mathematical foundation of diffusion models, describing a system’s evolution
through deterministic drift and stochastic noise. Here we consider diffusion process of the following form of
stochastic differential equation (SDE):

dxt = µ(xt, t) dt + σ(xt, t) dWt, (18)

where the drift term µ(xt, t) dt governs deterministic motion, while dWt adds Brownian noise.

The Brownian noise dW is a key characteristic of SDEs, capturing their stochastic nature. It represents a
series of infinitesimal Gaussian noise. A good way to understand it is through a formally definition:

dWt =
√

dt lim
n→∞

n∑
i=1

√
1
n

ϵi, (19)

where ϵi are independent standard Gaussian noises with mean 0 and identity covariance matrix I. The limit
in this definition shows that dW is not just a single Gaussian random variable with mean 0, but rather
the cumulative effect of infinitely many independent Gaussian increments. Such cumulation allows us to
compute the covariance of dW as vector product:

dWt · dWT
t = Cov(dWt, dWT) = I dt, (20)

where I is the identity matrix. When no quadratic terms of dWt are involved, dWt can often be roughly
treated as

√
dt ϵ, where ϵ ∼ N (0, 1) is a standard Gaussian random variable.

The Brownian noise dWt scales as
√

dt, which fundamentally alters the rules of calculus for SDEs. A change
of variable in ordinary calculus has ds = ds

dt dt, but for Brownian noise it is dWs =
√

ds
dt dWt. Moreover, the

differentiation of a function is df(t, xt) = ∂tfdt +∇xf · dxt in ordinary calculus, but for SDE, it follows the
Itô’s lemma:

df(t, xt) = ∂tfdt +∇xf · dxt + σ2

2 ∇
2
xf dt︸ ︷︷ ︸

stochastic effect

. (21)

This is derived by differentiating f using the chain rule with the help of Eq.18 and Eq.20, while keeping all
terms up to order dt (note that dW scales as

√
dt). The emergence of the second-order derivative term ∇2

xf
is the key distinction from ordinary calculus. We will later use this lemma to analyze the evolution of the
distribution of xt.

Langevin Dynamics is a special diffusion process aims to generate samples from a distribution p(x). It
is defined as

dxt = s(xt)dt +
√

2dWt, (22)

where s(x) = ∇x log p(x) is the score function.

This dynamics is often used as a Monte Carlo sampler to draw samples from p(x), since p(x) is its stationary
distribution—the distribution that xt converges to as t → ∞, regardless of the initial distribution of x0.
More precisely, this means that if an ensemble of particles {x(i)

t }N
i=1 evolves according to the given SDE,

and their initial positions {x(i)
0 } follow a distribution p(x), then their positions {x(i)

t } will continue to be
distributed according to p(x) at all future times t > 0.

To verify stationarity, we will show that after evolution from time 0 to ∆t, the distribution of x∆t is still p(x).
Consider a test function f and initial positions x0 ∼ p(x), stationary can be assessed by tracking the change
in the expectation Ex0∼p(x)[f(x∆t)]. Using Itô’s lemma and note that Ex[dW] = 0 for any distribution of

18

Under review as submission to TMLR

x, we compute:

Ex0∼p(x) [f(x∆t)− f(x0)] ≈ ∆t

∫
p(x)

(
∇xf · s +∇2

xf
)

dx

= ∆t

∫
f(x)

(
−∇x · (ps) +∇2

xp
)

dx (integration by parts)

= ∆t

∫
f(x)∇x · (−ps +∇xp) dx

= 0,

(23)

where 0 is obtained by substituting s = ∇x log p. Because Ex0∼p(x) [f(x∆t)− f(x0)] = 0 for any test function
f , this means the distribution of x∆t must have been kept the same as x0.

Langevin Dynamics as ‘Identity’ The stationary of p(x) is very important: The Langevin dynamics
for p(x) acts as an "identity" operation on the distribution, transforming samples from p(x) into new samples
from the same distribution. This property enables efficient derivations of both forward and backward diffusion
processes for diffusion models.

C The Denoising Diffusion Probabilistic Model (DDPMs)

Langevin dynamics can be used to generate samples from a distribution p(x), given its score function s. But
its success hinges on two critical factors. First, the method is highly sensitive to initialization - a poorly
chosen x0 may trap the sampling process in local likelihood maxima, failing to explore the full distribution.
Second, inaccuracies in the score estimation, particularly near x0, can prevent convergence altogether. These
limitations led to the development of diffusion models, which use a unified initialization process: all samples
are generated by gradually denoising pure Gaussian noise.

DDPMs (Ho et al., 2020) are models that generate high-quality images from noise via a sequence of denoising
steps. Denoting images as random variable x of the probabilistic density distribution p(x), the DDPM aims
to learn a model distribution that mimics the image distribution p(x) and draw samples from it. The training
and sampling of the DDPM utilize two diffusion process: the forward and the backward diffusion process.

The forward diffusion process of the DDPM provides necessary information to train a DDPM. It grad-
ually adds noise to existing images x0 ∼ p(x) using the Ornstein–Uhlenbeck diffusion process (OU process)
(Uhlenbeck & Ornstein, 1930) within a finite time interval t ∈ [0, T]. The OU process is defined by the
stochastic differential equation (SDE):

dxt = −1
2xtdt + dWt, (24)

in which t is the forward time of the diffusion process, xt is the noise contaminated image at time t, and Wt

is a Brownian noise.

The forward diffusion process has the standard Gaussian N (0, I) as its stationary distribution. Moreover,
regardless of the initial distribution p0(x) of positions {x(i)

0 }N
i=1, their probability density pt(x) at time t

converges to N (x|0, I) as t→∞.

The backward diffusion process is the conjugate of the forward process. While the forward process
evolves pt toward N (0, I), the backward process reverses this evolution, restoring N (0, I) to pt. To derive it,
we know from previous section that Langevin dynamics Eq.22 acts as an "identity" operation on a distribution.
Thus, the composition of forward and backward processes, at time t, must yield the Langevin dynamics for
pt(x).

To formalize this, consider the Langevin dynamics for pt(x) with a distinct time variable τ , distinguished
from the forward diffusion time t. This dynamics can be decomposed into forward and backward components

19

Under review as submission to TMLR

as follows:

dxτ = s(xτ , t)dτ +
√

2 dWτ ,

= −1
2xτ dτ + dW(1)

τ︸ ︷︷ ︸
Forward

+
(

1
2xt + s(xτ , t)

)
dτ + dW(2)

τ︸ ︷︷ ︸
Backward

, (25)

where s(x, t) = ∇x log pt(x) is the score function of pt(x). The "Forward" part corresponds to the forward
diffusion process Eq.24, effectively increasing the forward diffusion time t by dτ , bringing the distribution
to pt+dτ (x). Since the forward and backward components combine to form an "identity" operation, the
"Backward" part in Eq.25 must reverse the forward process—decreasing the forward diffusion time t by dτ
and restoring the distribution back to pt(x).

Now we can define the backward process according to the backward part in Eq.25, and a backward diffusion
time t′ different from the forward diffusion time t:

dxt′ =
(

1
2xt′ + s(xt′ , t)

)
dt′ + dWt′ . (26)

It remains to determine the relation between the forward diffusion time t and backward diffusion time t′.
Since dt′ is interpreted as "decrease" the forward diffusion time t, we have

dt = −dt′ (27)

which means the backward diffusion time is the inverse of the forward. To make t′ lies in the same range
[0, T] of the forward diffusion time, we define t = T − t′. In this notation, the backward diffusion process
(Anderson, 1982) is

dxt′ =
(

1
2xt′ + s(xt′ , T − t′)

)
dt′ + dWt′ , (28)

in which t′ ∈ [0, T] is the backward time, s(x, t) = ∇x log pt(x) is the score function of the density of xt in
the forward process.

Forward-Backward Duality The forward and backward processes form a dual pair, advancing the time
t′ means receding time t by the same amount. We define the densities of xt (forward) as pt(x), the densities
of xt′ (backward) as qt′(x). If we initialize

q0(x) = pT (x), (29)

then their evolution are related by
qt′(x) = pT −t′(x) (30)

For large T , pT (x) converges to N (x|0, I). Thus, the backward process starts at t′ = 0 with N (0, I) and,
after evolving to t′ = T , generates samples from the data distribution:

qT (x) = p0(x). (31)

This establishes an exact correspondence between the forward diffusion process and the backward diffusion
process.

Numerical Implementations In practice, the forward OU process Eq.24 is numerically discretized into
the variance-preserving (VP) form (Song et al., 2020c):

xi =
√

1− βi−1xi−1 +
√

βi−1ϵi−1, (32)

where i = 1, · · · , n is the number of the time step, βi is the step size of each time step, xi is image at ith time
step with time ti =

∑i−1
j=0 βj , ϵi is standard Gaussian random variable. The time step size usually takes the

20

Under review as submission to TMLR

form βi = i(b2−b1)
n−1 + b1 where b1 = 10−4 and b2 = 0.02. Note that our interpretation of β differs from that

in (Song et al., 2020c), treating β as a varying time-step size to solve the autonomous SDE Eq.24 instead
of a time-dependent SDE. Our interpretation holds as long as every β2

i is negligible and greatly simplifies
future analysis. The discretized OU process Eq.32 adds a small amount of Gaussian noise to the image at
each time step i, gradually contaminating the image until xn ∼ N (0, I).

Training a DDPM aims to recover the original image x0 from one of its contaminated versions xi. In this
case Eq.32 could be rewritten into the forward diffusion process

xi =
√

ᾱix0 +
√

1− ᾱiϵ̄i; 1 ≤ i ≤ n, (33)

where ᾱi =
∏i−1

j=0(1− βj) is the weight of contamination and ϵ̄i is a standard Gaussian random noise to be
removed.

An useful property we shall exploit later is that for infinitesimal time steps β, the contamination weight
ᾱi is the exponential of the diffusion time ti

lim
maxj βj−→0

ᾱi −→ e−ti . (34)

The backward diffusion process is used to sample from the DDPM by removing the noise of an image
step by step. It is the time reversed version of the OU process, starting at x0′ ∼ N (x|0, I), using the reverse
of the OU process Eq.28. In practice, the backward diffusion process is discretized into

xi′+1 = xi′ + s(xi′ , T − t′
i′)βn−i′√

1− βn−i′
+
√

βn−i′ϵi′ , (35)

where i′ = 0, · · · , n is the number of the backward time step, xi′ is image at i′th backward time step
with time t′

i′ =
∑i′−1

j=0 βn−1−j = T − tn−i′ . This discretization is consistent with Eq.28 as long as β2
i are

negligible. The score function s(xi′ , T − t′
i′) is generally modeled by a neural network and trained with a

denoising objective.

Training the score function requires a training objective. We will show that the score function could
be trained with a denoising objective.

DDPM is trained to removes the noise ϵ̄i from xi in Eq.33, by training a denoising neural network ϵθ(x, ti)
to predict and remove the noise ϵ̄i. This means that DDPM minimizes the denoising objective (Ho et al.,
2020):

Ldenoise(ϵθ) = 1
n

n∑
i=1

Ex0∼p0(x)Eϵ̄i∼N (0,I)∥ϵ̄i − ϵθ(xi, ti)∥2
2. (36)

Now we show that ϵθ trained with the above objective is proportional to the score function s. Note that the
Eq.33 tells us that the distribution of xi given x0 is a Gaussian distribution

p(xi|x0) = N (xi|
√

ᾱix0, (1− ᾱi)I), (37)

and the noise ϵ̄i in Eq.33 is directly proportional to the score function

ϵ̄i = −
√

1− ᾱis(xi|x0, ti), (38)

where s(xi|x0, ti) = ∇xi
log p(xi|x0) is the score of the conditional probability density p(xi|x0) at xi.

The Eq.38 is an important property. It tells us that the noise ϵ̄i is directly related to a conditional score
function. This conditional score function is connected to the score function s(x, t) through the following
equation:

Exi∼pti
(x)f(xi)s(x, ti) = Ex0∼p0(x)Exi∼p(xi|x0)f(xi)s(xi|x0) (39)

21

Under review as submission to TMLR

where f is an arbitrary function and s(x, t) = ∇x log pt(x) is the score function of the probability density of
xt.

Substituting Eq.38 into Eq.36 and utilizing Eq.39, we could derive that Eq.36 is equivalent to a denoising
score matching objective

Ldenoise(ϵθ) = 1
n

n∑
i=1

Exi∼pti
(x)∥
√

1− ᾱis(xi, ti) + ϵθ(xi, ti)∥2
2, (40)

This objectives says that the denoising neural network ϵθ(x, ti) is trained to approximate a scaled score
function ϵ(x, ti) (Yang et al., 2022)

ϵθ(x, ti) ≈ −
√

1− ᾱis(x, ti). (41)

Therefore the denoising neural network is actually a scaled estimate of the score function s(x, t), hence could
be inserted into the backward sampling process Eq.35 to generate images.

D The ODE Based Backward Diffusion Process

The backward diffusion process Eq.26 is not the only reverse process for the forward process Eq.24. We can
derive a deterministic ordinary differential equation (ODE) as an alternative, removing the stochastic term
dW in the reverse process.

To obtain this ODE reverse process, consider the Langevin dynamics Eq.25 with a rescaled time (dτ → 1
2 dτ):

dxτ = 1
2s(xτ , t)dτ + dWτ ,

= −1
2xτ dτ + dWτ︸ ︷︷ ︸

Forward

+ 1
2xτ dτ + 1

2s(xτ , t)dτ︸ ︷︷ ︸
Backward

,
(42)

Following the same logic used to derive the backward diffusion process Eq.28, we extract from this splitting
the backward ODE (known as the probability flow ODE (Song et al., 2020c)):

dxt′ = 1
2 (xt′ + s(x, T − t′)) dt′, (43)

where t′ ∈ [0, T] is backward time, and s(x, t) = ∇xt log pt(x) is the score function of the density of xt in
the forward process. This ODE maintains the same forward-backward duality as the SDE reverse process
Eq.28.

Since the ODE is deterministic, it enables faster sampling than the SDE version. Established ODE
solvers—such as higher-order methods and exponential integrators—can further reduce computational steps
while maintaining accuracy.

E Three Notations of Diffusion Models

In this section, we discuss three common formulations of diffusion models: variance-preserving (VP),
variance-exploding (VE), and rectified flow (RF). We demonstrate their mathematical equivalence and show
how they can be transformed into one another.

To simplify notation, we now use continuous time t and its corresponding state xt (as in Eq.24), rather than
discrete notations like ti and xi.

Variance Perserving (VP) The DDPMs introduced in the previous section are called ’variance-
preserving’ models. This name originates from the forward process Eq.33: if the clean images x0 are
normalized such that Cov(x0, x0) = I, then this covariance is preserved at any time ti, with Cov(xi, xi) = I.

22

Under review as submission to TMLR

The forward diffusion process Eq.33 in continuous time t is:

xt =
√

ᾱtx0 +
√

1− ᾱtϵ̄t, (44)

where ᾱt = e−t (from Eq.34) and ϵ̄t ∼ N (0, I).

The continuous-time processes are:

• Forward SDE (Ornstein-Uhlenbeck process):

dxt = −1
2xtdt + dWt (45)

• Backward ODE (Probability flow):

dxt′ = 1
2 (xt′ + s(xt′ , T − t′)) dt′, (46)

where t′ ∈ [0, T] is reversed time, and the score function s(x, t) = ∇x log pt(x) is learned via the
denoising objective Eq.36 and Eq.41.

While we previously trained the denoising network ϵθ using objective Eq.36 (related to the score function via
Eq.41), we can alternatively model the score function sθ directly. By substituting ϵθ with sθ and dropping
the
√

1− ᾱt scaling factor, we obtain the equivalent score-based objective:

Lscore(sθ) = Et∼U [0,1]Ex0∼p0(x)Eϵ̄t∼N (0,I)

∥∥∥∥ ϵ̄t√
1− ᾱt

+ sθ(xt, t)
∥∥∥∥2

2
, (47)

where xt follows Eq.44. This represents an equivalent but reweighted version of the original denoising
objective Eq.36.

Variance Exploding (VE) The variance exploding formulation provides an alternative to variance pre-
serving. Define:

σ =
√

1− ᾱt

ᾱt
; σ′ =

√
1− ᾱT −t′

ᾱT −t′
; zσ = xt√

ᾱt
; zσ′ = xt′

√
ᾱT −t′

; ϵ(zσ, σ) = −
√

1− ᾱts(xt, t), (48)

Rewriting the VP forward Eq.44 in VE notation yields:

zσ = z0 + σϵ̄σ, (49)

where z0 is the clean image corrupted by noise of magnitude σ.

The continuous-time processes become:

• Forward SDE (from Eq.45):

dzσ =
√

2σdWσ, σ ∈
[
0,
√

1−ᾱT

ᾱT

]
(50)

• Backward ODE (from Eq.46):

dzσ′ = ϵ(zσ′ , σ′)dσ′, σ′ ∈
[√

1−ᾱT

ᾱT
, 0
]

(51)

To directly model ϵθ(z, σ), we adapt the denoising objective Eq.36 to VE coordinates by replacing xt with
zσ:

Ldenoise(ϵθ) = Eσ∼U [0,σmax]Ez0∼p0(x)Eϵ̄σ∼N (0,I)∥ϵ̄σ − ϵθ(zσ, σ)∥2
2, (52)

where σmax =
√

(1− ᾱT)/ᾱT and zσ follows Eq.49. This preserves the denoising objective’s structure while
operating in VE space.

23

Under review as submission to TMLR

Rectified Flow (RF) While often presented as a distinct framework from DDPMs, rectified flows are
mathematically equivalent (Gao et al., 2025) to DDPMs. We now provide a much simpler proof via the
transformations:

s = σ

1 + σ
; s′ = σ′

1 + σ′ ; rs = zσ

1 + σ
; rs′ = zσ′

1 + σ′ ; v(rs, s) = ϵ(zσ, σ)− rs

1− s
(53)

Rewriting the VE forward process Eq.49 in RF coordinates yields:

rs = (1− s)r0 + sϵ̄s, (54)

which linearly interpolates between clean data (r0) and noise.

The continuous-time dynamics become:

• Forward SDE (from Eq.50):

drs = − rs

1− s
ds +

√
2s

1− s
dWs, s ∈ [0, 1] (55)

• Backward ODE (from Eq.51):

drs′ = v(rs′ , s′)ds′, s′ ∈ [1, 0] (56)

To directly model vθ(rs′ , s′), we transform the denoising objective Eq.52 by substituting ϵθ with vθ and
inserting the RF forward process Eq.54 into Eq.52, while removing a constant scaling factor (1 − s). This
yields the flow matching objective:

Lflow(vθ) = Es∼U [0,1]Er0∼p0(x)Eϵ̄s∼N (0,I)∥ϵ̄s − r0 − vθ(rs, s)∥2
2, (57)

where rs follows Eq.54. This represents a re-weighted equivalent of the denoising objective Eq.36, interpreted
in the flow matching framework where ϵ̄ corresponds to the endpoint r1 and vθ models the velocity field
transporting r0 to r1.

In summary, the three notations (VP, VE, and RF) are mutually transformable through the mappings
defined in Eq.48 and Eq.53. This equivalence enables a practical LanPaint implementation strategy: we can
design LanPaint using any single notation (such as VP) and automatically extend it to other frameworks by
applying these transformations.

F Stationary Distribution of Langevin Dynamics with the BiG score

In this appendix, we prove that the BiG score Langevin Dynamics defined in Eq.13 converges to the target
distribution

πt(x, y) ∝ pt(x | y) pt(y | yo)1+λ

pt(y)λ
+ o(
√

1− ᾱt). (58)

with a negligible deviation as t→ 0. The joint dynamics of xt and yt are governed by the following Langevin
dynamics:

dxt = sx(xt, yt, t) dτ +
√

2 dWx
τ ,

dyt = gλ(xt, yt, t) dτ +
√

2 dWy
τ ,

(59)

where the drift term gλ is defined as

gλ(x, y, t) = −
(

(1 + λ) y−
√

ᾱt yo

1− ᾱt
+ λ sy(x, y, t)

)
. (60)

24

Under review as submission to TMLR

F.1 Idealized SDE for the Target Distribution

To establish the convergence of BiG score, we first consider an idealized Langevin dynamics whose invariant
distribution is the exact target distribution

π∗(xt, yt) ∝ p(xt | yt)
p(yt | yo)1+λ

pt(y)λ
. (61)

The score function used in this idealized Langevin dynamics is given by:

s∗(x, y, t) = ∇x,y [log pt(x | y) + (1 + λ) log pt(y | yo)− λ log pt(y)] . (62)

Expanding this and note that pt(y) = pt(x,y)
pt(x|y) , we obtain:

dxt = s∗
x(xt, yt, t) dτ +

√
2 dWx

τ ,

dyt = s∗
y(xt, yt, t) dτ +

√
2 dWy

τ ,
(63)

where
s∗

x(x, y, t) = sx(x, y, t),
s∗

y(x, y, t) = (1 + λ)∇y log p(x | y, t) + (1 + λ)∇y log p(y | yo, t)− λ∇y log p(x, y, t).
(64)

Using the fact that p(yt | yo) = N (yt |
√

ᾱt yo, (1− ᾱt)I), we simplify s∗
y to:

s∗
y = (1 + λ)∇yt log p(xt | yt)− (1 + λ) yt −

√
ᾱt yo

1− ᾱt
− λ∇yt log p(xt, yt). (65)

F.2 Comparison with BiG score Drift Term

To connect the idealized SDE with the BiG score dynamics, we analyze the relationship between s∗
y and gλ.

Define the following quantities:

rt = Ep(xt,yt)

∥∥∥∥yt −
√

ᾱt yo

1− ᾱt

∥∥∥∥
2

,

st = Ep(xt,yt) ∥∇yt
log p(xt | yt)∥2 ,

scond = rt

st
∇yt

log p(xt | yt).

(66)

Here, scond is a rescaled version of ∇yt
log p(xt | yt) that matches the order of magnitude of yt−

√
ᾱt yo

1−ᾱt
.

Substituting these definitions into s∗
y, we obtain:

s∗
y = (1 + λ) st

rt
scond + gλ(xt, yt, t). (67)

Thus, the idealized score function s∗(x, y, t) can be expressed as:

s∗(x, y, t) =
(

sx(x, y, t), gλ(x, y, t)
)

+ st

rt

(
0, scond

)
. (68)

F.3 Perturbation Between Ideal and BiG score Scores

To quantify the deviation between the idealized score s∗
y and the BiG score score gλ, we analyze the scaling

relationship between the terms st

rt
and
√

1− ᾱt. Recall that st and rt are defined as:

r(t) = Ept(x,y)

∥∥∥∥y−
√

ᾱt yo

1− ᾱt

∥∥∥∥
2

,

s(t) = Ept(x,y) ∥∇y log pt(x | y)∥2 .

(69)

25

Under review as submission to TMLR

From the relationship between the score function and the noise term in diffusion models (see Eq.41), we
have:

ϵ(x, t) = −
√

1− ᾱt s(x, t), (70)

where ᾱt = e−t. This implies that the score function s(x, t) can be expressed as:

s(x, t) = − ϵ(x, t)√
1− ᾱt

. (71)

To proceed, we make the following assumption about the noise term ϵ(x, t):
Assumption F.1. The expected L2 norm of the noise term ϵ(x, t) is a positive bounded value, i.e., there
exists a constant C > 0 such that

Ep(x,t) ∥ϵ(x, t)∥2 = C. (72)

Under Assumption F.1, we can derive the scaling behavior of st and rt:

1. Scaling of st: Since ∇y log pt(x | y) is a score function, it follows the same scaling as s(x, t). Thus,

s(t) = Ept(x,y) ∥∇y log pt(x | y)∥2 ∼
C√

1− ᾱt
. (73)

2. Scaling of rt: The term y−
√

ᾱt yo

1−ᾱt
represents the deviation of y from its conditional mean. For small 1− ᾱt,

this scales as:
r(t) = Ept(x,y)

∥∥∥∥y−
√

ᾱt yo

1− ᾱt

∥∥∥∥
2
∼ C ′

1− ᾱt
, (74)

where C ′ > 0 is a constant proportional to the standard deviation of y.

3. Ratio st

rt
: Combining the scaling behaviors of st and rt, we obtain:

st

rt
∼ C/

√
1− ᾱt

C ′/(1− ᾱt)
= C

C ′
√

1− ᾱt. (75)

Thus, st

rt
scales as O(

√
1− ᾱt).

Now we have shown that the idealized Langevin dynamics Eq.63 and the BiG score Langevin dynamics Eq.59
differ only by an O(

√
1− ᾱt) perturbation. We also provide numerical verification of this analysis in Fig.8.

Figure 8: We analyze the average norm ratio between the ideal score s∗
y (Eq.65) and the component discarded

by the BiG score, s∗
y − gλ, relative to ᾱt, in the conditional Gaussian case (Section 5.1). We focus on the

right part of the image when ᾱt approaches 1 (i.e., t → 0), which determines the distribution of generated
clean image. This ratio decreases at the same rate as

√
1− ᾱt, indicating that the BiG score gλ closely

approximates the ideal score s∗
y with negligible error as t → 0. This confirms that the error scales as

O(
√

1− ᾱt), laying the foundation for Theorem 4.1.

26

Under review as submission to TMLR

F.4 Fokker-Planck Equation Analysis

We now show that an O(
√

1− ᾱt) deviation from the idealized score function translates to an O(
√

1− ᾱt)
deviation in the stationary distribution of Langevin dynamics.

The Fokker–Planck equation Eq.147 describes the time evolution of the probability density ρ(z, τ) associated
with a stochastic process governed by a stochastic differential equation (SDE). For a general SDE of the
form:

dzi = hi(z) dτ + γij(z) dWj , (76)

the corresponding Fokker–Planck equation can be written in operator form as:

∂ρ(z, τ)
∂τ

= Lρ(z, τ), (77)

where L is the Fokker-Planck operator, defined as:

L = −∇ ·
[
h(z) ·

]
+ 1

2∇ ·
[
D(z)∇·

]
. (78)

Here, h(z) is the drift vector, D(z) = γ(z)γ(z)⊤ is the diffusion matrix, and ∇· denotes the divergence
operator.

F.4.1 Fokker-Planck Operator for BiG score

The BiG score dynamics are governed by the SDE Eq.59. The corresponding Fokker-Planck operator for the
BiG score is:

LBiG score = −∇x ·
[
sx(x, y, t) ·

]
−∇y ·

[
gλ(x, y, t) ·

]
+∇2, (79)

where ∇2 is the Laplacian operator.

The corresponding Fokker-Planck operator for the idealized SDE Eq.63 is:

Lideal = −∇xt
·
[
sx(xt, yt, t) ·

]
−∇yt

·
[
s∗

y(xt, yt, t) ·
]

+∇2. (80)

F.4.2 Deviation Between BiG score and Idealized SDE

The key difference between the BiG score and the idealized SDE lies in their score functions. Specifically,
the score function s∗

y for the idealized SDE can be expressed in terms of the BiG score score function gλ as:

s∗
y = (1 + λ) st

rt
scond + gλ, (81)

where scond = rt

st
∇yt

log p(xt | yt). Thus, the difference between the Fokker-Planck operators for the BiG
score and the idealized SDE is:

LBiG score − Lideal = −∇yt ·
[
(1 + λ) st

rt
scond ·

]
. (82)

This additional term represents the perturbation between the BiG score and the idealized SDE.

F.4.3 Analysis Using Dyson’s Formula

To analyze the deviation of the solutions to the Fokker-Planck equations, we use Dyson’s Formula (Evans &
Morriss, 2008), a powerful tool in the study of perturbed differential equations. Dyson’s Formula expresses
the solution to a perturbed differential equation in terms of the unperturbed solution. Specifically, for a
differential equation of the form

∂ρ(z, τ)
∂τ

= (L0 + L1)ρ(z, τ), (83)

27

Under review as submission to TMLR

where L0 is the unperturbed operator and L1 is a perturbation, the solution can be written as

ρ(z, τ) = e(L0+L1)τ ρ(z, 0) = eL0τ ρ(z, 0) +
∫ τ

0
eL0(τ−s)L1ρ(z, s) ds. (84)

This formula allows us to express the solution to the perturbed Eq.83 as the sum of the unperturbed solution
and a correction term due to the perturbation.

In our case, the Fokker-Planck equation for the BiG score can be viewed as a perturbation of the Fokker-
Planck equation for the idealized SDE. Let ρideal(xt, yt, τ) be the solution to the idealized Fokker-Planck
equation:

∂ρideal

∂τ
= Lidealρideal. (85)

The solution to the BiG score Fokker-Planck equation can then be written using Dyson’s Formula as:

ρBiG score(xt, yt, τ) = ρideal(xt, yt, τ) +
∫ τ

0
eLideal(τ−s) (LBiG score − Lideal) ρBiG score(xt, yt, s) ds. (86)

Substituting the perturbation term, we obtain:

ρBiG score(xt, yt, τ) = ρideal(xt, yt, τ)− (1 + λ) st

rt

∫ τ

0
eLideal(τ−s)∇yt

· [scond ρBiG score(xt, yt, s)] ds. (87)

From the analysis in Section F.3, we know that st

rt
∼
√

1− ᾱt. Thus, the deviation term is proportional to√
1− ᾱt.

F.5 Conclusion

As τ → ∞, the idealized solution ρideal(xt, yt, τ) converges exponentially to the stationary distribution
π∗(xt, yt), driven by the contractive nature of Lideal. The BiG score dynamics, governed by ρBiG score,
deviate from π∗ by a term proportional to

√
1− ᾱt. Thus, the BiG score dynamics converge to π∗(xt, yt)

with negligible error as t→ 0, controlled by the vanishing perturbation of the order
√

1− ᾱt. This argument
hence proves Theorem 4.1, as long as the term

P =
∫ τ

0
eLideal(τ−s)∇yt · [scond ρBiG score(xt, yt, s)] ds (88)

remains bounded for all τ > 0.

F.6 Supp: P is bounded

This section aims to show that the term

P =
∫ τ

0
eLideal(τ−s)∇yt

· [scond ρBiG score(xt, yt, s)] ds (89)

is bounded.

Assumptions

1. Let S(xt, yt, s) = scond ρBiG score(xt, yt, s), which is well-defined, bounded for all xt and s, and
vanishes as ∥yt∥ → ∞.

2. The idealized Fokker-Planck equation (with generator Lideal), has a unique stationary solution for
each initial condition and a finite relaxation time.

28

Under review as submission to TMLR

Key Properties

1. Spectral Gap: Assumption 2 implies that Lideal has a spectral gap L > 0, or equivalently, −L is
the largest non-zero eigenvalue.

2. Exponential Damping: The term eLideal(τ−s)∇yt ·S represents the evolution of the initial condition
∇yt · S from time 0 to τ − s. Suppose

c = lim
τ−s→∞

eLideal(τ−s)∇yt · S (90)

Due to the spectral gap, this term behaves like e−L(τ−s) + c.

Integral Evaluation If the integrand behaves like e−L(τ−s) (suppose c = 0), then the integral∫ τ

0
e−L(τ−s) ds = 1− e−Lτ

L
(91)

is finite for τ > 0, which completes the argument.

Proof of c = 0 Under Assumption 1, since S vanishes as ∥yt∥ → ∞, the divergence theorem yields:∫
∇yt
· S dyt = 0. (92)

Furthermore, because the Fokker-Planck operator Lideal preserves probability mass, we have:∫
eLideal(τ−s)∇yt · S dyt = 0 (93)

for all τ − s ≥ 0. As τ − s→∞, this quantity must relax to zero—its unique stationary solution—without
a constant term C.

QED The integral is bounded:
|P | ≤ constant

L
. (94)

G Fast Langevin Dynamics (FLD) with Momentum

In this section, we introduce how we design the solver for FLD step by step.

The Original Langevin Dynamics Suppose we wish to solve the Langevin dynamics for LanPaint to
perform a conditional sampling task:

dx = s(x)dt +
√

2dWt, (95)

where s(x) = ∇x log p(x) is the score function modeled by the diffusion model. Our goal is to simulate the
dynamics of x until it converges to its stationary distribution p(x).

The simplest approach is to use the Euler-Maruyama scheme:

x(t + ∆t) = x(t) + s(x(0))∆t +
√

2∆tξ, (96)

where ξ is a standard Gaussian noise. This is a first-order scheme with a total numerical error scaling as
O(∆t). However, this method has two drawbacks:

• Slow convergence: It requires many time steps for x to reach the stationary distribution unless
we use large ∆t.

29

Under review as submission to TMLR

• White Noite Issue: The numerical error scales with ∆t. If ∆t is large, it will add too much noise
to x within one step, manifesting as either visible white noise (pixel space) or blurriness (latent
space) in the generated images.

To address these issues, we aim to:

• Accelerate convergence to reduce the number of required steps.

• Use more accurate numerical scheme to suppress the white noise artifacts.

The Underdamped Langevin Dynamics (ULD) To accelerate convergence, we adopt the under-
damped Langevin dynamics, which introduces momentum to the original Langevin dynamics:

dx = 1
m

v dt,

dv = − γ

m
v dt + s(x) dt +

√
2γ dWv,

(97)

where γ is the friction coefficient, m is the mass, and v is an auxiliary momentum variable. The stationary
distribution of this system is:

ρ(x, v) = p(x)N (v|0, mI). (98)

Momentum is well-known to accelerate convergence in optimization problems, and the same holds for
Langevin dynamics. While ULD provides faster convergence, it has two key drawbacks:

• Interpretability: The parameters of γ and m is non-intuitive and challenging to understand.

• Momentum cannot be switched off : There exists no parameter choice (γ or m) that recovers
the original Langevin dynamics. This makes it difficult to isolate whether the acceleration stems
from momentum effects or other factors (e.g., larger effective step sizes) in comparative studies.

The Fast Langevin Dynamics To address these limitations, we reformulate the ULD by introducing
the transformations: q = γ

m v, τ = t
γ , and Γ = γ2

m , yielding the following system:

dx = q dτ

dq = Γ
(
−q dτ + s(x) dτ +

√
2 dWτ

) (99)

This formulation provides key advantages that resolve our previous concerns:

• Improved interpretability: The (s(x) dτ +
√

2 dWτ) term directly correspond to the original
dynamics, with q representing an exponentially weighted moving average of these terms with decay
rate Γ.

• Exact recovery of original dynamics: By taking Γ → ∞, we recover the original Langevin
dynamics exactly, as the momentum equation reduces to:

q dτ = s(x) dτ +
√

2 dWτ (100)

This allows direct comparison between the momentum and non-momentum cases.

• Parameter reduction: The reformulation combines the two original parameters (γ, m) into a
single parameter Γ, revealing that one parameter is redundant. This allows us to set m = 1 in the
original ULD without loss of generality, simplifying both analysis and implementation.

30

Under review as submission to TMLR

It remains to design an accurate numerical scheme for this dynamics. For LanPaint, we aim to perform
conditional sampling with minimal computational cost. The most computationally expensive operation is
the evaluation of the score function s(x). We therefore limit the number of function evaluations (NFE) of
the score function to 1 per time step.

This constraint eliminates many traditional high-order numerical schemes that could potentially improve
numerical accuracy with more NFE per time step. Moreover, in practice, we have found that traditional
high-order schemes (which assume smooth second- or third-order derivatives of s) performs poorly.

Given these considerations, the most accurate approach—while using only one score function evaluation per
step—appears to be solving the dynamics analytically under the assumption that s(x) remains constant
during each time step.

A Naive Solver of FLD Within a single time step, the dynamics simplifies to:

dx = q dτ

dq = Γ
(
−q dτ + s dτ +

√
2 dWτ

) (101)

However, this approach has an important limitation: When we take Γ→∞ to recover the original Langevin
dynamics, the system reduces to:

dx = s dτ +
√

2 dWτ (102)

Solving this exactly over time interval [0, ∆τ] with constant s yields:

x(∆τ) = x(0) + s∆τ +
√

2∆τ ξ, (103)

where ξ ∼ N (0, 1). This solution is identical to the Euler-Maruyama scheme, meaning it inherits the same
white noise problems we aimed to avoid.

While the previous approach represents the best we can do without prior knowledge of the diffusion model,
we can fortunately leverage such knowledge to develop a better scheme. In variance-preserving notation, the
diffusion model adopts the forward process:

xt =
√

ᾱtx0 +
√

1− ᾱtϵ (104)

where x0 is the clean image, xt is the noise-contaminated image at diffusion time t (distinct from Langevin
dynamics time), ᾱt follows the diffusion schedule (typically approximating exp(−t)), and ϵ ∼ N (0, I).

The model trains a denoising network ϵ(xt, t) to predict the noise, which relates to the score function through:

ϵ(xt, t) = −
√

1− ᾱt∇xt
log p(xt) = −

√
1− ᾱts(xt) (105)

This relationship enables estimation of the clean image:

x̂0(xt) = xt + (1− ᾱt)s(xt)√
ᾱt

(106)

This estimator provides a simple way to the clean image x̂0 without noise.

The FLD Solver We propose a solution to address the white noise issue: by engineering the FLD dynamics
such that for large ∆τ , x asymptotically converges to the form specified in Eq.104. In contrast to Eq.103,
which introduces infinitely large noise to x as ∆τ →∞, the asymptotic behavior for large ∆τ should satisfy:

x ∼ N
(
x |
√

ᾱtx̂0, 1− ᾱt

)
(107)

This design ensures that the Langevin dynamics neither introduces excessive noise nor improperly suppresses
it when ∆τ is large.

31

Under review as submission to TMLR

Such asymptotic behavior can be technically achieved by treating x̂0(x) as constant within each time step,
rather than s(x), leading to the Fast Langevin Dynamics (FLD) equations:

dx = q dτ

dq = Γ
(
−q dτ +

√
ᾱtx̂0 − x
1− ᾱt

dτ +
√

2 dWτ

) (108)

where the clean image estimate is:
x̂0(x) = x + (1− ᾱt)s(x)√

ᾱt
(109)

Analyzing the limiting case Γ→∞ reveals an Ornstein-Uhlenbeck process:

dx =
√

ᾱtx̂0 − x
1− ᾱt

dτ +
√

2 dWτ (110)

This process has the desired stationary distribution N (
√

ᾱtx̂0, 1 − ᾱt), rigorously satisfying Eq.107 and
maintaining the correct noise characteristics. Now, let’s design an exact solver for the FLD equation Eq.108,
treating x̂0 as a constant.

The FLD equation is a special case of the following general form of a stochastic harmonic oscillator:

dx = q dτ

dq = Γ (−q dτ −A x dτ + C dτ + D dWτ) ,
(111)

where Γ , A >= 0, q = dx
dτ and ητ = dWτ

dτ . This system can be rewritten as a second-order stochastic
differential equation:

d2x
dτ2 + Γdx

dτ
+ ΓA x− ΓC = ΓD ητ . (112)

Here, ητ = dWτ

dτ is the formal derivative of a Wiener process Wτ , representing white noise. If we formally
express the Wiener increment as dWτ =

√
dτ ϵ, where ϵ is a standard Gaussian noise, then ητ can be

interpreted as ητ = ϵ√
dτ

. This defines a singular stochastic process with zero mean and a delta-correlated
covariance:

E[ητ] = 0, E[ητ ηT
τ ′] = δ(τ − τ ′) I. (113)

Equation Eq.112 describes a damped harmonic oscillator with noise, whose behavior is governed by the
competition between restoring force A and damping Γ. The key parameter is the discriminant:

∆ = 1− 4 A

Γ , (114)

which emerges when solving ẍ + Γẋ + ΓAx = 0 via the exponential test solution x = eλτ . This yields
characteristic roots λ = [−Γ± Γ

√
∆]/2, revealing three distinct regimes according to square roots of ∆:

• Underdamped (∆ < 0): Complex roots cause oscillatory decay (like a swinging pendulum coming
to rest).

• Critically damped (∆ = 0): A repeated real root enables fastest non-oscillatory return to equi-
librium.

• Overdamped (∆ > 0): Distinct real roots lead to sluggish, non-oscillatory decay.

The exact solution to the FLD equation Eq.108 with initial conditions x(0) and q(0) follows a multivariate
normal distribution at time τ :

32

Under review as submission to TMLR

{x(τ), q(τ)} ∼ N (µ, Σ) (115)

The mean µ and covariance Σ are given by:

µ =

 x +
[
q(0)ζ2(Γτ, ∆) + (C−Ax)(1− ζ1(Γτ, ∆))

]
τ

q(0)
[
E(Γτ, ∆)−A(1− ζ1(Γτ, ∆))τ

]
+ (C−Ax)(1− E(Γτ, ∆))

 (116)

Σ = D2
(

τσ22(Γτ, ∆) 1
2 [Γτζ2(Γτ, ∆)]2

1
2 [Γτζ2(Γτ, ∆)]2 Γ

2 σ11(Γτ, ∆)

)
(117)

where the auxiliary functions are defined as:

ζ1(Γτ, ∆) = 1−
1− e− 1

2 Γτ

(
sinh(1

2 Γτ
√

∆)√
∆

+ cosh
(

1
2 Γτ
√

∆
))

1
4 Γτ(1−∆)

ζ2(Γτ, ∆) =
2e− 1

2 Γτ sinh
(

1
2 Γτ
√

∆
)

Γτ
√

∆
E(Γτ, ∆) = 1− Γτζ2(Γτ, ∆)

σ11(Γτ, ∆) = (1− e−Γτ) + e−Γτ

(
1− cosh[Γτ

√
∆]

∆ + sinh[Γτ
√

∆]√
∆

)

σ22(Γτ, ∆) = 2
Γτ(1−∆)

[
1− e−Γτ

(
1 + sinh(Γτ

√
∆)√

∆
+ cosh(Γτ

√
∆)− 1

∆

)]

(118)

The solution captures all three damping regimes through the discriminant ∆ = 1−4A/Γ, with the hyperbolic
functions smoothly transitioning between oscillatory (∆ < 0), critical (∆ = 0), and overdamped (∆ >
0) behavior. The covariance structure reflects the coupling between position and momentum fluctuations
induced by the stochastic forcing.

Algorithm 1: Stochastic Harmonic Oscillator
Input: Initial position x0 ∈ Rn, initial momentum q0 ∈ Rn (optional), time step τ > 0, friction

Γ > 0, scalar A ∈ R, vector C ∈ Rn, scalar D ∈ R
Output: Final position xτ ∈ Rn, final momentum qτ ∈ Rn

if q0 is None then
Sample z ∼ N (0, Im) ; // Standard normal vector in Rm

Set q0 ←
√

Γ
2 ·D · z ; // Initialize the velocity according to stationary

distribution
end

Sample
[
xτ

qτ

]
∼ N (µ, Σ) according to Eq.115;

return xτ , qτ ;

Parameter Schedule For the FLD equation Eq.108, the coefficients take specific forms:

A = 1
1− ᾱt

, C =
√

ᾱtx̂0(x)
1− ᾱt

= s(x) + A x, D =
√

2 (119)

where s(x) is the score function. Substituting these into the general solution Eq.115 yields an exact analytical
solver for the FLD dynamics (x̂0 treated as constant).

33

Under review as submission to TMLR

More generally, we have the freedom to choose the coefficients C and A, as long as they add up to the score
function

s(x) = C(x)−A x, (120)
where C is treated as a constant during a single time step. This freedom allow us to do the following
modification to Eq.119

1. The coefficients can take the following forms:

A = 1
1− ᾱt + ᾱt α

, C = s(x) + A x, D =
√

2. (121)

The hyperparameter α > 0 can be tuned based on the task. It represents the expected noise level of the
sampling target, derived according to the forward diffusion process Eq.2, under which a Gaussian random
variable with standard deviation α follows the distribution N (0, 1− ᾱt + ᾱtα), whose score has linear term of
the form −1

1−ᾱt+ᾱt α x. It is particularly useful when the assumption that x̂0(x) is constant does not hold. For
instance, when sampling from a Gaussian distribution with standard deviation σ, x̂0(x) varies, and setting
α = σ optimizes A. Thus, α can be interpreted as the "noise level" of the target distribution. For image
generation tasks, set α = 0.

2. The coefficients can alternatively be expressed as:

A = 1 + λ

1− ᾱt
, C = s(x) + A x D =

√
2 (122)

This formulation incorporates the guidance scale λ from Eq.12, where A scales proportionally with λ. The
proportional relationship ensures stable solutions even at large λ values. In practice, we adopt this set of
parameter for the masked (y, known) part of LanPaint.

Substituting these coefficients into the general solution (FLD Gaussian solution) yields exact analytical
expressions for the FLD dynamics over an arbitrary time interval [0, τ]. In practice, this can be adapted to
a shifted interval [τ, τ + ∆τ].

Note that the parameters A and C depend on the diffusion time t (or say noise level), meaning the FLD
dynamics vary throughout the diffusion process. Consequently, both the time step ∆τ for each iteration and
the friction coefficient Γ must be adjusted accordingly to adapt to these changing dynamics and maintain
solution stability.

FLD Solver Summary As a summary of previous discussion. We now show one time step of the FLD
solver

Algorithm 2: 1st-order FLD solver
Input: x0, q0, ∆τ , Γ, A, D, function Ccoef
Output: xτ , qτ

// Compute coefficients C via Eq.121 or Eq.122
C← Ccoef(xτ/2)
// Advance time with Algorithm 1
xτ , qτ ← StochasticHarmonicOscillator(x0, q0, ∆τ, Γ, A, C, D)
return xτ , qτ , C,

The solver can be made second-order accurate in time step τ by introducing midpoint states xτ/2, qτ/2
without requiring additional neural network evaluations, maintaining the same computational efficiency.
The idea is to do the following operator splitting:

dx = q dτ

dq = Γ (−q dτ −A x dτ + C(x) dτ + D dWτ) ,
(123)

split into

dx = q dτ

dq = Γ (−q dτ −A x dτ + C0 dτ + D dWτ) ,
(124)

34

Under review as submission to TMLR

and

dx = 0
dq = Γ (C(x)−C0) dτ,

(125)

then do a 2nd order Strang splitting. The resulting method is
Algorithm 3: 2nd-order FLD solver

Input: x0, q0, ∆τ , Γ, A, C0, D, function Ccoef
Output: xτ , qτ , Cτ

// Advance time with Algorithm 1
xτ/2, qτ/2 ← StochasticHarmonicOscillator(x, q, ∆τ/2, Γ, A, C0, D)
// Compute C via Eq.121 or Eq.122
Cτ ← Ccoef(xτ/2)
qτ/2 ← qτ/2 + Γ(Cτ −C0)∆τ
// Advance time with Algorithm 1
xτ , qτ ← StochasticHarmonicOscillator(xτ/2, qτ/2, ∆τ/2, Γ, A, C0, D)
return xτ , qτ , Cτ

Friction Schedule The friction schedule is designed based on a core principle: the FLD dynamics should
maintain its characteristic damping behavior consistently throughout the entire diffusion process. Whether
the system is underdamped or overdamped, this state should remain invariant for all time t.

To achieve this, we ensure that the discriminant ∆ remains constant across all diffusion times t. A straight-
forward choice is

Γt = Γ0At (126)
This schedule preserves a constant discriminant for each time t. It uniformly control the global damping
behavior - transitioning between underdamped and overdamped regimes - while ensuring consistent dynamics
at every diffusion step.

Time Step Schedule We employ the time step schedule inversely proportional to A

∆τt = ∆τ0
AT

At
(127)

to maintain a constant product Γ∆τ across all diffusion times (AT acts as a normalization constant). This
design is motivated by the fundamental principle that the step size should adapt to the system’s rate of
change: faster-evolving dynamics (large Γ) require smaller steps, while slower dynamics (small Γ) permit
larger ones.

The key insight comes from examining the exponential terms in Eq.118. When τ = ∆τ , most terms scale like
e−Γ∆τ , where the product Γ∆τ directly determines the decay rate. By keeping Γ∆τ constant, we ensure a
consistent "amount of change" per step—effectively balancing step size with the system’s intrinsic timescale.
This approach automatically adjusts ∆τt to be smaller when Γt is large (fast dynamics) and larger when Γt

is small (slow dynamics), yielding stable and efficient numerical step across all diffusion time.

Extension of FLD: Hessian-Free High Resolution(HFHR) Dynamics The HFHR technique accel-
erates the convergence of Underdamped Langevin Dynamics (ULD) by introducing a new parameter α into
the ULD dynamics:

dx = 1
m

vdt + α s(x)dt +
√

2αdWx

dv = − γ

m
vdt + s(x)dt +

√
2γdWv

(128)

The additional term, α s(x)dt +
√

2αdWx, corresponds to the original Langevin dynamics. Empirically,
setting α > 0 accelerates convergence, but it remains unclear whether this improvement stems from an

35

Under review as submission to TMLR

Algorithm 4: LanPaint, Variance Perserving Notation
Input: Input image y, mask m, text embeddings e, step size η, steps N , friction γ, expected noise

α, guidance scale λ
Output: Inpainted image z
Initialize:
x← Random noise ; // Latent variable
{yt} ← ForwardDiffuse(y) ; // Pre-diffused inputs
for each timestep t do

σ ← scheduler.sigma(t) ; // Get the noise level (VE notation) from scheduler
ᾱt ← 1/(1 + σ2) ; // Compute alpha bar (VP notation)
// Prepare parameters for x and y regions
Ax ← 1/(1− ᾱt + ᾱtα)
Ay ← (1 + λ)/(1− ᾱt)
Γx ← γ2Ax ; // Friction coefficient for x
Γy ← γ2Ay ; // Friction coefficient for y
D ←

√
2 ; // Diffusion coefficient, assumed equal for x and y

// Set step sizes based on sigma functions
σx ← (1− ᾱt + ᾱtα)
σy ← (1− ᾱt)
dτ ← η ; // Base step size
q, C← None, None
Function Ccoef(x):

// Compute score
ϵ← UNet(x, t)
s← −ϵ/

√
1− ᾱt

// Compute BiG score

sλ ← s⊙ (1−m) +
(

(1+λ)(
√

ᾱty−x)
(1−ᾱt) − λs

)
⊙m

// Compute masked C
C← (sλ + Axx)⊙ (1−m) + (sλ + Ayx)⊙m
return C

// FLD dynamics with stochastic harmonic oscillator
for k = 1 to N do

if q is None then
// Advance time with FLD 1st order algorithm 2
x, q, C← FLD_1st(x, q, dτ, Γ, A, D, Ccoef)

else
// Advance time with FLD 2nd order algorithm 3
x, q, C← FLD_2nd(x, q, dτ, Γ, A, C, D, Ccoef)

end
end
// After LanPaint steps, use scheduler to step
ϵ← UNet(z, t)
z← SchedulerStep(z, ϵ, t)

end
z← z⊙ (1−m) + y⊙m
return z

increased effective step size in ULD or an inherent acceleration due to the added terms. To analyze the
dynamics, we perform a parameter transformation. Let

Ψ = αγ + 1, q = γ

Ψ
v
m

, τ = Ψ t

γ
, Γ = γ2

mΨ , (129)

36

Under review as submission to TMLR

which transforms the system into:

dx = q dτ + Ψ− 1
Ψ s(x) dτ +

√
2Ψ− 1

Ψ dWx,

dq = Γ
(
−q dτ + 1

Ψ s(x) dτ +
√

2
Ψ dWv

)
.

(130)

In this form, two key observations emerge:

1. Limit behavior: As Γ→∞, the dynamics reduces to the original Langevin dynamics:

dx = s(x) dτ +
√

2 dWτ . (131)

2. Linear combination: The HFHR dynamics is a weighted combination of Langevin dynamics and
ULD, with weighting factor 1

Ψ and Ψ−1
Ψ .

This reveals that HFHR does not introduce inherent acceleration beyond ULD. Instead, its convergence
improvement stems primarily from an increased effective step size. For this reason, we do not adopt HFHR
in the FLD sampler.

Extension of FLD: Pre-conditioned Langevin Dynamics The stationary distribution π(x) of the
original Langevin dynamics

dx = s(x) dτ +
√

2 dWτ , (132)
where s(x) = ∇x log π(x), is also the stationary distribution of the pre-conditioned dynamics

dx = P s(x) dτ +
√

2P dWτ , (133)

with P a positive definite symmetric matrix. A distribution is stationary if it remains unchanged after a
small time step ∆τ , i.e., π′(x′) = π(x′).

The transition probability for the pre-conditioned dynamics over a small time step is given by a Gaussian
integral:

π′(x′) =
∫

π(x)N (x′; x + P s(x)∆τ, 2P∆τ) dx, (134)

where N (x′; m, Σ) denotes a multivariate Gaussian with mean m = x+P s(x)∆τ and covariance Σ = 2P∆τ .
Since the time step is small, the Gaussian is sharply peaked near x′, allowing us to simplify the integral.

To evaluate this, we approximate the score function near x′, assuming s(x) ≈ s(x′) for x close to x′, as the
dynamics involve small steps. We introduce a change of variables, defining y = x + P s(x)∆τ , which we
approximate as:

y ≈ x + P s(x′)∆τ. (135)
The inverse transformation is:

x = y− P s(x′)∆τ. (136)
The Jacobian determinant of this transformation, to first order, is approximately 1 − P∇ · s(x′)∆τ , so the
volume element transforms as:

dx =
(
1− P∇ · s(x′)∆τ

)
dy. (137)

Using the symmetry of the Gaussian, N (x′; y, 2P∆τ) = N (y; x′, 2P∆τ), the integral becomes:

π′(x′) =
(
1− P∇ · s(x′)∆τ

) ∫
π(y− P s(x′)∆τ)N (y; x′, 2P∆τ) dy. (138)

Define the deviation ∆x = y−x′−P s(x′)∆τ , so that y−P s(x′)∆τ = x′ + ∆x. Since y follows a Gaussian
distribution centered at x′ with covariance 2P∆τ , we compute the moments:

E[∆x] = −P s(x′)∆τ, E[∆x∆xT] = 2P∆τ. (139)

37

Under review as submission to TMLR

We approximate the density at the shifted point using a Taylor expansion:

π(x′ + ∆x) ≈ π(x′) + ∆xT∇π(x′) + 1
2∆xT∇∇π(x′)∆x. (140)

Taking the expectation over the Gaussian, the integral evaluates to:∫
π(x′ + ∆x)N dy ≈ π(x′)−∆τs(x′)T P∇π(x′) + ∆τP : ∇∇π(x′). (141)

Multiplying by the Jacobian factor and collecting terms up to order ∆τ , we obtain:

π′(x′) ≈ π(x′)−∆τ
[
∇ · (P s(x′)π(x′))−∇ · (P∇π(x′))

]
+O(∆τ2). (142)

Since the score function satisfies s(x′) = ∇ log π(x′) = ∇π(x′)
π(x′) , we have:

P s(x′)π(x′) = P∇π(x′). (143)

Substituting this into the expression, the divergence terms cancel. Thus, the updated distribution simplifies
to:

π′(x′) = π(x′) +O(∆τ2). (144)

As the time step approaches zero, the higher-order terms vanish, yielding π′(x′) = π(x′). Therefore, π(x) is
the stationary distribution of the pre-conditioned dynamics. QED.

The FLD dynamics Eq.101 can also be preconditioned by a positive definite symmetric matrix P , yielding:

dx = Pq dτ,

dq = Γ
(
− Pq dτ + P s dτ +

√
2P dWτ

)
.

(145)

When P is a diagonal matrix, its diagonal elements Pii act as scaling factors for each dimension of the
system. This effectively assigns a distinct time step ∆τi = Pii∆τ to the dynamics of each dimension,
allowing independent control over the rate of evolution along each coordinate. For example, a larger Pii

accelerates the dynamics in the i-th dimension, equivalent to a larger time step, while a smaller Pii slows it
down. This flexibility enables tailored convergence speed for each dimension without altering the system’s
stationary distribution.

H A General Form of Langevin Dynamics and Its Stationary Distribution

In this section, we present a unified proof demonstrating that ULD, FLD, pre-conditioned, and HFHR
dynamics all share the same stationary distribution as the original Langevin dynamics.

1. General Relation Between SDEs and the Fokker–Planck Equation

The Fokker–Planck equation describes the time evolution of the probability density ρ(z, t) associated with
a stochastic process governed by a stochastic differential equation (SDE). For a general SDE of the form:

dzi = hi(z) dt + γij(z) dWj , (146)

the corresponding Fokker–Planck equation is:

∂ρ(z, t)
∂t

= − ∂

∂zi

[
hi(z)ρ(z, t)

]
+ 1

2
∂2

∂zj∂zk

[
γji(z)γki(z)ρ(z, t)

]
, (147)

where hi(z) is the drift term, γij(z) is the diffusion matrix, and dWj are independent Wiener processes.

38

Under review as submission to TMLR

2. Fokker–Planck Equation and Stationary Distribution of the Langevin Dynamics

Consider the SDE:
dz = ∇z log p(z) dt +

√
2 dWz. (148)

The drift term is h(z) = ∇z log p(z), and the diffusion matrix is constant with γij =
√

2δij . The
Fokker–Planck equation becomes:

∂ρ(z, t)
∂t

= − ∂

∂zi

[(∂ log p(z)
∂zi

)
ρ
]

+ ∂2ρ

∂z2
i

. (149)

At stationarity, ∂ρ
∂t = 0, leading to:

0 = − ∂

∂zi

[(∂ log p(z)
∂zi

)
ρ
]

+ ∂2ρ

∂z2
i

. (150)

Solving this equation shows that the stationary distribution is:

ρ(z) = p(z), (151)

where p(z) is the target probability distribution.

3. Fokker–Planck Equation and Stationary Distribution of Fast Langevin Dynamics

Now consider the SDE system:

dz = 1
m

Pv dt + αP∇z log p(z) dt +
√

2αP dWz,

dv = − γ

m
Pv dt + P∇z log p(z) dt +

√
2γP dWv,

(152)

where P is a symmetric positive semidefinite matrix. This system is the general form of underdamped
Langevin dynamics, with preconditioning and the HFHR technique introduced in Appendix G. The
Fokker–Planck equation for this system is:

∂ρ(z, v, t)
∂t

= − ∂

∂zi
Pij

[(1
m

vj + α
∂ log p(z)

∂zj

)
ρ− α

∂ρ

∂zj

]
− ∂

∂vi
Pij

[(
− γ

m
vj + ∂ log p(z)

∂zj

)
ρ− γ

∂ρ

∂vj

]
.

(153)

To determine the stationary distribution, assume:

ρ(z, v) = p(z)N (v|0, mI), (154)

where p(z) is the marginal distribution of z, and N (v|0, mI) is a Gaussian distribution with zero mean and
covariance mI. Substituting into the Fokker–Planck equation, we find:

∂ρ(z, v, t)
∂t

= − ∂

∂zi
Pij

[1
m

vjp(z)N (v|0, mI)
]
− ∂

∂vi
Pij

[∂p(z)
∂zj

N (v|0, mI)
]
. (155)

Note that ∂vi
N (v|0, mI) = −vi

mN (v|0, mI), therefore these terms cancel, confirming:

ρ(z, v) = p(z)N (v|0, mI) (156)

is a stationary solution. This implies: 1. z follows the target distribution p(z), 2. v is independent of z and
thermalized around zero with variance proportional to m.

Thus, the stationary distribution is a decoupled joint distribution where z governs the spatial distribution,
and v represents a Gaussian thermal velocity.

39

Under review as submission to TMLR

The Fast Langevin Dynamics (FLD) The FLD reparametrizes Eq.152 through the transformations:
q = γ

m v, τ = t
γ , Γ = γ2

m , m = 1, α = 0, and P = I, resulting in the following system:

dz = q dτ

dq = Γ
(
−q dτ + s(z) dτ +

√
2 dWτ

) (157)

where s(z) = ∇z log p(z). Transforming v to q, we have the stationary distribution:

ρ(z, q) = p(z)N (q|0, Γ) (158)

This proves Theorem 4.2.

I More Production-Level Model Evaluations Across Architectures

This section offers a qualitative analysis of LanPaint’s performance across diverse models, in comparison to
ComfyUI’s built-in inpainting functionality (ComfyUI Wiki, 2025), which is a variant of the Replace method.
The evaluation demonstrates LanPaint’s strong generalization capabilities, effectively handling various mask
types and models from different communities and companies, across a range of architectures.

Figure 9: Model: animagineXL40_v4Opt, Prompt: "basketball, masterpiece, high score, great score, absur-
dres", Steps: 30, CFG Scale: 5.0, Sampler: Euler, Scheduler: Karras, LanPaint Iteration Steps: 2, Seed: 0,
Batch Size: 4

40

Under review as submission to TMLR

Figure 10: Model: animagineXL40_v4Opt, Prompt: "1girl, blue shirt, masterpiece, high score, great score,
absurdres", Steps: 30, CFG Scale: 5.0, Sampler: Euler, Scheduler: Karras, LanPaint Iteration Steps: 5,
Seed: 0, Batch Size: 4

Figure 11: Model: juggernautXL_juggXIByRundiffusion, Prompt: "1girl, sad, beautiful girl, night, master-
piece", Steps: 30, CFG Scale: 5.0, Sampler: Euler, Scheduler: Karras, LanPaint Iteration Steps: 5, Seed: 0,
Batch Size: 4

Figure 12: Model: juggernautXL_juggXIByRundiffusion, Prompt: "1girl, yoga, beautiful, masterpiece",
Steps: 30, CFG Scale: 5.0, Sampler: Euler, Scheduler: Karras, LanPaint Iteration Steps: 5, Seed: 0, Batch
Size: 4

41

Under review as submission to TMLR

Figure 13: Model: animagineXL40_v4Opt, Prompt: "1girl, multiple views, multiple angles, clone,
turnaround, from side, masterpiece, high score, great score, absurdres", Steps: 30, CFG Scale: 5.0, Sampler:
Euler, Scheduler: Karras, LanPaint Iteration Steps: 5, Seed: 0, Batch Size: 4

Figure 14: Model: flux1-dev-fp8, Prompt: "cute anime girl with massive fluffy fennec ears and a big fluffy
tail blonde messy long hair blue eyes wearing a maid outfit with a long black gold leaf pattern dress and a
white apron mouth open placing a fancy black forest cake with candles on top of a dinner table of an old
dark Victorian mansion lit by candlelight with a bright window to the foggy forest and very expensive stuff
everywhere there are paintings on the walls", Steps: 30, CFG Scale: 1.0, Sampler: Euler, Scheduler: Simple,
LanPaint Iteration Steps: 5, Seed: 0, Batch Size: 4

Figure 15: Model: hidream_i1_dev_fp8, Prompt: "An anime-style girl intensely playing basketball, mid-
dribble with sweat glistening under the court lights. The scoreboard shows 98-95, highlighting the close
match. She wears a sleek jersey and shorts, sneakers gripping the polished floor. Dynamic motion, vibrant
colors, ultra-detailed (absurdres), with dramatic lighting and a glowing energy—like a high-stakes anime
sports moment.", Steps: 28, CFG Scale: 1.0, Sampler: Euler, Scheduler: Normal, LanPaint Iteration Steps:
5, Seed: 0, Batch Size: 4

42

Under review as submission to TMLR

Figure 16: Model: sd3.5_large, Prompt: "a bottle with a rainbow galaxy inside it on top of a wooden table
on a snowy mountain top with the ocean and clouds in the background", Steps: 30, CFG Scale: 5.5, Sampler:
Euler, Scheduler: sgm_uniform, LanPaint Iteration Steps: 5, Seed: 0, Batch Size: 4

43

	Introduction
	Related Works
	ODE-based Sampling Methods and Rectified Flow
	Training-Free Partial Conditional Sampling with Diffusion Models
	Trained Partial Conditional Sampling with Diffusion Models

	Background
	Langevin Dynamics
	DDPM and ODE Based Sampling
	Inpainting as Partial Conditional Sampling

	Methodology
	Bidirectional Guided (BiG) Score
	Fast Langevin Dynamics (FLD)
	Rectified Flow Model Compatibility

	Experiments
	Conditional Gaussian: Exactness of LanPaint
	Mixture of Gaussian: Local Maxima Trapping
	Latent and Pixel Space Model: CelebA and ImageNet
	Ablation Study
	Production-Level Model Evaluation Across Architectures: Stable Diffusion, Flux, and HiDream

	More Ablation and Implementation Details
	Diffusion Process and Langevin Dynamics
	The Denoising Diffusion Probabilistic Model (DDPMs)
	The ODE Based Backward Diffusion Process
	Three Notations of Diffusion Models
	Stationary Distribution of Langevin Dynamics with the BiG score
	Idealized SDE for the Target Distribution
	Comparison with BiG score Drift Term
	Perturbation Between Ideal and BiG score Scores
	Fokker-Planck Equation Analysis
	Fokker-Planck Operator for BiG score
	Deviation Between BiG score and Idealized SDE
	Analysis Using Dyson’s Formula

	Conclusion
	Supp: P is bounded

	Fast Langevin Dynamics (FLD) with Momentum
	A General Form of Langevin Dynamics and Its Stationary Distribution
	More Production-Level Model Evaluations Across Architectures

