
Bifurcated Attention for Single-Context Large-Batch Sampling

Ben Athiwaratkun * 1 Sujan Kumar Gonugondla * 2 Sanjay Krishna Gouda 2 Haifeng Qian 2 Hantian Ding 2

Qing Sun 2 Jun Wang 2 Jiacheng Guo 2 Liangfu Chen 2 Parminder Bhatia 3 Ramesh Nallapati 4

Sudipta Sengupta 2 Bing Xiang 5

Abstract
In our study, we present bifurcated attention, a
method developed for language model inference
in single-context batch sampling contexts. This
approach aims to reduce redundant memory IO
costs, a significant factor in latency for high batch
sizes and long context lengths. Bifurcated at-
tention achieves this by dividing the attention
mechanism during incremental decoding into two
distinct GEMM operations, focusing on the KV
cache from prefill and the decoding process. This
method ensures precise computation and main-
tains the usual computational load (FLOPs) of
standard attention mechanisms, but with reduced
memory IO. Bifurcated attention is also compati-
ble with multi-query attention mechanism known
for reduced memory IO for KV cache, further
enabling higher batch size and context length.
The resulting efficiency leads to lower latency,
improving suitability for real-time applications,
e.g., enabling massively-parallel answer genera-
tion without substantially increasing latency, en-
hancing performance when integrated with post-
processing techniques such as reranking.

1. Introduction
The advent of large language models (LLMs) has ushered
in a new era of machine learning, exhibiting remarkable
performance on a wide array of tasks (Brown et al., 2020;
OpenAI, 2023; Chowdhery et al., 2022; Touvron et al., 2023;
Chen et al., 2021; Hoffmann et al., 2022; Li et al., 2022;
Microsoft; Amazon; Nijkamp et al., 2023). Despite their

*Equal contribution 1Together.ai (work conducted at AWS)
2AWS NGDE Science 3GE HealthCare (work conducted at AWS)
4Amazon AGI (work conducted at AWS) 5Goldman Sachs (work
conducted at AWS). Correspondence to: Ben Athiwaratkun
<ben.athiwaratkun@gmail.com>, Sujan Kumar Gonugondla <gsu-
jan@amazon.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

impressive capabilities, the deployment of these large-scale
models in practical applications poses significant challenges,
particularly in terms of inference latency and efficiency.
Enhancing these aspects is critical, as they directly influence
the computational resources required to generate predictions
and enable the practical implementation of these advanced
models across various industries.

A particularly demanding inference scenario is single-
context batch sampling, where the goal is to generate mul-
tiple completions from a single context. This task is com-
monly encountered in numerous applications such as code-
editing IDE tools that provide multiple recommendations, or
in cases where ranking among many generations is needed
for optimal performance (via ranking metrics like mean log
probability, majority voting, etc). The incremental decoding
of such sampling scenario is memory IO intensive, which
becomes a latency bottleneck for high batches and context
lengths.

In this study, we investigate two compatible strategies to
address the memory IO challenges in tranformers inference:
(1) an investigation of multi-query and its trade-offs, and (2)
a novel technique called context-aware bifurcated attention.

Our investigation begins with an analysis of the general-
ized multi-query attention (Ainslie et al., 2023), which
includes multi-query (Shazeer, 2019), as well as the es-
tablished multi-head attention mechanism (Vaswani et al.,
2017) for performance and latency trade-off. Our findings
show smooth performance scaling with increasing model
size for a fixed value of the number of groups g for general-
ized multi-query1. Lowering g results in an upward shift of
the validation loss vs model size scaling curves. The con-
sistent relationship between the cache compression, model
size and validation loss allows us to trade-off inference ef-
ficiency with model size, i.e., enables us to select higher
compression for use cases requiring high efficiency, while
still matching the performance of multi-head attention by

1Lower values of attention groups g lead to higher compression
of the key-value tensors, as in the multi-query case where g = 1,
hence improving inference efficiency and latency due to reduced
KV cache compared to the multi-head case where g = h, the
number of query attention heads.

1



Bifurcated Attention for Single-Context Large-Batch Sampling

compensating with a larger model size.

Secondly, we introduce context-aware bifurcated attention,
a technique that bifurcates any attention in the generalized
multi-query family into context and decoding components
during incremental decoding. Such bifurcation involves the
same number of FLOPs and yields identical results com-
pared to the original attention, but can significantly reduces
memory IO cost and thus latency in high batch and context
length scenarios. This approach allows the generation of
multiple real-time completions without incurring much ad-
ditional latency costs, or enables much higher batch sizes
leading to improved ranking performance. For instance, for
CodeGen 16B multi-head model (Nijkamp et al., 2022) with
2k context length, we are able to increase the batch size
to 128 with bifurcated attention, compared to batch size of
only 5 without, resulting in the pass@k (Chen et al., 2021)
increasing from 59.0% to 84.6%, or pass@top3 via mean
log-p increasing from 55.2% to 58.1%.

2. Related Work
In the literature, there are multiple avenues to improve infer-
ence latency and/or latency. Quantization reduces memory
usage by using low-bitwidth representations such as int8,
int4, and fp8 (Wei et al., 2023; Yao et al., 2022; Dettmers
et al., 2022; Frantar et al., 2022; Kuzmin et al., 2022; Xiao
et al., 2022). Quantization when applied only to model pa-
rameters offer diminishing results as with longer sequence
lengths and large batch sizes where memory access and
compute associated with dot-product attention dominates
the overall inference latency.

Sparse attention (Beltagy et al., 2020; Child et al., 2019;
Zaheer et al., 2020) has been extensively studied as a way
to reduce the complexity of attention for longer contexts
and faster inference. Pope et al. (2022) investigates gen-
erative inference efficiency of large language models by
using multi-dimensional partitioning techniques optimized
for TPUs (collective einsum) to achieve a Pareto frontier on
latency and model FLOPs utilization. The paper also shows
that multi-query attention allows scaling up to 32x larger
context length with an emphasis on the efficiency under high
batch size. Paged attention (Kwon et al., 2023) enhances
memory management of the KV cache by dividing it into
blocks and employing a block table for mapping purposes.
This approach effectively accommodates dynamic workload
shifts and reduces memory storage requirements through
the sharing of the prompt’s KV cache across multiple output
sequences. However, this does not reduce the memory reads
of KV cache.

Speculative decoding, and its variants uses a smaller draft
model to propose multiple sequential tokens, which are pro-
cessed in parallel by the main model to accept or reject such

tokens (Chen et al., 2023; Leviathan et al., 2022; Li et al.,
2024; Cai et al., 2024; Fu et al., 2023). The key idea is to
enable decoding of multiple tokens at every step, thereby
amortizing the memory IO usages of the main model. How-
ever, the latency of decoding will be still dominated by KV
cache I/O bandwidth at large context sizes, where bifur-
cated attention can enhance the decoding speed further. In
short, incremental decoding focuses on lowering the amor-
tized memory IO of model loading while multi-query and
bifurcated attention lowers the memory IO of KV cache.

Additionally, we acknowledge concurrent work by Juravsky
et al. (2024) which presents methods to improve inference
efficiency with shared-prefixes, that coincides with bifur-
cated attention.

3. Background
3.1. Notation

We use the following notation throughout the paper.

• K: key tensor, V : value tensor, q: query tensor, Px:
projection tensor associated with key, value or query
tensor.

• We denote ⟨A,B⟩ as a tensor operation between A and
B. The actual operation can be specified in Einstein
sum notation. We use ⊕ to denote concatenation.

• N the number of model parameters, d: hidden dimen-
sion, h: number of attention heads, k: d

h , or head
dimension, ℓ: number of layers, m: context length
(or key/value tensor length), n: query tensor length
where n = m during context encoding and n = 1 for
incremental decoding, g: number of attention groups
(to be explained). We also use v to represent the head
dimension for the value tensor where practically k = v.

3.2. Language Model Inference

There are many inference scenarios for language model,
including batch inference and single-context batch sampling
(Figure 1). Batch inference refers to the case where we pro-
cess multiple inputs together in a batch, and generate subse-
quent tokens for each batch index independently. In the case
where the batch size is 1, this reduces to the single-context
inference. Another scenario is the single-context batch sam-
pling where we generates multiple sequences based on a
single context, where difference between the batch inference
case is that the prefill only needs to be done for a single
context to obtain the KV cache, then broadcasted to other
batch indices.

Figure 1 also illustrates the two phases of language model
inference: (a) the context encoding or prefilling and (b) the
incremental decoding. The context encoding refers to a

2



Bifurcated Attention for Single-Context Large-Batch Sampling

single forward pass that computes the key and value tensors
for all token positions in the context. Once the key and
value tensors are computed, we cache these key and value
tensors to be used for the attention mechanism during the
incremental decoding phase, which sequentially generates
one token at a time2.

During the context encoding phase, the number of floating
point operations relative to the memory input/output (IO)
operations is high, corresponding to the compute-bound
regime where the latency is influenced by the FLOPs. How-
ever, during incremental decoding where we perform atten-
tion on a single query token, this falls into a memory-bound
regime where the number of computation per memory ac-
cess is roughly 1-to-1 (see Appendix D.1 for details). The
memory IO refers to the read and write operations from the
high bandwidth memory (HBM) (Jia et al., 2018) to the fast
on-chip SRAM where the actual computation happens. The
memory IO of the incremental decoding itself consists of
two components: (1) the model parameter loading and (2)
KV cache loading. Component (1) is constant regardless of
the context length m or batch size b where component (2)
depends on both m and b and dominate the overall memory
IO if m or b are high, which can become a significant bottle-
neck for inference. Our work primarily focuses on reducing
component (2).

3.3. Multi-Query, Multi-Head and the Generalized
Multi-Query Attention

Multi-query attention, proposed by Shazeer (2019), is an
attention mechanism for transformers models that uses a
single head for the key and value tensors, compared to h
heads in the traditional multi-head attention (Vaswani et al.,
2017). This technique effectively reduces the KV memory
IO by h times, which leads to higher inference efficiency
during incremental decoding. In effect, the single-head key
or value tensor is shared and used to attend to all the multi-
head query, hence the name multi-query. This corresponds
to a compression in representation power of the key and
value tensor, which we will see in the scaling laws study
(Section 5.1) that it results in a reduced expressiveness in
terms of model parameter efficiency. Such reduced expres-
siveness can be compensated by scaling the model bigger
than the multi-head counterpart to match the representation
power.

We can also extrapolate these insights to a generalized multi-
query attention mechanism (Ainslie et al., 2023), which
provides a framework to understand both multi-query and
multi-head attention, and everything in between. Here, the
degree of KV compression is dictated by the number of
attention groups g, where we alternatively refer to the gener-

2Or k tokens at a time, in case of speculative decoding (Chen
et al., 2023; Leviathan et al., 2022)

alized multi-query as multi-group. Each attention group can
be interpreted as the broadcasted attention between a single
head of key or value tensor, and multiple heads of query.

In this paradigm, multi-query attention is a special case
where the number of groups g = 1; that is, there is exactly
one such group. Conversely, multi-head attention is another
special case where the number of attention groups matches
the number of heads (g = h), in which case each head in the
key or value tensor attends to one head in the query. More
generally, the number of groups g can lie anywhere between
1 and h, indicating various degrees of compression. For
practical purposes, it is most convenient when g divides h.
The attention mechanism in this setting can be expressed in
terms of Einstein summation as:

logits = ⟨q,K⟩ : einsum(bgpnk, bgmk) → bgpnm (1)
o = ⟨w, V ⟩ : einsum(bgpmn, bgmv) → bgpnv (2)

where p = h
g represents the attention group size. Other

operations in the attention mechanism are analogous, as de-
tailed in Appendix D.1. The memory IO complexity for the
multi-query attention becomes bgmk compared to bhmk in
the multi-head setting, a reduction by a factor of h

g times.
The FLOPs, however, are bgpnmk = bdnm, independent
of the compression g, implying that in the compute-bound
scenario of context encoding, the latency would be quite
similar among multi-group models of different g’s, includ-
ing between g = 1 and g = h.

This generalized multi-group attention mechanism thus pro-
vides a unified perspective on the design space of attention
architectures. By adjusting the number of attention groups
g, one can flexibly tune these trade-offs, potentially yielding
new regimes of performance for transformer models. In
Section 5.1, we will look into such capability vs latency
trade-off.

4. Context-Aware Bifurcated Attention
In this section, we present a novel context-aware bifurcated
attention method that aims to reduce the memory IO cost
during incremental decoding by efficiently handling the
computation of attention for shared context across samples,
as shown in Figure 2.

4.1. Motivation

We observe that the memory IO during the incremental
decoding phase can be significantly improved due to the
fact that the KV corresponding to the context are shared and
can be loaded only once. During incremental decoding, the
accumulated key tensor (K) for a multi-head model is of size
bhmk = bh(mc +md)k. The two parts of K correspond
to Kc of size bhmck and Kd of size bhmdk where mc is

3



Bifurcated Attention for Single-Context Large-Batch Sampling

input text
input text
input text
input text
input text

Model

input text Model

Compute KV cache for 1 
sample and copy (reference)

Incremental Decoding

Batch Inference

Single-Context 
Batch Sampling

Context Encoding

Model

Model

KV cache is computed for 
each batch index

Figure 1: Illustration of the two phases of language model inference: context encoding and incremental decoding, as well
as different inference scenarios. In batch inference scenario, we process multiple inputs at once and perform incremental
decoding steps. In batch inference, we group multiple inputs in batch to perform both context encoding and the subsequent
incremental decoding. In the single-context batch sampling scenario, we perform context encoding on a single input to
obtain the context KV cache, then perform incremental decoding (with temperature sampling) to obtain potentially different
generations.

length of the original input and md is the length due to
previous incremental decoding steps. Since tensor Kc is the
same across all indices in the b axis, we can also represent
Kc with a more compact shape 1hmck or simply hmck.
The query-key attention (Equation 1) is typically performed
by accessing different batch indices of K = Kc ⊕ Kd

separately, even though all batch indices in Kc correspond
to the same attention values. That is, if we “naively” pass the
entire tensor to the GEMM/BLAS operators, the incurred
memory I/O cost = bhmk, meaning that Kc tensor is loaded
b times (Figure 2). Since memory loading of KV is the
bottleneck for incremental decoding, reducing such IO can
bring significant reductions in latency saving.

4.2. Formulation

Below outlines the proposed context-aware bifurcated atten-
tion for single-context batch sampling. This operation splits
any attention in the multi-group family during incremental
decoding into two parts: (1) attention associated with KV
cache from the single context ⟨q,Kc⟩ and (2) attention as-
sociated with KV cache from prior incremental decoding
steps ⟨q,Kd⟩. That is,

⟨q,K⟩ = ⟨q,Kc⟩ ⊕ ⟨q,Kd⟩ (3)
⟨q,Kc⟩ : einsum(bgpnk, gmck) → bgpnmc

⟨q,Kd⟩ : einsum(bgpnk, bgmdk) → bgpnmd

The context part computes attention with Kc that corre-
sponds to any batch index, since they are all identical.
Hence, the axis b does not appears in the einsum for ⟨q,Kc⟩.
The result ⟨q,Kc⟩ and ⟨q,Kd⟩ are then joined together via
concatenation. The weight-value attention ⟨w, V ⟩ is bifur-

cated similarly, where the weight and value tensors are split
along length m, and the results are joined back via summa-
tion (Eq. 4). We also demonstrate the code for bifurcated
attention in Appendix E.3.

⟨w, V ⟩ = ⟨wc, Vc⟩+ ⟨wd, Vd⟩ (4)
⟨wc, Vc⟩ : einsum(bgpnmc, gmck) → bgpnk = bnd

⟨wd, Vd⟩ : einsum(bgpnmd, bgmdk) → bgpnk = bnd

The proposed operations yield the exact same results ⟨w, V ⟩
as the original attention in Equation 1 and 2, but can sig-
nificantly reduce memory I/O during incremental decoding
(proof in Appendix E.1).

4.3. Memory IO Complexity

The memory IO complexity corresponding to loading KV
changes from

memory IO w/o bifurcated attention = gk · bm (5)
= gk · b(mc +md)

memory IO w. bifurcated attention = gk · (mc + bmd)
(6)

The new memory IO is more efficient since mc + bmd <
b(mc +md) = bm. This resulting efficiency gain is appli-
cable for all values of g and can be as high as b-fold in the
case where mc >> md (high context length compared to
the number of generated tokens). The absolute efficiency
gain, however, is more substantially for high g such as in
the multi-head attention case with g = h. For multi-query
(g = 1), the gain can be substantial as well in the case of
high mc or b.

4



Bifurcated Attention for Single-Context Large-Batch Sampling

With
Bifurcated
Attention

Without
Bifurcated
Attention

Figure 2: Context-aware bifurcated attention for single-context batch sampling. The figure depicts the incremental decoding
step where the batched query q attends with the cached key tensor K where different colors in the q tensor correspond to
different batch indices. The key tensor consists of two parts: key cache corresponding to the single context Kc (which was
computed during context encoding, as in Figure 1), and the key cache corresponding to previous incremental decoding steps
Kd. The query-key attention is bifurcated into two parts, ⟨q,Kc⟩ and ⟨q,Kd⟩, and joined back via concatenation, resulting
in an identical results using the same FLOPs but with lower memory IO (Eq. 3). The weight-value attention is bifurcated
similarly, as outlined in Eq. 4.

5. Experiments
We first conduct experiments to see how capabilities scale
with respect to model size for each attention type in Section
5.1. We find that attention types with higher compression
(lower number of attention groups g) require model size
compensation, ≈ 10% for multi-query (g = 1). We use
such findings to compare the latency between the multi-
head and the larger multi-query models of equal capabilities
in Section 5.2. In Section 5.2.2, we focus on the single-
context batch sampling scenario where we demonstrate the
significant latency reduction of bifurcated attention and re-
visit the comparison between multi-head and multi-query in
light of bifurcated attention. We outline inference details in
Appendix C.5.

5.1. Comparing Capabilities of Multi-Head,
Multi-Query, and Multi-Group Attention

For a given model configuration, a multi-group model with
g < h has fewer parameters in comparison to its multi-head
counterpart. This reduction is a result of the decreased size
of the key and value projection matrices PK and PV . Specif-
ically, each tensor in this case has a size of PK : d × gk,
where k is the head dimension. For instance, a 13B multi-
head model will correspond to a 11B multi-query model,
with all other model configurations fixed (see Appendix D.1
for more details).

To compare the capabilities of different attention mecha-
nisms, one can either scale other model configurations such
as the number of layers ℓ, the number of heads h in order
to make match the total model sizes between different at-
tentions. However, it is often difficult to match the number
of parameters exactly. In this work, we compare different
attention mechanisms via the loss-vs-size scaling laws. For
the setup, we use the model hyperparameters similar to that

of GPT-3, where the size ranges from 125M to 13B, with
hyperparameters such as ℓ, h, k increasing in tandem. Then,
we consider three cases where g = 1 (multi-query), g = h
(multi-head) and 1 < g < h (multi-group) where Appendix
C.1 and C.2 shows the training and model configuration
details. We train all three attention models of each size and
plot the validation loss versus model size, shown in Figure
3. Our findings are summarized below.

Higher number of attention groups g leads to higher
expressiveness The results in Figure 3 shows the valida-
tion loss versus model size (log scale). The results indicate
that, for the same model size (vertical slice across the plot),
multi-head attention g = h achieves the lowest validation
loss compared to 1 < g < h (multi-group) and g = 1 (multi-
query). This trend holds consistently over three orders of
magnitude of model sizes, where the curves corresponding
to multi-head, multi-group and multi-query do not cross,
implying that the rank of model expressiveness, or relative
capabilities per number of parameters, is quite stable. An in-
tuitive explanation is that the lower g corresponds to a lower
rank representation of the key and value tensors, which en-
codes lower representation power of the past context and
therefore yields lower capabilities than higher g, given the
same model size.

Scaling laws via downstream performance We use the
average scores from two code generation benchmarks, multi-
lingual HumanEval and MBXP (Athiwaratkun et al., 2022),
as a proxy for model capabilities in addition to the validation
loss. This approach is similar to that of the GPT-4 technical
report (OpenAI, 2023) where HumanEval (Python) (Chen
et al., 2021) is used to track the performance across multiple
magnitudes of compute. In our case, we average across
all 13 evaluation languages and two benchmarks to obtain

5



Bifurcated Attention for Single-Context Large-Batch Sampling

a more stable proxy for capabilities. The result in Figure
3 demonstrates similar trend compared to the validation
loss where the pass rate curves indicate the same relative
expressiveness for multi-head, multi-group and multi-query
attention.

Matching capabilities by model size compensation
Given the same capabilities (horizontal slice of the plot
in Figure 3), the distance between two curves indicates the
model size difference that the lower-rank attention needs
to compensate in order to match the multi-head model per-
formance. Empirically, we average the distance along the
interpolated lines (log scale) and find this to correspond to
1.104 times; that is, a multi-query model can have the same
capabilities as the multi-head model if the size is increased
by ≈ 10% of the multi-head model size. Similarly, the
gap is < 10% for multi-group attention. Alternatively, one
can argue that a multi-query model of the same size could
match a multi-head if the multi-query model is given more
compute. However, in the regime where we train language
models until or close to convergence and the performance
saturates with respect to compute, the difference in capabili-
ties will likely remain. Therefore, the size compensation is
likely the most fair approach for comparison.

5.2. Latencies of Capabilities-Equivalent Models

As detailed in Section 5.1, we’ve observed that an increase
in the multi-query model’s size is required for it to match the
performance of a multi-head model. In this section, we focus
on examining the latency trade-offs across diverse scenarios
with both multi-query and multi-head models of similar
performance capabilities. For these latency experiments,
we utilize two models, each with an approximate size of
1 billion: a multi-head model and a multi-query model
(detailed information can be found in C.3). The multi-query
model chosen for these studies is larger by a multiplicative
factor F , where F = 1.1.

Overall, there is some overhead cost of using multi-query
attention due to the larger size (see Figure 4 and Appendix
D.3.1 and D.3.2 for analysis). That is, context encoding
latency of the multi-query model will be slightly larger, as
well as the low-context and low-batch incremental decoding
scenario. However, multi-query can have significantly lower
latency compared to multi-head in the scenario with high
number of decoding steps which makes the incremental de-
coding phase being latency-dominating, and high context
or batch size which heavily impacts the memory IO of in-
cremental decoding. We outline three different inference
scenarios below.

125M 672M 2.8B 13B

model size (w/o embeddings)

0.60

0.65

0.70

0.75

0.80

0.85

va
lid

at
io

n
lo

ss

Validation loss vs size
multi group

multi head

multi query

125M 672M 2.8B 13B

model size (w/o embeddings)

4

6

8

10

12

14

pa
ss

@
1

Average pass rates vs size
multi group

multi head

multi query

Figure 3: (Left) The plots of validation loss versus model
size demonstrate that the scaling laws curves of different
attention mechanisms have different expressiveness or per-
formance efficiency. That is, the capabilities given the same
model size depends on g where higher g yields the best
capabilities. (Right) We demonstrate a similar trend where
we use code generation abilities as a proxy for general capa-
bilities. Here, we average the execution pass rates evaluated
on Multi-lingual HumanEval and MBXP benchmarks under
13 programming languages.

5.2.1. SINGLE CONTEXT SCENARIO

In the single batch inference scenario, the multi-query/-
group attention can achieve lower latency when the context
length and the number of generated tokens are high, as
demonstrated in Figure 5. Different implementations that
are more efficient in loading KV cache (such as lower-level
kernel that can avoid duplicated IO) can cause the overall
curves of MH to be flatter. However, the overall trend still
remains where given sufficiently high context m, MQ will
begin to be faster than MH.

5.2.2. SINGLE-CONTEXT BATCH SAMPLING

In this scenario, we are given a single context and generates
multiple completions based on temperature sampling. In
this case, the context encoding is independent of the batch
size b since it is performed on the single context and broad-
casted for other batch indices (Figure 1). In contrast to
the batch inference scenario, this is a more practical online
inference scenario since we are not bottlenecked by the con-
text encoding step. Our proposed context-aware bifurcated
attention is exactly applicable for such scenario where in

6



Bifurcated Attention for Single-Context Large-Batch Sampling

Multi-Head Multi-Query

comparable capabilities

context
encoding

incremental
decoding
per step

MH MQ MH MQ

Figure 4: High-level latency comparison between an MH
model and a larger MQ model with comparable capabilities.
Overall, there’s an overhead cost for the initial context en-
coding latency due the additional compute with the larger
MQ model size. For low context and batch size, the per
step latency of MQ is also slightly higher to start due to
the memory IO required for larger model size, but does not
change much as context length m or batch size b grow, as
supposed to the multi-head case where the per step latency
can grow more rapidly with respect to m and b.

this section we demonstrate the results in conjunction with
both multi-head and multi-query.

Multi-head benefits significantly from bifurcated atten-
tion Figure 6a demonstrates the per step latency results
for a multi-head model. For instance, with batch size 8, the
per step latency without bifurcated attention grows rapidly
with context length, from ≈ 10 ms to ≈ 100 ms at context
length 10000. However, with bifurcated attention, the la-
tency remains relatively flat with respect to context length.
In practice, bifurcated attention also reduces memory con-
sumption at high batch size and context lengths without
encountering out-of-memory error as early as without bifur-
cated attention.

Bifurcated attention + multi-head rivals multi-query
Figure 7 shows the comparison between MH and MQ with
and without bifurcated attention. Without bifurcated atten-
tion, MQ is clearly much more inference efficient. How-
ever, with bifurcated attention, MQ and MH under moderate
batch size scenarios (up to 64) seems comparable, where
multi-head is even has lower latency. The results indicate
that, given an existing MH model, we can support batch
sampling scenarios using bifurcated attention without the
need of a multi-query model (which requires training a new
model, or at least continuous training) (Ainslie et al., 2023).
With a more inference-intensive scenarios, including batch
inference scenario where the bifurcated attention is not ap-
plicable, switching to multi-query can be worth the effort.

Bifurcated attention with multi-query enables more ex-
treme batch size and context lengths Multi-query has
overall h times lower memory IO and can already reduce
latency for some inference scenarios. With bifurcated at-

Table 1: Per-token latency (ms) of a 7B multi-head model
on GPT-Fast with and without Torch Compilation compared
to a model using Torch’s standard SDPA kernel.

without Compile Compiled

Context BS SDPA Bifurcated SDPA Bifurcated

8k

1 26.40 30.39 8.78 8.64
2 28.71 31.37 10.51 11.77
4 43.36 31.44 13.23 12.03
8 72.71 33.72 17.33 12.36

16 132.89 31.71 26.19 12.60

16k

1 30.13 30.66 13.06 12.16
2 44.74 32.62 15.35 17.17
4 73.62 33.44 20.65 17.33
8 132.29 34.67 32.06 18.07

16 251.47 36.78 OOM 18.46

32k

1 44.94 39.97 19.80 20.90
2 69.22 48.61 OOM 29.34
4 OOM 49.77 - 29.73
8 - 51.31 - 30.30

16 - 54.92 - 30.66

tention, the supported context lengths and batch sizes can
become much more extreme, as demonstrated in Figure 6b.

5.3. Compatibility with Torch-Compile

Bifurcated attention can be implemented with 4 einsum
calls in native PyTorch, making it compatible with Torch-
Compile. With Torch Compile, we can take advantage of
kernel-fusion and concurrency to improve the latency of
the model. To demonstrate this, we implement bifurcated
attention on top of GPTFast (PyTorch, 2023) 3.

We experiment on a 7B parameter model, with a hidden
dimension of 4096 that is 32 layers deep and has 32 heads,
as shown in Table 1. We observe that the overall latency
imporvements fwith large-batch sampling with respect to
standard SDPA attention remains consistent even when we
compile the model.

5.4. Applications

Efficient large-scale sampling is particularly useful for
downstream applications that require multiple generations
but has latency constraints, e.g., AI code assistants. In this
case, bifurcated attention enables generating more candi-
dates by using larger batch size without incurring much ad-
ditional latency. To verify our point, we empirically evaluate
CodeGen-16B-mono (Nijkamp et al., 2022) and StarCoder
(15.5B) (Li et al., 2023) on MBPP dataset (Austin et al.,
2021), and plot pass rates with respect to latency in Figure

3Link to our code: https://github.com/bifurcated-attn-icml-
2024/gpt-fast-parallel-sampling

7

https://github.com/bifurcated-attn-icml-2024/gpt-fast-parallel-sampling
https://github.com/bifurcated-attn-icml-2024/gpt-fast-parallel-sampling


Bifurcated Attention for Single-Context Large-Batch Sampling

0 5000 10000

Context Length

6

8

10

12

14

P
er

S
te

p
L

at
en

cy
(m

s)

Per Step Latency (ms)

Attention

MH

MQ

0 5000 10000

Context Length

0

250

500

750

1000

1250

C
on

te
xt

E
n

co
d

in
g

L
at

en
cy

(m
s)

Context Encoding Latency (ms)

0 5000 10000

Context Length

250

500

750

1000

1250

15
T

ok
en

T
ot

al
L

at
en

cy
(m

s)

15 Token Total Latency (ms)

0 5000 10000

Context Length

1500

2000

2500

3000

3500

4000

25
6

T
ok

en
T

ot
al

L
at

en
cy

(m
s)

256 Token Total Latency (ms)

MH vs MG ds mp degree = 1 num heads = 20

Figure 5: Incremental decoding (per step) latency and the context encoding latency, as a function of input context length. In
this plot, we compare an multi-head model and an multi-query model of comparable capabilities, whose size is slightly
larger. (Leftmost: Per-step incremental decoding latency) For low context length such as m < 2500, due to the larger
size of the MQ model, the inference latency is higher. However, the growth with respect to context length of the MQ model
is much lower (almost flat), resulting in lower per step latency when the context length is high. (Second: Context encoding
latency) The context encoding latency depends on the FLOPs where the MH and MQ are quite similar. Note that the
MQ model is slightly larger, and therefore corresponds to a steeper curve. (Third, Fourth): Total latency for 15 or 256
generated steps The two plots illustrates the total latency, which is the sum of context encoding and the the number of
steps times incremental decoding latency. The benefits of MQ model becomes clear in the case of high decoding steps (256)
whereas in the case of 15 generated tokens, the total latency of MQ can still be slightly higher than MH.

0 2500 5000 7500 10000

Context Length

20

40

60

80

100

P
er

S
te

p
L

at
en

cy
(m

s)

Per Step Latency (ms)

Bifurcated

False

True

0 2500 5000 7500 10000

Context Length

0

100

200

300

400

500

600

C
on

te
xt

E
n

co
d

in
g

L
at

en
cy

(m
s)

Context Encoding Latency (ms)

Batch size

8

32

128

256

512

0 2500 5000 7500 10000

Context Length

500

1000

1500

15
T

ok
en

T
ot

al
L

at
en

cy
(m

s)

15 Token Total Latency (ms)

0 2500 5000 7500 10000

Context Length

5000

10000

15000

20000

25000

25
6

T
ok

en
T

ot
al

L
at

en
cy

(m
s)

256 Token Total Latency (ms)

MH vs MG ds mp degree = 1 num heads = 20 multi query = 0

(a) Multi-Head

0 2500 5000 7500 10000

Context Length

20

40

60

80

100

P
er

S
te

p
L

at
en

cy
(m

s)

Per Step Latency (ms)

Batch size

8

32

128

256

512

0 2500 5000 7500 10000

Context Length

0

200

400

600

800

C
on

te
xt

E
n

co
d

in
g

L
at

en
cy

(m
s)

Context Encoding Latency (ms)

Bifurcated

False

True

0 2500 5000 7500 10000

Context Length

250

500

750

1000

1250

1500

1750

15
T

ok
en

T
ot

al
L

at
en

cy
(m

s)

15 Token Total Latency (ms)

0 2500 5000 7500 10000

Context Length

5000

10000

15000

20000

25000

25
6

T
ok

en
T

ot
al

L
at

en
cy

(m
s)

256 Token Total Latency (ms)

MH vs MG ds mp degree = 1 num heads = 20 multi query = 1

(b) Multi-Query

Figure 6: Context-aware bifurcated attention with multi-head attention (a) and multi-query attention (b). The bifurcated
attention loads the KV cache in a context-aware manner, resulting in significantly lower latency for sampling under high
batch sizes. For instance, in the case of multi-head attention with batch size 128 and context length 10, 000, bifurcated
attention results in ≈ 4× lower the incremental decoding latency. Additionally, growth with respect to context length is
relatively flat with bifurcated attention. With multi-query attention, bifurcated attention permits us to use batch sizes as high
as 256 or 512 with lower latency than in the multi-head scenario.

8, where we also indicate the batch size n. We consider two
accuracy measurements: (1) pass@n corresponds to the or-
acle scenario, where we evaluate all the generated samples
and check if any of them is correct; (2) pass@top3, where
we are only allowed to evaluate three examples no matter
how many we generate. In the top-3 case, we deduplicate
the n samples, and rank by their mean log probability scores
(Chen et al., 2021) to determine three candidates. All ex-
periments use nucleus sampling with p = 0.95 (Holtzman
et al., 2020) and temperature 0.8. The results show much
sharper improvement in either metrics relative to additional
latency. This approach opens up avenues for performance
improvement given a fixed budget of latency.

Many reasoning algorithms such as self-consistency Chain-
of-thought (SC-COT) (Wang et al., 2023) and Tree-of-

thought (ToT) (Yao et al., 2023) depend on sampling multi-
ple outputs with shared prefix, where bifurcated attention
will enable higher accuracy under same costs.

6. Conclusion
Bifurcated attention provides a complementary approach to
the existing inference acceleration methods, with a particu-
lar focus on minimizing the memory IO of the incremental
decoding, thereby enhancing inference efficiency. Our work
helps support demanding inference scenarios due to larger
context during incremental decoding, which are emerging
from, e.g., more complex applications that requires long
context such as complex reasoning, planning, or retrieval
augmented generations.

8



Bifurcated Attention for Single-Context Large-Batch Sampling

0 2500 5000 7500 10000

Context Length

20

40

60

80

100

P
er

S
te

p
L

at
en

cy
(m

s)
Per Step Latency (ms)

Attention

MH

MQ

0 2500 5000 7500 10000

Context Length

0

200

400

600

800

C
on

te
xt

E
n

co
d

in
g

L
at

en
cy

(m
s)

Context Encoding Latency (ms)

Batch size

1

4

8

16

32

0 2500 5000 7500 10000

Context Length

500

1000

1500

15
T

ok
en

T
ot

al
L

at
en

cy
(m

s)

15 Token Total Latency (ms)

0 2500 5000 7500 10000

Context Length

5000

10000

15000

20000

25000

25
6

T
ok

en
T

ot
al

L
at

en
cy

(m
s)

256 Token Total Latency (ms)

MH vs MG ds mp degree = 1 num heads = 20 explicit broadcast = 1 no duplicate broadcast = 0

(a) Without bifurcated attention

0 2500 5000 7500 10000

Context Length

10.0

12.5

15.0

17.5

20.0

22.5

P
er

S
te

p
L

at
en

cy
(m

s)

Per Step Latency (ms)

Attention

MH

MQ

0 2500 5000 7500 10000

Context Length

0

200

400

600

800
C

on
te

xt
E

n
co

d
in

g
L

at
en

cy
(m

s)
Context Encoding Latency (ms)

Batch size

16

32

64

128

0 2500 5000 7500 10000

Context Length

200

400

600

800

1000

15
T

ok
en

T
ot

al
L

at
en

cy
(m

s)

15 Token Total Latency (ms)

0 2500 5000 7500 10000

Context Length

2000

3000

4000

5000

6000

25
6

T
ok

en
T

ot
al

L
at

en
cy

(m
s)

256 Token Total Latency (ms)

MH vs MG ds mp degree = 1 num heads = 20 explicit broadcast = 1 no duplicate broadcast = 1

(b) With bifurcated attention

Figure 7: Latency comparison between multi-head and a larger multi-query model of equal capabilities. Without bifurcated
attention, MQ is clearly much more inference efficient. However, with bifurcated attention, MH can have better latency than
MQ in moderate scenario (up to batch size 64 in this case) where MQ can handle more extreme scenarios better than MH.

Figure 8: Bifurcated attention improves accuracy by enabling more generated samples over a fixed latency budget, applicable
for both multi-head attention (CodeGen) and multi-query attention (StarCoder). Given the n samples, pass@n reflects the
execution pass rate of the best sample among n, shown in (a) and (c). Filtering n samples with mean log probability ranking
yields a subset of best three samples, reflected by pass@top3 in (b) and (d). The increased number of samples within the
same latency budget results in increased performance via either pass@n or pass@top-k.

Impact Statement
Bifurcated attention is an approach that can significantly re-
duce the latency and associated costs involved in deploying
large language models (LLMs). A key advantage of this
technique is its potential to lower the carbon emissions as-
sociated with LLM inference. While reducing deployment
costs could potentially lead to broader adoption of LLMs,
the societal impact of such increased usage remains difficult
to predict with certainty. Nonetheless, bifurcated attention
presents an opportunity to make LLM deployment more
efficient and environmentally friendly, although the broader

implications warrant careful consideration.

References
W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang. Unified

pre-training for program understanding and generation. arXiv
preprint arXiv:2103.06333, 2021.

J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Le-
brón, and S. Sanghai. GQA: training generalized multi-query
transformer models from multi-head checkpoints. CoRR,
abs/2305.13245, 2023. doi: 10.48550/arXiv.2305.13245. URL
https://doi.org/10.48550/arXiv.2305.13245.

9

https://doi.org/10.48550/arXiv.2305.13245


Bifurcated Attention for Single-Context Large-Batch Sampling

L. B. Allal, R. Li, D. Kocetkov, C. Mou, C. Akiki, C. M. Ferrandis,
N. Muennighoff, M. Mishra, A. Gu, M. Dey, et al. Santacoder:
don’t reach for the stars! arXiv preprint arXiv:2301.03988,
2023.

Amazon. Amazon code whisperer. https://aws.amazon.
com/codewhisperer/.

B. Athiwaratkun, S. K. Gouda, Z. Wang, X. Li, Y. Tian, M. Tan,
W. U. Ahmad, S. Wang, Q. Sun, M. Shang, S. K. Gonugondla,
H. Ding, V. Kumar, N. Fulton, A. Farahani, S. Jain, R. Giaquinto,
H. Qian, M. K. Ramanathan, R. Nallapati, B. Ray, P. Bhatia,
S. Sengupta, D. Roth, and B. Xiang. Multi-lingual evaluation
of code generation models. CoRR, abs/2210.14868, 2022. doi:
10.48550/arXiv.2210.14868. URL https://doi.org/10.
48550/arXiv.2210.14868.

J. Austin, A. Odena, M. I. Nye, M. Bosma, H. Michalewski,
D. Dohan, E. Jiang, C. J. Cai, M. Terry, Q. V. Le, and C. Sut-
ton. Program synthesis with large language models. CoRR,
abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150, 2020.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei. Language
models are few-shot learners. CoRR, abs/2005.14165, 2020.
URL https://arxiv.org/abs/2005.14165.

A. Bulatov, Y. Kuratov, and M. S. Burtsev. Scaling trans-
former to 1m tokens and beyond with rmt. arXiv preprint
arXiv:2304.11062, 2023.

T. Cai, Y. Li, Z. Geng, H. Peng, J. D. Lee, D. Chen, and T. Dao.
Medusa: Simple llm inference acceleration framework with
multiple decoding heads, 2024.

C. Chen, S. Borgeaud, G. Irving, J. Lespiau, L. Sifre, and
J. Jumper. Accelerating large language model decoding with
speculative sampling. CoRR, abs/2302.01318, 2023. doi:
10.48550/arXiv.2302.01318. URL https://doi.org/10.
48550/arXiv.2302.01318.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Ka-
plan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray,
R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings,
M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H.
Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin,
S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike,
J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,
M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba.
Evaluating large language models trained on code. CoRR,
abs/2107.03374, 2021. URL https://arxiv.org/abs/
2107.03374.

R. Child, S. Gray, A. Radford, and I. Sutskever. Gen-
erating long sequences with sparse transformers. URL
https://openai.com/blog/sparse-transformers, 2019.

J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashin-
sky. Nvidia a100 tensor core gpu: Performance and innovation.
IEEE Micro, 41(2):29–35, 2021.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra,
A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann,
P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao,
P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du,
B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-
Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev,
H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus,
D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov,
R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai,
T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child,
O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz,
O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck,
J. Dean, S. Petrov, and N. Fiedel. Palm: Scaling language
modeling with pathways. CoRR, abs/2204.02311, 2022. doi:
10.48550/arXiv.2204.02311. URL https://doi.org/10.
48550/arXiv.2204.02311.

M. R. Costa-jussà, J. Cross, O. Çelebi, M. Elbayad, K. Heafield,
K. Heffernan, E. Kalbassi, J. Lam, D. Licht, J. Maillard, et al.
No language left behind: Scaling human-centered machine
translation. arXiv preprint arXiv:2207.04672, 2022.

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In
NeurIPS, 2022.

S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino,
J. Yosinski, and R. Liu. Plug and play language models: A
simple approach to controlled text generation. arXiv preprint
arXiv:1912.02164, 2019.

T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. Llm.int8():
8-bit matrix multiplication for transformers at scale. CoRR,
abs/2208.07339, 2022. doi: 10.48550/arXiv.2208.07339. URL
https://doi.org/10.48550/arXiv.2208.07339.

A. Farhad, A. Arkady, B. Magdalena, B. Ondřej, C. Rajen,
C. Vishrav, M. R. Costa-jussa, E.-B. Cristina, F. Angela,
F. Christian, et al. Findings of the 2021 conference on ma-
chine translation (wmt21). In Proceedings of the Sixth Con-
ference on Machine Translation, pages 1–88. Association for
Computational Linguistics, 2021.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. Gptq: Accu-
rate post-training quantization for generative pre-trained trans-
formers. arXiv preprint arXiv:2210.17323, 2022.

D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi,
R. Zhong, W.-t. Yih, L. Zettlemoyer, and M. Lewis. Incoder: A
generative model for code infilling and synthesis. arXiv preprint
arXiv:2204.05999, 2022.

Y. Fu, P. Bailis, I. Stoica, and H. Zhang. Breaking the se-
quential dependency of llm inference using lookahead decod-
ing, November 2023. URL https://lmsys.org/blog/
2023-11-21-lookahead-decoding/.

S. Gehman, S. Gururangan, M. Sap, Y. Choi, and N. A. Smith.
Realtoxicityprompts: Evaluating neural toxic degeneration in
language models. arXiv preprint arXiv:2009.11462, 2020.

Google. Bard. https://blog.google/technology/ai/
try-bard/.

10

https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://doi.org/10.48550/arXiv.2210.14868
https://doi.org/10.48550/arXiv.2210.14868
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2302.01318
https://doi.org/10.48550/arXiv.2302.01318
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2208.07339
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://blog.google/technology/ai/try-bard/
https://blog.google/technology/ai/try-bard/


Bifurcated Attention for Single-Context Large-Batch Sampling

K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang. Retrieval
augmented language model pre-training. In International con-
ference on machine learning, pages 3929–3938. PMLR, 2020.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl,
A. Clark, et al. Training compute-optimal large language mod-
els. arXiv preprint arXiv:2203.15556, 2022.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The
curious case of neural text degeneration. In 8th Interna-
tional Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?id=
rygGQyrFvH.

G. Izacard, P. Lewis, M. Lomeli, L. Hosseini, F. Petroni, T. Schick,
J. Dwivedi-Yu, A. Joulin, S. Riedel, and E. Grave. Atlas: Few-
shot learning with retrieval augmented language models. arXiv
preprint arXiv, 2208, 2022.

Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza. Dissecting
the NVIDIA volta GPU architecture via microbenchmarking.
CoRR, abs/1804.06826, 2018. URL http://arxiv.org/
abs/1804.06826.

J. Juravsky, B. Brown, R. Ehrlich, D. Y. Fu, C. Ré, and A. Mirho-
seini. Hydragen: High-throughput llm inference with shared
prefixes, 2024.

D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Baner-
jee, S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang,
H. Yuen, et al. A study of bfloat16 for deep learning training.
arXiv preprint arXiv:1905.12322, 2019.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess,
R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei. Scaling
laws for neural language models. CoRR, abs/2001.08361, 2020.
URL https://arxiv.org/abs/2001.08361.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

A. Kuzmin, M. Van Baalen, Y. Ren, M. Nagel, J. Peters, and
T. Blankevoort. Fp8 quantization: The power of the exponent.
arXiv preprint arXiv:2208.09225, 2022.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica. Efficient memory manage-
ment for large language model serving with pagedattention,
2023.

H. Le, Y. Wang, A. D. Gotmare, S. Savarese, and S. C. H. Hoi.
Coderl: Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 35:21314–21328, 2022.

Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from
transformers via speculative decoding. CoRR, abs/2211.17192,
2022. doi: 10.48550/arXiv.2211.17192. URL https://doi.
org/10.48550/arXiv.2211.17192.

R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, et al. Starcoder: may the
source be with you! arXiv preprint arXiv:2305.06161, 2023.

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, et al.
Competition-level code generation with alphacode. Science,
378(6624):1092–1097, 2022.

Y. Li, F. Wei, C. Zhang, and H. Zhang. Eagle: Speculative sam-
pling requires rethinking feature uncertainty, 2024.

Z. Lin and M. Riedl. Plug-and-blend: A framework for controllable
story generation with blended control codes. arXiv preprint
arXiv:2104.04039, 2021.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101, 2017.

A. Madaan, A. Shypula, U. Alon, M. Hashemi, P. Ran-
ganathan, Y. Yang, G. Neubig, and A. Yazdanbakhsh. Learn-
ing performance-improving code edits. arXiv preprint
arXiv:2302.07867, 2023.

J. Menick, M. Trebacz, V. Mikulik, J. Aslanides, F. Song, M. Chad-
wick, M. Glaese, S. Young, L. Campbell-Gillingham, G. Irving,
et al. Teaching language models to support answers with veri-
fied quotes. arXiv preprint arXiv:2203.11147, 2022.

X. Miao, G. Oliaro, Z. Zhang, X. Cheng, Z. Wang, R. Y. Y. Wong,
Z. Chen, D. Arfeen, R. Abhyankar, and Z. Jia. Specinfer:
Accelerating generative LLM serving with speculative inference
and token tree verification. CoRR, abs/2305.09781, 2023. doi:
10.48550/ARXIV.2305.09781. URL https://doi.org/
10.48550/arXiv.2305.09781.

Microsoft. Github copilot. https://github.com/
features/copilot.

P. Mirowski, K. W. Mathewson, J. Pittman, and R. Evans. Co-
writing screenplays and theatre scripts with language models:
Evaluation by industry professionals. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems,
pages 1–34, 2023.

M. Nadeem, A. Bethke, and S. Reddy. Stereoset: Measuring
stereotypical bias in pretrained language models. arXiv preprint
arXiv:2004.09456, 2020.

R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim,
C. Hesse, S. Jain, V. Kosaraju, W. Saunders, et al. Webgpt:
Browser-assisted question-answering with human feedback.
arXiv preprint arXiv:2112.09332, 2021.

E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou,
S. Savarese, and C. Xiong. Codegen: An open large lan-
guage model for code with multi-turn program synthesis. arXiv
preprint arXiv:2203.13474, 2022.

E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou. Code-
gen2: Lessons for training llms on programming and natural
languages. arXiv preprint arXiv:2305.02309, 2023.

NVIDIA. Fastertransformer. https://github.com/
NVIDIA/FasterTransformer.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.
doi: 10.48550/arXiv.2303.08774. URL https://doi.org/
10.48550/arXiv.2303.08774.

11

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
https://arxiv.org/abs/2001.08361
https://doi.org/10.48550/arXiv.2211.17192
https://doi.org/10.48550/arXiv.2211.17192
https://doi.org/10.48550/arXiv.2305.09781
https://doi.org/10.48550/arXiv.2305.09781
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774


Bifurcated Attention for Single-Context Large-Batch Sampling

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala. Pytorch: An imperative style, high-performance
deep learning library. In H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada, pages 8024–8035, 2019. URL https:
//proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.
html.

H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri.
Asleep at the keyboard? assessing the security of github copi-
lot’s code contributions. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 754–768. IEEE, 2022.

R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, A. Lev-
skaya, J. Heek, K. Xiao, S. Agrawal, and J. Dean. Efficiently
scaling transformer inference. CoRR, abs/2211.05102, 2022.
doi: 10.48550/arXiv.2211.05102. URL https://doi.org/
10.48550/arXiv.2211.05102.

T. PyTorch. Accelerating generative AI with PyTorch II:
GPT, Fast, 2023. URL https://pytorch.org/blog/
accelerating-generative-ai-2/.

J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He. Deepspeed:
System optimizations enable training deep learning models with
over 100 billion parameters. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

B. Roziere, M.-A. Lachaux, L. Chanussot, and G. Lample. Un-
supervised translation of programming languages. Advances
in Neural Information Processing Systems, 33:20601–20611,
2020.

T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli,
L. Zettlemoyer, N. Cancedda, and T. Scialom. Toolformer:
Language models can teach themselves to use tools. arXiv
preprint arXiv:2302.04761, 2023.

N. Shazeer. Fast transformer decoding: One write-head is all you
need. CoRR, abs/1911.02150, 2019. URL http://arxiv.
org/abs/1911.02150.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and
B. Catanzaro. Megatron-lm: Training multi-billion parame-
ter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

M. N. Team. Introducing mpt-7b: A new standard for open-source,
commercially usable llms, 2023. URL www.mosaicml.
com/blog/mpt-7b.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Ro-
driguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and
efficient foundation language models. CoRR, abs/2302.13971,
2023. doi: 10.48550/arXiv.2302.13971. URL https://doi.
org/10.48550/arXiv.2302.13971.

C. Tran, S. Bhosale, J. Cross, P. Koehn, S. Edunov, and A. Fan.
Facebook ai wmt21 news translation task submission. arXiv
preprint arXiv:2108.03265, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is
all you need. In I. Guyon, U. von Luxburg, S. Bengio,
H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5998–6008, 2017. URL https:
//proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.
html.

S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Lin-
former: Self-attention with linear complexity. arXiv preprint
arXiv:2006.04768, 2020.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang,
A. Chowdhery, and D. Zhou. Self-consistency improves chain
of thought reasoning in language models, 2023.

X. Wei, S. K. Gonugondla, W. U. Ahmad, S. Wang, B. Ray,
H. Qian, X. Li, V. Kumar, Z. Wang, Y. Tian, Q. Sun, B. Athi-
waratkun, M. Shang, M. K. Ramanathan, P. Bhatia, and B. Xi-
ang. Greener yet powerful: Taming large code generation
models with quantization. CoRR, abs/2303.05378, 2023. doi:
10.48550/arXiv.2303.05378. URL https://doi.org/10.
48550/arXiv.2303.05378.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al. Hugging-
face’s transformers: State-of-the-art natural language process-
ing. arXiv preprint arXiv:1910.03771, 2019.

G. Xiao, J. Lin, M. Seznec, J. Demouth, and S. Han. Smoothquant:
Accurate and efficient post-training quantization for large lan-
guage models. arXiv preprint arXiv:2211.10438, 2022.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and
K. Narasimhan. Tree of thoughts: Deliberate problem solving
with large language models, 2023.

Z. Yao, R. Y. Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He.
Zeroquant: Efficient and affordable post-training quantization
for large-scale transformers. In NeurIPS, 2022.

K. Yee, N. Ng, Y. N. Dauphin, and M. Auli. Simple and effective
noisy channel modeling for neural machine translation. arXiv
preprint arXiv:1908.05731, 2019.

A. Yuan, A. Coenen, E. Reif, and D. Ippolito. Wordcraft: story
writing with large language models. In 27th International Con-
ference on Intelligent User Interfaces, pages 841–852, 2022.

M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Al-
berti, S. Ontañón, P. Pham, A. Ravula, Q. Wang, L. Yang,
and A. Ahmed. Big bird: Transformers for longer se-
quences. In H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https:
//proceedings.neurips.cc/paper/2020/hash/
c8512d142a2d849725f31a9a7a361ab9-Abstract.
html.

12

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.48550/arXiv.2211.05102
https://doi.org/10.48550/arXiv.2211.05102
https://pytorch.org/blog/accelerating-generative-ai-2/
https://pytorch.org/blog/accelerating-generative-ai-2/
http://arxiv.org/abs/1911.02150
http://arxiv.org/abs/1911.02150
www.mosaicml.com/blog/mpt-7b
www.mosaicml.com/blog/mpt-7b
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.48550/arXiv.2303.05378
https://doi.org/10.48550/arXiv.2303.05378
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html


Bifurcated Attention for Single-Context Large-Batch Sampling

C. Zhen, Y. Shang, X. Liu, Y. Li, Y. Chen, and D. Zhang. A survey
on knowledge-enhanced pre-trained language models. arXiv
preprint arXiv:2212.13428, 2022.

A. FAQs
1. Q: If we already have an MQ model that seems to be quite

efficient at large batch sampling, is bifurcated attention nec-
essary?
A: The proposed context-aware bifurcated attention is an
exact computation that provides a different way to perform
attention, so one can use it "for free" without a performance
tradeoff. Due to the reduced memory I/O, it enables more
extreme cases of batch sampling, such as a larger batch, even
for long contexts.

2. Q: How applicable is multi-query for single-batch inference
without high batch sampling?
A: If the context is long and the number of generated tokens
is high, then the benefits of multi-query are clear. Please see
Section 5.2.1.

3. Q: Is bifurcated attention applicable for the case where we
process different inputs in a batch?
A: No. In that case, if we need a solution to reduce memory
I/O during incremental decoding, then multi-query attention
can be appealing, especially in scenarios with a high number
of generated tokens where the incremental decoding phase
dominates the overall latency. This is because there is an
overhead to multi-query due to the context encoding phase,
as outlined in the main paper.

4. Q: Any caveats to using bifurcated attention?
A: For small workloads (low context length and batch size),
due to the fact that we split the attention into two parts, there
can be less parallelization of the GEMM kernels, which could
lead to higher latency, especially for MQ models. However,
one can get the best of both worlds given any model by
triggering bifurcated attention under high workload scenarios
and using normal attention otherwise. With such a workload-
based switch, bifurcated attention is guaranteed to provide
better latency and efficiency.

5. Q: How does model quantization (or lower precision arith-
metic) affect the findings?
A: There are two regimes for quantization: model weight
quantization and attention quantization. To date, most quanti-
zation only focuses on the weight since the attention compu-
tation is precision-sensitive and quantization has not proved
to be viable.

Model quantization can make incremental decoding faster
due to lower memory I/O of the model itself, since the ef-
fective model size in memory is smaller. This shifts the
latency curve downward for all context lengths or batch sizes.
The overall conclusion for the bifurcated and multi-query
attention remains the same, however, since the improvement
proposed in the paper is on the attention component, which
is orthogonal to the model weight.

If attention quantization is viable in the future, the lower
memory on the attention tensor will effectively reduce the
memory I/O for KV cache by a factor of 2 in the case of
int8 quantization (compared to fp16 or bf16) or a factor
of 4 in the case of int4. Overall, this will flatten the latency
growth with respect to batch size or context length. The

overall comparative complexity (a) with or without bifurcated
attention or (b) multi-head vs. multi-query remains the same.

6. Q: Does the conclusion depend on the inference implementa-
tion or different hardware?
A: Different inference platforms, such as
FasterTransformers (GPUs) or PaLM
inference (TPUs), can yield different latency
numbers. However, the relative I/O complexity among
different attention mechanisms does not change, resulting in
similar relative trends among different attention mechanisms.
That being said, it is possible that more efficient imple-
mentations or more performant chip/system configurations,
including different tensor parallelism degrees, can result in
different slopes for the latency growth with respect to context
length and batch size. In that case, the trade-off points in
terms of context length or batch size can be different. The
comparative complexity remains the same based on the
analysis.

7. Q: How does bifurcated attention differ from using attention
mask for sampling as in done in SpecInfer (Miao et al., 2023)
?
A: The attention mask approach can have a different FLOP
usage compared to the original attention. We can consider
a scenario where the attention mask corresponds to sam-
pling with batch b and incremental decoding length ℓ, with
the original context of length m. The attention FLOPs are
O(mbℓ+ b2ℓ2). In contrast, the original FLOPs is O(mbℓ).
If bℓ is sufficiently large, then the FLOPs via attention mask
can be much higher. However, for the purpose of speculative
decoding where the number of draft tokens is small, this
additional FLOPs can be negligible.

B. Related Work
B.1. Applications of Single-Context Batch Sampling

The observed latency reduction we achieve can have a profound
impact on many applications. Some of these applications include:

• Code Generation: In software development, AI-assisted code
generation can benefit greatly from reduced latency, espe-
cially when generating multiple code snippets or suggestions
for a given context. This can lead to a more responsive and
efficient user experience for developers using AI-powered
Integrated Development Environments (IDEs) or code com-
pletion tools (Nijkamp et al., 2023; 2022; Chen et al., 2021;
Le et al., 2022; Fried et al., 2022; Li et al., 2022; Allal et al.,
2023; Li et al., 2023; Ahmad et al., 2021).

• Machine Translation: In situations where multiple transla-
tions are needed for a single input, such as generating trans-
lations with varying degrees of formality or generating trans-
lations for different dialects, the context-aware bifurcated
attention can provide more efficient computation, resulting in
faster and more scalable machine translation services (Costa-
jussà et al., 2022; Farhad et al., 2021; Tran et al., 2021; Yee
et al., 2019).

• Chatbots and Conversational AI: Conversational agents often
need to generate multiple responses to handle different inter-
pretations of a user’s input or to provide multiple suggestions.
The reduced latency offered by the proposed method can
significantly improve the responsiveness of chatbots, leading
to a more natural and fluid conversation with users (Google).

13



Bifurcated Attention for Single-Context Large-Batch Sampling

• Creative Content Generation: In applications like poetry,
story, or advertisement generation, the ability to generate
multiple variations for a given prompt is crucial. The pro-
posed method enables more efficient generation of diverse
content, making it more feasible for real-time or large-scale
applications (Lin and Riedl, 2021; Mirowski et al., 2023;
Team, 2023; Yuan et al., 2022).

• Reasoning: using Self-consistency Chain-of-Thought (CoT-
SC) (Wang et al., 2023) and Tree-of-Thought (ToT) (Yao
et al., 2023) requires the model to sample multiple outputs
with a shared prefix. Bifurcated attention will enable larger
number of reasoning paths in SC-COT and larger trees in
ToT at the same cost of inference.

• Data Augmentation: In the context of data augmentation
for machine learning, generating multiple alternative exam-
ples for a given input can help improve model robustness
and generalization. With the reduced latency provided by
context-aware bifurcated attention, the process of generating
augmented data can be made faster, enabling more efficient
use of computational resources during training.

• General Large Scale Evaluation: In addition to the afore-
mentioned use-cases there are many niche use-cases where
LLM and other open-ended generation models are explored
for toxicity (Dathathri et al., 2019; Gehman et al., 2020;
Nadeem et al., 2020), detection of vulnerable code in genera-
tions (Pearce et al., 2022), performance improving code edit
generation (Madaan et al., 2023), programming language
translations (Roziere et al., 2020) and many others. In all of
these scenarios many generations per each prompt are gath-
ered for a deeper understanding of the models, bifurcated
attention can drastically speed up the generation process in
such cases.

In conclusion, the proposed context-aware bifurcated attention
method can significantly reduce memory I/O cost and improve
latency in various applications, leading to increased efficiency and
scalability. This method has the potential to enable new use cases
and enhance the user experience in numerous AI-powered systems,
making them more practical for real-world deployment.

B.2. Supporting Long Context Requires IO-Efficient
Attention

As language models are becoming general purpose and highly
capable, the demand for language models to handle longer context
sequences has grown significantly. Recently, there is an ongoing
focus on models that can handle even longer context sequences
(Bulatov et al., 2023; OpenAI, 2023; Team, 2023;?). As of today,
GPT-4 (OpenAI, 2023) supports context length of 32k tokens, and
MPT-7B (Team, 2023) extends it to 64k while Anthropic’s Claude
4 supports as long as 100k input length. Most recently, Bulatov
et al proposed 1M token input context length for transformers.
These models push the boundaries of context understanding and
generation capabilities, enabling more comprehensive discourse
understanding and contextually informed responses.

This trend is driven by the need for comprehensive discourse un-
derstanding in applications like Retrieval-Augmented Generation
(RAG), as well as many complex prompting methods. Applica-
tions such as RAG (Guu et al., 2020; Izacard et al., 2022; Menick
et al., 2022; Zhen et al., 2022) retrieve extensive passages or docu-

4https://www.anthropic.com/index/100k-context-windows

ments from external corpora, providing rich and grounded context
for generating responses. Additionally, models like Toolformer
(Schick et al., 2023) and WebGPT (Nakano et al., 2021) leverage
external tools, such as APIs and search engines, to expand the
context and enhance generation.

Long context is disproportionately expensive for transformer fam-
ily models because for vanilla self-attention both memory and
time complexity are quadratic to the sequence length. To effec-
tively handle longer context sequences, optimizing memory I/O
and reducing computational overhead are critical. Currently, the
dominant approaches to addressing this challenge have been to
make the attention computation less expensive. Beltagy et al.
(2020) proposed to sparsify self-attention using various attention
patterns. Wang et al. (2020) explores low-rank approximation of
self-attention. In addition to the compute bound improvements,
advancements in memory-efficient attention mechanisms and tech-
niques for reducing memory I/O will continue to propel the field
forward, facilitating the handling of longer context sequences in
language models. FlashAttention (Dao et al., 2022) is proposed to
speed up self-attention and reduce the memory footprint without
any approximation. It leverages fused kernel for matrix multipli-
cation and softmax operation which greatly reduces memory IO
during training.

C. Setup
C.1. Model Training Details

We trained multiple models with varying sizes, ranging from 125
million parameters to 13 billion parameters, using code data with a
context size of 2048 and adjusting the per-GPU batch size and total
number of steps according to the model size. For model training
we used multiple p4 instances each equipped with 8 40GB Nvidia
A100 GPUs per instance.

For our largest model family, the 13 billion parameter model, we
used a global batch size of 1024, which approximately translates to
2 million tokens per batch. The settings for each model within each
model-size family were kept consistent. The remaining training
hyperparameters are summarized in the following table 2.

We use AdamW optimizer ((Kingma and Ba, 2014)) with β1 = 0.9,
β2 = 0.95, and ϵ = 10−8. The warm-up steps were set to 2000,
and a cosine annealing learning rate schedule was employed after
reaching the peak learning rate. The minimum learning rate was
set to 10% of the corresponding peak learning rate. A weight
decay ((Loshchilov and Hutter, 2017)) of 0.01 and gradient clip-
ping of 1.0 were applied to enhance training stability. Following
the approach in ((Shoeybi et al., 2019)), the standard deviation
for random weight initialization was rescaled for larger models.
Our training pipeline is based on PyTorch Lightning and we use
bfloat16 ((Kalamkar et al., 2019)) and DeepSpeed ((Rasley et al.,
2020)) for training optimization. Finally, a random split of 0.1%
of the data was reserved as a validation set.

C.2. Model Configurations

For each model size we train three models with attention variations;
multi head where g = h, multi group where 1 < g < h and multi
query where g = 1. Additionally, for 672m and 2.8b models
we train a multi group model variant where the fanout in feed
forward layer is decreased from 4×d to 2×d. Each model variant
yields different number of total parameters therefore we group
these models into family of model sizes. The detailed architectural

14



Bifurcated Attention for Single-Context Large-Batch Sampling

Table 2: Training Hyperparameters

Model Size Total Training Steps Batch Size Compute Nodes Max Learning Rate

125M 400k 256 8 2.5× 10−4

672M 200k 256 8 2.5× 10−4

2.8B 200k 512 16 1.6× 10−4

13B 100k 1024 32 1.0× 10−4

choices for each of the model family is found in the table 3.

C.3. Model Details of 1B Latency Experiment

In Section 5.2.2, we use candidate models of sizes roughly 1B to
study the effect of bifurcated attention. We outline the hyperpa-
rameters of such models below.

C.4. Ablation Studies: 2d Intermediate Feature
Dimension

One can also argue that different g results in different balance of
the number of parameters in the feedforward versus the attention
components. We performed an ablation study where we reduce the
typical intermediate feature size of 4d to 2d and train models for
three model sizes (which we will refer to as the 2d experiment).
The ablation study reveals that the scaling laws curves for the
2d experiment crosses the usual 4d curves, which implies that
the reduced size of the attention component alone compared to
feedforward does not provide a consistent explanation of model
capabilities. This can be seen from Figure 9.

C.5. Inference Setup

We use Nvidia A100 GPUs for inference hardware (Choquette
et al., 2021). We perform latency studies using Deepspeed in-
ference (Rasley et al., 2020) on top of Huggingface transformers
(Wolf et al., 2019), where we wrote custom code to handle the gen-
eralize multi-group attention as well as bifurcated attention. Future
work includes extending the implementation to FasterTransformer
(NVIDIA).

D. Multi-Group Attention Family
D.1. Detailed Analysis on Memory Access

We show in Table 5 that the memory IO cost for ⟨q,K⟩ is domi-
nated by the loading of K which costs bmhk in the case of multi-
head where g = h. This cost is particularly high due to the
coupling of batch size b, context length m, and the entire hidden
dimension d. Compared to the number of computations, which
has complexity bmd, this attention module requires one memory
IO per one tensor operation (memory-io bound). In contrast, other
operations such as feedforward has much lower ratio of memory
IO per compute (compute bound). These attention computation
can be the main bottleneck for incremental decoding and our paper
aims to tackle such problems.

Concretely, we can see that the context encoding in single-batch
scenario in Appendix 5.2.1 is 400 ms for context length 10000,
implying that the amortized latency per token during this phase

is 0.04 ms per token. However, the per token latency during
incremental decoding is in the order of ≈ 10 ms per token, which
is 10

0.04
= 250 times slower. This number clearly demonstrates that

compute is not a dominating factor, but the memory IO required to
load both model and KV cache.

D.2. Model FLOPs

The scaling laws by Kaplan et al. (2020) shows that the model-
related FLOPs during the forward pass is 2N where N is the
number of parameters (without the embeddings). We show that it
holds for a general multi-group model as well. The only difference
between the multi-group and the multi-head case is the projection
PK and PV where they are of size dgk instead of dhk. Since
this is a linear layer, the forward pass FLOPs for any input is still
proportional such projection size. Therefore, it follows that for any
multi-group attention, including multi-head, the forward FLOPs is
2N where N is the respective number of parameters.

D.3. Comparing Capabilities-Equivalent Models

This section outlines the analysis of latency change when we switch
from an MH model to an MG model with F times the size.

D.3.1. CONTEXT ENCODING

The dominating factor for latency in context encoding is the com-
pute rather than the memory IO. The compute can be broken down
into two parts (a) tensor projections related to model parameters
and (b) KV attention involving no model parameters. For both
parts, the large multi-group model will involve higher latency
proportional to the size factor F . The context encoding time is
∝ N × bm where N is the model size except embeddings for (a)
since the FLOPs per token is 2N (Kaplan et al., 2020), which holds
for all multi-group attention (Appendix D.2). For (b), the encoding
time is ∝ ℓ · bhm2 ∝ Nbm2 for (b). Overall, the multi-group
model with similar capabilities as the multi-head model will incur
slightly higher context encoding time due to the larger size since
N to increase to FN .

D.3.2. INCREMENTAL DECODING

The incremental decoding component can dominate the overall
inference latency compared to the context encoding, especially in
the scenario where we decode in many steps. Incremental decoding
is memory bound, meaning that the latency of this step is limited
by memory I/O throughput. We can divide the memory I/O usage
into two parts: reading (a) model parameters and (b) cached key-
value pairs. With multi-group, we expect the model parameters to
increase by a factor of F (g), leading to an increase in I/O usage in
(a) by the same factor. The memory IO in (b) changes by a factor

15



Bifurcated Attention for Single-Context Large-Batch Sampling

Table 3: Model Specifications table presenting architecture details for the three variants: multi head (MH), multi query
(MQ), and multi group (MG) including parameter count, number of attention groups, head dimensions, and number of
layers. The additional fanout-based MG variant is described here as MG + 2× d

Model Family Attention Type groups dhead nlayer Nparams (bil-
lions)

125M MH 12 64 12 0.125
MG 4 64 12 0.115
MQ 1 64 12 0.112

672M MH 20 72 24 0.672
MG 4 72 24 0.592
MG + 2× d 4 72 24 0.393
MQ 1 72 24 0.578

2.8B MH 24 128 24 2.878
MG 4 128 24 2.501
MG + 2× d 4 128 24 1.595
MQ 1 128 24 2.444

13B MH 40 128 40 12.852
MG 8 128 40 11.174
MQ 1 128 40 10.807

Table 4: Model Specifications for Latency Experiment in Section 5.2.2.

Model Family Attention Type groups dhead nlayer Nparams (bil-
lions)

1B MH 20 128 12 1.077
MG 4 128 15 1.156
MQ 1 128 16 1.193

of g
h

when moving from multi-head with KV cache size 2bhmk
to multi-group with cache size 2bgmk (more precisely g

h
· F (g)

but g
h

is a dominating term since F (g) is close to 1).

E. Context-Aware Bifurcated Attention
E.1. Proof

Here, we outline the proof that the proposed bifurcated attention
in Equation 3 and 4 recovers the same attention as the operations
in 1 and 2 for the case of single-context batch sampling. We use
the fact that the KV part corresponding to context length, all the
batch indices correspond to the tensors.

⟨q,K⟩ : einsum(bgpnk, bgmk) → bgpnm

= einsum(bgpnk, bg(mc +md)k) → bgpnm

= einsum(bgpnk, bgmck) → bgpnm⊕
einsum(bgpnk, bgmdk) → bgpnm

= einsum(bgpnk, bgmck) → bgpnm⊕
einsum(bgpnk, gmdk) → bgpnm

= ⟨q,Kc⟩ ⊕ ⟨q,Kd⟩

⟨w, V ⟩ : einsum(bgpnm, bgmk) → bgpnk = bnd

= einsum(bgpnmc, bgmck) → bgpnk+

einsum(bgpnmd, bgmdk) → bgpnk

= einsum(bgpnmc, gmck) → bgpnk+

einsum(bgpnmd, bgmdk) → bgpnk

= ⟨wc, Vc⟩+ ⟨wd, Vd⟩

E.2. Detailed Memory I/O Analysis

Overall, the memory I/O complexity changes from

• Original memory I/O cost: bhnk + bgmk + bhnm (for
⟨q,K⟩) + bhnm+ bgmk + bnd (for ⟨w, V ⟩)

16



Bifurcated Attention for Single-Context Large-Batch Sampling

125M 672M 2.8B 13B

model size (w/o embeddings)

0.60

0.65

0.70

0.75

0.80

0.85

va
lid

at
io

n
lo

ss

Validation loss vs size
multi group

multi head

multi query

multi group fanout 2d

125M 672M 2.8B 13B

model size (w/o embeddings)

4

6

8

10

12

14

pa
ss

@
1

Average pass rates vs size

multi group

multi head

multi query

multi group fanout 2d

Figure 9: Capabilities versus size plots including the 2d-intermediate-size feedforward model. The plot shows that the
balance between the number of feedforward parameters and the attention parameters alone does not explain the relative
expressiveness of multi-head, multi-group, and multi-query attentions. Rather, we argue that what explains relative
expressiveness is the representation power associated with the key and value tensors (Section 5.1).

• Bifurcated attention memory I/O cost: bhnk + gmck +
bgmdk + bhnm (for ⟨q,K⟩) + bhnm+ gmck + bgmdk +
bnd (for ⟨w, V ⟩)

There is an associated memory IO to write the ⟨w, Vc⟩ and ⟨w, Vd⟩
output twice. However, it is typically very small (bnd) compared
to the IO of KV cache component bgmk since m >> n = 1.

E.3. Implementation of Bifurcated Attention

Despite the dramatic gain in inference efficiency of the bifurcated
attention, we demonstrate the simplicity of our implementation
involving 20 lines of code using Pytorch (Paszke et al., 2019).

1 def attn(query, key, value,
bifurcated_attention):

2 # <q,K>
3 if bifurcated_attention and type(key)

== dict:
4 # g = number of groups
5 # h = gp where p = num heads per

group
6 # n = 1 for incremental decoding
7 attn_weights_context = torch.

einsum(
8 "bgpnk,gmk->bgpnm", query, key

["context_past_key"][0]
9 )

10 attn_weights_incremental = torch.
einsum(

11 "bgpnk,bgmk->bgpnm", query,
key["incremental_past_key"]

12 )
13 attn_weights = torch.cat(
14 [attn_weights_context,

attn_weights_incremental], dim=-1
15 )
16 else:
17 attn_weights = torch.einsum(
18 "bgpnk,bgmk->bgpnm", query,

key
19 )
20 # softmax and causal mask (omitted)
21 # <w,V>
22 if bifurcated_attention and type(

value) == dict:
23 # n = 1 for incremental decoding
24 context_past_value_length = value[

"context_past_value"].size(-2)
25 attn_output_context = torch.einsum

(
26 "bgpnm,gmv->bgpnv",
27 attn_weights[:, :, :, :, :

context_past_value_length],
28 value["context_past_value"

][0],
29 )
30 attn_output_incremental = torch.

einsum(
31 "bgpnm,bgmv->bgpnv",
32 attn_weights[:, :, :, :,

context_past_value_length:],
33 value["incremental_past_value"

],
34 )

17



Bifurcated Attention for Single-Context Large-Batch Sampling

Table 5: Comparison of memory access and computation between Multi Head, Multi Query, and Multi Group attention
mechanisms. The memory access is for incremental decoding with the query length n = 1.

Operation Einsum Memory Access Computation
Input (x): bd
q = ⟨x, Pq⟩ bd, hdk → bhk bd + hdk = bd + d2 bdhk = bd2

K = ⟨x, Pk⟩ (+Kprev) [MH] bd, hdk → bhk (+bmhk) bd + d2 bdhk = bd2

[MQ] bd, dk → bk (+bmk) bd + dk
[MG] bd, gdk → bgk (+bgmk) bd + gdk

V = ⟨x, Pv⟩ (+Vprev) [MH] bd, hdv → bhv (+bmhv) bd + d2 bdhv = bd2

[MQ] bd, dv → bv (+bmv) bd + dv
[MG] bd, gdv → bgv (+bgmv) bd + gdv

logits = ⟨q,K⟩ [MH] bhk, bhmk → bhm bhk + bhmk = bd + bmd bhmk = bmd
[MQ] bhk, bmk → bhm bd + bmk + bhm
[MG] bhk, bgmk → bhm bhk + bgmk + bhm

weights: softmax bhm bhm
out(O) = ⟨ weights, V ⟩ [MH] bhm, bhmv → bhv bhm + bhmv = bhm + bmd bhmv = d

[MQ] bhm, bmv → bhv bhm + bmv + bhv
[MG] bhm, bgmv → bhv bhm + bgmv + bhv

y = ⟨O,PO⟩ bhv, hdv → bd bd + d2 bdhv = bd2

Total: Multi Head bd + bmd + d2 bhm + bmd + bd2 ≈ bd2

Total: Multi Query bd + bmk + d2

Total: Multi Group bd + bgmk + d2

r: Multi Head 1/d + m/d + 1/b
r: Multi Query 1/d + m/(dh) + 1/b
r: Multi Group 1/d + g/(dh) + 1/b

35 attn_output = attn_output_context
+ attn_output_incremental

36 else:
37 attn_output = torch.einsum(
38 "bgpnm,bgmv->bgpnv",

attn_weights, value
39 )
40 return attn_output

F. Applications: Additional Results
We demonstrate additional results to the evaluation in Section 5.4
on MBXP-Java and MBXP-Javascript, in addition to the Python
results. We replace CodeGen-16B-mono with CodeGen-16B-multi
for the evaluation on Java and JavaScript and use the same Star-
Coder model. From Figure 10, we observe similar trends as in
Python (Figure 8), which furthers demonstrates the wide appli-
cability of of bifurcated attention in improving accuracy under
latency-constrained scenarios.

G. Compatibility with Speculative Decoding
and Fast Decoding techniques

Unlike standard auto-regressive decoding, fast decoding techniques
such as Speculative decoding(Chen et al., 2023; Leviathan et al.,
2022), Medusa (Cai et al., 2024), Lookahead (Fu et al., 2023), and
Eagle (Li et al., 2024) attempt to decode multiple tokens at each
step. This reduces I/O bandwidth requirements because model
parameters and KV cache are fetched only once per step and can
be amortized across all generated tokens.

The fundamental principle behind these techniques is to first draft
(or guess) a set of tokens (denoted as ng) and then validate their
accuracy by parallelly decoding with the model. After each step,
up to a tokens (where a ≤ ng) may be accepted as valid, allowing
for memory usage amortization across these accepted tokens. This
approach is successful because decoding is primarily constrained
by memory I/O.

The benefits of bifurcated attention are orthogonal to those of

speculative sampling, leading to further memory I/O improvements.
This can be observed by extrapolating per-step memory I/O costs
from Section E.2 with ng raplacing n. Since m >> ng continues
to hold, the advantages of bifurcated attention persist even when
combined with speculative decoding.

H. Experiments with GPTFast
The implementation of context-aware bifurcated attention in native
PyTorch demonstrates significant reductions in parallel sampling
latency for both multi-headed attention (MHA) and grouped query
attention (GQA) architectures. Bifurcated attention, being context-
aware and implemented natively in PyTorch, can directly benefit
from PyTorch’s compilation capabilities.

We observe Bifurcated attention outperforming FlashAttention2,
especially for larger context lengths and higher degrees of tensor
parallelism. Since Bifurcated attention is primarily targeting de-
code phase during inference, leveraging the efficiency of FlashAt-
tention2 for the prefill (context encoding) step.

H.1. In Comparison with FlashAttention

FlashAttention is a highly efficient general-purpose fused atten-
tion kernel that is particularly effective during context encoding,
as it avoids materializing the expensive-to-read-and-write n× n
attention matrix in GPU memory.

However, during incremental decoding with single-context batch
sampling, native FlashAttention kernels are not as efficient because
they are not designed to be context-aware. Specifically, if there are
B batch indices of K,V cache that are duplicate in values due to the
shared prefix, FlashAttention-2 (FA2) can use paged KV-Cache
to refer and point them to the same KV-pairs for the prefix across
a batch. Nevertheless, this does not prevent the FlashAttention
kernel from performing multiple reads of the KV-pairs from the
shared prefix.

Table 6 shows that a context-aware approach such as bifurcated at-
tention outperforms FlashAttention in parallel sampling scenarios,

18



Bifurcated Attention for Single-Context Large-Batch Sampling

(a) MBXP Java

(b) MBXP JavaScript

Figure 10: Bifurcated attention enables high batch sampling with minimal increase in latency with respect to batch size,
resulting in more diverse and improved quality samples as indicated by pass@n and pass@top3 on MBXP-Java (Figure
10a). This trend extends to other evaluation such as JavaScript (Figure 10b) and Python (Figure 8).

especially with an increasing number of parallel samples. Notably,
the bifurcated attention kernel is utilized solely during the decode
step, allowing the efficient FlashAttention2 kernel to be employed
during the prefill step for context lengths up to 8192. Furthermore,
while non-contiguous memory avoids out-of-memory issues dur-
ing parallel sampling for non-context-aware kernels, bifurcated
attention’s memory setup, which maintains only one copy of the
context and expands by reference across batch indices, achieves
substantially lower latencies. However, the native FlashAttention2
implementation is not yet compatible with PyTorch’s compilation
capabilities.

In the future, it may be possible to combine bifurcated attention
with FlashAttention to optimize the latency further.

H.2. Trends with Grouped Querry Attention (GQA)

For GQA architectures, bifurcated attention is able to help scale
to very large inference workloads. Using PyTorch’s compilation
mode, the inference with bifurcated attention is much faster com-
pared to FlashAttention2. Table 7 presents the results for context
lengths of 8K, 16K, and 32K tokens. Note that PyTorch’s SDPA
is not directly supported for GQA and thus not included in the
comparison.

H.3. Compatibility with Tensor Parallel (TP)

Higher tensor parallelism is often required to handle higher infer-
ence workloads, as seen in Table 8. The proposed context-aware
bifurcated attention method works out-of-the-box without addi-
tional modifications for tensor parallelism. With TP we get to work
with much larger context lengths.

19



Bifurcated Attention for Single-Context Large-Batch Sampling

Table 6: Per-token generation latency (ms) with bifurcated attention compared to native Flash attention 2 kernel and Torch’s
SDPA attention kernel implementations, with and without using the torch compile option. Measurements are taken using a
7B parameter model (32 layers, 32 heads, hidden dimension = 4096) with multi-head attention. SDPA Math represents the
default attention operations by Torch, while SDPA Flash utilizes Flash attention under the hood. "NC" refers to the use of
non-contiguous memory allocation for the cache, allowing reuse of the cache from the prompt. Note that Flash attention
kernels are currently not compatible with torch-compile. The experiment results below utilize an Nvidia H100 GPU.

without Torch Compile with Torch Compile

BS Bifurcated Flash2 SDPA Math SDPA Flash Flash2 SDPA Flash SDPA Math Bifurcated SDPA Math
(NC) (NC) (NC)

Context Length : 8k

1 30.38 24.06 26.39 22.00 24.54 23.43 10.66 8.63 8.77
2 31.37 24.49 28.70 24.77 31.53 31.66 14.45 11.74 10.50
4 31.44 39.66 43.36 38.86 50.54 51.06 23.20 12.03 13.22
8 33.72 60.92 72.70 61.22 84.52 84.99 35.42 12.36 17.33

16 31.70 109.64 132.89 109.45 155.85 159.82 63.68 12.59 26.19
32 31.78 205.57 251.02 205.92 305.39 306.60 120.39 13.47 -
64 35.26 OOM OOM - 599.08 601.48 238.19 15.35 -

128 48.69 - - - 1183.46 OOM OOM 19.56 -
256 75.21 - - - 1842.98 - - 27.15 -
512 130.58 - - - - - - 44.33 -

1024 242.73 - - - - - - 81.14 -
2048 473.74 - - - - - - OOM -

Context Length : 16k

1 30.66 26.28 30.13 26.22 30.49 30.20 15.53 12.16 13.06
2 32.62 37.72 44.74 38.25 51.30 51.24 22.46 17.17 15.35
4 33.44 65.98 73.62 65.83 91.25 90.76 39.51 17.33 20.65
8 34.67 110.31 132.29 110.55 159.96 160.39 64.22 18.07 32.06

16 36.78 206.93 251.47 206.52 306.75 307.31 119.87 18.46 OOM
32 41.93 OOM OOM OOM 601.10 603.61 237.89 19.92 -
64 50.53 - - - 1195.35 OOM OOM 22.96 -

128 68.31 - - - 1908.23 - - 28.98 -
256 106.10 - - - OOM - - 40.07 -
512 183.14 - - - - - - 65.02 -

1024 339.74 - - - - - - 117.75 -
2048 660.20 - - - - - - OOM -

Context Length : 32k

1 39.97 37.67 44.94 37.46 67.44 67.30 30.39 20.90 19.80
2 48.61 55.94 69.22 55.86 156.61 156.35 47.63 29.34 OOM
4 49.77 OOM OOM OOM 300.47 300.97 90.19 29.73 -
8 51.31 - - - 567.93 568.81 152.19 30.30 -

16 54.92 - - - 670.21 672.42 290.59 30.66 -
32 62.28 - - - 1318.05 1323.25 569.74 32.15 -
64 75.22 - - - OOM OOM OOM 35.25 -

128 101.18 - - - - - - 41.44 -
256 159.09 - - - - - - OOM -
512 277.05 - - - - - - - -

1024 OOM - - - - - - - -

20



Bifurcated Attention for Single-Context Large-Batch Sampling

Table 7: Per-token generation latency (ms) with bifurcated attention compared to the native Flash attention kernel. Measure-
ments are taken with a 7B parameter model (32 layers, 32 heads, hidden dimension = 4096, 8 kv heads) using grouped
query attention. Note that Flash attention kernels are currently not compatible with torch-compile. In this table, "NC" refers
to the use of non-contiguous memory allocation for the cache, allowing reuse of the cache from the prompt. The experiment
results below utilize an Nvidia H100 GPU.

BS Bifurcated + Compile Bifurcated Flash2 Flash 2 (NC)

Context: 8k 16k 32k 8k 16k 32k 8k 16k 32k 8k 16k 32k

1 10.56 15.16 22.79 28.37 30.97 37.20 21.76 23.59 26.64 23.48 25.23 28.20
2 11.35 15.99 23.72 29.53 32.16 37.47 22.46 23.78 26.82 39.93 28.53 45.70
4 11.52 16.20 23.98 29.58 32.19 37.48 22.57 24.22 27.30 71.57 42.47 72.94
8 11.79 16.61 24.59 29.58 32.41 38.12 22.65 24.03 28.36 126.35 70.01 127.96

16 11.72 16.68 24.87 30.27 32.85 37.29 22.31 30.19 OOM 240.96 130.77 245.81
32 12.50 17.77 27.01 29.76 32.75 37.84 26.06 OOM 468.93 244.54 467.61
64 13.87 19.90 30.31 29.52 32.07 45.73 OOM 403.08 482.71 463.55

128 17.03 24.90 37.60 29.55 40.26 63.06 788.66 465.70 909.02
256 24.38 33.76 52.06 40.07 59.42 96.28 915.89 1805.60
512 39.08 OOM OOM 65.74 OOM OOM OOM OOM

1024 72.24 118.57
2048 OOM 230.88

Table 8: Per-token generation latency (ms) Mistral 7B at different context lengths with TP=2 experimented on Nvidia’s
H100 GPU.

Context BS SDPA Bifurcated Flash2

16384 16 131.46 55.51 92.11
32640 8 133.85 58.56 92.35
32640 16 246.53 58.00 162.02
32640 32 OOM 57.86 OOM
32640 64 60.33
32640 128 67.82

21


