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Abstract
Image Super-Resolution (ISR) has seen signifi-
cant progress with the introduction of remarkable
generative models. However, challenges such
as the trade-off issues between fidelity and re-
alism, as well as computational complexity, have
also posed limitations on their application. Build-
ing upon the tremendous success of autoregres-
sive models in the language domain, we propose
VARSR, a novel visual autoregressive modeling
for ISR framework with the form of next-scale
prediction. To effectively integrate and preserve
semantic information in low-resolution images,
we propose using prefix tokens to incorporate the
condition. Scale-aligned Rotary Positional En-
codings are introduced to capture spatial struc-
tures, and the Diffusion Refiner is utilized for
modeling quantization residual loss to achieve
pixel-level fidelity. Image-based Classifier-free
Guidance is proposed to guide the generation of
more realistic images. Furthermore, we collect
large-scale data and design a training process to
obtain robust generative priors. Quantitative and
qualitative results show that VARSR is capable
of generating high-fidelity and high-realism im-
ages with more efficiency than diffusion-based
methods. Our codes are released at https:
//github.com/quyp2000/VARSR.

1. Introduction
Image Super-Resolution (ISR) aims to generate realistic
high-resolution (HR) images from their degraded low-
resolution (LR) counterparts. Traditional ISR methods fo-
cus on restoring LR images by assuming simple and known
degradations (Dong et al., 2016; Zhang et al., 2018b), which
limits their practicality in real-world scenarios with complex
distortions (Gu et al., 2019a; Zhang et al., 2023b). Recent
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methods leverage generative model priors to tackle ISR,
with approaches based on GAN models (Zhang et al., 2021;
Wang et al., 2021) and diffusion models (Ho et al., 2020).
While these methods have achieved significant advance-
ments, ISR, as an ill-posed problem, struggles to balance
the realism and fidelity of the restoration results. GAN-
based methods achieve higher fidelity metrics, but limita-
tions in generation capability and the goal of over-fidelity
optimization make it challenging to reproduce vivid and re-
alistic textures (Wu et al., 2024a). Diffusion methods, based
on their strong generative priors, can generate extremely
rich image details. However, the random noise sampling
approach and the gap between generative priors and LR
distribution pose challenges for pixel-level fidelity (Yu et al.,
2024). Building upon previous works, we aim to explore
further existing frameworks to enhance fidelity and realism.

Introducing the generative capability of large models to
enhance ISR is a prevalent trend. With the rich semantic
priors of T2I models pretrained on massive datasets, many
works (Yang et al., 2025; Wu et al., 2024b) have applied the
powerful generative models to ISR tasks and achieved signif-
icant results. However, for ISR tasks demanding pixel-level
fidelity, the diffusion model presents certain limitations, in-
cluding the high computational complexity of iterative infer-
ence and potential issues with semantic hallucinations (Kim
et al., 2025). With the success of autoregressive (AR) mod-
eling in Large Language Models (LLMs) (Touvron et al.,
2023; Achiam et al., 2023), visual autoregressive modeling
(VAR) has gained great attention, exemplified by VQGAN
(Esser et al., 2021) and DALL-E (Reddy et al., 2021), which
apply discrete token prediction for image generation. VAR
(Tian et al., 2024) takes a step further by quantizing images
into scale-wise token maps and generating images through
next-scale prediction, leading to excellent results across mul-
tiple generation tasks (Tang et al.; Zhang et al., 2024; Yao
et al., 2024). This novel approach provides new insights
into ISR, showcasing potential advantages over diffusion
methods: (1) The coarse-to-fine next-scale prediction con-
forms to Markov unidirectional modeling, providing better
structural preservation and naturally adapting to ISR tasks;
(2) The reduced number of inference steps and lower com-
plexity in preceding scales result in higher efficiency.

However, unlike other controllable generation tasks, ISR re-
quires generation with pixel-level fidelity alongside seman-
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tics reservation, presenting challenges in integrating VAR
into ISR tasks: (1) How to efficiently and effectively incor-
porate LR condition information to generate high-fidelity
images? (2) AR-based approaches map images into 1D
token sequences for processing. To achieve enhanced spa-
tial structure preservation in ISR, how to better represent
the positional relationships between tokens? (3) AR-based
approaches quantize continuous latent to discrete tokens for
training with cross-entropy loss. How to avoid the loss of in-
formation caused by the quantization process to improve the
pixel-level fidelity of ISR? (4) Optimization objectives for fi-
delity may impact the generation of rich image details. How
to perceive low-quality distortions and guide the generation
of more realistic images within the AR framework?

In this paper, we propose a novel Visual AutoRegressive
modeling for image Super-Resolution (VARSR) framework,
with next-scale prediction. To enhance the integration of
semantic information from LR images, we propose using
Prefix Tokens as a proceeding scale to incorporate the LR
condition as global guidance. To better capture the spa-
tial structure between tokens, we utilize the Scale-aligned
Rotary Positional Encodings (SA-RoPE) to calibrate the
spatial positions of LR images and token maps. To predict
the residual loss of the discrete quantizer, the Diffusion Re-
finer is introduced to model continuous distributions and
achieve finer pixel-level restoration. To generate more real-
istic images, we define negative samples to learn low-quality
distortions and propose Image-based Classifier-free Guid-
ance (CFG) to guide the distribution for generating richer
textures. Furthermore, to leverage powerful generative pri-
ors, we collect large-scale data and plan a comprehensive
training process. Our contributions are as follows:

1. We first introduce VAR into the ISR field and pro-
pose VARSR, which is specifically designed to address
LR conditions, spatial structure representation, quan-
tization loss prediction, image-based CFG, and other
issues to apply to ISR tasks.

2. We collect a large-scale, high-quality image dataset
to establish a robust base model and design a training
pipeline for fine-tuning downstream ISR tasks.

3. Through quantitative and qualitative analysis, VARSR
demonstrates a strong capability in generating high-
fidelity and high-realism images, achieving the best
performance on multiple image quality metrics and
10× efficiency improvement of diffusion methods.

2. Related work
Generative Priors for ISR. Existing ISR methods typi-
cally focus on blind recovery without assuming specific
degradations (Huang et al., 2020; Bell-Kligler et al., 2019).

Generative priors are essential for addressing severe degra-
dation in ISR tasks, capturing image structure and real-world
distribution (Ho et al., 2020; Blattmann et al., 2022; Mou
et al., 2024). While GAN-based methods show impressive
results (Chen et al., 2022; Zhang et al., 2021; Wang et al.,
2021), training stability and generative priors limit their
ability to produce realistic details. Diffusion models are
popular in ISR for strong generative capabilities (Saharia
et al., 2022; Kawar et al., 2022; Qu et al., 2025), but may
generate unrealistic details or hallucinations (Aithal et al.,
2024; Narasimhaswamy et al., 2024). This may stem from
their simplification of the Markov process, restricting the
access to antecedent denoised trajectories (Gu et al., 2024).

Visual Autoregressive Models. Building upon the tremen-
dous success of LLMs (Touvron et al., 2023; Achiam et al.,
2023), visual autoregressive models utilize discrete quantiz-
ers such as VQVAE (Van Den Oord et al., 2017) to transform
image patches into index-wise tokens, generating images
based on next-token prediction (Yu et al., 2022; Wang et al.,
2024b; Lee et al., 2022; Chang et al., 2022). However, the
prediction of flattened tokens may lead to the loss of spatial
structure. VAR (Tian et al., 2024) shifts from the next-
token prediction to the next-scale prediction, significantly
enhancing image generation quality and offering excellent
scalability. VAR-based methods such as STAR (Ma et al.,
2024), ControlAR (Li et al., 2024c) have expanded to other
conditional generation tasks (e.g., class-to-image (C2I), text-
to-image (T2I)), yielding results comparable to diffusion
models and validating the potential of VAR (Zhang et al.,
2024; Yao et al., 2024; Roheda, 2024; Chen et al., 2024b).

3. Methods
3.1. Preliminary: Visual Autoregressive Modeling

Next-token Prediction is relied on by traditional AR mod-
els to generate patches at different positions in an image.
Images are mapped into latent by a visual autoencoder and
then tokenized into a series of token maps (x1, x2, ..., xT )
using a discrete quantizer. AR model predicts the token
xT based on its preceding sequence (x1, x2, ..., xT−1) and
condition c. The conditional probability can be expressed:

p (x1, x2, ..., xT ) =

T∏
t=1

p (xt | x1, x2, ..., xt−1, c) , (1)

Previous work (Tian et al., 2024) has pointed out that “next-
token prediction” is insufficient for highly structured images,
as it will disrupt the spatial structure and defy the unidirec-
tional dependence assumption of autoregression.

Next-scale Prediction is reformulated based on these analy-
ses (Tian et al., 2024), where the basic unit of autoregression
becomes the token map of the entire scale. The visual en-
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coder (e.g., VQVAE) first embeds the image I into a feature
map f ∈ Rh×w×d and then quantizes the feature map f
into K multi-scale token maps (r1, r2, ..., rK).

fk = f −
k−1∑
m=1

upsample(lookup(V, rm)),

r
(i,j)
k = argmin

v∈[V ]

∥∥∥lookup(V, v)− f
(i,j)
k

∥∥∥
2
,

(2)

where V is the VQVAE codebook, rk ∈ [V ]hk×wk is the
token map at scale k, and lookup(V, v) retrieves vectors
from codebook V based on index v. VAR predicts the next
scale rK based on previous outcomes and the condition:

p (r1, r2, ..., rK) =

K∏
k=1

p (rk | r1, r2, ..., rk−1, c) , (3)

VAR with next-scale prediction advances AR models greatly.
For ISR tasks demanding fidelity and realism, VAR’s pro-
gressive generation with coarse-to-fine coherence aligns
with human perception and the Markov unidirectional as-
sumption, ensuring high structural fidelity and aesthetic
quality. Hence, applying VAR to ISR has broad prospects.

3.2. VARSR framework

We aim to enhance ISR via the VAR models. Unlike other
controllable generation tasks (e.g., C2I, T2I), ISR necessi-
tates maintaining semantic integrity and achieving precise
pixel-level restoration. Therefore, when using the VAR,
there still exist four critical issues requiring resolution:

• In what manner can the conditions derived from LR
images be efficiently and effectively furnished to VAR
to achieve high-fidelity semantic restoration?

• Tokens are concatenated into a 1D sequence in VAR,
leading to the loss of spatial structures, which affects
the fine-grained local restoration. How can the posi-
tional relationships of tokens be represented?

• VAR processes the image into discrete tokens through
quantization, resulting in the significant loss of high-
frequency details and impacting the pixel-level restora-
tion. How to reduce the impact of quantization loss?

• The fidelity-oriented optimization objective may affect
the generation of image details. How can we perceive
distortions and quality factors in images to generate
more realistic and higher-quality images?

To address these problems, we propose a framework
called Visual AutoRegressive modeling for image Super-
Resolution (VARSR). As depicted in Fig. 1, it consists of

three main stages: conditional control generation, visual
autoregression, and diffusion refinement. In the first stage,
to address the 1st problem, we use an image encoder to
map LR images to conditional tokens, which guide the gen-
eration of VAR by serving as Prefix Tokens (Sec. 3.2.1).
In the second stage, a pretrained VAR model is employed.
To address the 2nd problem, we implement Scale-align
rotary positional encoding (SA-RoPE) in the transformer to
calibrate the spatial positions of tokens at different scales
(Sec. 3.2.2). In the third stage, to address the 3rd prob-
lem, a lightweight Diffusion Refiner estimates quantization
residuals from generated discrete tokens to enhance image
details (Sec. 3.2.3). To address the 4th problem, we further
propose Image-based classifier-free guidance (CFG) as an
additional control to learn distortions and generate better-
quality images without additional training (Sec. 3.2.4).

3.2.1. CONDITIONAL CONTROL

The key challenge in ISR is how to effectively integrate LR
information for controllable generation. Diffusion methods
often use ControlNet (Zhang et al., 2023a) due to its superior
performance over simpler approaches like concatenation or
addition with noise. However, for AR models, ControlNet
increases the computational burden and may lead to conflicts
between LR priors and prefix-scale information.

Considering the next-scale prediction form of VAR, we
adopt a more efficient way to introduce LR conditional con-
trol called Prefix Tokens. LR image Ilr is encoded through
an image encoder E to be mapped into conditional tokens
rc = E(Ilr). rc is used as the initial scale and placed at
the start of all tokens in the form (rc, r1, r2, ..., rK), where
rc is of size h× w like the final scale rK . VAR iteratively
predicts the next scale by considering conditional tokens
and the previous scales to effectively integrate LR priors.

In addition, HR images are categorized into two classes
based on their quality during training. High- and low-quality
categories are respectively associated with a positive embed-
ding or a negative embedding for quality-centered control in
VAR through a modulate layer. The objective is to impose
Image-based CFG, as will be elaborated on in Sec. 3.2.4.

3.2.2. AUTOREGRESSIVE TRANSFORMER

As shown in Fig. 2, our VARSR utilizes a visual transformer
for predicting multi-scale tokens. In training, the tokens rk
of the previous K − 1 scales are interpolated to next scale:

r̂k = interpolate(lookup(V, rk)) ∈ Rhk+1×wk+1×d, (4)

Conditional tokens and interpolated tokens are concatenated
as (rc, r̂1, r̂2, ..., r̂K−1) to predict the corresponding output
(r̂1, r̂2, ..., r̂K) for each scale. A block-wise attention mask
confines each rk to focus solely on its preceding tokens
r≤ k, with rc accessible to all tokens to offer LR priors.
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Absolute positional encodings (APE) in transformers can-
not capture 2D structure or represent the inter-scale rela-
tionships, which are crucial to incorporate spatial structure
from LR images. Inspired by previous works using RoPE
(Su et al., 2024) to represent the positions of token maps
(Ma et al., 2024; Tang et al.), we propose an advancement
with 2D RoPE to align spatial structures of LR images and
multi-scale token maps, termed Scale-aligned RoPE. For the
embedding x

(i,j)
k ∈ RC of token r

(i,j)
k in scale k at position

(i, j), we split the channels into two for representing 2D
positions and normalize encodings for alignment:

RC
Θ(x

(i,j)
k ) = [

R
C
2

Θ,( iH
hk

)
0C

2

0C
2

R
C
2

Θ,( jW
wk

)

], (5)

Where RC
Θ,0C ∈ RC×C are the standard rotation matrix

for RoPE and the zero matrices, respectively. Our SA-RoPE
will be applied to the multiplication in self-attention to in-
corporate positional information for query and key of the
two tokens xm, xn:

qT
mkn =

(
RC

Θ(xm)W qxm

)T (
RC

Θ(xn)W kxn

)
(6)

Where m,n represent their positional information, includ-
ing the scale and position. It is worth noting that we also
perform scale alignment on the LR condition rc to incor-
porate the spatial structure of LR for next-scale restoration,
enhancing the structural fidelity.

Lastly, the positive or negative embedding of the quality-
centered control is introduced via the modulate layer, guid-
ing the autoregression through the generation of offsets.

3.2.3. DIFFUSION REFINER

In Fig. 3, the image is quantized into discrete tokens, repre-
sented as indices of the codebook V . However, this discrete
quantization introduces quantization loss, leading to the loss
of high-frequency textures and restricting the upper bound
of restoration, as VAR can only predict the quantized dis-
crete vectors of the image. Such a loss is problematic for
ISR, which demands precise pixel-level recovery. MAR (Li
et al., 2024a) and HART (Tang et al.) utilize a diffusion loss
to map predicted tokens to a continuous probability distribu-
tion, mitigating quantization loss. VARSR adopts the above
approach of using diffusion as a refiner to convert predic-
tions of categorical vector distribution into a continuous-
valued space through a diffusion loss, thereby enhancing the
upper bound of VAR’s capacity. The quantization residual
is defined as continuous tokens z:

z = f −
K∑

k=1

upsample(lookup(V, rk)), (7)
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We introduce a simple Diffusion Refiner, composed of a
lightweight MLP (Li et al., 2024a). The Diffusion Refiner
solely serves to map the probability distribution of quantized
residuals, and does not have the capabilities of an additional
ISR model. It leverages the final scale hidden states xK

as conditional control to generate a continuous distribution
from noise zt.

L(xK , z) = Eε∼N (0,1),t

[
∥ε− εθ (zt | t, xK)∥2

]
, (8)

where ε is the sampled noise, t is the timestamp and εθ(·)
is the mapping function of the Diffusion Refiner. During
inference, the sampled continuous tokens ẑ are combined
with the predicted token maps for the final output.

3.2.4. IMAGE-BASED CLASSIFIER-FREE GUIDANCE

VAR, GANs, and Diffusion models all target fidelity as the
optimization objective in ISR tasks, which may result in
generated images being overly smooth and lacking in detail.
It tends to retain distortions such as blur from LR images,
leading to lower human-perceived quality.

Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) has
been widely used in T2I diffusion models, leveraging nega-
tive prompts to generate more realistic images by directed
guiding of probabilistic distributions. Instead of simply set-
ting the condition to null (Li et al., 2024d; Ho & Salimans,
2022) or using textual prompts, we aim to better perceive
distortions and low-quality factors in images, hence propos-
ing Image-based CFG to enhance generation quality. By
learning low-quality image distributions during training, it
allows us to guide the probability distribution during sam-
pling towards generating higher-quality images, thereby
expanding the upper bound.

In training, HR images are divided into high- and low-
quality classes, with positive and negative embeddings
cp, cn for control. In inference, to generate a higher-quality
image I with condition rc and cp, the distribution is:

p(I|rc, cp) =
p(cp|rc, I)p(I|rc)

p(cp|rc)
,

p(I|rc) = p(cp|rc)p(I|rc, cp) + p(cn|rc)p(I|rc, cn),
(9)

Eq. 9 can be simplified to:

p(I|rc, cp) =
p(cn|rc)
p(cp|rc)

p(cp|rc, I)p(I|rc, cn)
1− p(cp|rc, I)

,

⇒ ∇I log p(I|rc, cp) = ∇I log
p(cp|rc, I)

1− p(cp|rc, I)
+∇I log p(I|rc, cn),

(10)

Furthermore, by applying the Bayesian formula, we can
obtain:

p(cp|rc, I)
1− p(cp|rc, I)

=
p(cp|rc)
p(cn|rc)

p(I|rc, cp)
p(I|rc, cn)

, (11)

Substituting Eq. 11 into Eq. 10 yields Eq. 12. In CFG, a
guiding scale λs balances diversity and realism.

∇I log p(I|rc, cp) = ∇I log p(I|rc, cn)
+ λs(∇I log p(I|rc, cp)−∇I log p(I|rc, cn)),

(12)

During inference, Image-based CFG are represented as:

Ĩ = F(rc, cp) + λs(F(rc, cp)−F(rc, cn)). (13)

where F(·) is the mapping function of our VARSR.

3.3. Scaling up Database

Large-scale Data Collection. ISR methods require ample
data to acquire generative priors and semantic understanding
capabilities (Yu et al., 2024). Diffusion methods use Stable
Diffusion (SD) (Rombach et al., 2022) trained on billions of
text-image pairs for plentiful image priors. The open-source
VAR base model falls short of our needs, as it could only
generate 256×256 images and is limited in generated image
quality, necessitating scaling high-quality training data for
robust priors. Classical datasets often struggle to meet our
high standards for image quality (e.g., ImageNet (Deng et al.,
2009)) or quantity (e.g., DIV2K (Agustsson & Timofte,
2017), DIV8K (Gu et al., 2019b)). Therefore, we collect
a new large-scale dataset with 4 million high-quality and
high-resolution images across over 3k categories, ensuring
rich details and clear semantics.

Negative Samples. In Sec. 3.2.4, our VARSR utilizes neg-
ative embedding as inverse control to generate low-quality
images. Therefore, we provide low-quality images as nega-
tive samples corresponding to negative embedding to learn
low-quality distortions. We sample 50k low-quality images
from various manually annotated image quality assessment
(IQA) datasets (e.g., KonIQ10K (Hosu et al., 2020), CLIVE
(Ghadiyaram & Bovik, 2016)) and image aesthetics assess-
ment (IAA) dataset AVA (Murray et al., 2012) as negative
samples added to our database.

Image Preprocess. Psychophysics research suggests that
the richness of details in visual content impacts human per-
ception of quality and aesthetics (He et al., 2014). Therefore,
instead of the commonly-used random cropping, we resize
images to 1.25 times the size for input and center-crop them
during training. The aim is to enhance the comprehen-
sive coverage of the foreground, which typically contains
richer semantics and textures than the background, enabling
VARSR to capture a broader range of visual attributes.

3.4. Training Procedure

Our entire training process is the same as the diffusion-
based models and can be divided into a three-step process
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Figure 3. Image tokenization process of VQVAE. The quantizer
converts the image latent to multi-scale discrete tokens while rep-
resenting the quantization loss as continuous tokens.

for application in ISR tasks: (1) training the VAE, (2) pre-
training on C2I/T2I tasks, and (3) finetuning on ISR. We
train our model in all three stages to acquire a stronger
generative prior for the ISR task.

VQVAE. In Fig. 3, the visualizations of the original VAR
quantizer (Tian et al., 2024) reveal that image semantics
are concentrated in the final few scales. This limits ISR,
as earlier scale generations may lack information for later
scales. Therefore, after the initial full training of the VQ-
VAE, we added an additional training stage for the quantizer.
Specifically, we follow the scale random dropout strategy in
previous works (Li et al., 2024b; Kumar et al., 2024), where
multi-scale quantized results are randomly discarded with
a probability pd. We freeze other parts and only train the
quantizer. In Fig. 3, applying scale dropout preserves more
semantic information in the earlier scales.

C2I Pretraining. We first train a powerful base VAR
model on the C2I task to establish robust generation pri-
ors. Our training utilizes our large-scale dataset of over 3k
categories, incorporating class information via start tokens
and modulate layers in the transformer (Tian et al., 2024).

ISR Finetuning. We fine-tune the C2I pre-trained base
model for the downstream ISR task to create the final
VARSR. Both C2I Pretraining and ISR finetuning stages
utilize the same loss with a coefficient λ to balance the
cross-entropy loss of tokens and diffusion loss of the refiner.

4. Experiments
4.1. Experimental Setups

Datasets. We train VARSR on our large-scale dataset
with negative samples using Real-ESRGAN’s degradation
pipeline (Wang et al., 2021) to synthesize LR-HR image
pairs. Both synthetic and real-world datasets are utilized
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SSIM: 0. 9154
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MANIQA:0.3628
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LPIPS: 0.2994
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Figure 4. Limitations of current full-reference metrics (e.g., PSNR,
SSIM, LPIPS). VARSR has generated images of higher perceptual
quality for humans, yet it lags behind in certain metrics.

for a comprehensive evaluation. We create the synthetic
validation set DIV2K-VAL by randomly cropping 3k patches
from the DIV2K (Agustsson & Timofte, 2017) validation
set, and for real-world evaluation, DrealSR (Cai et al., 2019)
and RealSR (Wei et al., 2020) are center-cropped. Following
(Wang et al., 2024a), all HR images have a resolution of
512× 512, and LR images are 128× 128.

Implemental Details. We train our VARSR following the
procedure in Sec. 3.4, using a GPT-2 style (Radford et al.,
2019) transformer with 24 blocks as the base model and
a Diffusion Refiner with 6 blocks. We accelerate training
by using pretrained VAR (Tian et al., 2024). We utilize
an AdamW (Loshchilov & Hutter, 2017) optimizer with
batchsize=128, weight decay=5e-2, and learning rate=5e-5.
VQVAE, C2I pretraining, and ISR finetuning run for 10k,
40k, and 20k iterations, respectively. The loss balancing
coefficient λ is 2.0, and the dropout ratio pd is 0.1. The guid-
ance scale λs linearly increases to 6.0 as the scale increases.
Experiments are performed on 32 NVIDIA V100 GPUs.

Metrics. Reference-based metrics, including PSNR, SSIM
(Wang et al., 2004) (Y channel), (Zhang et al., 2018a), and
DISTS (Ding et al., 2022), are used for fidelity evaluation.
FID (Heusel et al., 2017) measures the distribution distance
between generated and reference images MANIQA (Yang
et al., 2022), MUSIQ (Ke et al., 2021), and CLIPIQA (Wang
et al., 2023) are non-reference IQA metrics.

4.2. Comparison with SOTA

To verify the effectiveness, we compare our VARSR with
other well-known SOTA GAN-based and Diffusion-based
ISR methods1, including BSRGAN (Zhang et al., 2021),
Real-ESRGAN (Wang et al., 2021), SwinIR-GAN (Liang
et al., 2021), DASR (Liang et al., 2022), LDM (Blattmann
et al., 2022), StableSR (Wang et al., 2024a), DiffBIR (Lin
et al., 2023), SinSR (Wang et al., 2024c), PASD (Yang et al.,
2025) and SeeSR (Wu et al., 2024b).

1All methods are tested based on their official code and models.
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Table 1. Comparison with SOTA methods on synthetic and real-world benchmarks. Red and blue colors are the best and second-best.

Dataset Metrics GAN-based Diffusion-based AR-based
BSRGAN Real-ESR SwinIR DASR LDM StableSR DiffBIR SinSR PASD SeeSR VARSR

DIV2K-Val

PSNR↑ 24.42 24.30 23.77 24.46 21.66 23.26 23.49 24.22 23.59 23.56 23.91
SSIM↑ 0.6164 0.6324 0.6186 0.6253 0.4752 0.5670 0.5568 0.5922 0.5899 0.5981 0.5980
LPIPS↓ 0.3511 0.3267 0.3910 0.3696 0.4887 0.3228 0.3638 0.3429 0.3611 0.3283 0.3260
DISTS↓ 0.2369 0.2245 0.2291 0.2533 0.2693 0.2116 0.2177 0.2157 0.2134 0.2008 0.2218

FID↓ 50.99 44.34 44.45 57.37 55.04 28.32 34.55 42.17 39.74 28.89 35.51
MANIQA↑ 0.3547 0.3756 0.3411 0.3104 0.3589 0.4173 0.4598 0.4101 0.4440 0.5046 0.5340
CLIPIQA↑ 0.5253 0.5205 0.5213 0.4960 0.5570 0.6752 0.6731 0.6411 0.6573 0.6959 0.7347
MUSIQ↑ 60.18 59.76 57.21 53.96 57.46 65.19 65.57 61.46 66.58 68.35 71.27

RealSR

PSNR↑ 26.38 25.68 25.88 25.47 25.66 24.69 24.94 24.86 25.21 25.31 24.61
SSIM↑ 0.7651 0.7614 0.7671 0.7575 0.6934 0.7090 0.6664 0.7191 0.7140 0.7284 0.7169
LPIPS↓ 0.2656 0.2710 0.2614 0.3240 0.3367 0.3003 0.3485 0.3472 0.2986 0.2993 0.3504
DISTS↓ 0.2124 0.2060 0.2061 0.2267 0.2324 0.2134 0.2257 0.2500 0.2125 0.2224 0.2470

FID↓ 141.25 135.14 132.80 133.33 133.34 131.72 127.59 142.31 139.42 126.21 137.55
MANIQA↑ 0.3763 0.3736 0.3561 0.2470 0.3375 0.4167 0.4378 0.3985 0.4418 0.5370 0.5570
CLIPIQA↑ 0.5114 0.4487 0.4433 0.3198 0.6053 0.6200 0.6396 0.6162 0.6009 0.6638 0.7006
MUSIQ↑ 63.28 60.37 59.28 41.21 56.32 65.25 64.32 60.57 66.61 69.56 71.26

DRealSR

PSNR↑ 28.70 28.61 28.20 29.75 27.78 27.87 26.57 28.26 27.45 28.13 28.16
SSIM↑ 0.8028 0.8052 0.7983 0.8262 0.7152 0.7427 0.6516 0.7443 0.7539 0.7711 0.7652
LPIPS↓ 0.2858 0.2819 0.2830 0.3099 0.3745 0.3333 0.4537 0.3743 0.3331 0.3142 0.3541
DISTS↓ 0.2144 0.2089 0.2103 0.2275 0.2417 0.2297 0.2724 0.2495 0.2322 0.2230 0.2526

FID↓ 155.62 147.66 146.38 155.36 164.87 148.18 160.67 173.42 173.40 147.00 155.87
MANIQA↑ 0.3441 0.3435 0.3311 0.2809 0.3342 0.3897 0.4602 0.3843 0.4551 0.5077 0.5362
CLIPIQA↑ 0.5061 0.4525 0.4522 0.3813 0.5984 0.6321 0.6445 0.6302 0.6365 0.6893 0.7240
MUSIQ↑ 57.16 54.27 53.01 42.41 51.37 58.72 61.06 55.28 63.69 64.75 68.15

Quantitative Comparisons. The quantitative comparisons
are shown in Tab. 1. First, VARSR outperforms other
SOTA methods by a wide margin in three no-reference
IQA metrics: MAINIQA, CLIPIQA, and MUSIQ, reflecting
the capability to produce high-quality and realistic images.
Second, in reference-based metrics (e.g., PSNR, SSIM),
our VARSR approximates that of the best diffusion-based
methods, yet still lags behind GAN methods. This is due to
the trade-off between realism and fidelity, as VARSR and
diffusion methods generate more textures and details, which
may reduce fidelity metrics, especially for lower-quality HR
images.

In Fig. 4, VARSR’s restoration exhibits higher quality in hu-
man perception, yet lags behind in certain reference-based
metrics, as overly smoothed low-quality images tend to
score better. This phenomenon highlights the limitations of
current reference-based metrics, which have been confirmed
in many studies (Wang et al., 2024a; Wu et al., 2024a). The-
oretical derivations have verified the inherent contradiction
between fidelity and quality (Blau & Michaeli, 2018).

Qualitative Comparisons. In Fig. 5, we visualize some of
the ISR results from the test set. First, our VARSR consis-
tently generates images with rich details and clear semantic
information, showcasing the strong generative prior capa-
bility of autoregressive methods. Second, the image quality
generated by GAN-based methods lags behind diffusion-
based methods and our AR-based VARSR, highlighting
the significance of generative priors. Third, VARSR also
outperforms diffusion-based methods in detail generation

Table 2. Complexity comparison.

Methods Params Steps Inference Time

StableSR 1409.1M 200 18.70s
PASD 1900.4M 20 6.07s

DiffBIR 1716.7M 50 5.85s
SeeSR 2283.7M 50 7.24s

VARSR(Ours) 1101.9M 10 0.59s

capability, aligning with the IQA metrics in Tab. 1. For ex-
ample, in the 2nd and 4th row, VARSR distinguishes itself as
the sole method that can correctly understand the semantics
and generate houses and leaves with clear textures. In the
1st, 3rd, 5th, and 6th rows, VARSR demonstrates superior
structural fidelity over other methods, generating images
with well-defined structures and clear semantics. Addition-
ally, VARSR excels in creating intricate animal fur, detailed
leaves, and vivid textures. The results highlight VARSR’s
robust ability to produce realistic and semantic-preserved
images, even under severe degradation of LR images.

Complexity Analysis. Diffusion models have longer infer-
ence times due to multi-step noise sampling, while VARSR
generates token maps at different scales with low iteration
counts, ensuring minimal inference time. Additionally, with
fewer token counts at early scales, the complexity of earlier
steps is very low, unlike diffusion methods with consistent
complexity per iteration. In Tab. 2, compared to diffusion
models, VARSR only requires 0.59s to generate an image,
which is 10.1% of the second-ranked DiffBIR. In addition,
other optimization methods can also be applied to VARSR
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LR Real-ESRGANHR BSRGAN StableSR PASD SeeSR VARSR(Ours)

Figure 5. Qualitative comparisons with different SOTA methods. Zoom in for a better view.

LR ControlNetDirectly Add ControlNet+CA Prefix Tokens(Ours)

Figure 6. Effectivess of the LR Condition Mode.

to further improve efficiency, such as using knowledge dis-
tillation to reduce the number of scales for inference.

4.3. Ablation Study

LR Condition. We use the form of Prefix Tokens to provide
conditional control from LR images, comparing this mode
with the other three LR condition modes: (1) Adding LR
features directly in the transformer; (2) ControlNet (Zhang
et al., 2023a) with a 1/2 depth; (2) ControlNet combined

with cross-attention (CA) (Yang et al., 2025). In Tab. 3,
Prefix Tokens mode outperforms in all metrics. In Fig. 6,
our method is the only one capable of generating the correct
traffic light colors and clear text. These results showcase
the effectiveness of the proposed Prefix Tokens pattern in ex-
tracting sufficient LR information for conditional guidance.

Scale-aligned RoPE. We validate the effectiveness of SA-
RoPE by contrasting it with two scenarios: (1) Utilizing
the original APE; (2) Applying SA-RoPE solely on discrete
tokens. In Tab. 4, following the gradual application of
SA-RoPE, fidelity metrics have shown a significant improve-
ment. In Fig. 7, it is evident that applying SA-RoPE can
better preserve the spatial structure, generating clear text
and architectural details faithful to the original image.

Diffusion Refiner. We use the Diffusion Refiner to gener-
ate continuous tokens as the prediction of quantization resid-
uals, supplementing the discrete tokens of the autoregressive
transformer. In Tab. 5, after adding the Diffusion Refiner,
both fidelity and image quality have significantly improved.

8



Visual Autoregressive Modeling for Image Super-Resolution

Table 3. Ablation on the LR Condition Mode.

Condition
Mode

DrealSR RealSR
SSIM↑ LPIPS↓ DISTS↓ MANIQA↑ MUSIQ↑ SSIM↑ LPIPS↓ DISTS↓ MANIQA↑ MUSIQ↑

Directly Add 0.6902 0.4011 0.3010 0.5188 66.46 0.6712 0.3742 0.2553 0.5221 69.90
ControlNet 0.7188 0.3824 0.2752 0.5260 66.78 0.7034 0.3683 0.2657 0.5298 69.70

ControlNet+CA 0.7314 0.3784 0.2630 0.5224 65.97 0.7084 0.3577 0.2552 0.5270 69.83
Prefix Tokens 0.7652 0.3541 0.2526 0.5362 68.15 0.7169 0.3504 0.2470 0.5570 71.26

Table 4. Ablation on the Scale-aligned RoPE.

Exp DrealSR RealSR

Condition % % ✓ % % ✓
Discrete % ✓ ✓ % % ✓

SSIM↑ 0.7424 0.7603 0.7652 0.6992 0.7039 0.7169
LPIPS↓ 0.3691 0.3645 0.3541 0.3654 0.3672 0.3504
DISTS↓ 0.2617 0.2642 0.2526 0.2552 0.2576 0.2470

MANIQA↑ 0.5238 0.5490 0.5362 0.5307 0.5555 0.5570
MUSIQ↑ 68.14 68.41 68.15 71.08 71.32 71.26

Table 5. Ablation on the Diffusion Refiner.

Metrics DrealSR RealSR
w/o Refiner w/ Refiner w/o Refiner w/ Refiner

SSIM↑ 0.7583 0.7652 0.7118 0.7169
LPIPS↓ 0.3532 0.3541 0.3515 0.3504
DISTS↓ 0.2539 0.2526 0.2503 0.2470

MANIQA↑ 0.5297 0.5362 0.5399 0.5570
MUSIQ↑ 67.99 68.15 70.74 71.26

Table 6. Ablation on the Image-based CFG.

Metrics DrealSR RealSR
w/o CFG w/ CFG w/o CFG w/ CFG

SSIM↑ 0.8004 0.7652 0.7436 0.7169
LPIPS↓ 0.2961 0.3541 0.2977 0.3504
DISTS↓ 0.2161 0.2526 0.2103 0.2470

MANIQA↑ 0.4052 0.5362 0.4326 0.5570
MUSIQ↑ 59.70 67.63 66.32 71.26

In Fig. 8, we visualize discrete tokens and continuous to-
kens, showing that continuous tokens can effectively capture
high-frequency details lost during quantization, resulting in
images with richer semantic textures. A lightweight network
suffices for the discrete-to-continuous mapping, and a larger
refiner does not yield significant gains (Li et al., 2024a).

Image-based CFG. In Sec. 3.2.4, we introduce the Image-
based CFG to generate more realistic and higher-quality
images. Tab. 6 shows a notable enhancement in percep-
tual quality metrics, after incorporating the CFG. In Fig.
9, we show visualizations where images become clearer
as the guidance scale λs increases. CFG results in signifi-
cantly richer textures in the generated images, substantially
improving perceptual quality to meet human preferences
while maintaining correct semantics. However, excessive
λs values may introduce artifacts not present in the original
image. Therefore, our Image-based CFG achieves a balance
between fidelity and realism by controlling λs. In practice,

LR HR RoPE with
✗ Conditional tokens 
✓ Discrete tokens

RoPE with
✗ Conditional tokens 
✗ Discrete tokens

RoPE with
✓ Conditional tokens 
✓ Discrete tokens

Figure 7. Effectivess of the Scale-aligned RoPE.

LR Discrete TokensHR ✓ Discrete Tokens
✓Continuous Tokens

Continuous Tokens

Figure 8. Visualization of Continuous Tokens and Discrete Tokens.

LR
Guidance Scale 𝝀𝝀𝒔𝒔 increases

Fidelity Realistic

Figure 9. Effect of the Image-based CFG with guidance scale λs.

λs = 6.0 is optimal, and it should increase linearly with
scale for finer texture details in larger scales.

5. Conclusion
We explored VAR in ISR tasks and proposed the VARSR
framework. To ensure pixel-level fidelity and realism, we
made improvements in LR conditioning, structure repre-
sentation, quantization prediction, and CFG guidance. We
collected a large-scale dataset and designed a training pro-
cess. Extensive experiments validate the performance of
VARSR in generating high-fidelity and high-quality images.
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Impact Statement
This paper introduces the visual autoregressive into the im-
age super-resolution field. Therefore, any potential societal
consequences or impacts related to ISR tasks apply here, as
our work introduces new ideas that enhance ISR tasks with
high efficiency and practicality.
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A. Implementation Details
A.1. Details of VARSR Framework

Table 7. Reconstruction results of the VQVAE on RealSR dataset.

Methods Compression ratio PSNR ↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ MANIQA ↑ CLIPIQA↑
VQVAE (w/ quantization) 16 34.33 0.9380 0.0428 0.0484 17.19 0.3432 0.4615

VQVAE (w/o quantization) 16 29.86 0.9006 0.0752 0.0688 34.27 0.3172 0.4327

VQVAE Tokenizer. We employ VQVAE (Van Den Oord et al., 2017) as the discrete tokenizer for VARSR, following
the basic settings of VAR (Tian et al., 2024). The downsampling factor of VQVAE is 16×, and all scales share the same
codebook with size |V | = 4096. Our VQVAE consists of two training stages: the initial full training and the application of
the scale dropout strategy for the quantizer. Due to the Diffusion Refiner in our VARSR, which can predict quantization loss
to some extent, we follow the alternating training strategy of HART (Tang et al.) for the initial full training. This involves
incorporating continuous tokens for reconstruction with a probability of 50% (i.e., bypassing the quantization process),
ensuring that VQVAE can reconstruct images in both scenarios. The reconstruction results in both scenarios are illustrated
in Tab. 7.

Image Encoder. We use a pyramid-style image encoder to extract information from degraded LR images and downsample
it by a factor of 16 to obtain 32× 32 feature space vectors. Therefore, the image encoder consists of 4 layers, each composed
of two convolutional layers and an activation SiLU layer, including the last convolutional layer with a stride of 2× 2 to
reduce the size of the feature maps by half. All parameters of our image encoder are trainable.

Autoregressive Transformer. We utilize a Transformer based on the standard GPT-2 (Radford et al., 2019) architecture
with a depth of 24 layers and a width of 1536. The modulate layer adopts the standard AdaLN (Peebles & Xie, 2023)
form, which is added separately in each block to generate the offsets. The tokens are divided into 10 scales corresponding
to resolutions ranging from 16 × 16 to 512 × 512, with prefix tokens from LR added at the beginning. In the attention
calculation, queries and keys reflect spatial positional information through our Scale-aligned RoPE.

During inference, KV-cache (Shazeer, 2019) is utilized to enhance the speed. Our VARSR supports the generation of
higher-resolution images by concatenating them in a tiled manner, which is completely consistent with the diffusion-based
method. Specifically, we uniformly divide the high-resolution image to be generated into overlapping grids. VARSR
generates SR results for each grid separately and then tiles them together to obtain the complete image restoration result. We
can batch process different grids in parallel to accelerate the inference process, significantly increasing computational speed.

Diffusion Refiner. Our Diffusion Refiner adheres to the specifications of (Li et al., 2024a), naturally supporting applications
in CFG form. The Diffusion Refiner comprises a highly lightweight residual MLP as (He et al., 2016), with each residual
block consisting of a LayerNorm, a linear layer, an activation SiLU layer, and another linear layer, merging with a residual
connection. Our model consists of 6 layers, with a channel dimension of 1024. The hidden states from the autoregressive
transformer serve as conditional controls and are introduced alongside timestamps T through the modulate module. Our
noise schedule follows a cosine shape, with 1000 steps during training, and is resampled with 10 steps during inference, thus
requiring minimal inference time. The parameter count of the lightweight Diffusion Refiner is less than 40M, accounting for
3% of the 1.1B model.

A.2. Details of Large-scale Dataset

Table 8. Comparison of our large-scale dataset with other well-known datasets.

Dataset Scale Resolution MANIQA ↑ CLIPIQA↑ MUSIQ↑ Aesthetic Score↑
DIV2K 800 2k 0.43 0.62 71.15 5.57

Flickr2K 2650 2k 0.41 0.58 70.83 5.22
Large-scale data Over 4M 2k 0.48 0.66 72.31 5.62
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Figure 10. Database Collection. We collect a large-scale, high-quality dataset, and select 50k low-quality images from IQA and IAA
datasets as negative samples, each with different quality-centered controls attached.

We collect billions of images from public datasets (e.g., LAION (Schuhmann et al., 2022), DataComp (Gadre et al., 2023))
and internal datasets. Employing a progressive filtering and semantic balance strategy, we have constructed a dataset
comprising 4 million high-quality, high-resolution images.

Progressive Filtering. Images are progressively filtered using the following sub-metrics, with thresholds set for each:
image metadata (including resolution, aspect ratio, and bits per pixel), IQA scores (comprising MANIQA (Yang et al., 2022),
MUSIQ (Ke et al., 2021), CLIPIQA (Wang et al., 2023), and Aesthetic score (Schuhmann, 2022)), and texture richness
(evaluated by the ratio of the power spectrum of high-frequency components (Yang et al., 2023) and the detection of blurred
and flat regions (Li et al., 2023)). We establish the threshold for each metric at the top 70th percentile of its distribution
within the DIV2K (Agustsson & Timofte, 2017) and Flickr2K (Timofte et al., 2017) datasets, ensuring that the images
exhibit abundant details and high-frequency textures.

Table 9. Domain coverage of our large-scale dataset.

Categories Indoor Outdoor Nature Human Plant Object Animal Text Food Cartoon Others

Rates 10% 9% 13% 28% 8% 9% 6% 4% 8% 2% 3%

Semantic Balance. To achieve diversity and balance of images across various domains, we implement semantic clustering
based on the CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023) models, and quantitatively select a sufficient number
of images according to our predefined semantic categories, while specifically supplementing those categories with fewer
images. As shown in the Tab. 9, we ensure that the dataset covers a wide range of category scenes and a relatively balanced
proportion (Scenes with a broader semantic scope correspond to a higher proportion of images). The scenes include portraits,
people, food, animals, natural landscapes, cartoons, cityscapes, indoor and outdoor scenes, thereby ensuring comprehensive
coverage of visual concepts and richness in scene content.

B. Additional Experimental Results
B.1. Ability of Base Model

Table 10. Comparison of the base generative model on the C2I task.

Methods Dataset MANIQA ↑ CLIPIQA↑ MUSIQ↑
Original VAR ImageNet 0.3250 0.5496 60.92
Original VAR Large-scale data 0.4852 0.7015 72.74

VARSR Large-scale data 0.5634 0.7314 74.32

To enhance the generative capabilities of the base model in the C2I task for downstream task migration, we pre-train the
VAR model on our large-scale, high-quality dataset. In this section, we compare the capabilities of our VARSR base model
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Original VAR on ImageNet VARSR on Large-scale data

Figure 11. Visualization of C2I generation results from closely related categories.

trained on our large-scale dataset with the original VAR model (Tian et al., 2024) trained on ImageNet (Deng et al., 2009).
As we are particularly interested in the model’s ability to generate detailed textures and ensure that it can still produce richly
detailed images for downstream ISR task migration, we use non-reference IQA metrics for evaluation. In addition, it is
unfair to use reference metrics such as FID for testing due to the differences in datasets.

Quantitative results are shown in Tab. 10, and in Fig. 11, we visualize some generated results from closely related categories.
After using our high-quality large-scale dataset, the generated images show significant improvements in both objective
metrics and subjective human observations. Furthermore, by incorporating our improvements (e.g., Scale-aligned RoPE,
Diffusion Refiner) into the original VAR model, i.e., using the VARSR model, the quality further improved. This validates
the effectiveness of our enhancements for the original C2I task. The results above validate the capabilities of our base model,
which can generate images with rich details and clear semantics. It possesses a strong generative prior that can be leveraged
by ISR tasks.

B.2. Comparisons with SOTA Methods

Table 11. Results of user study on real-world images.

Methods BSRGAN Real-ESRGAN StableSR PASD SeeSR VARSR(Ours)

Selection Rates 0.35% 0.7% 3.5% 17.3% 21.05% 57.1%

User Study. In order to comprehensively assess the performance of our VARSR in real-world scenarios, we conduct a
user study on 100 randomly sampled LR real-world images from DrealSR (Cai et al., 2019) and RealSR (Wei et al., 2020).
We compare our VARSR with five other GAN-based and diffusion-based ISR methods, including BSRGAN (Zhang et al.,
2021), Real-ESRGAN (Wang et al., 2021), StableSR (Wang et al., 2024a), PASD (Yang et al., 2025), and SeeSR (Wu et al.,
2024a). For each image, participants were presented with both the LR image and the restoration results of all ISR methods,
and were then asked to indicate their choice for the best ISR result for the LR image. We invited 20 visual researchers to
participate in the user study, and in total, we obtained 20× 100 selection results. As shown in Tab. 11, our VARSR achieves
the highest selection rate of 57.1%, far surpassing other methods, demonstrating the powerful capability of VARSR in
real-world scenarios to generate realistic images that align with human aesthetics.

Comparisons on Real-world Images. To evaluate the performance of our VARSR in in-the-wild scenarios, we test different
approaches on the RealLR200 dataset (Wu et al., 2024a), which comprises 200 real-world images collected from previous
studies (Lin et al., 2023; Wang et al., 2021) and from the internet. RealLR200 dataset contains many highly degraded
real-world images, such as historical photographs and extreme compression artifacts. Due to the absence of available
reference HR images, we utilize only three no-reference IQA metrics: MANIQA (Yang et al., 2022), MUSIQ (Ke et al.,
2021), and CLIPIQA (Wang et al., 2023).
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Table 12. Quantitative comparison with SOTA methods on RealLR200 dataset with no reference images. Red and blue colors are the best
and second-best performance.

Dataset Metrics GAN-based Diffusion-based AR-based
BSRGAN Real-ESR SwinIR LDM StableSR DiffBIR PASD SeeSR VARSR

RealLR200
MANIQA↑ 0.3671 0.3633 0.3741 0.3049 0.3688 0.4288 0.4295 0.4844 0.5177
CLIPIQA↑ 0.5698 0.5409 0.5596 0.5253 0.5935 0.6452 0.6325 0.6553 0.7513
MUSIQ↑ 64.87 62.96 63.55 55.19 63.29 62.44 66.50 68.37 71.92

As shown in Tab. 12, our VARSR achieves the best performance among all metrics, which is consistent with the results on
other synthetic and real-world datasets. In Fig. 15, we visualize some ISR results, demonstrating that VARSR can generate
images with more realistic details compared to other methods. The results above validate the strong restoration capability of
VARSR in real-world scenarios, showcasing its practical application value.

Table 13. Quantitative comparison with SOTA methods on other quality-based metrics. Red and blue colors are the best and second-best
performance.

Dataset Metrics GAN-based Diffusion-based AR-based
BSRGAN Real-ESR SwinIR LDM StableSR DiffBIR PASD SeeSR VARSR

DIV2K-Val
CNNIQA↑ 0.5492 0.5652 0.5402 0.5579 0.6274 0.6413 0.6269 0.6613 0.6661
HyperIQA↑ 0.5682 0.5586 0.5235 0.5225 0.6100 0.6164 0.6158 0.6666 0.7031

TOPIQ↑ 0.5413 0.5182 0.4796 0.4695 0.5923 0.6105 0.6165 0.6793 0.7020

RealSR
CNNIQA↑ 0.5513 0.5624 0.5281 0.5637 0.6029 0.6077 0.5938 0.6594 0.6692
HyperIQA↑ 0.5617 0.5231 0.5093 0.4936 0.5703 0.5690 0.6001 0.6746 0.7038

TOPIQ↑ 0.5502 0.5137 0.4882 0.4762 0.5579 0.5580 0.5920 0.6854 0.6991

DRealSR
CNNIQA↑ 0.4989 0.4849 0.5017 0.5367 0.5518 0.6025 0.5794 0.6132 0.6445
HyperIQA↑ 0.5305 0.4938 0.5074 0.5050 0.5537 0.5992 0.6008 0.6583 0.6866

TOPIQ↑ 0.5058 0.4622 0.4694 0.4807 0.5330 0.5831 0.5963 0.6534 0.6800

Additional IQA Metrics. In order to further validate VARSR’s ability to generate high-quality images that conform to
real distributions, we select a broader range of IQA metrics to evaluate VARSR, including CNNIQA (Kang et al., 2014),
HyperIQA (Su et al., 2020), and TOPIQ (Chen et al., 2024a). These IQA metrics were not used for the data filtering of
our training dataset in 8. As shown in the Tab. 13, VARSR continues to achieve SOTA results, surpassing other methods.
This validates the strong capability and robustness of VARSR to generate high-quality and content-rich images, rather than
deceiving specific metrics.

Table 14. Quantitative comparison with SOTA methods with smaller finetuning data.

Metrics DrealSR RealSR
DiffBir PASD SeeSR VARSR(LSDIR) DiffBir PASD SeeSR VARSR(LSDIR)

SSIM↑ 0.6516 0.7539 0.7711 0.7536 0.6664 0.7140 0.7284 0.7042
LPIPS↓ 0.4537 0.3331 0.3142 0.3716 0.3485 0.2986 0.2993 0.3614
DISTS↓ 0.2724 0.2322 0.2230 0.2620 0.2257 0.2125 0.2224 0.2540

MANIQA↑ 0.4602 0.4551 0.5077 0.5368 0.4602 0.4551 0.5077 0.5539
MUSIQ↑ 61.06 63.69 64.75 67.74 61.06 63.69 64.75 70.49

Finetuning on Smaller Datasets. The primary objective of using our large-scale data is for pretraining to acquire generative
priors, similar to the powerful base models like Stable Diffusion (Rombach et al., 2022). Therefore, in this section, we
present the results of finetuning VARSR on a smaller dataset after undergoing large-scale pretraining. We utilize the LSDIR
(Li et al., 2023) dataset and 10k images from FFHQ (Karras et al., 2019) as high-quality data for finetuning ISR tasks, which
is consistent with SeeSR, with a total of 95k high-quality images. In Tab. 14, when pretraining with our large-scale data and
finetuning with smaller data, VARSR still performs exceptionally well, far surpassing other SOTA methods in perceptual
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quality metrics. This is consistent with our conclusion when training on large-scale data, validating the superiority of the
VARSR framework.

B.3. Ablation Study

Table 15. Ablation on the Training Database.

Metrics DrealSR RealSR
DIV2K Large-scale Data DIV2K Large-scale Data

SSIM↑ 0.7750 0.7652 0.7284 0.7169
LPIPS↓ 0.3441 0.3541 0.3376 0.3504
DISTS↓ 0.2434 0.2526 0.2321 0.2470

MANIQA↑ 0.4885 0.5360 0.4990 0.5570
MUSIQ↑ 64.68 68.15 67.36 71.26

Table 16. Ablation on the Image Preprocess Strategy.

Metrics DrealSR RealSR
Random Crop Resize&Crop Random Crop Resize&Crop

SSIM↑ 0.7772 0.7652 0.7304 0.7169
LPIPS↓ 0.3279 0.3541 0.3317 0.3504
DISTS↓ 0.2335 0.2526 0.2286 0.2470

MANIQA↑ 0.4577 0.5360 0.4639 0.5570
MUSIQ↑ 63.19 68.15 66.62 71.26

LR Trianed on DIV2KHR Trianed on our Dataset
(a) Comparison of VARSR trained on different dataset

LR Trianed with 
RandomCrop

HR

(b) Comparison of VARSR trained with different preprocess methods

Trianed with 
Resize&CenterCrop

(a) Comparison of VARSR trained on different dataset.LR Trianed on DIV2KHR Trianed on our Dataset
(a) Comparison of VARSR trained on different dataset

LR Trianed with 
RandomCrop

HR

(b) Comparison of VARSR trained with different preprocess methods

Trianed with 
Resize&CenterCrop

(b) Comparison of VARSR trained on image preprocess method.

Figure 12. Comparison of different dataset and image preprocess methods.

Large-scale Dataset. In Tab. 15, we validate the importance of training VARSR with large-scale, high-quality data. We
separately test the model trained on our large-scale dataset (over 4M images) and the model trained using the DIV2K
(Agustsson & Timofte, 2017) series dataset (12k images, following the setting of (Yang et al., 2025)). The model trained on
the DIV2K dataset utilized the original VAR (Tian et al., 2024) trained on ImageNet (Deng et al., 2009) as the pretrained
model. Training with a large amount of high-quality data results in a significant performance improvement, as also confirmed
by the visual results in Fig. 12(a). This demonstrates the effectiveness and necessity of using large-scale, high-quality data.

Image Preprocess. As depicted in Sec. 3.3, we preprocess the training images by first resizing and then cropping to
include more foreground semantic information. In Tab. 16 and Fig. 12(b), we compare this preprocessing method with the
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commonly used random cropping strategy. Our strategy achieves higher perceived quality, producing richer details, which
demonstrates that high-frequency semantic information can be better preserved through our preprocessing.

Table 17. Ablation on the VQVAE Scale Dropout Strategy.

Metrics DrealSR RealSR
w/o dropout pd = 0.1 w/o dropout pd = 0.1

SSIM↑ 0.7567 0.7652 0.7155 0.7169
LPIPS↓ 0.3667 0.3541 0.3587 0.3504
DISTS↓ 0.2634 0.2526 0.2511 0.2470

MANIQA↑ 0.5410 0.5362 0.5414 0.5570
MUSIQ↑ 67.98 68.15 70.83 71.26

LR ✗ VAE DropoutHR ✓ VAE Dropout

Figure 13. Effectivess of the VQVAE Scale Dropout Strategy.

VQVAE Dropout Strategy. In Tab. 17, we compare the results of training the VARSR with the VQVAE tokenizer under two
conditions, representing whether the VQVAE uses the scale dropout strategy during training with a dropout ratio pd = 0.1.
The tokenizer using the dropout strategy achieves significant improvements in all metrics, particularly in fidelity-based
metrics, as the preceding scales can provide richer semantic information. As shown in Fig. 13, when the scale dropout
strategy is not applied, all the fine texture details are generated in the final scale, which may result in some undesired artifacts
in generated images. The condition with the dropout strategy applied can consistently generate images that are faithful to
the original image.

B.4. Limitations

LR VARSR(Ours)VARSR(Ours) LR

Figure 14. Limitations of VARSR. Due to limitations in the scope of training data coverage, it may be challenging to restore the correct
semantics in certain extreme scenarios.

Although our VARSR base model is pretrained on the large-scale dataset of 4M images, the semantic coverage may still
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have some limitations compared to the billions of data used by Stable Diffusion (Rombach et al., 2022). It is undeniable that
some rare scenes may not be covered well. When the original image contains rare semantics and is severely damaged, it
may not be possible to correctly restore the content. As shown in Fig. 14, the LR image’s severe distortion impedes the
accurate restoration of the famous character Spider-Man in the left case, while the generated image of an ancient woman in
the right case features simplistic and unrealistic head adornments.

C. More Visualization Results
In Fig. 16 and Fig. 17, we provide additional comparison visualization results with other methods, showcasing the robust
capability of VARSR in generating high-fidelity and high-realistic images.
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Figure 15. Comparisons with different methods on real-world images. Zoom in for a better view.
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Figure 16. Additional qualitative comparisons with different SOTA methods (Part 1). Zoom in for a better view.
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Figure 17. Additional qualitative comparisons with different SOTA methods (Part 2). Zoom in for a better view.
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