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Abstract

Large language models (LLMs) are capable
to perform complex reasoning by in-context
learning (ICL) when provided with a few input-
output demonstrations (demos) and more pow-
erful when intermediate reasoning steps (“chain
of thoughts (CoT)”) of the demos are given.
Is it necessary to use multi-demo in ICL? In
this paper, we study ICL using fewer demos for
each test query on the tasks in (Wei et al., 2022).
Surprisingly, we do not observe significant
degradation when using only one randomly
chosen demo. To study this phenomenon, for
each test query, we categorize demos into “pos-
itive demos” leading to the correct answer, and
“negative demos” resulting in wrong answers.
Our analysis reveals an inherent bias in those
widely studied datasets and the redundancy of
demos: most demos are positive for a majority
of test queries, which explains the good perfor-
mance of ICL with one random demo. More-
over, ICL (with and w/o CoT) using only one
positive demo significantly outperforms multi-
demo ICL adopted by most previous works,
indicating the weakness of LLMs in finding
positive demo(s) for input queries, which is
difficult to evaluate on the biased datasets. Fur-
thermore, we observe a counterintuitive be-
havior of ICL using multi-demo, i.e., its accu-
racy degrades(improves) when given more posi-
tive(negative) demos. This implies that ICL can
be easily misguided by interference among de-
mos and their spurious correlations. Our anal-
yses highlight several fundamental challenges
that need to be addressed in LLMs training,
ICL, and benchmark design.

1 Introduction

The recent race of large Language models (LLMs)
(Brown et al., 2020; Chowdhery et al., 2022; Thop-
pilan et al., 2022; Rae et al., 2021) shows that the
capability of reasoning can be significantly im-
proved with the scaling of model size. One of
the most remarkable behaviors observed in LLMs

is in-context learning (ICL) (Brown et al., 2020),
which provides LLMs with human-written instruc-
tion and a few exemplars or demonstrations (de-
mos), along with the input queries. However, con-
ventional few-shot prompting performs poorly on
complex reasoning tasks (Wei et al., 2022). Re-
cently, an effective ICL strategy for complex rea-
soning tasks, including arithmetic reasoning, com-
monsense reasoning, and symbolic reasoning, is to
elaborate the intermediate reasoning step in each
demo (Wei et al., 2022), namely Chain-of-thoughts
(CoT) prompting.

ICL relies on human engineering and expertise in
designing demo questions, intermediate reasoning
steps, and final answers so the LLM can generalize
them to a variety of unseen queries. However, it
is inefficient and impractical to design demos for
different queries but a fixed set of demos might not
cover all the possible queries. In addition, adding
demos (especially in CoT prompting) significantly
increases input tokens, which are costly and may
exceed the maximum input length of LLMs. To
provide better demos for efficient ICL and save
human efforts, a very recent line of work studies
automatic prompting (Zhang et al., 2022; Wang
et al., 2023; Arora et al., 2022), which leverage
LLMs to select demo questions and construct their
answers and CoTs for ICL. They save human labor
on creating demos but do not address several fun-
damental questions in ICL, e.g., How many demos
are necessary for ICL? Can LLMs in ICL figure out
which demo(s) is more useful to each test query?
Does ICL leverage all the demos or mainly rely on
a few of them to resolve each test query? Can LLMs
in ICL combine the strengths of multiple demos to
improve the answers?

In this paper, we take the first step toward bet-
ter understanding the effect of multiple demos in
ICL through a series of empirical studies on the de-
mos and benchmarks widely used in CoT prompt-
ing (Wei et al., 2022), which covers a diverse set of



reasoning tasks. In particular, we investigate how
the ICL (with and w/o CoT) performance changes
when varying the number of demos and the im-
pact of each demo on different test queries. We
start with an extreme case of ICL using only one
demo randomly chosen for each query. Surpris-
ingly, compared to the default 8 (or 7)-demo ICL
in previous work, we do not observe a significant
drop in the test accuracy. But does this imply that
multiple demos are unnecessary to ICL? To study
this phenomenon, we take a closer look at the pro-
portion of positive demos (i.e., the demos leading
to correct answers in one demo ICL) for each test
query. Statistics on all the datasets reveal a widely
existing bias of easy queries, i.e., most demos are
positive for a majority of queries, for which one
(random) demo is all they need.

That being said, how does ICL perform on the
test queries with fewer positive demos? Unfortu-
nately, though provided with some positive demos,
ICL fails to produce correct answers for many of
them. We verify this by evaluating ICL with one
positive demo, which significantly outperforms the
widely used multi-demo ICL. This exposes a weak-
ness of LLMs, i.e., they are not good at identifying
the positive demo(s) and ignoring the negative ones
for each query in multi-demo ICL, even when more
details such as CoT are given. Our further analy-
sis reveals another deeper reason for this. Specif-
ically, we start from ICL with one positive (neg-
ative) demo but adding more positive (negative)
demos results in a counterintuitive degradation (im-
provement) of ICL accuracy, indicating a negative
impact of the interference or spurious correlation
among demos on the LLMs. Therefore, multiple
demos might provide more information than a sin-
gle demo but the current LLMs and ICL methods
cannot fully exploit them and filter out misleading
interference.

2 Related Work

In-Context Learning (ICL). In-context learn-
ing (ICL) provides an efficient strategy to per-
form downstream task adaptations on pretrained
LLMs (Brown et al., 2020). By prepending task-
specific instructions and some demos to each test
query, the LLM is able to accomplish highly spec-
ified tasks. Recent work in ICL focuses on au-
tomatically determining the prompts, e.g., train-
ing a dense retriever to allocate semantically simi-
lar training examples (Liu et al., 2022) for each

test query (Rubin et al., 2022), estimating the
LLM’s bias for better learning calibration parame-
ters (Zhao et al., 2021), etc.

Chain-of-Thoughts (CoT) and its variants.
CoT has been recently introduced to elicit the rea-
soning abilities of LLMs (Wei et al., 2022) by aug-
menting each demo with a chain of rational steps.
Many follow-ups works further improve the perfor-
mance of CoT, e.g., self-consistency (Wang et al.,
2022b) draws an ensemble of outputs for major-
ity voting to replace the greedy decoding. How-
ever, CoT still heavily relies on human expertise
to annotate the reasoning chains. A handful of re-
cent works have explored the idea of automatic
prompting (Zhang et al., 2022; Huang et al., 2022;
Wang et al., 2023). For instance, Auto-CoT (Zhang
et al., 2022) proposes to select queries of the de-
mos via clustering all test queries and sampling
demo queries with diversity. (Huang et al., 2022)
fine-tunes an LLM with high-confidence rationale-
augmented answers for unlabeled questions. Wang
et al. (2023) views the LLM as a topic model and
proposes an algorithm selecting the optimal demo
from a set of annotated data. While beneficial,
most automatic prompting methods focus on by-
passing human engineering and building better de-
mos from a set of questions. But they do not inves-
tigate whether demos are used in the correct way
by LLMs in ICL. In contrast, we find that the origi-
nal demos provided by (Wei et al., 2022) include
adequate information (e.g., one positive demo per
query) for the LLMs to produce correct answers.

The role of demos in ICL. Several works have
explored the mechanism behind the success of CoT
prompting. Min et al. (2022) observes that label
correctness is not the critical reason for the suc-
cess of few-shot ICL/prompting. Madaan and Yaz-
danbakhsh (2022) also finds that the label correct-
ness is immaterial to the task on GSM8K. Instead,
Madaan and Yazdanbakhsh (2022) constructs three
key components in rational and identifies which
component plays a vital role in CoT. Saparov and
He (2022) concludes that LLMs are capable of mak-
ing correct individual deduction steps but have diffi-
culty systematically exploring the different options.
Wang et al. (2022a) shows that CoT reasoning is
possible even with invalid demos. These works try
to understand what makes CoT prompting effective.
However, few works focus on varying the number
of demos and inherent dataset bias in few-shot ICL



or CoT prompting.

3 Background and Experimental Setup

3.1 Tasks and Datasets
We conduct a series of experiments on various
reasoning benchmarks: arithmetic reasoning:
GSM8K (Cobbe et al., 2021), MultiArith (Roy
and Roth, 2016), AddSub (Hosseini et al., 2014),
SVAMP (Patel et al., 2021), AQuA (Ling et al.,
2017) and SingleOp (Wei et al., 2022). common-
sense reasoning: CSQA (Talmor et al., 2019).
symbolic reasoning: Coin-flip (Wei et al., 2022).

The overall statistics are listed in table 1.

TASK # Demo # Query
GSM8K Arithmetic 8 1319
MultiArith Arithmetic 8 600
AddSub Arithmetic 8 395
SVAMP Arithmetic 8 1000
AQuA Arithmetic 4 254
SingleOp Arithmetic 8 508
CSQA Commonsense 7 1221
Coin-flip Symbolic 8 500

Table 1: Statistics of datasets. # Demo is the number of
CoT exemplars provided by Wei et al. (2022).

3.2 Language Model and In-Context Learning
To efficiently conduct the experiments, we focus on
code-davinci-002 (Chen et al., 2021; Chowdhery
et al., 2022) from the GPT-3 model family. Because
when we started the experiments, code-davinci-002
is a highly efficient programming generation en-
gine that offers superior performance at an afford-
able price, especially for reasoning tasks (Wang
et al., 2022b; Zhang et al., 2022). We explore two
prompting settings for in-context learning:

Few-shot prompting. Standard few-shot prompt-
ing (Brown et al., 2020) in which demos are for-
matted as Question + Answer pairs appended to
each test query.

CoT prompting. We also conduct experiments
on CoT prompting where each demo is augmented
by a chain of thoughts (Wei et al., 2022) in the form
of Question + rationale + Answer.

4 One-Demo Prompting

It is common to use multiple demos in ICL, e.g.,
manual-CoT (Wei et al., 2022) relies on humans to
create a few demos for different tasks as shown in
Table 1. But do multiple demos really improve ICL

performance? How many demos are needed for
complex reasoning tasks? To answer these ques-
tions, we start by investigating the simplest case,
i.e., one-demo ICL. Surprisingly, reducing the num-
ber of demos to one does not bring critical degra-
dation even when the demo is randomly selected.
When we can filter out negative demos (defined in
Section 4.2) for each test query, one demo ICL sig-
nificantly outperforms the widely used multi-demo
ICL. We provide an in-depth analysis of the rea-
sons behind these phenomena and they reveal some
fundamental issues of LLMs and benchmarks.

4.1 Prompting with One Random Demo
We compare ICL with one random demo with
ICL with all demos when each demo is associated
with/without CoT.

One Random Demo is randomly selected from
a few demos crafted by (Wei et al., 2022). We
prepend this single demo to the test sample and
query the language model once.

All Demos is the baseline reported by (Wei et al.,
2022), prepending all demos (e.g., 8 demos for
arithmetic reasoning tasks) to the test sample and
query the model once.

Results for few-shot (without CoT) and CoT
prompting on a variety of datasets are reported in
Fig. 1 and Fig. 2, respectively. For both ICL meth-
ods, reducing seven or eight demos (green bar) to
one random demo (blue bar) causes only slight
degradation (0-7%) on the test accuracy, while sig-
nificantly reducing the input length and compu-
tational cost. These savings are attractive since
most API LLMs are billed based on the number
of input tokens (e.g., $ 0.02 per 1000 tokens for
GPT-3). On most evaluated tasks, one random
demo suffices to achieve the most phenomenal
improvement by ICL but using more than one
demo only brings marginal improvement. It
indicates an inefficient usage of demos in ICL,
despite their presumed high quality and diversity
(as they are carefully created by humans).

But what are the reasons behind this inefficient
usage of multiple demos? Is it due to a weakness
of current LLMs or ICL on exploiting demos or
an inherent redundancy of the handcrafted demos
for these benchmark tasks? Given the above obser-
vations, it is plausible that different demos might
provide redundant information to each test query
so any randomly chosen one should do the same
job. But does this hold for all test queries? Does
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Figure 1: ICL without CoT: Prompting with one ran-
dom demo has a slightly lower accuracy than few-shot
prompting (8 or 7 demos). Prompting with one positive
demo significantly outperforms few-shot prompting.
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Figure 2: ICL with CoT: Prompting with one random
demo has a slightly lower accuracy than CoT prompting
(8 or 7 demos). Prompting with one positive demo
significantly outperforms CoT prompting.

there exist the best demo for each query? When
the LLMs are API models, their weights cannot be
further finetuned, is it still possible to improve their
ICL performance through the demos?

4.2 Positive/Negative Demos and Hard/Easy
Samples in Datasets

For an in-depth study of these questions, we cate-
gorize all the demos into positive/negative demos
for each input query in the one-demo prompting
setting, i.e., “positive Demos” enabling the LLMs
to produce a correct answer while “negative De-
mos” results in wrong answers. One example of
"negative/positive Demo" under CoT prompting is
shown in Fig. 3. We then study the proportions of
positive demos for test queries in each benchmark
dataset, which reflect the probability of randomly
sampling a positive demo that can be used to ex-
plain previous observations. We point out that the

main purpose of this section is to analyze the unex-
pected behaviors of single-demo ICL and compare
its best and worst performance. Our observations
lead to novel insights that can potentially be used
to design demo selection methods but we do not
aim to develop such methods in this paper.

A demo can be positive for a query but negative
for another query. For example, Fig. 4 shows that
the eight demos designed for GSM8K are all posi-
tive for an easy query but all negative and lead to
incorrect answers for another hard query. Hence,
it is interesting to study the proportion of easy and
hard queries in the widely used benchmark datasets.
Given that we have eight demos in total, it is rea-
sonable to define the Easy Sample to be the queries
with ≥ 6 demos to be positive and Hard Sample
to be the queries with merely ≤ 1 positive demo.
Therefore, the probability of choosing a positive
demo for easy samples in the one random demo
prompting is ≥ 75% (at least 6 positive demos
from 8 demos) while the probability for hard sam-
ples is ≤ 12.5% (at most 1 positive demos from 8
demos). To explain the high accuracy of prompting
with one random demo, a natural problem to study
is: what is the percentage of easy/hard samples in
each dataset?

We report the statistics of easy and hard sam-
ples according to the number of positive demos for
each sample in two commonly used ICL datasets,
CSQA and GSM8K, where the former is for arith-
metic reasoning and the latter is for commonsense
reasoning. In particular, Fig. 5 (a) and Fig. 6 (a)
give statistics of all test queries in terms of the num-
ber of positive demos in GSM8K and CSQA. On
both datasets, we observe that easy samples are the
majority while hard samples take up a very small
fraction. Notably, as shown in Fig. 6 (a), ∼ 58% of
test queries in CSQA dataset are easy (having ≥ 6
positive demos out of 8 so the success probability
of one random demo prompting for these samples
is ≥ 75%.

In contrast, only 8 % of CSQA dataset are hard
samples, for which randomly selecting a demo
out of the eight results in ≤ 12.5% ICL accuracy.
Hence, easy samples dominate CSQA, for which
the 8 or 7 demos are highly redundant. Moreover,
we observe similar statistics on other datasets such
as GSM8K and almost all the datasets used in CoT
prompting papers (see Table 2 in the appendix).
This explains the marginal improvement of multi-
demo ICL over ICL with only one random demo



Q: If there are 3 cars in the parking lot and 2 more cars arrive, 
how many cars are in the parking lot?
A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The 
answer is 5.

Q: The school cafeteria ordered 6 red apples and 15 green 
apples for students lunches. But, if only 5 students wanted 
fruit, how many extra did the cafeteria end up with?

A: There are originally 6 red apples and 15 green apples. 5 more 
students wanted fruit. 6 + 15 + 5 = 26. The answer is 26.

Model Input

Model Output

Nega%ve Demo
Q: Shawn has five toys. For Christmas, he got two toys each from 
his mom and dad. How many toys does he have now?
A: Shawn started with 5 toys. If he got 2 toys each from his mom 
and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.

Q: The school cafeteria ordered 6 red apples and 15 green apples 
for students lunches. But, if only 5 students wanted fruit, how 
many extra did the cafeteria end up with?

A: There are 21 apples in total. 5 students take 5 apples. The 
cafeteria has 21 - 5 = 16 apples leO. ✔

Model Input

Model Output

Positive Demo

Figure 3: Negative/Positive Demo. In one demo ICL for a test query, a negative demo leads to an incorrect answer
while a positive demo results in the correct answer.

(shown in Fig. 1 and Fig. 2): most queries in
these datasets are easy samples that only require
one random demo to produce the correct answers
so increasing the demos does not bring significant
improvement.

Given the statistics of positive demos per sam-
ple in a dataset, we can estimate the accuracy of
prompting with one random demo by the expected
probability of a randomly chosen demo being pos-
itive for queries from each dataset. Specifically,
let N be the number of available demos (N = 8
for GSM8K and N = 7 for CSQA) and pn be the
percentage of samples with n positive demos, then
the estimated accuracy of one random demo ICL is∑N

n=1 pn
n
N . For instance, given the statistics in Fig.

5 (a) and Fig. 6 (a), the estimated accuracy is 52%
for GSM8K and 71% for CSQA, which matches
the empirical accuracy for one random demo ICL
reported in Fig. 2.

This reveals a widely existing dataset bias,
i.e., easy samples dominate these benchmark
datasets and the difficulty follows a long tail dis-
tribution. Though this could be claimed as an ad-
vantage of the human-designed demos, it implies
redundancy and inefficient usage of these demos:
one positive demo suffices to produce the correct
answers for most queries (as they are easy), while
multi-demo ICL multiplies the cost but only brings
marginal improvement to a few queries. Since the
maximum input length for LLMs is strictly limited,
this also indicates a bottleneck of multi-demo ICL
when the targeted tasks become practically more
complicated and requires more diverse demos for
different types of queries.

The inefficient usage of multiple demos also
exposes a weakness of LLMs when applied for
ICL, i.e., they can only produce correct answers

(with high probability) for easy samples when
most demos are positive but can be easily con-
fused/misguided by a few negative demos, even
the majority are still positive demos. This also ex-
plains the marginal difference between all-demo
ICL and one random demo ICL on different data
groups as shown in Fig. 7-8, in which ICL with
one positive demo instead can achieve 100% accu-
racy for data groups with ≥ 1 positive demos. In
other words, LLMs cannot precisely distinguish
positive and negative demos for a query. Unfortu-
nately, this weakness of LLMs cannot be reflected
by evaluations on most existing ICL benchmarks
because of the aforementioned dataset bias.

4.3 Prompting with One positive Demo

Multi-demo ICL is inefficient in the usage of input
tokens and can easily be misguided by a few neg-
ative demos. On the other hand, by definition, a
positive demo results in a correct answer, and most
samples in those datasets have at least one positive
demo, according to the statistics such as Fig. 5 (a)
and Fig. 6 (a).

Hence, it is intuitive to compare the widely used
multi-demo ICL with ICL including only one sin-
gle positive demo in the prompt1. Surprisingly, as
shown in Fig. 1 and 2, one positive demo ICL
significantly outperforms the multi-demo ICL,
even the latter spends 8× (or 7×) cost of the for-
mer and includes the demo used in the former. For
example, there are 83% samples in GSM8K with
≥ 1 positive demos so the one positive demo ICL
enjoys an accuracy of ∼ 83%, which is much bet-
ter than the ∼ 60% accuracy of ICL using all the
eight demos. We consistently observe similar per-

1We randomly choose one demo for samples without any
positive demo.



One demo ICL
1. There are 15 trees in the grove. Grove workers will plant trees in 
the grove today. After they are done, there will be 21 trees. How 
many trees did the grove workers plant today?

2. If there are 3 cars in the parking lot and 2 more cars arrive, how 
many cars are in the parking lot? 

3. Leah had 32 chocolates and her sister had 42. If they ate 35, how 
many pieces do they have left in total?

4. Jason had 20 lollipops. He gave Denny some lollipops. Now Jason 
has 12 lollipops. How many lollipops did Jason give to Denny?

5. Shawn has five toys. For Christmas, he got two toys each from his 
mom and dad. How many toys does he have now?

6. There were nine computers in the server room. Five more 
computers were installed each day, from Monday to Thursday. How 
many computers are now in the server room?

7. Michael had 58 golf balls. On Tuesday, he lost 23 golf balls. On 
Wednesday, he lost 2 more. How many golf balls did he have at the 
end of Wednesday?

8. Olivia has 23. She bought five bagels for 3 each. How much 
money does she have left?

Mark plants a beanstalk 
below his second-story 

window, which is 20 feet off 
the ground. The beanstalk 

doubles its height every day. 
If the beanstalk starts out 4 
feet tall, how many days will 

it take to be taller than 
Mark's window?

Hard Sample

Alisa biked 12 miles per 
hour for 4.5 hours. Stanley 
biked at 10 miles per hour 
for 2.5 hours. How many 

miles did Alisa and Stanley 
bike in total?

Output Demo Type
79 Positive Demo

79 Positive Demo

79 Positive Demo

79 Positive Demo

79 Positive Demo

79 Positve Demo

79 Positive Demo

79 Positive Demo

Output Demo Type
8192 Negative Demo

512 Negative Demo

256 Negative Demo

2048 Negative Demo

4 Negative Demo

2048 Negative Demo

1024 Negative Demo

1024 Negative Demo

Easy Sample

Figure 4: Easy/Hard Samples from GSM8K: for the hard query (Mark plants a beanstalk ...), all the 8 demos are
negative and result in wrong answers in one-demo ICL; for the easy query (Alisa biked 12 miles ...), all the 8 demos
are positive and lead to the correct answer. The 8 demos for arithmetic problems are from (Wei et al., 2022).

(a). GSM8K (b). GSM8K-Hard

(c). GSM8K-Easy

0
17%

1
11%

2
8%

3
7%4

8%

5
8%

>=6
Positive 
Demos

41%

Figure 5: Pie chart on the number of positive demos
(ICL with CoT) per sample/query (0 ∼ 6 inside the pie
chart) for queries in (a) the whole GSM8K dataset ; (b)
GSM-Hard; (c): GSM-Easy.

formance gaps on all evaluated datasets, in both
ICL without CoT (few-shot prompting) and ICL
with CoT prompting. Therefore, these comparisons
suggest that selecting one positive demo can be
both more efficient and more effective than us-
ing multiple demos in ICL.

Moreover, considering that the positive demo
for each query is already included in the multiple
demos, the poorer performance of multi-demo indi-
cates misguidance from negative demos or harmful
interference between multiple demos. As shown
in Fig. 7-8, ICL with one random demo, despite
ignoring useful information in the rest demos, also
removes the misguidance and interference and thus
achieves similar or even better accuracy than all-

0
8% 1

5% 2
5%

3
5%

4
7%

5
11%

>=6 Positive Demos
58%

(b). CSQA-Hard

(c). CSQA-Easy

(a). CSQA

Figure 6: Pie chart on the number of positive demos
(ICL with CoT) per sample/query (0 ∼ 6 inside the pie
chart) for queries in (a) the whole CSQA dataset ; (b)
CSQA-Hard; (c): CSQA-Easy.

demo ICL. In contrast, all-demo ICL, even with
most (> 6) demos are positive, is prone to cross-
demo interference and misguidance, leading to
poorer accuracy than one random demo ICL. But
which is the essential reason for this gap? Can we
improve the ICL performance by introducing more
positive-only demos? Is it possible for LLMs to
stitch the relevant/correct pieces of negative demos
to build a correct answer?

5 Adding More Demos to Prompt:
Does it improve or confuse ICL?

In the previous section, we mainly focus on the per-
formance of one demo ICL and the reasons behind
it. A counterintuitive observation is that ICL with
multiple demos performs even worse than ICL with



only one positive demo. Why does multi-demo ICL
perform worse and when can it bring additional im-
provement? To address these questions, we study
the following two problems.

• Problem I: Starting from a prompt of one
positive demo, will the accuracy be further
boosted if adding more positive demos?

• Problem II: Starting from a prompt of one
negative demo, what will happen if adding
more negative demos?

These two scenarios mainly focus on all-positive
or all-negative demo cases. This is because we al-
ready observed in the previous section that a mix
of negative and positive demos can misguide ICL
since the evaluated LLMs are not good at distin-
guishing negative and positive demos. On the other
hand, it is still unclear whether the LLMs exploit
the correlations between multiple demos and how
they affect the ICL process. For example, when all
the demos are positive (negative), will the LLMs
treat all demos to be independent and thus keep
the answer correct (wrong), or will the answer be
changed due to the cross-demo correlations?
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Figure 7: Accuracy of ICL using all eight demos and one
random demo (with CoT) on fine-grained data groups
different in the number of positive demos (Fig. 5 (a)) for
GSM8K dataset. The size of each dot is proportional to
the data percentage. All-demo ICL brings improvement
only to hard samples with fewer positive demos, while
one random demo performs similarly or even better than
all eight demos, indicating inefficient usage of multiple
demos when easy samples dominate the dataset.

To ensure enough number of positive (negative)
demos are added for each sample, we use CSQA-
Easy and GSM8K-Easy as evaluation sets for Prob-
lem I and CSQA-Hard and GSM8K-Hard as eval-
uation sets for Problem II. As illustrated in Fig. 5
and Fig. 6, the two easy sets of samples have ≥ 6
positive demos while the two hard sets of samples
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Figure 8: Accuracy of ICL using all seven demos and
one random demo (with CoT) on fine-grained data
groups different in the number of positive demos (Fig.
6 (a)) for CSQA dataset. The size of each dot is pro-
portional to the data percentage. The observations and
conclusions on CSQA are similar to those for Fig. 7.

have ≤ 1 positive demo. Hence, we are able to
increase the number of positive (negative) demos
from 1 to 6 in the two studied problems, producing
a full spectrum of varying accuracy over different
numbers of demos.

In Fig. 9-10 and Fig. 11-12 (appendix), we re-
port the results for Problem I & II when apply-
ing CoT prompting and few-shot prompting to
CSQA-Easy/Hard and GSM8K-Easy/Hard. Sur-
prisingly, on all datasets and ICL strategies, we
consistently observe that increasing positive de-
mos in the prompt results in lower accuracy on
the easy samples, while increasing the negative
demos improves the accuracy on the hard sam-
ples. This indicates that LLMs in ICL, when given
multiple demos, do take the correlations among de-
mos into account rather than simply treating them
independently. However, the correlations do not
always bring improvement to ICL for multiple pos-
itive demos, for example, ICL with one positive
demo achieves nearly 99% accuracy on GSM8K-
Easy but adding an additional positive demo leads
to significant degradation. In this case, the inter-
ference and spurious correlations among multiple
demos concatenated in the prompt are harmful to
ICL and tend to misguide the LLMs toward finding
the correct answer. On the other hand, ICL with
multiple negative demos is able to extract the rele-
vant information for the test query from multiple
demos and combine them by LLMs to achieve an
improved answer. Though the improvement is not
highly phenomenal, we consistently observe it in
all the plots, indicating a non-trivial composition of
clues from multiple demos commonly happening
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Figure 9: Increasing demos in CoT Prompting on
GSM8K: for each query in GSM-Easy(GSM-Hard), we
start from a positive(negative) demo, add more posi-
tive(negative) demos to the prompt, but observe an ac-
curacy degradation(improvement).
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Figure 10: Increasing demos in CoT Prompting on
CSQA: for each query in CSQA-Easy(CSQA-Hard), we
start from a positive(negative) demo, add more posi-
tive(negative) demos to the prompt, but observe an ac-
curacy degradation(improvement).

during ICL and resulting in better answers even for
hard samples.

Hence, increasing the number of positive (nega-
tive) demos does not intuitively improve (weaken)
the ICL performance and the main reason lies in
the extraction and exploitation of cross-demo cor-
relations in ICL. Since multiple demos in ICL are
concatenated together and then appended to the
query as the whole input, a pretrained LLM might
lack the capability to completely separate all demos
and choose the positive one to follow during the
ICL inference process, especially when the LLM’s
pretraining does not cover such tasks. Therefore,
our study exposes a weakness of the current LLMs
in modeling cross-demo correlations, which can be
one of the main reasons for the marginal improve-
ment brought by multi-demo ICL. To mitigate this
problem, one may modify the pretraining recipe
with additional training tasks/objectives to encour-

age beneficial cross-demo attention and restrain
harmful interference.

6 Discussion

In-context learning (ICL) plays an important role
in the ecosystem of LLMs. Recent LLMs are ca-
pable of directly generating customized outputs by
following the demos appended to input. However,
it is not clear how many demos suffice to produce
high-quality answers. In this paper, for the first
time, we study the performance of ICL (with or
without CoT prompting) under different numbers
of demos and provide an in-depth investigation of
the observations across several widely used bench-
mark datasets.

In particular, we found that randomly selecting
one single demo barely hurts the performance while
increasing the demos merely brings marginal im-
provement. We then study how many demos can
lead to correct answers in the one-demo ICL for
each sample and analyze its statistics over all sam-
ples in widely used benchmark datasets. The statis-
tics reveal a widely existing dataset bias that easy
samples with many positive demos dominate the
datasets, which explains the high accuracy of ICL
with one random demo. It also exposes a weak-
ness of LLMs in distinguishing negative/positive
demos in ICL. Moreover, we found that only one
positive demo is sufficient to significantly outper-
form multi-demo ICL, while saving a great amount
of cost. Furthermore, we study the contribution
and interference of cross-demo correlations to ICL
by investigating how the accuracy changes as we
add more positive (negative) demos to the prompt.
Surprisingly, adding positive demos reduces the
accuracy while adding negative demos brings im-
provement, indicating a problematic interpretation
and exploitation of the cross-demo correlations by
LLMs in ICL.

Our analyses highlight several fundamental chal-
lenges that need to be addressed in the future, e.g.,
how to design less biased benchmarks and more
diverse demos that can be used to better evaluate
LLMs’ capability of distinguishing positive demos
from the negative ones; how to improve the effi-
ciency and effectiveness of multi-demo usage in
ICL; how to avoid the harmful interference caused
by cross-demo correlations and meanwhile lever-
age them to improve the ICL performance on hard
samples with fewer positive demos; how to select
positive demos for a given query, etc.
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A Easy/Hard Sample Ration

Easy Sample Hard Sample
GSM8K 40.0% 28.3%
MultiArith 94.3% 0.0%
AddSub 82.5% 6.1%
SVAMP 62.6% 14.3%
AQuA 28.3% 55.1%
SingleEq 89.0% 5.3%
CSQA 58.0% 13.0%

Table 2: The percentage of Easy/Hard samples (ICL
with CoT) in each benchmark dataset. Easy samples
dominate in most datasets while hard samples only take
up a small fraction.

B More results for Few-shot Prompting
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Figure 11: Increasing demos in Few-shot Prompting
on GSM8K: for each query in GSM-Easy(GSM-Hard),
we start from a positive(negative) demo, add more posi-
tive(negative) demos to the prompt, but observe an accu-
racy degradation(improvement).
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Figure 12: Increasing demos in Few-shot Prompting
on CSQA: for each query in CSQA-Easy(CSQA-Hard),
we start from a positive(negative) demo, add more posi-
tive(negative) demos to the prompt, but observe an accu-
racy degradation(improvement).


