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Abstract

Variational Entropy Search (VES) is a recently proposed class of acquisition
functions for Bayesian optimization (BO) that unifies Expected Improvement and
Max-Value Entropy Search (MES). In BO, a Gaussian process is fit to a set of
observed data D and in MES, at a given input 2 € R?, one samples scalar output
values y ~ P[y|z, D], then samples functions that fit both D and (z, y) and finds
the peaks of these functions y*. These y* samples are conditioned on y and come
from a non-trivial distribution P[y*|y]. Given x, the MES goal is to estimate how
much the potential y value may reduce entropy of this distribution. The VES
goal, is to instead learn a variational approximation ¢(y*|y) that estimates a lower
bound to MES. In this work, for a given point x we reinterpret VES as a simple
1-dimensional frequentist regression problem from y to y*. By framing prior work
in this perspective, we explore possible improvements, including generalizing VES
to noisy objectives. We explore a variety of simple 1D regression models in BO
benchmarks on synthetic data, highlighting open questions for future research.

1 Introduction

Bayesian optimization (BO) [1} 2] is a class of active learning algorithms for solving expensive, non-
differentiable, stochastic, black box objective functions max,¢ y f(x) where X C R? is typically a
user-defined box-constrained search space, and the output is a single scalar. Starting from a small set
of evaluated points {(z1,¥1), ..., (Zn, Yn)} = Da, classical BO methods consist of two components:
a Gaussian process surrogate model trained on the data so far mapping a new input z to a prediction

and uncertainty A (y|un(x),02(z)), and an acquisition function a(x) € R that at any given

rn
uses the model to quantify the expected benefit of hypothetically evaluating the expensive objective
y = f(x). The location with the highest acquisition value, x,11 = arg max «(x), is evaluated
returning Y, +1 = f(Zn+1). The new point (2,41, Yn+1) is added to the dataset to make D,, 11 and

the algorithm repeats until a user-specified stopping criteria is met.

The acquisition function must balance the trade-off between exploration and exploitation. Over the
years, many methods have been proposed, Expected Improvement (EI) [3| 14} 5], Knowledge Gradient
[6, 17, 18], Entropy Search [9, 10l [11} [12]], Max-Value Entropy Search (MES) [13}|14]] and a recently
proposed MES version, Variational Entropy Search (VES) [[15] which is the focus of this work.

Let § = max(y1, .., yn) be the best-seen point. We may write Expected Improvement as
aEI(x) = Eyn+1 [ma‘x<yn+1 -9, O)],

where ¥, 11 ~ N(y|pn(x),0%(x)). Intuitively, at a point z, if “lucky” y,,+1 will provide an
improvement y,,+1 — ¥, or if “unlucky”, no improvement. EI is the expectation of these hypothetical

outcomes using the Gaussian distribution for y,, 1 at x,,+1 = x and the GP model fit to D,,.

For MES, one utilizes the fact that a GP is a generative model of functions by sampling a full function
f@ (x) consistent with the observed points D,, and finding its maximum output value y*(), the GP
induces a distribution over y*. This distribution has an (implicit unknown) density p(y*|D,,) and a
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Figure 1: [llustrative example of a Gaussian Process fit to five observed data points. At z,,41 = 35,
there are three samples of y,,41, each of which has 50 sampled functions f and peaks y*. (Left)
kernel density estimates (KDEs) of p(y*|Z,+1, Yn+1) for the three distributions of peaks. Note that
as Yy, 41 increases, the KDEs become more narrowly peaked. MES aims to compute the expected
entropy over these distributions. VES fits a parametric distribution as a function of y,,4 1.

corresponding entropy (see Figure|[I|for an illustration). At ,, 41 = x, if lucky, the new y,,41 reduces
this entropy; alternatively entropy is unchanged. MES is the average of these potential outcomes,
which is the (negative) expected future entropy

avies () = By, [Ey-[log p(y"[yn41)]] - M
We omit @ = 2,11 and D,, for brevity. As p(y*|y,-1) is non-trivial, recent work [I3] proposed to
use a variational approximation q(y*|y,+1). The result is a lower bound of the true MES acquisition
function, see Appendix [B.1] denoted as the Entropy Search Lower Bound objective,

aesLeo(#]go(+)) = By, [Ey-[log go (v [yn+1)]]- 2
The functional form of gy(+) is a user design choice with parameters 6 uniquely learned for each x by
maximizing ESLBO; the outcome is the Variational Entropy Search (VES) acquisition function at
point z. For certain choices, ESLBO and 6 can be partially computed analytically (see Equation 12
in [[L3])). The authors consider deterministic objectives f(x), where the maximum value cannot be
lower than any data point y* > y,, 41, for which they propose VES-Gamma where ¢(-) is a given by

q(y* |D7L7 Ly Yn+1, k, B) = Gamma(y* - max(gv yn-&-l)‘kv B) (3)
The max(y, yn+1) term is a lower bound on the range of y* that varies with y,, 11, and the Gamma
distribution has support over [0,00). The variational parameters (k,3) are learned for each z.
Motivated by the observation that “a deeper interpretation of the ESLBO remains an open research
question” [15]], we highlight that the ESLBO is equivalent to 1-dimensional frequentist regression,
and use this interpretation to explore alternative approximations.

2 VES as 1-Dimensional Regression

Many 1-dimensional regression models may be represented as an underlying trend line plus random
noise, § = gg(Z) + € for some Z and §. Traditional linear regression assumes g(Z) = mZ + ¢
and e ~ N(0, 1), given a training set of (#(), () pairs, the trend line parameters § = (m, c) are
found by minimizing prediction mean squared error (MSE) which is mathematically equivalent
to maximizing Gaussian noise likelihood. In general, for any trend line (linear, quadratic, neural
network) and any noise distribution (Gaussian, exponential, log-normal), the log likelihood of each
7@ at (%) is an objective or goodness-of-fit metric that is used to optimize the parameters 6,

Lip(0) = log <HP(§(i)|ge(ff(i)))> = Zlogp(g“nge(f@)). )

Regarding ESLBO in Equation[2} at a given x,, 4, the predictive distribution of y,,41 is a known
Gaussian. However, y* can only be sampled, hence the ESLBO must be (all or partly) evaluated by
Monte-Carlo averaging, this requires a set of points (yff}rl, y*() € R?, such a dataset is shown in
Figure[2] In which case the ESLBO objective becomes

Lesipo(0) = Y logao(y* Py )



0 9o(s1) = max(7, yus1) 9o(yns1) = max(7, yns1) 9(yas1) = Llyas1) 9(yns1) = R(yns1) 0.25

e~ T(k,C(yns1)) € ~ Exp(R(yns1)) e~ N(0,C(yus1)) e~ N(0, R(yns1))

71—2 -1 0 1 2 3 -2 -1 0 1 2 3 -2 -1 0 1 2 3 -2 -1 0 1 2 3 0.00

Yn+1 Yn+1 Yn+1 Yn+1

Figure 2: Heatmaps of different regression models optimized on samples of (y,+1,y*) for a given
Zn41- For each model, the dashed line indicates the trend line g¢(y,+1). Each model has its own
subset of the parameters {mg, cq, M., ¢, k} that are optimized. Non-parameterized trend lines (such
as the first two plots) serve as a strict lower bound of the distribution of y*. For a full set of regression
models, please refer to Appendix [A.2]

which is identical to Equation where 2 — yny1, § — y*, and g() is incorpo-
rated into ¢(). As a concrete example, one may use basic linear regression (such as
sklearn.linear_model.LinearRegression in Python), to fit a linear trend line through
(Yn+1,y") points and the negative MSE is an estimate of ESLBO (up to constant terms, see Ap-
pendix . The slope and intercept § = (m, c¢) are the variational parameters in ESLBO. For
VES-Gamma, the trend line is given by ¢(yn+1) = max(y, yn+1) with noise € ~ Gamma(k, §) and
learned parameters 6 = (k, 3). In the linear regression example, trend line parameters § = (m, c)
are learned and the noise parameter ¢ = 1 is fixed, while in VES-Gamma, the noise parameters
0 = (k,8) are learned and trend line is fixed. In general, we may learn both trend line and noise
parameters together. Finally, the next input x,, 1 would be the location with the highest likelihood or
“goodness-of-fit" on it’s corresponding 1D regression dataset of samples (y*, ¥n+1)-

The assumptions in VES-Gamma allow for analytic integration of parts of the ESLBO and is a
significant theoretical result. However we note three potential extensions. Firstly, the trend function
9(Yn+1) = max(y, yn+1) is not parameterized. Secondly, the noise distribution € ~ Gamma(k, 3)
does not vary with y,, 41, it assumes a constant variance/entropy of y* over the input space y,,+1, also
known as homoskedasticity in 1D regression. As can be seen in Figures [[]and [2] the spread of y*
points varies with y,, 41, this can be modeled as heteroskedasticity where noise parameters depend
on y,+1, capturing that for various y,, 11 values, y* entropy is either reduced or unchanged. Thirdly,
VES-Gamma was designed for deterministic objectives that assume y* > y,,+1. However, if the
black box f(x) is stochastic, y* now represents the expected output max, E[f(x)], and the noisy
individual y1, . .., y,+1 values are not strictly a lower bound on the range of y*.

These potential issues are all addressed by simply considering alternative 1D regression models.

3 Experiments

As a GP is a generative model of functions, we specify a kernel and synthesize 100 test functions. We
set the same kernel and hyperparameters for the GP in the BO algorithm. We specify a discretized 2D
input space of 200 points and compute the acquisition function at every point. Thus, GP model fitting
and acquisition function optimizer are the “best-case” across all methods isolating the acquisition
function as the only difference. We use PyTorch and Adam for parameter learning.

Efficient Sampling At a given x, naively sampling a point (y*, 4,1 1) would have O(|X|3) complex-
ity. Instead, we pre-sample 30 functions from f ~ GP(f(z')|D,,) over the input grid X’ with cost
O(]X|?). Then, at a given x € X, sampling a single (y,,+1,y") can be done in O(|X|) by exploiting
cheap updates. Thus we pre-compute 10 Z scores and by parallelizing over X', Z and f, we can
compute 10 x 30 = 300 unbiased (y,+1,y*) samples per  on modern hardware, see Appendix

Table 1: The basis functions used to model trend lines and heteroskedasticity.

Method Function Parameters Heteroskedastic
Constant  C(yn+1) =c¢ c X

Linear L(Yn+1) = MYn+1 +¢ m, ¢

ReLU  R(Yn+1) = mmax(y,Ynt1) + ¢ m, ¢

Monte-Carlo (MC) B (i) )
(App.[C.1) M (yn+1) = MLE(y™" |yn+1)
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Figure 3: (Top row) regret (y* —max(y1., )) on deterministic test problems. (Left, Center) Exponential
and Gamma noise models with different noise parameter functions, MC is significantly better
suggesting the noise parameter functions are not well fit. (Right) best performing methods beat RS
and match or outperform EL (Bottom row) expected regret (y* — E[f(x,)]) on stochastic functions
where x,. is best GP predicted point. (Left, Center) varying the trend and Gaussian variance models,
N R-L: ReLU trend and Linear variance etc. (Right) all outperform RS, but struggle to match EI.

Heteroskedasticity Firstly, we consider deterministic problems where we fix the “ReLU” trend line
9(Yn+1) = max(y, yn+1) and use Exponential and Gamma noise models with scale parameter
a learnable function of y,, 1 from the table above and for Gamma a learned constant k. Figure
top row shows convergence curves for Exp and Gamma. Exponential shows minor improvement
when increasing heteroskedasticity modeling. For Gamma, prior work noted instability and applied
regularization to the k parameter, we also performed extensive parameter sweeps on how to regularize
k in Appendix [C.2]and found it often struggles to outperform RS in our experiments. In both cases,
MC appears to work best, suggesting the noise models are underfitting.

Trend Line Secondly, we consider a learning Linear and ReLU trend lines, thus requiring a distribu-
tion that can model positive and negative noise deviations from the trend line and so we adopt the
Gaussian distribution. We now also consider noisy objective functions. For modeling the Gaussian
variance, o2 (Yn+1), we consider constant, linear and ReLU and MC as shown in Figure |2} Results
are in Figure 3] Again, increasing the heteroskedasticity yields a minor improvement while going
from linear to ReLU trend surprisingly appears to have a less significant effect.

Other Baselines Finally, we compare the best VES methods, against Random Search (RS) and
Expected Improvement (EI) on deterministic and noisy objective functions (for Exp, Gamma, we
simply mask out invalid points y* < y,,4+1), see Figure[3] On deterministic functions, all methods
perform similarly and significantly outperform RS while on stochastic functions, the VES methods
fall behind with the exception of Gaussian and Gamma MC again suggesting that the noise models
are underfitting. Alternatively, these result may challenge the fundamental hypothesis of VES and
MES that more accurately estimating entropy reduction does not necessarily translate into a better
BO algorithm in this idealized controlled setting.

4 Conclusion

The VES framework allows for any variational approximation, and prior work investigated deter-
ministic objectives and simple approximations. We highlight that any 1D regression model can
be used and seamlessly extend to noisy objectives. We explore a range of regression models and
note the variation in algorithm quality, these preliminary results in an idealized setting may cast
doubt on the fundamental hypothesis of MES, that accurate entropy estimation translates to a better
BO algorithm. Future work includes exploring analytic integration of ESLBO with these new ¢(-)
models, and evaluating real world, high-dimensional benchmarks with comparison to traditional MES
implementations and other baselinesﬁﬂ

'All code is available at https:/github.com/graphcore-research/mes
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A Additional Figures

A.1 Gaussian Processes with Noisy Objective Functions
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Figure 4: Illustrative example of a Gaussian Process fit to three observed data points. At x,, 41 = 65,

there are three samples of y,, 1, each of which has 50 sampled functions f and peaks y*. Unlike in

Figure[I] the observed data points are stochastic; there is variance associated with the observed points

and hence y* may be smaller than y,,11. (Left) kernel density estimates of p(y™* |, 11, Yn+1) for the
three distributions of peaks.
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A.2 Heatmaps
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Figure 5: Regression models optimized on samples of (y,+1,y*) for a given z,,41 with noise
modeled by the Gamma distribution with varying formulations of its scale parameter (clamped to
have a minimum value of 10~°). (Left) the scale parameter is constant for all y,, 1. (Middle) the scale
parameter is a linear function of y,, 1. (Right) The scale parameter is a linear function of the best-seen
point max (¥, yn+1). In all cases of the Gamma distribution, the trend line is not parameterized, and
serves as a lower bound of the distribution of y*.
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Figure 6: Regression models optimized on samples of (y,+1,y*) for a given x,, 1 with noise
modeled by the Exponential distribution with varying formulations of its scale parameter. (Left) the
scale parameter is constant for all y,, ;. (Middle) the scale parameter is a linear function of y,, ;.
(Right) The scale parameter is a linear function of the best-seen point max (g, y,+1)- In all cases of
the Exponential distribution, the trend line is not parameterized, and serves as a lower bound of the
distribution of y*.
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Figure 7: Regression models optimized on samples of (y,+1,y*) for a given x,,11 with the trend
modeled by linear regression with Gaussian noise and varying formulations of its variance 2. (Left)
the variance is constant for all y,, 1. (Middle) the variance is a linear function of ¥,,4 ;. (Right) The
variance is a linear function of the best seen point max (g, y,+1). Unlike the Gamma and Exponential
distributions, these linear regression models are parameterized and sit within the (y,,+1, y*) samples,
thus the noise deviations may be positive or negative.
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Figure 8: Regression models optimized on samples of (y,+1,y*) for a given x,,11 with the trend
modeled by a piecewise linear regression (“ReLU”) with Gaussian noise and varying formulations of
its variance 0. (Left) the variance is constant for all y,, 1. (Middle) the variance is a linear function
of y,+1. (Right) The variance is a linear function of the best seen point max(%, y,+1). Unlike the
Gamma and Exponential distributions, these linear regression models are parameterized and sit within
the (yn+1,y™) samples, thus the noise deviations may be positive or negative.



B Derivations

B.1 ESLBO Lower Bound to MES

All expectations over y,, 1 are conditioned on known x, 11 = x and D,,.

MES(z) = E,, ., [Ey-[logp(y*|yni1)]]

Taking the term inside the expectation alone, we may lower bound it as follows

Ey-log p(y"lyns)] = / log (" [9n11)P (5" [gms1)dy"

= / (logp(y*yn+1) —log q(y" [yn+1) + logq(y*yn+1)>p(y*|yn+1)dy*
)

= KL(p()|[q(-)) + / 10g (4™ [yn+1)P(Y* [Ynt1)dy*

Y

> / log ¢(y* |Yn+1)P(Y " [Yn+1)dy”
Yy

*

= Ey-[logq(y" |[ynt1)]

where the inequality sign comes from removing the KL divergence term which is guaranteed to be
non-negative. As a result we have that

MES(z) = E,, ., [Ey-[logp(y*|yns1)]]

Ey, ., [Ey-[log ¢(y" |yn+1)]]
ESLBO(z)

Y

The tightness of the bound is the KL divergence from the true p(y*|-) to the approximate ¢(y*|-).

B.2 ESLBO is Minimum Mean Squared Error

Assume we have a dataset of (Z;, §;) points, assume we have a trend line g(Z) = mZ + ¢ and that
each 7 value is modeled as § = g(Z) + € where € ~ N(0, 02). The likelihood is given by

N
Lpsrpo() = log <HN@¢90(@)7 U2)> ®)
al 1 (9i — 96(7:))*
- S ( e () ©
Ny 1
- 21: — 5 log(2m0?) — 552 (i = 96(%:))° 0
N N [1&
= 5 log(2m0?) — 252 (N ;(ﬂz - 90(@))2> ®)
N N - -
= -3 log(270?) — T‘QMSE(}’,QG(X)) ©)

where X is the concatenated vector of input points and similar for y. If we set 2 = 1, ESLBO and
MSE differ by additive and multiplicative constants that do not vary with the dataset (Z;, ;) points.
In the greater BO context, each € X h has a corresponding bespoke dataset (y,,+1,y*) andif o = 1
for every x location, then the location with lowest MSE is the location with highest ESLBO. This
does not hold if we learn different o parameter for each x € X and in this work we consider learned
g.



C Implementation

C.1 VES with Maximum Likelihood Estimated Noise Parameters
Using the above proposed method to generate samples (y,,+1,y*), for any single 953-1 sample we

can generate many 3*(*/) samples. Consequently, we may learn an Exponential/Gamma/Gaussian
distribution to y* samples for a single ¥,,41 and not learn a function over y,, 4, for example

MLE(y"|yns1) = max [[N (" |ui, 00) (10)
j

HiTi

where the maximization simply yields the data empirical mean and variance in the Gaussian case.
The ESLBO becomes

1 1 3
ESLBO(z) = max Y " log N (y*9|p;, o). (11)
J

Ny, p oy iy

Thus the MC model makes no assumption about how the variance of y* changes with y,,4; and hence
has the most flexibility, but it does require multiple y* samples for each y,, 1 which can be unstable
for small sample sizes.

C.2 Regularized Shape Estimation for VES-Gamma

For VES-Gamma we estimate the Gamma shape k& > 0 at each z by first using the samples (y,,+1,y*)
to compute the individual noise values €

e(z) = y*(z) - max(yv ys#)»l)

Then we fit a single Gamma distribution to all these noise values, we first compute the following
quantity by Monte-Carlo

1 N .
log E[e] — E[log(€)] ~ ~ Z e — - Z]Og EONYN

where 7 is the number of samples. Then we may find a value for k by solving the following equation
log(k) — (k) — A =0. (12)

which may be solved using the Newton-Rhaphson method. Ideally, this solver is a monotonic iterative
computation converging to the ideal k. However this often becomes unstable especially when A =~ 0
as noted in previous work on VES-Gamma [15]]. The solution provided in the previous work is to
stabilize the estimate with simple Lo regularizer on k. Concretely, in this work we solve

min (log(k) — (k) - A)? 4+ Ak —1)2 (13)

which is ridge regularization centered at £ = 1, as the gamma distribution with £ = 1 corresponds to
the exponential distribution. The weight parameter X is set by the user, we perform parameter sweeps
below and see how the BO algorithm results change.

C.3 Hyperparameter tuning for VES-Gamma

We study the sensitivity of VES-Gamma to two implementation choices: the Adam step size 7 used
to maximize agsp o at each z, and the weight decay A applied to the Gamma shape parameter k via
the ridge penalty in Eq. (T3).
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Gamma can become numerically unstable in higher dimen- and weight decay A. With the ridge penalty
sions (d > 4), with the learned shape k£ growing very large in Equation (T3), VES-Gamma performance
(ill-conditioned updates). Introducing modest regularization can vary from matching EI to worse than
(A > 0) stabilizes training and yields performance competi- random search though is stable for regions
tive with EI. of the parameter space. VES-MC-Gamma

(Appendix [CI) is less sensitive to hyperpa-
rameters and typically performs better.

Figure 9: Hyperparameter effects for VES-Gamma. We keep the GP kernel and hyperparameters
fixed between the surrogate and the data-generating process, matching the setup in Appendix @

C.4 Efficiently Parallel Sampling (y,,.1,y*) Points

Given a GP model GP(u(x), k(x,2')|D,,) and a discrete set of points X C R? with |X| = N,
we evaluate the GP posterior mean and covariance function at the grid yielding a mean vector and
a covariance matrix ;4 € RV, Y € RV*N_ We use these to generate a sample function from the
multi-variate normal £ ~ A (p, 32) which requires Cholesky decomposition of 3 with complexity
O(N?). For a given index j € {1, ..., N'} corresponding to location z; € X, we can sample a point
pair (yn+1,y™) using Algorithm with cost O(IN). We generate n,,,, z-scores at uniformly spaced
quantiles of the Gaussian distribution Z with Z; = &~} (ﬁ) Parallelizing over all N locations

X, the ny,_ ., scores Z, and the n,~ sampled functions f alfows for GPU acceleration, see code in
Appendix@ and Github for a PyTorch implementation.

Algorithm 1: Updating a sampled function with one new data point

Input: mean i € RY, covariance ¥ € RV XN observation noise o> € R, sampled function
f € RY, index to modify i

Output: sample (y,+1,y")

Ynt1 = N(pi, S + %)

Yi < N(fla 02)

flef+ %‘;T;%i)&,:

y* < max(f’)

return (y,11,y°)
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Listing 1: Efficient sampling of (y,+1,y*) in Numpy, see Github for full implementation

def sample_ynl_ymax(
*,
y_mean: np.ndarray,
y_cov: np.ndarray,
y-noise_std: float,
n_ynl: int=10,
n_ymax: int=30,
batch_size: int=1e9,
noise_jitter: float=1le-9,
) -> np.ndarray:
wun
Given the mean and covariance of all the function values at all the x-locations,
for each x-location, sample y_{n+1} values, for each y_nl, we then sample n_ymax
full functions from a model fit to data that includess the new (x, y_nl) point
and then find the peak. This is vecotrised over all dimensions and the output is
a matrix of (n_x, n_ynl) values for y_nl and
a tensor of (n_x, n_ynl, n_ymax) sampled y_max values.

Args:
y_mean: np.ndarray, shape (n_x, 1)
y_cov: np.ndarray, shape (n_x, n_x)
y_noise_std: float, noise standard deviation of y values for the objective function.
n_ynl: int, number of y_nl values to sample for each x-location
n_ymax: int, number of functions to sample from the model
batch_size: int, number of x-locations to process in each batch
noise_jitter: float, noise to add to the covariance matrix

Returns:
y_nl_output: np.ndarray, shape (n_x, n_ynl)
y_funcs_output: np.ndarray, shape (n_x, n_ynl, n_ymax, n_x)
y_max_output: np.ndarray, shape (n_x, n_ynl, n_ymax)

y_funcs: np.ndarray, shape (n_x, n_ymax)
wan

y_mean = y_mean.reshape(-1, 1)

n_x = y_mean.shape[0] # total number of x -locations
bs = min(batch_size, n_x) # batch size

y_noise_var = y_noise_std**2

batch_idx_subsets = np.array_split(np.arange(n_x), n_x // bs)

# (n_x, n_x) square matrices
y_cov += noise_jitter * np.eye(y_cov.shapel[0])
chol_k = np.linalg.cholesky(y_cov)

f_var = np.diag(y_cov)[:, Nonel
y_nl_var = f_var + y_noise_var
y_nl_sd = np.sqrt(y_nl_var)

# (n_ymax, n_x) matrix, each row is one vector of y-values for the n_x

# locations generated from the model using current data

z_ymax = np.random.normal (size=(n_ymax, y_mean.shape[0]))

y_funcs = y_mean.T + z_ymax @ chol_k.T # (n_ymax, n_x)

y_n_funcs = y_funcs + y_noise_std * np.random.normal (size=(y_funcs.shape))

# (1, n_ynl) vector of z-scores for the y_nl values to be computed later
z_ynl = gaussian_bin_centers(n_ynl).reshape(l, n_ynl)

# output tensors to be filled with each minibatch and concat at the end

y_nl_output = [] # (n_x, n_ynl)
y_funcs_output = [] # (n_x, n_ynl, n_ymax, n_x)
y_max_output = [] # (n_x, n_ynl, n_ymax)

for batch_idx in batch_idx_subsets:

# generate y_{n+1} values for each x in this batch
y_mean_b = y_mean[batch_idx, :] # (bs, 1)

y_sd_b = y_nl_sd[batch_idx, :] # (bs, 1)

y_nl_b = y_mean_b + y_sd_b * z_ynl # (bs, n_ynl)

# (bs, n_x) each row is the delta to adjust a sample fun for one x in batch
fn_delta = y_cov[batch_idx, :] / y_nil_var([batch_idx, :]

# (bs, n_ymax), get the y-values from the sample funs at x locs in this batch
y_n_funcs_b = y_n_funcs[:, batch_idx].T

# (bs, n_ynl, n_ymax) <- (bs, n_ynl, 1) - (bs, 1, n_ymax)
# for each x in batch, get diff between

# (1) sampled funcs at x and
# (2) sampled y_nl vals at x
y_diffs = y_ni1_b[:,:, Nonel - y_n_funcs_b[:, None, :]

# (bs, n_ynl, n_ymax, n_x)
y_funcs_b = (
y_funcs[None, None, :, :] + # (1, 1, n_ymax, n_x)
(
y_diffs[:, :, :, Nonel * # (bs, n_ynl, n_ymax, 1)
fn_deltal[:, None, None, :] # (bs, 1, 1, n_x)
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y_nl_output.append(y_nli_b)
y_funcs_output.append (y_funcs_b)

y_nl_output = np.concatenate(y_nl_output, axis=0)
y_funcs_output = np.concatenate(y_funcs_output, axis=0)
y_max_output = y_funcs_output.max(axis=3)

return y_nl_output, y_funcs_output, y_max_output, y_funcs

12



	Introduction
	VES as 1-Dimensional Regression
	Experiments
	Conclusion
	Additional Figures
	Gaussian Processes with Noisy Objective Functions
	Heatmaps

	Derivations
	ESLBO Lower Bound to MES
	ESLBO is Minimum Mean Squared Error

	Implementation
	VES with Maximum Likelihood Estimated Noise Parameters
	Regularized Shape Estimation for VES-Gamma
	Hyperparameter tuning for VES-Gamma
	Efficiently Parallel Sampling (yn+1, y*) Points


