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Abstract—In direct time-of-flight single-photon lidar, the pho-
ton detection times are typically used to estimate the depth, while
the number of detections is used to estimate the reflectivity. This
paper examines the use of detection times in reflectivity esti-
mation with a free-running SPAD by proposing new estimators
and unifying previous results with new analysis. In the low-flux
regime where dead times are negligible, we examine the Cramér-
Rao bound of reflectivity estimation. When depth is unknown, we
show that an estimator based on censoring can perform almost
as well as a maximum likelihood estimator, and, surprisingly,
incorrect depth estimation can reduce the mean-squared errors of
reflectivity estimation. We also examined joint estimation of signal
and background fluxes, for which our proposed censoring-based
estimator performs as well as the maximum likelihood estimator.
In the high-flux regime where dead times are not negligible, we
model the detection times as a Markov chain and examine some
reflectivity estimators that exploit the detection times.

Index Terms—dead time, direct time of flight, Fisher infor-
mation, Poisson processes, single-photon avalanche diode, time-
correlated single-photon counting.

I. INTRODUCTION

Lidar (sometimes described as an acronym for light detec-
tion and ranging but originally a portmanteau of light and
radar [1]) uses echoes detected from optical-wavelength illu-
minations to reveal properties of the surrounding environment.
By neglecting subsurface scattering, partial transmission, mul-
tiple reflections, and deviation from monostatic geometry, one
can simply view lidar as making a measurement along a
straight line from a laser illumination source in the imaging
apparatus, to a scene patch, and back to the imager. Though
estimating the distance of light travel is often the primary or
sole objective, reflectivity information is also present. Lidar
is thus a method for 3D imaging that can yield both a depth
map and an intensity image. Reflectivity images from lidar
have been used to aid robots’ simultaneous localization and
mapping (SLAM) [2] and odometry [3], [4]. Reflectivity in
multispectral and hyperspectral lidar can also reveal material
properties, and it has been used to classify ores [5], rocks [6],
and tree species [7].

In single-photon lidar (SPL), the illumination consists of
a sequence of very short pulses and the detector has single-
photon sensitivity. Reflectivity information has been important
to recent progress in SPL toward accurate depth mapping from
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very few detected photons [8], [9], [10], [11], [12] and with
low signal-to-background ratio (SBR) [13], [14], [15]. Key
themes of these works include using intensity as a cue for local
SBR and exploiting the tendency for depth and intensity edges
to appear at the same locations. Thus, these works are benefit-
ing from the joint estimation of reflectivity and depth through
the incorporation of assumptions about scene structure. They
may misleadingly suggest that when considering a single
pixel in isolation, the depth and reflectivity information are
decoupled, with detection times revealing depth and numbers
of detections revealing reflectivity.

In this paper, we examine the joint estimation of reflectivity
and depth at a single pixel (i.e., without spatial regularization),
with an emphasis on the accuracy of reflectivity. We determine
and illustrate certain fundamental limits of performance for
a variety of settings. In particular, we illustrate that pho-
ton detection times are informative in reflectivity estimation,
perhaps contrary to intuition that only numbers of detec-
tions are informative. Some previous works have exploited
detection times to censor the detection events imputed to
ambient light, but they then emphasize the impact on depth
estimation [9], [13]. One of our findings is that censoring can
improve reflectivity estimation as well. Similar to time gating,
censoring removes background detections, which contribute
most to the error when SBR is low. Moreover, with either
censoring or maximum likelihood estimation, incorrect depth
estimation can surprisingly reduce the mean-squared errors
of reflectivity estimation. We also examined joint estimation
of signal and background fluxes, for which our proposed
censoring-based estimator performs as well as the maximum
likelihood estimator.

The literature on SPL with time-correlated single-photon
counting (TCSPC) is complicated by variations on the protocol
for data collection; the level of detail of the data that is
retained; free-running vs. synchronous modes; and whether
dead time effects are negligible. We present here a taxonomy
of these variations and develop results for the most interesting
cases. Some elements of this paper are tutorial, serving to
unify and clarify results from [9], [13], [16], [17], [18]. New
results include maximum likelihood (ML) estimators of the
reflectivity and the depth with respect to the detection times
for both the low- and high-flux regimes. In the low-flux case,
we provide a Fisher information analysis and evaluate the
proposed ML reflectivity estimator along with other estimators
for comparison via simulation. The mean-squared errors of
the ML estimator and a censoring-based estimator are almost
identical across the range of SBRs from 0.01 to 1.0 with
average numbers of detected signal photons ranging from 2
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to 10. This result suggests that censoring is an effective and
efficient way to estimate the reflectivity in the low-flux case.

A. Related Work

The most well-known early developments of SPL using
avalanche photodiodes diodes were due to teams at MIT
Lincoln Laboratory [19], [20], [21], [22], [23] and Heriot-
Watt University [24], [25], [26], [27], [28], [29]. These groups
developed single-photon avalanche diode (SPAD) technology,
time measurement circuitry, and prototype systems.

By demonstrating reasonable 3D imaging accuracy with 1
detected photon per pixel and SBR of 1, first-photon imag-
ing [8] inspired many SPL works in which advances in proba-
bilistic modeling and computational methods are of paramount
importance. These include works addressing the challenges
associated with having very few detected photons [9], [30],
[31], [10], [11], strong background light [13], [14], [32], [33],
very long range [34], [35], [36], obscurants [37], [38], [39],
scenes with multiple layers [40], [12], [41], [42], and real-
time reconstruction [43], [44], [45]. Other works addressed
data processing to mitigate hardware limitations, such as dead
times [46], [47], [48], [16], [49], [50], [51], [17], [52], analog-
to-digital-converter trade-offs [53], [54], and data through-
put [55], [56], [57].

Ballistic missile identification and detection of obscured
targets motivated some initial SPL development [23], and
early commercial technology was a direct offshoot of the
U.S. Defense Advanced Research Project Agency’s Grand
Challenge [58]. Now, SPADs are becoming cheaper and easier
to manufacture using standard CMOS processes. As a result,
SPL is a common component for autonomous vehicles [59],
and it is embedded in high-end consumer electronics devices
such as the iPad Pro and iPhone 12–14 Pro [60], and even for
low-cost range or proximity sensing [61], [62]. Applications
include atmospheric measurement [63], geoscience [64], [65],
[66], and cultural heritage preservation [67].

B. Outline

The remainder of the paper is organized as follows. Sec-
tion II characterizes the photon arrival process and describes
how nonidealities in a SPAD, such as dead times, affect the
detection model. Section III explores how different possibil-
ities in the flux levels, data collection protocols, and prior
knowledge about the scene affect the detection model and
the resulting estimation problem. Section IV examines the
reflectivity estimation problem in the low-flux regime, where
dead time effects are negligible. We describe the probability
distribution of the detection times and study some estimators
in the low-flux regime. Then, we provide a Fisher information
analysis of the reflectivity and an evaluation of the estimators
based on simulation results. Section V examines the reflectiv-
ity estimation problem in the high-flux regime, where dead
time effects cannot be ignored. We model a sequence of
detections as a Markov chain and discuss some estimators.

II. SINGLE-PHOTON DETECTION WITH SPADS

A typical model for SPL assumes that the illuminated target
is a single opaque, Lambertian surface at a fixed distance z
from the laser. We develop here a mathematical model for
the detection times when the surface is illuminated nr times
by a periodically-pulsed laser source with repetition period
tr. The sequence of arriving photons is a realization of an
inhomogeneous (time-varying) Poisson process with periodic
rate function [68], [69]. If the laser pulses are emitted at times
t = ntr where index n = 0, 1, . . . , nr − 1, the intensity of the
arriving photons is

λ(t) =

nr−1∑

n=0

λ̃(t− ntr), (1)

where the single-period intensity λ̃(t) is supported on [0, tr).
We now characterize the arrival processes of photons from the
laser and other sources in each repetition period.

A. Signal Photons

A single laser pulse has a temporal profile ρss(t), where s(t)
satisfies

∫∞
−∞ s(t) dt = 1, and ρs > 0 is the laser flux. Photons

that were initially emitted by the laser and then reflect off
the target back to the detector are called signal photons. The
illuminated point has reflectivity α ∈ [0, 1), which includes the
effects of surface albedo, view angle, and range-based falloff.
The single-period signal intensity is

λ̃s(t) = αρss(t− 2z/c), t ∈ [0, tr), (2)

where c is the speed of light, and 2z/c is the time-shift due to
the round-trip distance that the laser pulse travels to the target
and back. We assume that 2z/c < tr, which prevents distance
aliasing, i.e., a detected signal photon must have been emitted
at the beginning of the current repetition period and not any
of the previous periods. We assume that the full width at half
maximum (FWHM) pulse width tp is very short in comparison
to the repetition period tr, so

∫ tr
0

s(t−2z/c) dt ≈ 1. A useful
quantity is the signal flux

Λs =

∫ tr

0

λ̃s(t) dt = αρs, (3)

which is the mean number of signal photons arriving during
any period. Since the signal photon sequence is a realization
of a Poisson process, the number of photon arrivals during
a period tr is a Poisson random variable with parameter Λs.
Estimating the reflectivity of a scene is equivalent to estimating
the signal flux, up to a linear scaling factor. We can rewrite
the single-period signal intensity to explicitly include Λs:

λ̃s(t) = Λss(t− 2z/c), t ∈ [0, tr). (4)

B. Background Photons

The other main source of photons arriving at the detector
is ambient light that, in isolation, contains no information
about the target distance. We call these background photons
and assume the total acquisition time nrtr is short enough
that the ambient light power is constant over the acquisition
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time. Although background photons may be emitted from
sources with non-Poissonian statistics, e.g., thermal sources,
wavelength filtering ensures the background light reaching the
detector is quasi-monochromatic, and Poisson statistics are a
good approximation [68]. The sequence of photons is modeled
as a homogeneous Poisson process with constant intensity. We
denote the single-period intensity by λ̃b(t) = b for t ∈ [0, tr).
Because the background intensity is constant, the background
flux (the expected number of background photons arriving
during a period of duration tr) is trivially Λb = btr. We
note that when the ambient light fluctuates slowly enough,
assuming that the background intensity is constant in each
repetition period can be a good approximation. Many results
in Sections IV and V may be extended to scenarios with
fluctuating background in this case.

C. Total Arrival Process

The signal and background processes are statistically inde-
pendent, so the sequence of all photons arriving at the detector
is described by the superposition of the signal and background
processes and is likewise a Poisson process. The single-period
total arrival process intensity is

λ̃(t) = λ̃s(t) + λ̃b(t) (5)
= Λss(t− 2z/c) + b, t ∈ [0, tr), (6)

which sums the intensities of the signal and background
processes. Similarly, the total flux Λ = Λs + Λb = αρs + btr
sums the component fluxes. The total arrival process over the
acquisition time nrtr is therefore

λ(t) = Λs

[
nr−1∑

n=0

s(t− 2z/c− ntr)

]
+ b. (7)

We note that more complicated scenes will affect the photon
arrival model. For instance, rapidly changing lighting condi-
tions would lead to an inhomogenous background process.
Alternatively, partial reflections at object edges or through
semi-transparent media would cause the signal process to
include multiple distinct reflections [40], [41], [42], [12], [43].
Surfaces at oblique angles, especially at long range, will reflect
a broadened pulse shape relative to the illumination pulse [70].
Furthermore, scattering media such as fog would introduce an
additional classification of scattered photons that were emitted
by the laser and interact with the medium rather than the
target before detection [38]. Although we will focus only
on the simple case, reflectivity and depth estimation for the
more complex scenarios can be extrapolated from the simple
estimators with some modification.

D. Detection Efficiency and Dark Counts

Despite improvements in single-photon detectors and timing
electronics, not every photon arriving at a detector can be
registered as a count. We consider the detection model for
SPADs, which have become ubiquitous in SPL applications
because of the many benefits of solid-state devices, including
room-temperature operation, ruggedness, and low bias voltage

compared to photomultiplier tubes (PMTs) and superconduct-
ing nanowire single-photon detectors (SNSPDs).

A SPAD is a reverse-biased photodiode biased above the
breakdown voltage [71]. When a photon reaches the active area
of the SPAD, it causes the generation of a photoelectron with
a probability described by the quantum efficiency. If a photo-
electron is generated, the potential across the diode accelerates
the electron, causing an avalanche of charge carriers (electrons
and holes). The sharp increase in current from the avalanche
causes a detection event to be recorded by the TCSPC timing
electronics.

The probability that an arriving photon both generates a
photoelectron and produces a detectable avalanche current is
called the detection efficiency η [72]. The detection efficiency
effectively multiplies each photon arrival by a Bernoulli ran-
dom variable with parameter η to determine whether an arriv-
ing photon is detected. Since the Bernoulli random variable is
independent of the arrival process, the detection process is a
“thinned” version of the arrival process and is still a Poisson
process [69]. The single-period intensity of the detection
process is ηλ̃(t).

Photoelectrons are not the only triggers for a carrier
avalanche. Dark counts are spurious detection events caused by
thermal noise rather than incident photons [71]. By modeling
dark counts as a homogeneous Poisson process [9], we add
the dark count rate bd to the detection process intensity.

The detection process intensity, including detection effi-
ciency and dark counts, for a single period is thus

ηλ̃(t) + bd = ηΛss(t− 2z/c) + ηb+ bd. (8)

This detection process intensity can be written in the form of
the single-period arrival process intensity in (6) with simple
redefinitions of the notation: Λs := ηΛs and b := ηb + bd.
Since this scaling and shifting is trivial, we assume η = 1 and
bd = 0 for simplicity; in the detection process intensity (7), the
detection efficiency and dark counts are modeled implicitly.

E. Afterpulsing and Dead Times

During the charge carrier avalanche in a SPAD, additional
photon arrivals cannot be recorded, since a single photoelec-
tron will make no meaningful difference to the avalanche.
Thus, each avalanche must be quenched via passive or active
circuitry to stop the flow of charge and reset the SPAD to
an armed state. Despite the quenching process, charge carriers
may become trapped in defects in the SPAD, and the time until
detrapping of the carriers is modeled as an exponential random
variable [71]. If the SPAD is armed when detrapping occurs,
another carrier avalanche may ensue and be registered as an
event detection. This process is called afterpulsing because it
leads to spurious detections that are statistically dependent on
the most recent avalanche time.

To minimize the effect of afterpulsing, SPADs are not imme-
diately reset after quenching. Instead, they are kept unarmed
for an additional hold-off period, during which carriers can
detrap without being detected [71]. We refer to the entire
period of quenching and hold-off as the detector dead time
since incident photons also cannot be detected. There is thus an
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inherent trade-off in the duration of the dead time, since longer
dead times reduce the probability of afterpulsing but also
prevent further photon detections. This trade-off is exacerbated
for infrared-sensitive SPADs, such as InGaAs/InP devices,
which have higher dark count rates than the Si SPADs that
are sensitive to visible wavelengths. Cooling the detectors
decreases the dark count rate, at the expense of increasing the
detrapping lifetime, so longer hold-off times are advantageous
to reduce the number of detected afterpulses [73].

The dead time duration is further complicated by two
competing approaches for deciding when to reset the detector.
The synchronous (also known as “clock-driven”) approach
synchronizes the reset to the illumination repetition period to
ensure the detector is always armed at the start of a repetition
period [74]. Only the first photon arriving during each period
is detected, and the resulting dead time duration is random-
ized by the relative detection time within the illumination
period. Synchronous reset results in statistically independent
illumination periods, which can facilitate simplified detection
modeling. However, the preference towards detecting early
arrivals results in a distance-dependent skew in the distribution
of detection times, which is especially problematic when the
background flux is large [75], [47], [48], [50].

On the other hand, the asynchronous (also known as “event-
driven,” “photon-driven,” or “free-running”) approach uses
a fixed dead time of duration td following each photon
detection [74]. Asynchronous reset is independent of the illu-
mination time, thus enabling multiple photons to be detected
in a single illumination period if td < tr or allowing for the
dead time starting in one period to carry over into the start
of the next period. A consequence of this behavior is that
the detection process is not statistically independent between
illumination periods, thus requiring more sophisticated mod-
eling [16], [52].

A further consideration is the use of time-gated detection,
which allows detection to occur during a pre-specified “gate”
window, defined relative to the illumination period, and sup-
presses detection outside of the gate. Gating can be useful for
ignoring background detections when the scene of interest is
known to exist within a range of distances smaller than the
unambiguous range set by the repetition period. Gating can
further turn an asynchronous system into a synchronous one,
if the gate-off time is longer than td, ensuring that the detector
is always armed at the gate-on time.

Finally, we must consider the TCSPC electronics that tag
each SPAD detection event with a high-resolution time stamp.
Not only the SPADs but also the TCSPC electronics can
exist in synchronous or asynchronous variants. For instance,
TCSPC electronics combining time-to-amplitude converters
(TACs) with analog-to-digital converters (ADCs) are typically
synchronous, whereas electronics based on time-to-digital con-
verters (TDCs) are often asynchronous, with a fixed dead time
te during which the detection time is processed and stored.

In this work, we assume both the SPAD and TCSPC elec-
tronics are asynchronous, which affects the model as explored
in Section V. We further assume that the detector dead time
td is long enough to make afterpulsing sufficiently unlikely
and indistinguishable from dark counts.

F. Detection Times and Counts

Denote the number of detections during period [0, nrtr) by
N , and denote the sequence of absolute detection times by
{Ti}Ni=1. For each i, define a relative detection time through
reduction modulo tr:

Ti = Mitr + T̃i, T̃i ∈ [0, tr), Mi ∈ Z. (9)

Then the set of pairs {(T̃i,Mi)}Ni=1 is equivalent to the
sequence of absolute detection times, with {T̃i}Ni=1 being the
sequence of detection times relative to the most recent pulse
emissions and {Mi}Ni=1 indicating the period indexes of the
detections.

By definition, absolute detection times are an increasing se-
quence. The period indexes are nondecreasing, and the relative
detection times satisfy no ordering property. To avoid possible
confusion with our notation, the period indexes {Mi}Ni=1

and relative detection times {T̃i}Ni=1 are to be interpreted as
multisets in the case of repeated values.

III. TAXONOMY OF ESTIMATION PROBLEMS

A. Flux Conditions

Perhaps the key property determining the acquisition model
is the photon flux. When the detectable flux is low (e.g.,
Λ ≪ 1), the probability of a photon arriving during a
dead time is negligible, so it is reasonable to assume that
there are no missed detections. Thus the particular details
of the acquisition system can be ignored, and the detection
sequence can be considered equivalent to the photon arrival
sequence, i.e., a realization of a Poisson process. As the flux
increases, the probability of photons arriving during a dead
time increases. Taking the missed detections into account
requires carefully modelling the time-dependence of the dead
times, such as specifying whether the system has synchronous
or asynchronous dead times.

B. Data Collection and Retention Protocols

1) Data Collection Duration: The vast majority of the
SPL literature assumes nr is deterministic and known, as this
describes hardware systems that raster scan a sequence of
laser positions with a pre-specified duration for each position.
A few works have proposed adaptive approaches that could
improve the efficiency of scanning, depending on the scene
content. First-photon imaging proposed using exactly one
detected photon per scene pixel—i.e., fixing N = 1—so that
reflectivity information is contained only in the geometrically
distributed number of illuminations nr before the first photon
is detected [8]. Medin et al. considered the data collection
duration as a resource allocation problem, in which both the
number of illuminations nr and the number of counts N were
allowed to vary in order to minimize the error in the reflectivity
estimate [76]. We will only consider nr to be deterministic and
known in the remainder of the paper.
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2) Data Retention: The full data set generated from nr

repetition periods is a number of detections N and the abso-
lute detections times {Ti}Ni=1 or, equivalently, {(T̃i,Mi)}Ni=1.
Some reductions of this data set are quite common, and
whether the reduction degrades the ability to estimate the target
parameters depends on the imaging scenario.

An unordered multiset of values (also referred to as a
histogram, empirical distribution, or type) derived from a
sequence fundamentally contains less information than the
sequence [77], but it may contain all the information relevant
to an estimation problem. If the sequence is generated from
independent trials of an experiment and the goal is to estimate
parameters of the experiment, then the order of outcomes is
irrelevant; when the trials are not independent, the order may
be relevant.

The vast majority of SPL techniques are based on retaining
only the histogram of relative detection times, which implicitly
contains N . It is possible to have slightly less information by
retaining only a normalized histogram, thus essentially losing
the value of N . Many possibilities exist between only the
histogram of relative detection times and the full sequence
of absolute detection times. For example, one could retain
separate histograms of both the relative detection times and
the period index increments Mi −Mi−1.

As we discuss in Section IV, low flux implies approxi-
mate independence of disjoint sets of repetition periods; thus,
{T̃i}Ni=1 is as informative as {(T̃i,Mi)}Ni=1 for our estimation
problems, so we may retain only the former which demands
less memory. In the high-flux regime, however, the absolute
detection times {Ti}Ni=1 contain information about the scene
parameters not present in the relative detection time histogram;
details are discussed in Sections IV and V.

C. Prior Knowledge

The prior knowledge about the scene determines which
models and estimators are applicable. For example, the de-
tection model introduced in Section II assumes that multi-
ple reflections are negligible, so the returning signal is the
outgoing laser pulse shifted by 2z/c in time. Otherwise,
hardwiring z into the detection model may be inappropriate.
Alternatively, some works allow the impulse response to be
arbitrary and then, following the Bayesian paradigm, impose
priors according to knowledge about the scene. For example,
sparsity in time achieved through ℓ1 regularization [40] and a
union-of-subspace approach [31] have been used when there
are few partially reflecting surfaces in the illumination path.
Moreover, this modeling naturally facilitates spatiotemporal
priors [78], [42]. Priors for reflectivity and background flux
that exploit spatial correlation between pixels have also been
proposed [12].

Even when we assume the detection model in Section II,
the knowledge of Λs, Λb, or z determines the applicable
estimators and, consequently, the accuracy and computation
requirement. While maximizing the likelihood functions (12)
in the low-flux case or (36) in the high-flux case with respect
to Λs, Λb, and z can jointly estimate all three parameters,
the computation may not be tractable. Alternatively, when

z is known, convex optimization algorithms can efficiently
maximize both likelihoods to estimate Λs and Λb.

IV. LOW-FLUX REFLECTIVITY ESTIMATION

When the total flux is low, i.e., Λ ≪ 1, the probability of
a photon arriving during the dead time following a previous
detection is negligible. Historically, a threshold of Λ < 5% has
been commonly used [79]. When the dead times are negligi-
ble, detections are modeled as arrivals in an inhomogeneous
Poisson process characterized by intensity function (7). Thus,
N is a Poisson random variable with parameter nrΛ, so its
probability mass function (PMF) is

pN (n) =
(nrΛ)

n exp (−nrΛ)

n!
. (10)

Conditioned on N = n, the relative detection times {T̃i}ni=1

are independent and identically distributed with conditional
probability distribution function (PDF)

fT̃i|N (t̃i |n) =
λ̃(t̃i)

Λ
. (11)

One of the major simplifications that follows from ne-
glecting dead times is that each repetition period becomes
an independent and identically distributed trial. Hence, the
relative detection times are as informative as the absolute
detection times in the low-flux setting. The joint density of the
number of detections N and the detection times T̃1, . . . , T̃N

during [0, nrtr), is

fN,T̃1,...,T̃N
(n, t̃1, . . . , t̃n)

=

(
n∏

i=1

λ̃(t̃i)

Λ

)
(nrΛ)

n exp (−nrΛ)

n!
.

(12)

A. Background Flux Estimation

The background flux Λb can be estimated in a calibration
step in which the laser is turned off. During background
calibration, the detection process is a homogeneous Poisson
process with intensity λb(t) = b, so the ML estimate of the
background intensity given the number of detections N over
a background calibration time tb is

b̂ =
N

tb
. (13)

The corresponding background flux estimate is Λ̂b = b̂tr =
Ntr/tb. In the following, we assume that the background flux
Λb or its estimate is known.

B. Signal Flux Estimation

1) ML Estimation from Detection Counts: Initial works in
photon-efficient SPL used only the count N and the calibrated
Λb to estimate the signal flux Λs [9], [80]. Since the number
of signal counts is Poisson, maximizing the likelihood in (10)
yields a constrained ML estimate

Λ̂s = max

{
N

nr
− Λb, 0

}
. (14)

However, the estimate (14) ignores the information in the
detection times.
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2) ML Estimation from Detection Times: An ML estimator
of Λs based on the relative detection times {T̃i}Ni=1 can be
computed by maximizing the likelihood in (12). Unless the
depth z is known, we need to maximize the likelihood with
respect to z as well. The joint ML estimation of Λs and z
using relative detection times amounts to solving the following
optimization problem:

max
Λ̂s≥0, ẑ∈[0,ctr/2)

−nrΛ̂s +
n∑

i=1

log
(
Λ̂ss(t̃i − 2ẑ/c) + b

)
.

(15)

While the maximization objective in (15) is concave in Λ̂s, it
is nonconcave in ẑ for a typical pulse shape s(t). In general,
computing the ML estimate Λ̂s in (15) is difficult unless the
depth z is known. We note that if Λ̂s is fixed, then maximizing
the objective in (15) with respect to ẑ is equivalent to finding
the time shift that maximizes the output of a log-matched
filter [9], [13], [81]. However, to find the global optimal point,
a brute force search over Λ̂s and ẑ may be necessary.

3) Approximate ML Estimation via Censoring: Since
jointly solving for the ML flux and depth estimators can be
computationally inefficient, an ad hoc simplification was pro-
posed in [13]. The main idea is that the ML estimates become
uncoupled if b = 0, so estimation is dramatically simplified if
the background detections can be identified and removed. A
proxy for identifying background detections is to use {T̃i}Ni=1

to choose a cluster of detection times that likely belong to
the signal photons, and then estimate Λs using that cluster.
For example, in Neyman-Pearson censoring [13], the largest
cluster in a time window of size twin is treated as containing
most of signal detections if the number of detections Ncl in
the time window is sufficiently large according to a hypothesis
test. The signal flux estimator in [13] modifies (14) to include
only the detection count within the window:

Λ̂s = max

{
Ncl

nr
− Λb

twin

tr
, 0

}
. (16)

We note that even if the largest cluster does not actually
contain any signal photon, Ncl still contains information about
Λs because it must be larger than the cluster containing
the most signal photons. Consequently, whether the Neyman-
Pearson censoring’s hypothesis test ascribes the cluster to the
signal photons or not, the estimator (16) may be accurate
regardless.

C. Fisher Information Analysis

The Cramér–Rao bound (CRB) identifies a lower bound on
the mean-squared error (MSE) of any unbiased estimator as
the inverse of Fisher information. The Fisher information about
the signal flux Λs in the detection times {T̃i}Ni=1 when z and
Λb are known is

I (Λs) = −E
[
∂2

∂Λ2
s

log fN,T̃1,...,T̃N
(N, T̃1, . . . , T̃n)

]
(17)

= nrΛE



(
s(T̃1 − 2z/c)

λ̃(T̃1)

)2

 , (18)

where the second equality exploits the fact that T̃1, . . . , T̃N

are independent and identically distributed when conditioning
on N . The expectation over T̃1 in the Fisher information (18)
can be computed using a quadrature with PDF (11). The CRB
is then

E
[
(Λ̂s − Λs)

2
]
≥ I (Λs)

−1
, (19)

where Λ̂s is any unbiased estimate based on {T̃i}Ni=1.
When b = 0, the Fisher information (18) is reduced to

I (Λs) =
nr

Λs
, (20)

which is identical to the Fisher information about Λs in only
the detection count N under the same setting. This result is
unsurprising, since Λ̂s in (15) reduces to that in (14) when
b = 0. In the asymptotically high SBR regime, the locations
of the detection times {T̃i}Ni=1 become irrelevant in estimating
Λs. This observation further justifies the censoring estimator:
the locations of {T̃i}Ni=1 are most relevant in distinguishing
signal detections from background, but with perfect censoring
only the count N matters.

When we jointly estimate Λs and z with Λb known, the CRB
instead lower bounds the covariance of an unbiased estimate
[Λ̂s ẑ]⊤ by the inverse of the Fisher information matrix:

I (Λs, z) = −E

[
∂2 log f
∂Λ2

s

∂2 log f
∂Λs∂z

∂2 log f
∂Λs∂z

∂2 log f
∂z2

]
, (21)

where f := fN,T̃1,...,T̃N
(N, T̃1, . . . , T̃n). We note that

−E∂2 log p
∂Λs∂z

≈ 0 when the pulse shape s(t) is symmetric and
the pulse width is much shorter than the repetition period tr.
Consequently, the CRB in (19) approximately holds even when
Λs and z are estimated jointly.

We further derive the Fisher information when jointly esti-
mating Λb, Λs, and z in Appendix A.

D. Simulation Results

Figure 1 shows the root mean-squared error (RMSE) of
the signal flux estimators (14), (15), and (16) at a fixed
Λs and varying Λb. The mean number of signal photons in
each independent experiment nrΛs is 2, 6, or 10. The signal-
to-background ratio (SBR), defined as Λs/Λb, ranges from
0.01 to 1.00. For the censoring estimator (16), we always
produce an estimate with the largest cluster regardless of the
result from the Neyman-Pearson censoring hypothesis test.
For the ML estimator detection times (15), we use alternating
maximization of the objective with respect to ẑ and Λ̂s with an
initial Λ̂s from the censoring estimator (16), which often yields
Λ̂s and ẑ that are very close to the global maximum of the
but with much less computation. The CRB on the RMSE of
an unbiased estimator, which is I (Λs)

−1/2 according to (18)
and (19), is also plotted.

According to Figure 1, the censoring estimator (16) and the
ML estimator with detection times (15) have very close RMSE
across the SBR range, and they both have much lower RMSE
than the ML estimator with only counts (14). The RMSE gap
between the estimators that use detection times and the one
that uses only the count is higher at lower SBR, because the
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nrΛs = 2
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nrΛs = 6
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ML with N Censoring ML with {T̃i}Ni=1 CRB Asymptotic CRB

Fig. 1: RMSE of signal flux estimates from simulations under the low flux setting. The true signal flux Λs is fixed, and the
background flux Λb varies. The x-axis is the signal-to-background ratio (SBR). “ML with N” points are estimates based
on (14). “Censoring” points are estimates using the censoring approach (16). “ML with {T̃i}Ni=1” points are estimates based
on (15). “CRB” is the Cramér-Rao lower bound on the RMSE of unbiased estimates using detection times (19). “Asymptotic
CRB” is the CRB when SBR approaches infinity, which is the square root of the inverse of the Fisher information (20).

background photons account for most of the variance in the
count N and thus the corresponding estimate (14). By reducing
the contribution from background photons either via censoring
in (16) or weighting with the pulse shape s(t) in (15),
the estimators based on {T̃i}Ni=1 achieve lower variance and
thus lower RMSE. At higher SBR, the background counts
contribute less to the estimate that uses only N (14), so the
RMSE gap decreases.

Both the censoring estimator (16) and the ML estimator with
detection times (15) have RMSEs close to, and sometimes
slightly lower than, the CRB. We note that both estimators
jointly estimate Λs and z. A closer inspection reveals that their
RMSE may become lower than the CRB when ẑ significantly
differs from the ground truth z. According to Figure 2, the
RMSE of the ML estimator (15) decreases below the CRB
when ẑ is wrong for a certain SBR range. The censoring es-
timator (16) also displays similar behavior. This phenomenon
can be explained in terms of the distribution of the size of
a background cluster—for a given mean number of signal
photons, there is a range of SBR values with high probability
of observing a background cluster of the same size [13].
Moreover, when ẑ is wrong, there must be a background
cluster that is larger than the cluster containing most of
the signal detections. Conditioning on having wrong ẑ, the
estimators have a positive bias but lower variance; thus, they
can overcome the CRB.

E. Joint Estimation of Signal Flux and Background Flux

Detection times not only improve reflectivity estimation,
but also enable new capabilities. For example, when the
background flux Λb is unknown and non-zero, the number
of detections N alone does not distinguish the signal from the
background. We will investigate joint estimation of Λs and Λb

when z is known by exploiting detection times {T̃i}Ni=1.
1) ML Estimation from Detection Times: The joint ML

estimation of Λs and Λb maximizes the likelihood (12) with

10−4 10−3 10−2 10−1 100

SBR

10−4

10−3

10−2 Right ẑ

Wrong ẑ

CRB

Fig. 2: RMSE of ML signal flux estimates (15) when the depth
estimates ẑ are right or wrong for nrΛs = 4. We declare ẑ as
wrong if it deviates from z by more than three times of the
Gaussian pulse’s standard deviation. Otherwise, ẑ is right.

respect to the two unknowns.

max
Λ̂s≥0, Λ̂b≥0

−nr(Λ̂s + Λ̂b) +
n∑

i=1

log

(
Λ̂ss(t̃i − 2z/c) +

Λ̂b

tr

)

(22)

Different from the optimization problem (15), where the ob-
jective is nonconcave in the unknown variable ẑ, the objective
in (22) is concave in both Λ̂s and Λ̂b. Hence, maximization can
be computed efficiently using convex optimization algorithms.

2) Approximate ML Estimation via Censoring: We adapt
the estimation via censoring in Section IV-B3 to the scenario
in this section. Since z is known, the censoring estimator first
extracts a cluster of signal detection times with a window of
size twin around the center of the pulse at time t = 2z/c.
Then, it estimates Λb from the detection times outside of the
signal cluster, and finally estimates Λs using detection times
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RMSE of Λ̂s
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Censoring ML with {T̃i}Ni=1 CRB

Fig. 3: RMSE of signal and background flux estimates when
they are jointly estimated for known z. The mean number
of signal photons is nrΛs = 6. The “Censoring” points are
estimates using the censoring approach (23) and (24). The
“ML with {T̃i}Ni=1” points are estimates which maximize the
likelihood (12). “CRB” is the Cramér-Rao bound on the RMSE
of Λ̂s and Λ̂b according to (26) and (27).

in the signal cluster.

Λ̂b =
Nb

nr

tr
tr − twin

(23)

Λ̂s =
Ns

nr
− Λ̂b

twin

tr
(24)

Ns is the size of the signal cluster, and Nb = N −Ns is the
number of detections outside the signal cluster.

3) Cramér-Rao Bound: The CRB lower bounds the covari-
ance matrix of any unbiased estimator [Λ̂s Λ̂b]

⊤ by the inverse
of the Fisher information matrix about Λs and Λb:

I (Λs,Λb) = −E

[
∂2 log f
∂Λ2

s

∂2 log f
∂Λs∂Λb

∂2 log f
∂Λs∂Λb

∂2 log f
∂Λ2

b

]
. (25)

Each term in the matrix (25) is derived in Section A.
Since any positive semidefinite matrix has nonnegative

diagonal entries, the MSE of Λ̂s and Λ̂b can be lower bounded:

E
[
(Λ̂s − Λs)

2
]
≥
[
I (Λs,Λb)

−1
]
11

; (26)

E
[
(Λ̂b − Λb)

2
]
≥
[
I (Λs,Λb)

−1
]
22

. (27)

4) Simulation Results: Some simulation results are shown
in Figure 3. The ML estimator and the censoring estimator
have approximately equal RMSE across SBR from 0.01 to
1.00 when the mean number of signal photons is nrΛs = 6,
and they both achieve the CRB.

V. HIGH-FLUX REFLECTIVITY ESTIMATION

When the total flux is sufficiently high (e.g., Λ > 5%), the
probability of a photon arriving during the dead time following
a previous detection is significant, and the detection sequence
can no longer be described as a Poisson process. As previously
discussed, both SPADs and TCSPC electronics have dead
times, and their particular reset strategies can significantly
complicate the detection time modeling. Here we assume the
SPAD has an asynchronous dead time with duration td, and the
TCSPC electronics are asynchronous with dead time duration

te. Table I lists manufacturer-specified dead times for common
SPADs, and Table II lists dead times for asynchronous TCSPC
electronics, showing significant variation in the dead time
durations. In the following, we separately examine the case
of td > te, when only the SPAD dead time needs to be
considered, and the case of td < te, when both sources of
dead time affect the detection sequence. Unlike the low-flux
case, Fisher information analysis in the high-flux regime is
still an open problem due to time-dependence of detections.

A. Flux Estimation with td > te

When td > te, the TCSPC electronics are always rearmed
when the SPAD resets, so only the SPAD dead time needs
to be considered. The probability of a photon being detected
at a particular time Ti+1 depends on both the photon arrival
intensity and whether the SPAD is dead, i.e., at what time
the previous photon Ti was detected. This dependence thus
encourages the use of the absolute detection time sequence
{Ti}Ni=1. The conditional PDF of a detection at time Ti+1

given all previous detection times is

fTi+1|T1,T2,...,Ti
(ti+1|t1, . . . , ti) = fTi+1|Ti

(ti+1|ti)

=

{
λ(ti+1) exp

(
−
∫ ti+1

ti+td
λ(τ) dτ

)
, ti+1 > ti + td

0, otherwise.
(28)

The fact that the conditional PDF depends only on the previous
detection time Ti (and the intensity function λ(t)) makes the
detection sequence a Markov chain, which has been exploited
for depth estimation at high flux [16].

1) Background Flux Estimation for Calibration: As in
the case of low-flux lidar, high-flux reflectivity estimation
typically assumes a background calibration procedure to first
estimate the background rate with the laser turned off. Despite
the complication of dead times, background estimation is still
fairly simple because λb is assumed to be constant. We follow
the procedure outlined in [16]. Substituting λb for λ in (28),
the conditional PDF of a background detection reduces to

fTi+1|Ti
(ti+1|ti)

=

{
b exp{−b[ti+1 − (ti + td)]}, ti+1 > ti + td,

0, otherwise,

(29)

which shows that, after the dead time, the probability of the
next detection time is a shifted exponential random variable.
Note that it may be unknown whether the detector is dead at
the start of data collection, which would affect the distibution
of the first detection time. Hence conditioning on the first
detection time T1, we use the property that the detection
sequence is a Markov chain to get the joint PDF of the entire
detection sequence

fT2,...,TN |T1
(t2, . . . , tN |t1) =

N−1∏

i=1

fTi+1|Ti
(ti+1|ti) (30)

= bN−1 exp[−b(tN − t1) + (N − 1)btd]. (31)

We observe that (31) resembles a modified Erlang(N−1, b)
random variable that sums the N − 1 exponential inter-
detection times and subtracts the known total dead time
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TABLE I: Manufacturer-specified dead times for some com-
mon visible-wavelength SPADs (sources:[82], [83], [84], [85])

Manufacturer Product Name Dead time [ns]

Excelitas SPCM-AQRH-1X 22
ID Quantique ID100-50-STD 45
Thorlabs SPDMH2 45
PicoQuant (MPD) PDM 77

TABLE II: Manufacturer-specified dead times for some com-
mon TCSPC electronics (sources: [86], [87], [88]).

Manufacturer Model Dead Time [ns]

PicoQuant MultiHarp 150P 0.65
Swabian Instruments Time Tagger X 1.5
Swabian Instruments Time Tagger Ultra 2.1
Swabian Instruments Time Tagger 20 6
PicoQuant TimeHarp 260P 25
quTools quTAG 40
PicoQuant HydraHarp 400 80
PicoQuant PicoHarp 300 95

(N − 1)td. Estimating b is thus fairly straightforward. Given
the absolute detection times {Ti}Ni=1, the conditional log-
likelihood is

L
(
{Ti}Ni=1; b

)

= (N − 1) ln(b)− b(TN − T1) + (N − 1)btd.
(32)

Differentiating (32) with respect to b and setting the derivative
equal to zero yields the conditional ML estimator

b̂ =
N − 1

(TN − T1)− (N − 1)td
. (33)

It is noteworthy that the background flux estimate is based
not only on the detection count N , but also on the detection
times T1 and TN . However, not all photon times need to
be stored to perform the estimate—only the first and last
detections are needed. Storing high-resolution time stamps for
the entire detection sequence can be memory intensive for
large N , but for background calibration, storing each detection
time is unnecessary. Instead, it is possible to retain only the
first and last detection times, which could be integrated into
digital memory of the detector circuitry itself.

2) Background Flux Estimation for Passive Imaging: Al-
though the main focus of this paper is on active reflectivity
imaging, similar modeling is useful for passive imaging as
well. Several recent works have considered passive imaging
with time-resolved single-photon focal-plane arrays [89], [18],
[90]. Since existing SPAD arrays tend to have limited pixel
count and/or timing resolution, a SPAD array with high spatial
and temporal resolution was emulated with a single-pixel
SPAD mechanically scanned around the focal plane of a lens.
Each position of the SPAD was collimated to collect light from
only one point in the scene. Without an active illumination
source, the only variation in the flux reaching the SPAD was
due to the changes in scene reflectivity, reflecting ambient light
towards the focused SPAD. Scene reflectivity estimation then
becomes a flux estimation problem.

Initial work used only the photon counts N for estima-
tion [89]. Since the background estimator without dead times

is the detection count N scaled by the exposure time texp, the
estimator was modified to remove dead times, i.e.,

b̂PF−SPAD =
N

texp −Ntd
. (34)

Later work recognized that at very high flux, the total number
of detected photons has very low variance, whereas the detec-
tion times retain more nuanced information [18]. As a result, a
refined estimator was proposed identical to (33). Using photon
count statistics, especially with the detection times, has much
larger dynamic range than conventional cameras, which rely
on varying exposure times (i.e., “exposure bracketing” [91])
to capture both low- and high-flux scene components in the
same image. Single-photon detection can thus natively achieve
high dynamic-range (HDR) imaging, or can be combined with
conventional cameras to guide exposure bracketing [90].

3) Signal Flux Estimation with td > te: Ideally, reflectivity
estimation in active illumination settings (i.e., single-photon
lidar) would follow a similar method as in background calibra-
tion. The joint PDF for the sequence of N detections {Ti}Ni=1,
conditioned on T1 is

fT2,...,Tn|T1
(t2, . . . , tN |t1) =

n−1∏

i=1

fTi+1|Ti
(ti+1|ti)

=

n−1∏

i=1

[
λ(ti+1) exp

(
−
∫ ti+1

ti+td

λ(t) dt

)]

=

(
n∏

i=2

λ̃(t̃i)

)
exp

(
−
∫

T
λ(t) dt

)
, (35)

where T =
⋃n−1

i=1 [ti + td, ti+1]. The log-likelihood is

log fT2,...,Tn|T1
(t2, . . . , tn|t1)

=

n∑

i=2

log
(
Λss(t̃i − 2z/c) + b

)
− b |T |

− Λs

∫

T

(
nr−1∑

k=0

s(t− 2z/c− ktr)

)
dt , (36)

which is concave in Λs and b but nonconcave in z, similar to
the maximization objective in (15). If z is known, maximizing
the likelihood with respect to Λs and b is easy, but z is
usually unknown in lidar settings. Furthermore, existing depth
estimators that account for dead time often themselves rely on
having an accurate reflectivity estimate [16], [17]. Similar to
the case without dead time (15), a brute force search for joint
ML estimation of both Λs and z is possible but impractical.

An alternative method for estimating the reflectivity inde-
pendent of the depth was proposed in [16] by relying on
the periodicity of the arrival intensity λ(t). Since the total
flux in each period Λ is independent of z, combining the
total flux and background calibration estimates produces a
signal flux estimate Λ̂s = max(0, Λ̂− b̂tr). Instead of keeping
track of the amount of time between photon detections,
one can instead keep track of the number of illumination
cycles between detections. Define the inter-detection time as
Ui = Ti+1 −Ti, i = 1, . . . , N − 1. Then the number of inter-
detection periods is defined as Ri = ⌊(Ui − td)/tr⌋, which
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counts the number of periods after the dead time following
Ti before the next photon is detected at Ti+1. Note that Ri

is distinct from the difference of illumination period indices
Mi+1 −Mi, which does not account for dead time.

Because the photon arrival process is Poisson with rate Λ,
the probability of zero photons arriving in a particular period is
exp(−Λ), and the probability of one or more photons arriving
in that period is q = 1 − exp(−Λ). We thus consider each
inter-detection period to be a Bernoulli random variable with
probability q that one or more photons was detected. The
number of periods until a photon is detected is a geometric
random variable with probability mass function (PMF)

P (Ri = ri) = (1− q)riq, ri = 0, 1, . . . . (37)

Given N photon detections, there are N−1 independent inter-
detection periods, so their joint probabilty is

p
(
{Ri}N−1

i=1 ; Λ
)
=

N−1∏

i=1

[1− exp(−Λ)] exp(−RiΛ) (38)

and the log-likelihood is

L
(
{Ri}N−1

i=1 ; Λ
)
= −Λ

N−1∑

i=1

Ri +N log[1− exp(−Λ)]. (39)

Differentiating the log-likelihood with respect to Λ and setting
the derivative to zero yields the total flux ML estimator

Λ̂ = log

(
1 +

N − 1
∑N−1

i=1 Ri

)
. (40)

Once again, the total flux estimator uses not only the photon
detection count N but also the detection times, embedded in
the calculation of the inter-detection periods. Moreover, the
individual times do not need to be stored—only a running sum
of the inter-detection periods is needed, as well as a tally of the
number of detections—which could aid in on-chip processing.
One downside of this approach is the dynamic range is limited
by the floor function, which retains only the number of periods
and not the exact times between detections. As Λ increases,
the probability of observing Ri > 0 decreases, so the estimator
saturates as seen in Fig. 4. When detections occur often
enough, we may observe Ri = 0 for all i = 1, . . . , N − 1.
We define Λ̂ = +∞ in this case. Consequently, the bias of
estimator (40) is +∞, because such observation has a positive
probability. Further research on more sophisticated and robust
estimators that use the raw detection times themselves is
warranted.

B. Flux Estimation with td < te

Most work on single-photon lidar considers only the detec-
tor as a source of dead time—if at all—because when td > te,
the electronics are always armed and ready to record a photon
before the detector has reset, so te can be ignored. However,
as illustrated by the values for td in Table I and te in Table II,
it is easy to construct a configuration in which td < te.

We briefly consider a lidar system with td < te with
both the detector and electronics reset when a photon arrives
at time Ti. The photon is detected and registered by both
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Λ̂

Λ

P(Λ̂ =∞)

Fig. 4: Flux estimates based on inter-detection periods
{Ri}N−1

i=1 saturate as the probability of observing R > 0
decreases with increasing Λ. The green points show 50 re-
alizations each of flux estimates with N = 100 for Λ ∈ [0, 8].
The probability that the estimate saturates is P (Λ̂ = ∞) =
P (
∑N−1

i=1 Ri = 0) = (1− exp(−Λ))N−1 shown in red.

Photon arrival times

Photon detection times for 

Photon detection times for 

td > te

td < te

electronics dead time

SPAD dead time

photon detection recorded by TCSPC electronics

missed detection

Fig. 5: Not all photons arriving at the SPAD detector can be
time-stamped by the TCSPC electronics. When td > te, only
the detector dead time determines which photons are recorded
and which are missed. When td < te, both sources of dead
time influence the photon detection sequence.

devices, and both the detector and electronics are subsequently
dead. At Ti + td, the detector has reset and is sensitive to
arriving photons. However, until Ti+te, the electronics are still
insensitive. If a photon arrives at time Yi ∈ (Ti + td, Ti + te),
the detector will detect the photon and go dead, but the
electronics will not register the detection. The electronics will
once again be sensitive at Ti + te, but the detector may still
be dead if Yi + td > Ti + te. Now the entire duration that the
system is dead depends on an unobserved photon at time Yi.
The differences in the detection time sequences for td > te
and td < te are illustrated in Fig. 5.

Because of the complexities of having multiple sources of
dead time, the following analysis is restricted to tr/2 ≤ td ≤
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te ≤ tr as discussed in [17]. Like the case of td > te, the
conditional PDF of the detection times is still found to yield a
Markov Chain detection sequence with transition probability

fTi+1|Ti
(ti+1|ti) = g(ti, ti+1)

[
I{ti+1 > ti + te}

+

∫ ti+1−td

ti+td

h(y) dy I {ti + 2td < ti+1 ≤ ti + td + te}

+

∫ ti+te

ti+td

h(y) dy I {ti+1 > ti + td + te}
]
, (41a)

where

g(ti, ti+1) = λ(ti+1) exp

(
−
∫ ti+1

ti+td

λ(τ) dτ

)
, (41b)

h(y) = λ(y) exp

(∫ y+td

y

λ(τ) dτ

)
, (41c)

but the PDF (41) is obviously more complicated than (28).
As in the case of td > te, the inter-detection time is

defined as Ui = Ti+1 − Ti, i = 1, . . . , N − 1. However, the
possibility of an unobserved photon means the inter-detection
times could have varying and unknown dead times. Thus only
the subsequence of the inter-detection times (Uik)k for which
Uik ≥ td+te has well-defined statistics. The number of “inter-
detection periods” is modified to Ri = ⌊(Ui − td − te)/tr⌋,
which counts the number of periods after both dead times
following Ti before the next photon is detected at Ti+1. By us-
ing only the constrained sub-sequence of detections, the inter-
detection periods once again have a geometric distribution, so
the same ML estimator of the total flux in (40) applies.

A downside of relying on the constrained sub-sequence is
that not all inter-detection periods can be used. In fact, the
number of useful inter-detection periods decreases as the flux
increases, and the number of useful inter-detection periods
with Ri > 0 is even smaller, decreasing the accuracy of
the flux estimator. A further limitation is that background
calibration must also use the estimator in (40) based on sub-
sequences, so both background and total flux estimation are
less accurate when te > td.

VI. CONCLUSIONS

Accurate reflectivity estimation is often considered sec-
ondary to depth estimation with lidar. However, reflectivity can
provide useful information about material properties (e.g., in
hyperspectral lidar), assist in the fusing of multiple modalities
(e.g., lidar and cameras), or be used for prior information
about scene structure in depth estimation tasks. While many
works incorporate spatial redundancy to regularize reflectivity
estimates, in this paper we focused on how much information
about the signal flux (a linear scaling of reflectivity) can be
extracted from a single pointwise measurement with single-
photon lidar. Perhaps surprisingly, not only the number of
photon detections but also the detection times contain flux
information. A persistent challenge of using the detection
times is that the maximum likelihood estimate of the flux is
usually coupled to the depth. Although brute-force search over
both parameters can lead to good estimates, the approach is

usually impractical. Instead, we re-evaluate several existing
methods that perform flux estimation without first estimating
the depth. We also add context for whether the absolute
detection times are needed, whether relative detection times
modulo the illumination period will suffice, or whether other
functions of the absolute times can be computed on-chip with
reduced memory requirements.

In high-flux conditions, when dead time cannot be ignored,
the particular SPL hardware architecture affects the detection
time model and the resulting flux estimators. Jointly estimating
reflectivity and depth—especially in the presence of dead times
and with different architectures—warrants further investiga-
tion. Future work could also consider lower bounds on the
estimation accuracy in the presence of dead times. Another
interesting problem would be to consider co-axial systems that
have reflectivity information in both the active measurement
(lidar) and passive measurement (background calibration).

APPENDIX A
FISHER INFORMATION FOR LOW-FLUX ESTIMATION

We will derive the Fisher information matrix about Λs, Λb,
and z in the number of detections N and the relative detection
times {T̃i}Ni=1 for the low-flux detection model. The Fisher
information matrix is

I (Λs,Λb, z) = −E




∂2 log f
∂Λ2

s

∂2 log f
∂Λs∂Λb

∂2 log f
∂Λs∂z

∂2 log f
∂Λs∂Λb

∂2 log f
∂Λ2

b

∂2 log f
∂Λb∂z

∂2 log f
∂Λs∂z

∂2 log f
∂Λb∂z

∂2 log f
∂z2


 , (42)

where f := fN,T̃1,...,T̃N
(N, T̃1, . . . , T̃n) is the distribu-

tion (12). By the CRB, the covariance matrix of an unbiased
estimate [Λ̂s Λ̂b ẑ]⊤ is lower bounded by I (Λs,Λb, z)

−1.
To simplify the expressions that will follow, we introduce

the following notation:

si := s(T̃i − 2z/c);

s′i := s′(T̃i − 2z/c), where s′(t) =
ds(t)

dt
;

s′′i := s′′(T̃i − 2z/c), where s′′(t) =
d2s(t)

dt2
;

λ̃i := λ̃(T̃i) = Λss(T̃i − 2z/c) + Λb/tr.

We calculate the first derivatives:

∂

∂Λs
log f = −nr +

N∑

i=1

si

λ̃i

∂

∂Λb
log f = −nr +

N∑

i=1

1/tr

λ̃i

∂

∂z
log f = −2Λs

c

N∑

i=1

s′i

λ̃i

Then, we calculate the expected value of the second deriva-
tives. We use the fact that the measurement {T̃i}Ni=1 implies
the number of detections N , so T̃1, . . . , T̃N and N are mutu-
ally independent. Therefore, E

∑N
i=1 g(T̃i) = E [N ]E[g(T̃1)]
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for any function g. All terms in the Fisher information ma-
trix (42) can be simplified with this identity:

E
∂2

∂Λ2
s

log f = −nrΛE

[(
s1

λ̃1

)2
]

E
∂2

∂Λ2
b

log f = −nrΛ

t2r
E

[(
1

λ̃1

)2
]

E
∂2

∂z2
log f = nrΛ

(
2Λs

c

)2

E

[
s′′1

Λsλ̃1

−
(
s′1

λ̃1

)2
]

E
∂2

∂Λs∂Λb
log f = −nrΛ

tr
E

[
s1

λ̃2
1

]

E
∂2

∂Λs∂z
log f =

2nrΛ

c
E

[
Λs

s′1s1

λ̃2
1

− s′1

λ̃1

]

E
∂2

∂Λb∂z
log f = nrΛ

2Λs

ctr
E

[
s′i

λ̃2
i

]

We note that E[∂2f/∂Λs∂z] and E[∂2f/∂Λb∂z] are approx-
imately zero when the pulse shape s(t) is symmetric and
the FWHM pulse width is very short in comparison to the
repetition period tr.
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