Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

META-PROMPT OPTIMIZATION FOR LLM-BASED
SEQUENTIAL DECISION MAKING

Mingze Kong', Zhiyong Wang?, Yao Shu®, Zhongxiang Dai'*

!The Chinese University of Hong Kong, Shenzhen, 2The Chinese University of Hong Kong,
3The Hong Kong University of Science and Technology (Guangzhou)
mingzekong@cuhk.edu.cn, zhiyongwangwzy@gmail,
shuyao95@gmail.com, daizhongxiang@cuhk.edu.cn

ABSTRACT

Large language models (LLMs) have recently been employed as agents to solve
sequential decision-making tasks such as Bayesian optimization and multi-armed
bandits (MAB). These works usually adopt an LLM for sequential action selection
by providing it with a fixed, manually designed meta-prompt. However, numer-
ous previous works have found that the prompt has a significant impact on the
performance of the LLM, which calls for a method to automatically optimize
the meta-prompt for LLM-based agents. Unfortunately, the non-stationarity in
the reward observations during LL.M-based sequential decision-making makes
meta-prompt optimization highly challenging. To address this challenge, we draw
inspirations from adversarial bandit algorithms, which are inherently capable of
handling non-stationary reward observations. Building on this foundation, we
propose our EXPonential-weight algorithm for prompt Optimization (EXPO) to au-
tomatically optimize the task description and meta-instruction in the meta-prompt
for LLM-based agents. We also extend EXPO to additionally optimize the ex-
emplars (i.e., history of interactions) in the meta-prompt to further enhance the
performance, hence introducing our EXPO-ES algorithm. We use extensive ex-
periments to show that our algorithms significantly improve the performance of
LLM-based sequential decision-making.

1 INTRODUCTION

The strong capabilities of LLMs have spurred significant recent interests in adopting them as agents
to solve sequential decision-making problems, such as multi-armed bandits (MAB) (Krishnamurthy
et al., [2024), Bayesian optimization (BO) (Yang et al., 2024) and reinforcement learning (RL) (Dai1
et al.| [2024)). Specifically, these methods often use an LLM to sequentially select the actions by
providing it with a specially designed prompt, which we refer to as the meta-prompt. The meta-prompt
often contains several components, such as the rask description, the meta-instruction (which is used
to instruct the LLM to select an action in every step), the history of interactions with the environment,
among others. The previous methods have all adopted a fixed, manually designed meta-prompt for
the LLM-based agent throughout the entire sequential decision-making process. However, numerous
previous works have highlighted that the output text generated by LLMs is heavily dependent on
its input prompt (Zhou et al.,|2023)). Therefore, using fixed, manually designed meta-prompt may
significantly limit the performance of the LLM-based agents, because handcrafted prompts are often
far from optimal (Lin et al., 2024b). This naturally begs the question: can we automatically optimize
the meta-prompt for LLM-based agents to enhance their performance?

The sensitivity of LLM-generated text to its input prompt has given rise to many recent works on
automated prompt optimization, among which a representative line of works have adopted the method
of multi-armed bandits (MAB) to automatically optimize the prompt (Lin et al., 2024b; Wu et al.,
2024; Lin et al., 2024a). Unfortunately, the problem of meta-prompt optimization for LLM-based
agents presents significant challenges compared to traditional prompt optimization. This is mostly due
to the non-stationarity in the observed rewards during the LLM-based sequential decision-making

*Corresponding author.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

process. Specifically, as the LLM-based agent engages in more interactions with the environment, its
state in the environment changes, making its observed rewards non-stationary. For example, in MAB
(Krishnamurthy et al.}[2024) and BO (Yang et al.,|2024), the observed rewards in later iterations (i.e.,
after the agent has accumulated significant experience in the environment) tend to be higher than those
obtained in initial iterations. Similarly, in RL (Dai et al.,|2024), rewards are typically dependent on
both the state and action. However, since the state of the LLM-based agent evolves across iterations,
this also results in non-stationarity in the observed rewards. As a consequence of the non-stationarity,
for the same meta-prompt (e.g., the same task description and meta-instruction), its corresponding
observed reward is highly likely to be dynamically changing across different iterations. This is in
stark contrast to classical prompt optimization, in which the reward or score for a prompt remains
stationary across iterations. As a result, this renders the previous works on prompt optimization (such
as those based on MAB (Lin et al.| [2024bj [Wu et al.,|2024)) inapplicable, and hence calls for novel
algorithmic designs to solve the problem of meta-prompt optimization for LLM-based agents. To this
end, we draw inspirations from the field of adversarial bandits (Lattimore & Szepesvari, [2020).

In adversarial bandits, for each arm, the reward observations when the arm is pulled are chosen
by an adversary, i.e., they are allowed to change in an arbitrary way across different iterations.
Therefore, the reward observations can be significantly non-stationary. This is considerably different
from classical stochastic MAB, in which the reward observations for an arm are sampled from a
fixed stationary distribution. Therefore, the ability of adversarial bandits to handle non-stationary
reward observations makes it an ideal candidate for meta-prompt optimization for LLM-based agents.
Specifically, drawing inspirations from the EXP3 algorithm for adversarial bandits, we introduce our
EXPonential-weight algorithm for prompt Optimization (EXPO) to optimize the task description and
meta-instruction in the meta-prompt of an LLM-based agentﬂ

In addition to the task description and meta-instruction, the history of interactions with the envi-
ronment (which we also refer to as the exemplars) is also a crucial component in the meta-prompt
which exerts a considerable impact on the performance of LLM-based agents. Existing works often
adopt simple heuristic approaches to decide how to incorporate the exemplars into the meta-prompt,
including which subset of exemplars is included and their ordering in the meta-prompt. Previous
works on in-context learning (ICL) have found that in addition to their contents, the ordering of the
exemplars also has a significant impact on the performance of LLMs (Lu et al., [2022). Therefore, in
addition to optimizing the task description and meta-instruction, we also extend our EXPO algorithm
to additionally optimize both the subset of exemplars included in the meta-prompt and their ordering.
However, the optimization of the task description and meta-instruction in every iteration in our
EXPO makes the optimization of exemplars non-stationary as well. Specifically, for the same subset
of exemplars with a fixed ordering, their reward observations are usually non-stationary, because the
task description and meta-instruction selected by our EXPO algorithm are highly likely to vary across
different iterations. To this end, we extend our EXPO algorithm to additionally use a separate adver-
sarial bandit method to optimize the exemplars (i.e., the interaction history) in the meta-prompt for
LLM-based agents, and hence introduce our EXPO with Exemplar Selection (EXPO-ES) algorithm.

We use extensive experiments to show that our EXPO algorithm significantly improves the perfor-
mance of the LLM-based BO algorithm from |Yang et al.| (2024)) (Sec. @ and the LLM-based MAB
algorithm from [Krishnamurthy et al.|(2024)) (Sec. @ Furthermore, in tasks where the exemplars
provide crucial information for the LLM-based agent, our EXPO-ES algorithm further enhances the
performance of EXPO via automated exemplar selection (Sec.[4.T). We also perform ablation study
to unveil other interesting insights about our algorithms in Sec. [5}

2 PROBLEM SETTING

We use arms to represent meta-prompts, and use actions to denote the actions selected by an LLM-
based agent.

Consider an algorithm which uses an LLM to perform a sequential decision-making task by sequen-
tially instructing the LLM to select an action in every iteration. A representative example of such
algorithms is the Optimization by PROmpting (OPRO) algorithm from Yang et al.| (2024). OPRO

"Note that although here we only consider optimizing the task description and meta-instruction, the other
components contained in the meta-prompt (e.g., some information from previously completed related tasks) can
also be optimized in a similar fashion.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Q=(D.I.£) LLM Agent (@ LLM-Based Action Selection
Now you will help me minimize a [)
function with two input variables w, b. g
* I have some (w, b) pairs and
the function values at those points. ' ' </> @ D, @ Z
The pairs are
*********** Evaluator o dnput o _mput___ _ _ _
input [zl .
w=18, b=15 » » Observe the score » Embegdllng
value: and update the moce
Anew (w, b) pair is
10386334 exemplarset 0o —_— = — = —— — — — —
e e 00000 00000
+ Give me a new (w, b) pair that is SR D v
different from all pairs above, Th.TI LL:VI ?%:m =& V{(x,s)} g@) o g)
and has a function value lower Wil SIS 8. =8 Ul(D)®2(T)5}
than any of the above. Do not .. next action =S, Ui(g &(L)).s,
x,=/(Q)

———
(@ Randomized Meta-Prompt Selection (@ Score Estimation
Predict the arms’ scores using the NN Update parameters of the NN

(] . »
Calculate the sampling distribution: 6,., =argmin, Lse (6:5,.,)
~i)
| - vietb
000 Yexp(ns;) ‘ «
1 D) Kk A 3 \V4
5 D he distribution >
é @ E t(:"::": ?e :new i Update the cumulative X
a @ E P : predicted scores of the arms: L&
DT~ E

A1)
si ,Vie{l,... .k}

Figure 1: Illustration of our EXPO algorithm. We use purple to denote the task description and blue
to represent the meta-instruction.

aims to solve an optimization problem, i.e., to find z* = arg min,, f(z). To achieve this, in every
iteration ¢, OPRO uses an LLM to select a batch of B input queries {z;,1, . . ., 2+ 5 }, after which their
corresponding scores {s; 1, ..., s g} are observed. When instructing the LLM to select the input
queries, the meta-prompt Q given to the LLM contains a number of important components, including
a fixed task description D, a fixed meta-instruction I, and a sequence of exemplars &, corresponding
to a subset of the observations (i.e., pairs of input queries and observed scores) collected so far. The
same paradigm of LLM-based sequential decision-making has also been adopted by other works,
such as the LLM-based MAB algorithm from [Krishnamurthy et al.|(2024) (more details in Sec. @

In this work, our first algorithm, EXPO (Sec. [3.1)), dynamically optimize the task description D
and meta-instruction Z (i.e., selects a new D, and Z; in every iteration t), in order to improve the
efficiency and effectiveness of optimization. We also extend our EXPO to derive the EXPO-ES algo-
rithm (Sec.[3.2)), which additionally optimizes the sequence of exemplars &; to further improve the
optimization performance. We use ¢(-) to denote a pre-trained embedding function, which maps some
input text to its corresponding continuous representation. We separately obtain the embeddings of the
task description g(D;), the meta-instruction g(Z;) and the exemplar sequence g(&;). Based on the
embeddings, in every iteration, we use the current history of selected meta-prompts and their scores
to train a neural network (NN), which can then be used to predict the scores of every meta-prompts in
the domain. We denote this NN as M (g(-); #), in which 0 represents the NN parameters.

Adversarial Bandits. In adversarial bandits, the goal is to compete against the best arm in hindsight
(Lattimore & Szepesvari, [2020). Consider an MAB problem with k arms (i.e., meta-prompts). For
eacharmi =1, ..., k, denote its corresponding sequence of rewards (i.e., scores) in 7 iterations as
{rt,i}t=1,.... 7. The best arm in hindsight is then defined as i* = arg max;_q . p Zthl r¢ . Then,
the goal of an adversarial bandit algorithm (which selects arm A, in iteration t) is to minimize the

following definition of regret: Ry = Y1 71is — 01—y Tt.A,-

Adversarial Bandits for LLM-Based Agents. LL.M-based sequential decision-making methods
often aim to maximize either (a) the cumulative rewards (e.g., the LLM-based MAB algorithm from
Krishnamurthy et al.| (2024)) or (b) the final reward (e.g., OPRO from |Yang et al.[(2024)). In the
former case of cumulative reward maximization, the overall rewards/scores for the best arm i* are
higher than the other arms. In the latter case, we implicitly assume that the arm with the largest final
reward after 7" iterations also has large rewards across all iterations in general. As a result, in both
cases, the observed rewards of an arm (i.e., the observed scores of a meta-prompt) in every iteration
are indicative of the quality of the arm (i.e., the meta-prompt). So, when training the NN M (g(-); 6)
(for score prediction) using the history of the selected meta-prompts and their observed scores, we

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

simply use the scores (i.e., rewards) as the labels in the training set. This simple design helps our
algorithms achieve strong performance in our experiments (Sec. F).

3 ALGORITHMS
3.1 THE EXPO ALGORITHM (ALGO.|[I]

Our EXPO is used to dynamically optimize the task description D and the meta-instruction Z.

Domain Generation. At the beginning of our algorithm, we start by generating the domain of task
descriptions and meta-instructions. Following the previous works on prompt optimization (Zhou
et al.,|2023; |Lin et al., 2024ajb), we use an LLM to rephrase an initial task description Dy (resp. initial
meta-instruction Zg) to generate a domain of k; task descriptions (resp. ko meta-instructions). This
results in a domain size of k& = k; x ko. We defer more details on domain generation to App. We
treat the combination of a task description D and a meta-instruction Z in the domain as an arm, i.e.,
our adversarial bandit problem has &k arms. In addition to jointly optimizing D and Z, we have also
evaluated the performance of optimizing them separately. The results show that jointly optimizing
these two components leads to better performance.

(O LLM-Based Action Selection (lines 3-7 of Algo. [T). At the beginning of every iteration ¢, we
firstly use the current task description Dy, meta-instruction Z; and exemplar sequence &/ selected at
the end of the last iteration ¢ — 1 (more details below) to construct a meta-prompt Q; = (D;,Z;, E})
(line 3). Then, we use Q; as the input prompt to the LLM f(+) to select the next action x; and collect
its score s; (lines 4-5). After that, we update the set of exemplars &£; and the meta-prompt-score set
S; (lines 6-7).

(@ Score Estimation (lines 8-9). In the classical EXP3 algorithm for adversarial bandits with a
finite number of arms, the cumulative sum of the observed rewards of every arm is used to construct
the arm sampling distribution through an exponential-weight mechanism (Lattimore & Szepesvari,
2020). However, in problems where the number of arms is excessively large (e.g., our problem of
meta-prompt optimization), the reward observations for many arms are not available. Therefore, the
cumulative sum of the estimated rewards of every arm is often used instead to construct the sampling
distribution (Lattimore & Szepesvari, |2020). Therefore, we firstly estimate the scores of all £ arms
(i.e., meta-prompts) in the domain and then use these score estimates to derive an arm sampling
distribution for our EXPO. A number of recent works have shown that using a neural network (NN)
(which takes the pre-trained embedding ¢(-) as input) for score/reward estimation leads to powerful
prompt optimization algorithms (Lin et al.| [2024ajb; [Wu et al.| [2024). Therefore, we also adopt
an NN M(g(-); @) for score estimation in our EXPO. Specifically, in every iteration ¢, we use the
history of selected meta-prompts and their scores, denoted as S;11 (line 7 of Algo. [T, to train an
NN by minimizing the mean-squared error (MSE) loss (line 8 of Algo.[I)). The trained NN with
parameters 6,1 can then be used to estimate the score of every arm (i.e., every combination of task
description and meta-instruction) in the domain. For every arm, its estimated score is then added to
its corresponding cumulative sum of score estimates §Et+1) (line 9 of Algo. . Note that every term

. . L(t+1
in the cumulative sum 55 + represents our score estimate for arm ¢ in a particular iteration t, i.e.,

our estimated score for arm ¢ from an NN trained using the observation history up to iteration t. The

updated cumulative sums of score estimates §§t+1) for all k£ arms are then used for randomized arm

(i.e., meta-prompt) selection, which we discuss next.

(® Randomized Meta-Prompt Selection (lines 10-12). After the cumulative sum § EHI) of every arm

1 is updated, we follow the EXP3 algorithm (Lattimore & Szepesvaril 2020) and use the cumulative
sums to construct a distribution following Equation equation [2} Then, we use this distribution to
randomly sample the next arm, i.e., the next task description D;; and meta-instruction Z;; (line 11
of Algo.[I)). Randomization is a key principle in adversarial bandits (Lattimore & Szepesvari, [2020),
and the randomization involved in our arm selection strategy is crucial for the ability of our EXPO to
deal with non-stationary reward observations. The heuristic to select a sequence of exemplars &7,
(line 12 of Algo.[I) is often specified by the LLM-based sequential decision-making algorithm (Yang
et al., 2024). We discuss more details on this, as well as the extension of our EXPO algorithm to
automatically select &, 11, 1in Sec.

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Algorithm 1 EXPO

input : Initial task description Dy, initial meta-instruction Z.
1: Initialize the exemplar set & = 0, and the subset £, = (), meta-prompt-score set Sy = (, and

cumulative score estimates §§0) =0foralli € {1,...,k}.

2: for iterationt =0,1,...,7 — 1do

3: Construct meta-prompt Q; = (Dy, Iy, £7).

4: Query the LLM f(-) using the meta-prompt Q; to select the next action z;: x; = f(Qy).

5: Observe the score s; for x; using the task-specific evaluator: s; = £(x).

6: Update the exemplar set £r11 = & U { (x4, s¢) }-

7: Update the meta-prompt-score set Sy41 = S; U {([9(Ds) ® g(Z¢)] , s¢)}, where g(-) denotes
the embedding function and & denotes concatenation.

8: Update the parameters ¢ of the neural network (NN) M (g(-); 8) by using the updated S;41 as
the training set to minimize the MSE loss, yielding 6; 1.

()

%

9: Update the cumulative score estimates §

M(g(-); 0r11):

for all arms ¢ using the predicted scores from

G0 =80+ M([9(D) © 9(T0)] :000)
Vie{l,...,k}. @)
10: Compute the sampling distribution P; over all arms:

exp(ns)

k A1)y
Shexp(nsl)
11: Sample an arm (i.e., the combination of a task description and a meta-instruction) from F;:

(Dt+1aIt+1) ~ Pt-
12: Select a sequence of exemplars &/ ; from &, following a pre-defined heuristic method.

P,Ji] = Vie{l,... k} 2)

Exploitation vs. Exploration. Our EXPO algorithm is able to achieve a principled balance between
exploitation and exploration. The use of powerful pre-trained embedding and NNs allows us to

achieve accurate score estimates. Therefore, the cumulative score estimate §§t+1) (line 9 of Algo.
provides a reliable assessment of the quality of every arm i (i.e., every combination of task description
and meta-instruction). This ensures that an arm with a large score is given a large weight in the
sampling distribution P; (line 10) and hence leads to reliable exploitation. Meanwhile, the inherent
randomness in our randomized arm selection strategy ensures that enough exploration is performed
in the domain of meta-prompts.

Batch Action Selection. In the description of our EXPO (Algo.[I), although we select one action ;
in every iteration ¢, this can be easily generalized to select a batch of actions. For example, when
applying our EXPO to improve OPRO (Yang et al., [2024) (Sec. [4.1)), we follow the practice of OPRO
to select a batch of 8 actions/queries in every iteration (i.e., step 4 of Algo.|I)) and set the temperature
of the LLM to 1 to ensure the diversity of the selected actions. In order to obtain a noiseless and
reliable score to assess the quality of the meta-prompt Q;, we set the temperature to 0 when selecting
the last action and use its corresponding observed score as the score s, of Q; (line 5 of Algo.[I).

3.2 EXPO WITH EXEMPLAR SELECTION (EXPO-ES)

Previous works on LLM-based for sequential decision making often select the sequence of exemplars
&1 included in the meta-prompt Q, using a fixed pre-defined heuristic (line 12 of Algo. . For
example, OPRO includes the 20 exemplars with the highest observed scores in the meta-prompt,
arranging them in descending order based on their scores (Yang et al.| 2024); the LLM-based
MAB method from |[Krishnamurthy et al.| (2024) either includes all exemplars (ordered by their
iteration sequence) in the prompt or includes a summarized representation of all exemplars. However,
numerous previous works have reported that both the subset of exemplars and their ordering have
significant impacts on the performance of LLM (Wu et al.|[2024). Therefore, here we further extend
our EXPO (Algo. 1) to additionally optimize the sequence of exemplars &/ (i.e., to replace line

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

175|2 OPRO 300 0PRO 35 OPRO _70 b OPRO 140 OPRO
_ - OPRO (Enhanced) _ - oPRO (Enhanced) | T 30| P <0 orRo (ennanced) | B go! | - OPRO (Enhanced) | <150 O~ OPRO (Enhanced)
5150 -©- ExPO §250 - ExpO =04 -©- EXPO Sl b -0- ExP0 £ -©- EXPO
G125) $so & EXPOES & \ & EXPOES g25 4 - EXPO-ES gs0) & W= EXPOES 21001 - EXPOES
= e “200] Vs 8 N S0l N 8 s
§100 _\ ~——e—_. Siso] N V== 220) I >) > 80
PRSI § AN St IR SLRLY 5300 31 S 60
2 50 "-‘*-‘ 5100 S . E10) W, £20 ‘:‘_“9—\-9____6 £ -"'a\
g DR g e mmem | 55 \-mw _griguzi| S10 Vo e |8 5, '*:_.g:—_—_g_———-
o o ok S L] of T Aeens o = g & > 0 e g =z,
0 10 20 30 40 50 0 10 20 30 40 50 0 25 50 75 10 0 50 100 150 0 50 100 150 200 250
Iteration Iteration Iteration Iteration Iteration
Linear Regression Linear Regression TSP TSP TSP
(w=2,b=30) (w=236,b=-1) (10 Nodes) (15 Nodes) (20 Nodes)

Figure 2: Results of different algorithms (mean + standard error) in the Linear Regression and TSP
task (Sec.[£.1)). Lower is better.

12 of Algo. by an automated method to select &/ ;), hence introducing our EXPO-ES algorithm
(Algo.[2] App.[A).

As aresult of the dynamically changing task description and meta-instruction, the optimization of
exemplar sequences becomes non-stationary as well. Therefore, we also dynamically optimize the
exemplar sequence based on the EXP3 algorithm for adversarial bandits. That is, in every iteration of
our EXPO-ES algorithm (Algo. [2), we firstly optimize the task description and meta-instruction (i.e.,
followEiilg lines 3-11 of Algo. , and then optimize the exemplar sequence &£/, ; in a similar way to
Algo.

Details of EXPO-ES (Algo. 2). Specifically, after the task description and meta-instruction are
optimized (i.e., after lines 3-11 of Algo. [T), we firstly extract the embedding of the exemplar sequence
&/ used in this iteration: g(&/), and add (g(&7), s;) to the exemplar training set T;11 (line 4 of
Algo. . Next, the updated dataset 741 is used to train an NN with parameters 6}, (line 5), which
is able to estimate the score of any exemplar sequence. Subsequently, we randomly sample kFS
exemplars sequences, each containing £ exemplars, to be used as our domain of exemplar sequences
(line 8). Next, for every candidate exemplar sequence in the domain, we need to obtain its cumulative
score estimate (similar to line 9 of Algo.[I). Unfortunately, due to the time-varying nature of the
domain of exemplar sequences (due to the addition of new exemplars and random sampling of
exemplar sequences), we are no longer able to constantly maintain a cumulative score estimate for
every exemplar sequence (i.e., arm) and update it in an incremental way. To this end, we save the
parameters of the trained NN in every iteration in history; then for each sampled exemplar sequence
in the domain, we obtain its score estimates from all NNs in the history and use their sum as the
cumulative score estimate for this exemplar sequence (lines 9-14 of Algo.[2). Next, the cumulative
score estimates for all exemplar sequences are used to compute the sampling distribution, from which

the next exemplar sequence &}, ; is sampled and used to the meta-prompt in the next iteration (lines
15-16).

4 EXPERIMENTS

We firstly apply our algorithms to improve the performance of OPRO in the Linear Regression (LR)
and traveling salesman problem (TSP) tasks, adopting the same experimental setting as|Yang et al.
(2024} (Sec. . Then, we use our algorithms to enhance the performance of the LLM-based MAB
algorithm from |[Krishnamurthy et al.| (2024).

4.1 LINEAR REGRESSION AND TRAVELING SALESMAN PROBLEM

For both tasks here, we adopt GPT-3.5-Turbo as the LLM.

Linear Regression (LR). In the LR task, our goal is to find the optimal LR coefficients, w and b,
that best fit a set of given noisy observations. We firstly choose the groundtruth LR coefficients
Wirge aNd byrye, and use them to generate noisy observations for 50 inputs which are randomly and
uniformly selected within [—1, 1]. Specifically, for each input z, we generate its noisy observation
as Y = Wyue® + byye + € Where € is a Gaussian noise. We adopt the two most challenging choices
of coefficients from |Yang et al.[(2024): (1) wyye = 2, byye = 30 and (2) wyye = 36, byye = —1. In
this task, OPRO aims to find the optimal w and b which minimizes the regression error (i.e., mean
squared error).

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

OPRO EXPO
Now you will help me minimize a We will collaborate to optimize a function involving two parameters, \(w\) and
function with two input variables w, b. \(b\). T possess a set of data points, each consisting of \((w, b)\) pairs and their
I have some (w,b) pairs and the corresponding function values. These pairs are systematically organized in reverse
function values at those points. The order, starting from the greatest to the smallest function values. Essentially, the lower
pairs are arranged in descending order the function value, the more optimal or preferable the pair. Consequently, our goal is to
based on their function values, where identify and analyze the \((w, b)\) pair that manifests the lowest function value, as this
lower values are better. represents the perspective of optimum efficacy.
{EXEMPLARS} {EXEMPLARS}
Give me a new (w,b) pair that To enhance the quality and expand on the existing instructions, follow these
is different from all pairs above, and improved guidelines vis-a-vis designing a new and distinctive numerical pair: ensure
has a function value lower than any the selected (w, b) combination diverges from prior examples and secures a function
of the above. Do not write code. The output lower than preceding values. Key details on methodology or calculations are not
output must end with a pair [w, b], required—just ensure clarity in presenting a returned value that closes with the specific
where w and b are numerical values. format [w, b], where both w and b are distinct numerical figures.

Figure 3: The task description and meta-instruction used by OPRO (left) and optimized by our
EXPO (right) in a Linear Regression task.

Traveling Salesman Problem (TSP). In the classical TSP problem (Jiinger et al.l [1995)), given a set
of n nodes with their coordinates, the objective is to find the shortest route that starts from a given
node, traverses all nodes exactly once, and finally returns to the starting node. Therefore, our goal is
to solve a discrete optimization problem in which the input variable is a trajectory and the goal is to
minimize the total distance of the trajectory. We adopt TSP instances with 10, 15, and 20 randomly
generated nodes, respectively, which represent increasing levels of difficulty.

The results for both tasks are shown in Fig.[2] which plot the regression error (i.e., mean squared error)
for the LR tasks and optimality gap (i.e., the difference between the total distance of the discovered
route and that of the optimal route) for the TSP tasks (lower is better for both tasks). Of note, in
addition to the standard OPRO (pink curves) (Yang et al.;2024)), we have also proposed an enhanced
variant of OPRO (green curves) in which we added some further clarifications to the task description
(see App.[B.2.5|for more details). The enhanced variant consistently improves the performance of
the standard OPRO (Fig. E| More importantly, the results in Fig. 2| show that in all tasks, our
EXPO algorithm (blue curves) significantly and consistently outperforms OPRO, including both
standard OPRO and its enhanced variant. This demonstrates that our meta-prompt optimization
approach, grounded in adversarial bandits, leads to more efficient (i.e., faster convergence) and more
effective (i.e., improved final performance) LLM-based sequential decision-making.

10{[— BssnD — BsscD — BssND 10{(—essco

— EXPO

=
°

g o = toes g g g
& & s & &
g6 2 e g
B z£° B K]
3 2 3, 3 3
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Iteration Iteration Iteration Iteration
BSSND (easy) BSSCD (easy) BSSND (hard) BSSCD (hard)

Figure 4: Cumulative regret of different algorithms in the LLM-based MAB experiments (Sec. 4.2).
Lower is better.

Meanwhile, our EXPO-ES algorithm, which is additionally equipped with automated exemplar
selection, considerably improves the performance of EXPO in the LR tasks yet performs on par
with EXPO in the TSP tasks. This is likely because the exemplars play a more important role in
the LR tasks than the TSP tasks. Specifically, in LR, the input-output exemplars provide important
information for identifying the optimal LR coefficients (Wu et al.,[2024)). Therefore, selecting better
exemplars (via our EXPO-ES) brings significant performance boost. On the other hand, in the TSP
tasks, due to the challenging nature of the tasks, it is difficult for the LLM to infer crucial and useful
information from the exemplars. Therefore, the other components in the meta-prompt (i.e., the task

2As discussed in the last paragraph of Sec. we have slightly modified OPRO to select the last action in
the batch using a temperature of 0. We empirically show that this leads to comparable performance with the
original OPRO which uses a temperature of 1 to choose all 8 actions (see Fig. |E|in App. @)

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

description and meta-instruction) provide more useful information in the TSP tasks. As a result,
selecting better exemplars does not lead to noticeable performance gains in the TSP tasks. Fig.
provides an illustration of the original task description and meta-instruction used by OPRO and those
discovered by our EXPO algorithm for the LR tasks, whereas the corresponding meta-prompts for the

TSP tasks are displayed in Fig.[I6]in App.

4.2 LLM-BASED MULTI-ARMED BANDITS (MAB)

The work of |[Krishnamurthy et al.| (2024) has used an LLM to sequentially select the arms/actions in
MAB and proposed methods to manually design the meta-prompt. Their prompt design consists of
5 components with each having 2 possible choices, which gives rise to a total of 2° = 32 possible
prompts. Here we show that our algorithms can be used to automatically optimize their manually
designed prompts to further enhance their performance. Specifically, we adopt 2 of their prompt
designs: BSSND and BSSCD, and apply our EXPO and EXPO-ES algorithms to optimize the
important components in these prompt designs. Following |Krishnamurthy et al.| (2024)), we use
two MAB instances: easy and hard. We adopt GPT-4-Turbo as the LLM here. More details on the
experimental design are deferred to App.[B.3.1] The results for the 4 experimental settings (i.e., 2
prompt designs x 2 MAB instances) are shown in Fig. |4} which demonstrate that our EXPO and
EXPO-ES algorithms are able to significantly reduce the cumulative regret of MAB in this task across
different prompt desings and MAB instances. We illustrate the comparison between the original
meta-prompt and the one optimized by our EXPO in Figs. [T7|and [I8]in App.

5 ABLATION STUDY

Only Optimizing Task Description or Meta-Instruction. Our EXPO jointly optimize the task
description D and the meta-instruction Z. Here we evaluate the performance of optimizing either D
or Z alone. The results in Fig. [5|show that jointly optimizing them indeed leads to significantly better
performance. However, optimizing these components alone still consistently outperforms OPRO.

=B~ Neural UCB
« 250 -6~ EXPO

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration Iteration Iteration

w=2,b=30 w=36, b=—1 Linear Regression Linear Regression
(w=36, b=-1) (w =2, b=30)
Figure 5: Results of our EXPO when only))]
optimizing the task description or the meta- Figure 61_ Comparison of our EXPO with Neu-
instruction. ralUCB (i.e., a representative stochastic MAB

algorithm) in the LR tasks.

Comparison with Stochastic MAB Algorithms: Upper Confidence Bound. Classical stochastic
MARB algorithms, such as those based on upper confidence bound (UCB), have been applied to prompt
optimization in a number of recent works (Lin et al.,[2024azb; |Wu et al.| 2024) and yielded strong
performance. However, as we have discussed in Sec. |1} in meta-prompt optimization for LLM-based
sequential decision-making, the non-stationary reward observations render these stochastic MAB
methods unsuitable. Here we verify this by comparing our EXPO with the NeuralUCB algorithm
adopted by |Lin et al.| (2024b); Wu et al.| (2024)). The results for the Linear Regression tasks are
displayed in Fig.[6| which show that NeuralUCB indeed significantly underperforms in the problem
of meta-prompt optimization for LLM-based agents. The results for the TSP tasks are consistent with
the results here (Fig.[I9]in App.[C.5). These results provide further justifications for our proposed
adversarial bandit-based algorithms.

Impact of the Degree of Exploration. Here we examine the impact of the degree of exploration, i.e.,
the value of 7 (see line 10 of Algo.[I). The results (Fig.[7) show that an excessively large degree of
exploration (i.e., a small = 10) or an overly small degree of exploration (i.e., a large n = 1000)
both deteriorate the performance. Moreover, the results also demonstrate that in easier tasks (i.e., TSP
with 10 nodes), imposing a smaller degree of exploration (i.e., » = 1000) leads to better performance

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

-
5
S

35 B EXPO (eta=1000) 70 5 EXPo (eta-1000) 140 -5 EXPO (eta=1000) OPRO (Enhanced, GPT-d-turbo)
=6~ EXPO (eta=100) -6- EXPO (eta=100) —8~ EXPO (eta=100) ® A= EXPO (GPT-d-turbo)
30 == EXPO (eta=10) 60 i EXPO (eta=10) 120 —A— EXPO (eta=10) OPRO (Enhanced)

\ - X0

-
IS
>

S
3

% g £100
('i 40 § 80 LE 80 %
220 2 2 40 —~=coe,
o o 40)
10 2 20 A.‘
0 0 et ettt
0 20 40 60 80 100 0 50 100 150 0 50 100 150 200 250 300 0 20 40 60 80
Iteration Iteration Iteration Iteration
TSP TSP TSP TSP
(10 nodes) (15 nodes) (20 nodes) (20 Nodes, GPT-4-Turbo)

Figure 7: First three figures: ablation study on impact of exploration parameter 7. Rightmost figure:
results using GPT-4-Turbo.

compared to n = 10, because it allows our EXPO to quickly converge to the optimal solution. On
the other hand, in more challenging tasks (i.e., TSP with 20 nodes), more exploration (i.e., n = 10)
results in better performance (than 77 = 1000), because it makes it easier for our EXPO to escape
local optimum.

Experiments With Other LLMs. To evaluate the effectiveness of our approach when combined with
different LLMs, here we adopt the challenging TSP task with 20 nodes and replace the GPT-3.5-Turbo
model used in our original experiments (Sec. by the more advanced GPT-4-Turbo model. The
results in Fig. [/] (rightmost figure) show that the use of the more advanced GPT-4-Turbo model
significantly improves the performance of both OPRO and our EXPO. More importantly, as visualized
more clearly in Fig. [I3]in App. when both adopting GPT-4-Turbo, our EXPO still significantly
outperforms OPRO. The results show that our EXPO can effectively improve the performance of
LLM-based agents across different LLMs.

Effectiveness of the Optimal Prompt Discovered by EXPO. To further verify the ability of our
EXPO to identify effective meta-prompts, here we replace the original task description and meta-
instruction in an LLM-based sequential decision-making algorithm (e.g., OPRO) by the optimal ones
discovered by our EXPO. For example, for ORPO, we firstly run our EXPO to completion, and then
use the final meta-prompt selected by our EXPO as the meta-prompt to execute OPRO again. The
results in Fig. [§ show that fixing the meta-prompt to be the one optimized by our EXPO leads to
dramatic performance boost to LLM-based sequential decision-making.

1 350 140
— essno 10{[— Bssco oprO orRO
— EXPO — EXPO 300 =©- OPRO (Enhanced) =0~ OPRO (Enhanced)
8||—— BSSND (Prompt Optimized by EXPO) —— BSSCD (Prompt Optimized by EXPO) -©- EXPO 1201 14 -©- EXPO
% 5 8 L 250] & -4 OPRO (Prompt Optimized by EXPO) | &) '|'| ~#— OPRO (Prompt Optimized by EXPO)
&6 2 4 8 R
v] 5 8ol 1Y,
2 5 2 2 dy
= K K T 60 1
4 14 (Y
E i g £ Rty
3 3 o« § 40 ~ 0%
2 2 AR =1
© R
20 40 60 80 100 20 40 60 80 100 0 0 50 100 150 200 250
Iteration Iteration Iteration Iteration
Linear Regression TSP
BSSND (hard) BSSCD (hard)
(w=236, b=—1) (20 Nodes)

Figure 8: Results achieved by fixing the meta-prompt to be the optimal one discovered by our
EXPO (gray curves).

6 RELATED WORK

Prompt Optimization. The field of prompt optimization has been gaining significant popularity
recently. Earlier works on this topic have focused on optimizing the prompt for white-box LLMs|Shin
et al.| (2020); Shi et al.| (2023)); [Lester et al.| (2021); |L1 & Liang| (2021); [Zhong et al.| (2021)); Deng
et al.| (2022). More recently, a number of works have developed prompt optimization methods for
black-box LLMs (Chen et al.| (2023));Zhou et al.|(2023)); [Fernando et al. (2023); Guo et al.| (2024); Hu
et al.[(2024); Lin et al.| (2024b); Zhan et al.| (2024); Juneja et al. (2024);|Wang et al.| (2023b)); Kong
et al.[(2024); Schneider et al.|(2024); Shi et al.|(2024)). In addition, some recent works have focused
on automatically selecting the exemplars for in-context learning Wang et al.|(2023a)); Chang & Jia
(2023); |L1 & Qiu|(2023);|Zhang et al.|(2022); Nguyen & Wong|(2023); [Albalak et al.|(2024); Ye et al.
(2023)); IL1u et al.| (2022);|Gao et al.|(2024); |[Rubin et al.| (2022); |Ye et al.[(2023); |[Levy et al.|(2023);

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Gupta et al.| (2023), whereas a few methods have been proposed to jointly optimize the prompt and
select the exemplars [Opsahl-Ong et al.|(2024); Wan et al.| (2024); Wu et al.[|(2024). However, to
the best of our knowledge, our algorithm is the first approach that is able to efficiently optimize the
meta-prompt for LLM-based agents in sequential decision-making tasks.

LLM-Based Sequential Decision-Making. Some recent works have proposed to leverage the strong
capability of LLMs to solve sequential decision-making tasks, such as Bayesian optimization |Yang
et al.| (2024), multi-armed bandits [Krishnamurthy et al.| (2024); Xia et al.|(2024); [Chen et al.| (2024);
Mukherjee et al.|(2024)), and reinforcement learning |Dai et al.|(2024); Monea et al.| (2024); Wang et al.
(2024a). However, these works often provide a fixed manually designed meta-prompt to the LLM, and
are hence unable to fully unleash the potential of LLM-based sequential decision-making. The field
of LLM-based agents has seen a surging interest recently, for which a number of benchmarks have
been proposed |Liu et al.|(2023); |Wu et al.[(2023)); Xi et al.[(2024)). We defer more a comprehensive
discussion of LLM-based agents to recent surveys on this topic (Cheng et al.| (2024)); [Wang et al.
(2024b); Xi et al.| (2023).

7 CONCLUSION

In this work, we have proposed our EXPO algorithm to automatically optimize the meta-prompt for
LLM-based sequential decision-making tasks. We further extend our EXPO to derive the EXPO-ES al-
gorithm, which additionally optimizes the exemplars in the meta-prompt. Our algorithms use neural
networks to estimate the scores of different meta-prompts and sequentially selects the meta-prompts
in a randomized fashion based on adversarial bandits. We use extensive experiments to show that
our algorithms considerably and consistently improve the performance of LLM-based sequential
decision-making.

REFERENCES

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
Tatsunori Hashimoto, and William Yang Wang. A survey on data selection for language models.
arXiv:2402.16827, 2024.

Ting-Yun Chang and Robin Jia. Data curation alone can stabilize in-context learning. In Proc. ACL,
pp. 8123-8144, 2023.

Dingyang Chen, Qi Zhang, and Yinglun Zhu. Efficient sequential decision making with large
language models. arXiv preprint arXiv:2406.12125, 2024.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. InstructZero: Efficient
instruction optimization for black-box large language models. arXiv:2306.03082, 2023.

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong, Wenhao Li, Zihao
Wang, Zekai Wang, Feng Yin, Junhua Zhao, et al. Exploring large language model based intelligent
agents: Definitions, methods, and prospects. arXiv preprint arXiv:2401.03428, 2024.

Zhenwen Dai, Federico Tomasi, and Sina Ghiassian. In-context exploration-exploitation for rein-
forcement learning. arXiv preprint arXiv:2403.06826, 2024.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with reinforcement
learning. In Proc. EMNLP, pp. 3369-3391, 2022.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktischel.
Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv:2309.16797, 2023.

Lingyu Gao, Aditi Chaudhary, Krishna Srinivasan, Kazuma Hashimoto, Karthik Raman, and Michael
Bendersky. Ambiguity-aware in-context learning with large language models. arXiv:2309.07900,
2024.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In Proc. ICLR, 2024.

10

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Shivanshu Gupta, Matt Gardner, and Sameer Singh. Coverage-based example selection for in-context
learning. In Proc. EMNLP, pp. 13924-13950, 2023.

Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiangqiang Lin, Zhongxiang Dai, See-Kiong
Ng, and Bryan Kian Hsiang Low. Localized zeroth-order prompt optimization. In Proc. NeurIPS,
2024.

Gurusha Juneja, Nagarajan Natarajan, Hua Li, Jian Jiao, and Amit Sharma. Task facet learning: A
structured approach to prompt optimization. arXiv preprint arXiv:2406.10504, 2024.

Michael Jiinger, Gerhard Reinelt, and Giovanni Rinaldi. The traveling salesman problem. Handbooks
in operations research and management science, 7:225-330, 1995.

Weize Kong, Spurthi Amba Hombaiah, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky.
Prewrite: Prompt rewriting with reinforcement learning. arXiv preprint arXiv:2401.08189, 2024.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? arXiv preprint arXiv:2403.15371,2024.

Tor Lattimore and Csaba Szepesvari. Bandit algorithms. Cambridge University Press, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proc. EMNLP, pp. 3045-3059, 2021.

Itay Levy, Ben Bogin, and Jonathan Berant. Diverse demonstrations improve in-context compositional
generalization. In Proc. ACL, pp. 1401-1422, 2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582-4597, 2021.

Xiaonan Li and Xipeng Qiu. Finding support examples for in-context learning. In Proc. EMNLP, pp.
6219-6235, 2023.

Xiaogiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, and Bryan Kian Hsiang
Low. Prompt optimization with human feedback. arXiv preprint arXiv:2405.17346, 2024a.

Xiaoqgiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
Jaillet, and Bryan Kian Hsiang Low. Use your INSTINCT: Instruction optimization using neural
bandits coupled with transformers. In Proc. ICML, 2024b.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3? In Proc. DeeLIO: Deep Learning Inside Out, pp.
100-114, 2022.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Proc. ACL, pp.
80868098, 2022.

Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context reinforce-
ment learners. 2024.

Subhojyoti Mukherjee, Josiah P Hanna, Qiaomin Xie, and Robert Nowak. Pretraining decision
transformers with reward prediction for in-context multi-task structured bandit learning. arXiv
preprint arXiv:2406.05064, 2024.

Tai Nguyen and Eric Wong. In-context example selection with influences. arXiv:2302.11042, 2023.

11

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model
programs. arXiv preprint arXiv:2406.11695, 2024.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Proc. NAACL, pp. 2655-2671, 2022.

Lennart Schneider, Martin Wistuba, Aaron Klein, Jacek Golebiowski, Giovanni Zappella, and
Felice Antonio Merra. Hyperband-based bayesian optimization for black-box prompt selection.
arXiv preprint arXiv:2412.07820, 2024.

Chengshuai Shi, Kun Yang, Jing Yang, and Cong Shen. Best arm identification for prompt learning
under a limited budget. arXiv preprint arXiv:2402.09723, 2024.

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman, Yulia Tsvetkov, and Luke Zettlemoyer.
Toward human readable prompt tuning: Kubrick’s the shining is a good movie, and a good prompt
too? In Proc. EMNLP, pp. 10994—-11005, 2023.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Eliciting
knowledge from language models using automatically generated prompts. In Proc. EMNLP, pp.
4222-4235, 2020.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, and Sercan O Arik. Teach better or show smarter? on
instructions and exemplars in automatic prompt optimization. arXiv preprint arXiv:2406.15708,
2024.

Jiugi Wang, Ethan Blaser, Hadi Daneshmand, and Shangtong Zhang. Transformers learn temporal
difference methods for in-context reinforcement learning. arXiv preprint arXiv:2405.13861, 2024a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024b.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning. In Proc. NeurIPS, pp. 15614-15638, 2023a.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level
prompt optimization. arXiv preprint arXiv:2310.16427, 2023b.

Yue Wu, Xuan Tang, Tom M Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as
intelligent agents. arXiv preprint arXiv:2310.01557, 2023.

Zhaoxuan Wu, Xiaoqgiang Lin, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
Jaillet, and Bryan Kian Hsiang Low. Prompt optimization with EASE? efficient ordering-aware
automated selection of exemplars. In Proc. NeurIPS, 2024.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint arXiv:2406.04151, 2024.

Fanzeng Xia, Hao Liu, Yisong Yue, and Tongxin Li. Beyond numeric awards: In-context dueling
bandits with llm agents. arXiv preprint arXiv:2407.01887, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In Proc. ICLR, 2024.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exemplars for
in-context learning. In Proc. ICML, pp. 39818-39833, 2023.

12

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Heshen Zhan, Congliang Chen, Tian Ding, Ziniu Li, and Ruoyu Sun. Unlocking black-box prompt
tuning efficiency via zeroth-order optimization. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 14825-14838, 2024.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
Proc. EMNLP, pp. 9134-9148, 2022.

Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual probing is [MASK]: Learning vs. learning
to recall. In Proc. NAACL, pp. 5017-5033, 2021.

Yongchao Zhou, Andrei loan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In Proc. ICLR, 2023.

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A OUR EXPO-ES ALGORITHM TO ADDITIONALLY OPTIMIZE THE
EXEMPLAR SEQUENCES

Our complete EXPO-ES algorithm is described in Algo.[2] As we have discussed in Sec. [3.2]
there are two major differences compared to the way in which our EXPO algorithm optimizes the
task description and meta-instruction (Algo. . Firstly, our domain of kS arms (i.e., every arm
corresponds to a randomly sampled exemplar sequence) changes in every iteration (line 8). Secondly,
as a result of the time-varying domains, we need to save a copy of the parameters of the NN trained
in every iteration in order to compute the cumulative score estimates (lines 9-14).

Simplified Variant of Our EXPO-ES Algorithm. When applying our EXPO-ES algorithm to
the LLM-based MAB algorithm in [Krishnamurthy et al,| (2024) (Sec. .2), we have adopted a
simplified variant of our EXPO-ES. This is because in the problem setting from |Krishnamurthy
et al.[(2024)), the number of arms is small. Therefore, instead of including a subset of the history of
exemplars in the prompt, their algorithm has instead included a summarized observation history.
An example of such summarized observation history with 5 arms (represented by 5 buttons
with different colors) is given in Fig. [0 below. Therefore, here we aim to optimize the format
of the summarized observation history. Specifically, we optimize the order of the arms in the
summarized history, and our domain of arms consist of all cyclically shifted variants of the follow-
ing sequence of buttons: {blue button, green button, red button, yellow button, purple button}.
For example, some other arms (button sequences) in our domain in-
clude: {green button, red button, yellow button, purple button, blue button } and
{red button, yellow button, purple button, blue button, green button}. ~ As a result, unlike our
original EXPO-ES algorithm described in Sec. [3.2] here we do not suffer from the issue of
time-varying domain of arms.

blue button: pressed 2 times with average reward 0.5
green button: pressed 1 times with average reward 0.0
red button: pressed 1 times with average reward 1.0
yellow button: pressed O times

purple button: pressed 1 times with average reward 0.0

Figure 9: An example of the summarized observation history used by the LLM-based MAB algorithm
from |[Krishnamurthy et al.| (2024)).

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Algorithm 2 EXPO-ES

input Initial task description Dy, initial meta-instruction Z.
Maximum number £ of exemplars in the meta-prompt, the number
the domain.

k’ES

1: Initialize the exemplar set & = (), and the subset £, = (), meta-prompt-score set Sy = (), and

cumulative score estimates §§-O) forall j € {1,...,kES}.

Initialize the history of NN parameters Oyisory = (), and the exemplar training set 7o = 0.

2: foriterationt =0,1,...,7 — 1do
3: Lines 3-11 of Algo.[T]

4: Compute the embedding g(&;) of the selected exemplar sequence &/, and add g(&/) and its

score s; to the exemplar training set: Ty1 < T: U {(g(&}), s¢) }-

5. Update the parameters 05 of the NN Mgs(g(+); 055) by using the updated 7; ; as the training

set to minimize the MSE loss, yielding Hstrl.
6: Add the updated parameters to the history: Opisiory < Ohistory U {HESFI .

7: if ‘gt+1| > L then
8: Randomly generate kPS sequences of L exemplars from the exemplar set & 1:
{1,621, ,5ffl}, in which every &/, | represents an ordered set of £ exemplars
from &y 1.
9: Initialize cumulative score estimates §§O) =0forallj € {1,...,k5}.
. ES
10: foreach & | in {&},,...,EF 1} do
11: Initialize cumulative score 35.0) =0.
12: for each historical model parameter 655 € Opigiory do
13: Update the cumulative score for £/ ;: §§.’) = A§.“1) + Mes(g9(&]1);:05°).
14: Compute the final cumulative score estimates: §§-ﬁnal) = §§-‘®h'5‘°""), Vie{l,..., k¥)
15: Compute the sampling distribution PES over the k exemplar sequences:
(final)
. exXpins;)
PES() = P) e (1,),
Zk ex (A(ﬁnal))
1=1 EXP\N$;
16: Sample an exemplar sequence &/, ~ PFS.

of exemplar sequences in

cumulative
> score
estimates

Therefore, when applying our EXPO-ES algorithm to improve the LLM-based MAB method from
Krishnamurthy et al.| (2024)) (Sec. @]), we make two modifications to our standard EXPO-ES algo-
rithm described in Algo. [2| Firstly, instead of randomly sampling k%5 exemplar sequences to form
our domain of exemplar sequences, here our domain remains fixed across different iterations, i.e.,
all cyclically shifted variants of the arms. Secondly, since here we do not suffer from the issue of
time-varying domain of arms (i.e., exemplar sequences), we can resort to the incremental update of
the cumulative reward estimates adopted by our EXPO algorithm (line 9 of Algo.[I). As a result, we

do not need to save a copy of the parameters of the NN trained in every iteration.

B MORE DETAILS ON OUR EXPERIMENTAL SETTINGS

B.1 MORE DETAILS ON THE GENERATION OF THE DOMAIN OF TASK DESCRIPTION AND

META-INSTRUCTION

Here we describe the details about how we generate the domain of task descriptions and meta-
instructions. Below we provide the prompt we have used to instruct the LLM to generate every

prompt in the domain.

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Example Query: Meta-Prompt Instruction Rephrasing Template

To achieve a more effective TASK description and INSTRUCTION and convey its core essence
more clearly, please enhance the content in the quote by rephrasing and changing some information:
”{INITIAL_META-PROMPT}”

Please return directly the modified description without additional description.

The modified description:

Generation of the Domain. To effectively generate task-specific prompts, we utilized an initial
prompt to guide the LLM in creating diverse task descriptions and meta-instructions. For each task,
the LLM was prompted 100 times to rephrase the task description and meta-instruction separately,
resulting in 100 unique rephrased prompts for each. Combined with the initial prompt, this process
produced a total of 101 x 101 combinations of task descriptions and meta-instructions for each task.

To optimize computational efficiency, we pre-compute the embeddings of all task descriptions and
meta-instructions in the domain using the embedding model g(-) and store the results to prevent
redundant calculations during subsequent experiments.

For the rephrasing process, we employed the GPT-4 model with a temperature setting of 1.3, ensuring
diverse and high-quality rephrased prompts for both task descriptions and meta-instructions.

B.2 MORE DETAILS ON OPRO FOR THE LINEAR REGRESSION AND TRAVELING SALESMAN
PROBLEM (SEC.[4.1))

B.2.1 TASK SETTING.

Linear Regression. We conduct experiments on Linear Regression by selecting two challenging
ground truth weight-bias (w, b) pairs. The experiments follow the OPRO framework, which requires
warm-starting the LLM with initial exemplars. Using a fixed random seed, we first generate 50
random data points uniformly distributed within the range [—1, 1], which perfectly satisfy the ground
truth wye, buue Pairs, ensuring that these data points can serve as the foundation for evaluating the
LLM’s ability to model the relationships. Additionally, 5 w, b pairs with corresponding scores,
sampled within the range [10, 20], are generated using another fixed random seed to serve as the
initial exemplars. At each iteration, the LLLM is prompted 8 times (consisting of 1 inference with a
temperature setting of 7" = 0 and 7 inferences with a temperature setting of 7' = 1) using the current
exemplars, and the prompt is updated based on the generated outputs. The exemplars are dynamically
updated to include the top 20 w, b pairs and their associated scores from all historical records across
iterations, ensuring the LLM is always guided by the best-performing examples. The total number of
iterations is set to 50, and each ground truth configuration is repeated 5 times for consistency.

Traveling Salesman Problem (TSP). For the TSP task, experiments are conducted on three problem
sizes defined by the number of nodes: 10, 15, and 20. For each TSP instance, the problem is defined
by randomly generating n = 10, 15,20 nodes, where the = and y coordinates of each node are
sampled uniformly from the range [—100, 100]. For each configuration, a specific TSP instance
is generated using a fixed random seed, and a single random seed is used to generate warm-start
exemplars to initialize the LLM prompts. To initialize the optimization process, we randomly sample
5 different TSP routes along with their corresponding total distances. These routes and their lengths
are used as the initial exemplars for the LLM. Each iteration consists of 8 prompt calls to the LLM,
followed by an update of the exemplars based on the generated results. More specifically, during each
iteration, the GPT-3.5-turbo is prompted 8 times using the same prompt, consisting of 1 inference
with a temperature setting of 7' = 0 to ensure stability and 7 inferences with a temperature setting of
T = 1 to encourage exploration. Similar to the Linear Regression task, the exemplars for TSP are
updated to include the top 20 historical solutions with the best scores, ensuring the prompt leverages
the most effective examples. The number of iterations is set to 100, 200, and 300 for 10-node,
15-node, and 20-node TSP problems, respectively, to account for the increasing complexity of the
tasks. Each node configuration is repeated 3 times to ensure consistency and reliability.

16

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

B.2.2 EVALUATION METRICS.

Linear Regression. In the Linear Regression task, the performance of the algorithms is evaluated
using the Mean Squared Error (MSE) metric. Given a set of N one-dimensional input data points
x € R and their corresponding ground truth labels y € R, the MSE is computed as:

2
’

1
MSE = & [|ly — (w-x + b)|

where w € R and b € R are the weight and bias parameters inferred by the LLM, and N is the total
number of data points.

Traveling Salesman Problem (TSP). For the TSP task, the performance of the LLM-generated
solutions is evaluated based on the total Euclidean distance of the TSP tour. Given a set of two-
dimensional points {(z;,y;)}}_,, where N is the total number of nodes, the length of a proposed

TSP tour P = [w(1),n(2),...,m(N),n(1)] is computed as:

2

N
2
Length = Z \/(Iw(i—&-l) - :L'Tr(i)) + <y7r(i+1) - yﬂ(i)))
=1

where 7 represents the permutation of nodes in the proposed tour, and 7(N 4+ 1) = 7(1) ensures the
tour returns to the starting node.

To evaluate the convergence and effectiveness of the agents, we use the Optimality Gap metric, which
quantifies the deviation of the solver’s best-found solution from the true optimal solution. It is defined
as:

SolverOptimal — Optima

Optima

Optimality Gap = x 100%,

where:

* SolverOptimal denotes the shortest tour length found by the solver up to the current iteration.

* Optima is the length of the known optimal TSP tour.

B.2.3 DESIGN OF PROMPT SCORE.

In both the Linear Regression and TSP tasks, optimal solutions are characterized by lower evaluation
scores. To align with the requirements of the algorithm and ensure more stable learning, we define
the Prompt Score using the formula:

—Evaluation Score + b
b)
where b > 0 is a stabilizing constant. This formulation ensures that lower evaluation scores correspond

to higher prompt scores, which better facilitates the optimization process and contributes to steady
algorithmic learning.

Prompt Score =

For the Linear Regression task, the Evaluation Score is defined as the Mean Squared Error (MSE) of
the weight-bias (w, b) pairs proposed by the algorithm at each iteration under a Temperature=0 stable
inference. The MSE is computed based on the provided one-dimensional data points.

For the TSP task, the Evaluation Score corresponds to the total Euclidean distance (Length) of the
TSP tour proposed by the algorithm at each iteration, also under a Temperature=0 stable inference.

B.2.4 DETAILS ABOUT THE MODELS AND PARAMETERS IN OUR ALGORITHMS

LLM Agents and Embedding Model. In our experiments, the primary LLM agent used is GPT-3.5-
Turbo. For embedding generation, we utilized OpenAl’s text—embedding—-3-large model,
which outputs embeddings of dimensionality 3072. These embeddings were used to represent both the
task description and meta-instruction in the EXPO framework. The embeddings were also employed
to represent the exemplars in the EXPO-ES framework. During each iteration of inference, the LLM
agent performed 1 prediction with a temperature setting of 7' = 0 to provide a stable solution and 7
additional predictions with a temperature setting of 7' = 1 to encourage exploration.

17

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Neural Network Parameters. For the EXPO, the input to the neural network consists of the concate-
nated embeddings of the task description and meta-instruction, resulting in an input dimensionality
of 3072 + 3072 = 6144. The neural network employs a single hidden layer with a width of 1536 and
produces a single scalar output. The training objective is to minimize the Mean Squared Error (MSE)
loss function.

For the EXPO-ES, the exemplar selection process differs depending on the iteration count. Dur-
ing the initial iterations, when fewer than 20 optimal historical records are available, we use
all available exemplars. As the iteration count increases, exemplars are selected from the top
min(total exemplar records, 30) historical optimal records. From this pool, 257 exemplars are con-
structed, consisting of 256 randomly selected exemplars and 1 heuristic exemplar generated from a
combination of 20 best historical records. The neural network for EXPO-ES operates on an input
dimensionality of 3072, corresponding to the embedding of a single exemplar. It employs a single
hidden layer with a width of 512 and produces a single scalar output. The training objective is to
minimize the Mean Squared Error (MSE) loss.

EXP3 Learning Rate. In the EXPO , the learning rate parameter 7gesc 1S set to 100 for selecting
task descriptions and meta-instruction combinations. In the EXPO—-ES, 7)gesc 1S also set to 100 for
selecting task descriptions and meta-instruction combinations, while 7exemplar i set to 10 for selecting
exemplars.

B.2.5 ENHANCED OPRO

Here, we describe how we have enhanced the original algorithm [Yang et al.|(2024) by modifying its
prompts.

During initial experiments with the meta-prompts provided by the original OPRO algorithm Yang
et al.| (2024) for task description rephrasing, we observed that the LLM often misinterprets the
descending order semantics described in the original design. In tasks like TSP and Linear Regression,
where better solutions correspond to lower evaluation scores, descending order is intended to arrange
solutions from high evaluation scores to low. However, the LLM frequently misunderstands this as a
descending order of solution quality, interpreting higher-ranked solutions as better and lower-ranked
ones as worse, which is contrary to the intended meaning.

To address this issue, we enhance the orginal meta-prompts by explicitly clarifying the semantics
of descending order in the context of evaluation scores. This modification ensures that the LLM
accurately understand the intended instructions. When tested with the enhanced prompts, the problem
was resolved, and the LLM is able to consistently generate correct rephrased task descriptions. For a
clearer illustration, we provide below the original OPRO meta-prompt (Fig.[I0) and our enhanced
OPRO meta-prompt (Fig. [TT).

The task description in the original OPRO prompt

You are given a list of points with coordinates below: {POINTS}.
Below are some previous traces and their lengths. The traces are arranged in descending order based on
their lengths, where lower values are better.

Figure 10: The task description in the original OPRO prompt.

18

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

The task description in our enhanced OPRO prompt

You are given a list of points with coordinates below: {POINTS}.

Below are some previous traces and their lengths. The traces are arranged in descending order based on
their lengths, where smaller lengths indicate better solutions. Therefore, the traces are listed from the
largest length to the smallest, the trace with the smallest length is considered the most optimal.

Figure 11: The task description in the enhanced OPRO prompt. The texts we have modified are
highlighted in red.

B.3 MORE DETAILS ON THE LLM-BASED MULTI-ARMED BANDITS TASK (SEC. @
B.3.1 EXPLANATION OF BSSCD AND BSSND

We provide a detailed explanation and demonstration of prompt designs for both BSSCD and BSSND
[Krishnamurthy et al| (2024), highlighting their key components and structures. Figure[T2]illustrates
a complete example of a BSSCD prompt designed for the MAB problem under the hard difficulty
setting. It showcases the structure and color-coded components of the prompt in detail.

The setting of the prompt in MAB

[SYSTEM]

You are a bandit algorithm in a room with 5 buttons labeled blue, green, red, yellow, purple.
Each button is associated with a Bernoulli distribution with a fixed but unknown mean; the
means for the buttons could be different. For each button, when you press it, you will get a
reward that is sampled from the button’s associated distribution. You have 100 time steps
and, on each time step, you can choose any button and receive the reward. Your goal is to
maximize the total reward over the 100 time steps.

At each time step, I will show you a summary of your past choices and rewards. Then you
must make the next choice. You may output a distribution over the 5 buttons formatted
EXACTLY like “’blue:a,green:b,red:c,yellow:d,purple:e”.

You must provide your final answer within the tags <Answer>DIST<\Answer> where
DIST is the distribution in the format specified above.

[USER]

So far you have played 5 times with your past choices and rewards summarized as follows:
blue button: pressed 2 times with average reward 0.5

green button: pressed 1 times with average reward 0.0

red button: pressed 1 times with average reward 1.0

yellow button: pressed 0 times

purple button: pressed 1 times with average reward 0.0

Which button will you choose next? Remember, YOU MUST provide your final
answer within the tags <Answer>DIST<\Answer> where DIST is formatted like
“blue:a,green:b,red:c,yellow:d,purple:e”.

Figure 12: A complete example of the prompt in MAB. The different components in the prompt are
explained in detail in App.[B.3.1}

* Button scenario and Suggestive framing, providing the foundational task scenario, clarifying
the role of the agent, and framing the objective of the task in a suggestive manner to guide
decision-making.

* Description of the multi-armed bandit problem, offering the agent a detailed task description,
including comprehensive information about the task’s objectives, constraints, and operational
details.

19

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

* Summarized history, presenting a condensed version of historical decisions and reward
feedback to the agent, instead of providing step-by-step decision and reward feedback.

hain-of-thought or ' o CoT, indicating whether to encourage the agent to engage in step-
by-step reasoning for decision-making.

* Distribution over actions, encouraging the agent to generate a probability distribution over
the arms of the bandit, instead of making deterministic decisions.

When we use our EXPO algorithm to optimize the task description and meta-instruction, the upper
section with light purple background corresponds to the Task Description, where as the section below
it with light blue background represents the Meta-Instruction. In other words, our EXPO algorithm is
used to optimize the text in these two sections.

B.3.2 TASK SETTING

The experiments are conducted for both the BSSND and BSSCD prompts under two pre-defined
difficulty levels: hard and easy. For the hard setting, the MAB instance consists of K = 5 arms,
where the best arm has a mean reward of u* = 0.5 + A/2 with A = 0.2, and all other arms have a
mean reward of © = 0.5 — A/2. For the easy setting, the MAB instance consists of K = 4 arms
with a larger gap A = 0.5 between the best arm and the suboptimal arm. We set the blue button as
the optimal arm in experiments, corresponding to the arm with the highest expected reward. Each
configuration is tested using two fixed random seeds, with experiments repeated 3 times for each seed,
resulting in a total of 2 x 3 = 6 runs per setting. Each experiment consists of 100 iterations, with the
LLM-based agents making decisions and updating prompts iteratively to optimize performance. The
work of |[Krishnamurthy et al.|(2024)) has reported that GPT-3.5 models encounter exploration failures
in MAB tasks, making them unsuitable as agents for solving such problems. In contrast, GPT-4
demonstrates the capability to effectively handle the exploration-exploitation trade-off inherent in
MAB settings. Therefore, we adopt GPT-4-turbo as the LLM agent for this experiment.

B.3.3 EVALUATION METRIC.

In the LLM-based Multi-Armed Bandit (MAB) task (Sec. , the performance of the LLM agent is
assessed using the Cumulative Regret metric. At each iteration, the LLM agent outputs a probability
distribution over the arms, representing the likelihood of sampling each arm.

Formally, let there be K arms, each associated with an expected reward p1, o, .. ., LK, Where
p* = maxgeqi,... k) Mk denotes the expected reward of the optimal arm. At iteration ¢, we sample
anarm a; € {1,..., K}, which is determined by the probability distribution provided by the LLM
agent. The instantaneous regret for iteration ¢ is then defined as:

Tt = /’L* — Hay s
where p,, represents the expected reward of the selected arm a; at iteration ¢.

The cumulative regret after T iterations is computed as:
T

T
Ry :ZTt :Z(N* — lta,) -
t=1

t=1
B.3.4 DESIGN OF PROMPT SCORE.

The score of the prompt is designed to quantify the expected reward of the LLM agent’s sampling
strategy at each iteration. At iteration ¢, the LLM agent outputs a sampling probability distribution
{p1,p2,...,pK}, where p; represents the probability of selecting arm ¢ (i = 1,2, ..., K, with K
being the total number of arms). Simultaneously, the historical records from the first (¢ — 1) iterations
allow us to compute an unbiased estimate of the Bernoulli reward parameter for each arm, fi;, based
on the observed rewards and sampling counts.

For arm i, the Bernoulli parameter /i; is estimated as:

) 0, ifn; =0,
— t—1 L.
AR PR =L

Uz

20

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

where 25;11 R; ; denotes the cumulative reward obtained from arm ¢ during the first (¢ — 1) iterations,
and n; represents the total number of times arm ¢ was sampled during the same period.

The LLM agent’s expected reward Rexpected at iteration ¢ is then calculated by weighting the estimated
Bernoulli parameters {/i1, fiz, . . ., fix } with the sampling probabilities {p1, p2, ..., px } provided
by the LLM:

K
Rexpecled = § Di - -
=1

This expected reward Rexpmed serves as the score of the prompt.

Motivation for the Score Design. The design of the prompt score is driven by the objective of
guiding the LLM agent to favor arms with higher expected rewards, represented by ;. Since the
true values of u; are not available, the prompt score is designed to estimate this quantity based on
observed data. Specifically, the higher the value of 1, the higher the sampling probability p; should
be assigned to arm ¢, reflecting the optimal choice. Conversely, arms with lower values of w; should
be assigned lower probabilities.

The original score with the Bernoulli parameters:

K
Rexpecled = § Difbi.
=1

In the absence of the true y;, we rely on the unbiased estimates /i;:
K
Rexpecled = szﬂz
i=1

This design is justified because, for most of iterations, the score Zfil pifi; is an unbiased estimate
of the true expected reward ZZK:l pilti, and we proceed to formally establish this unbiasedness.

Proof of Unbiasedness. For iteration ¢, where n; > 0 for all 7, we aim to show that the score
Zfil pifi; is an unbiased estimate of the true expected reward ZZK=1 pip;. Since [i; is an unbiased
estimate of y;, we have:

B[] = E [p]
Thus, by the linearity of expectation, we obtain:

K K
E > pifii| =Y il i)
i=1 i=1
K
= piE (]
i=1

K
=E > pit
i=1
This shows that the score Rexpected is an unbiased estimate of the true expected reward Rexpected-

B.3.5 DETAILS ABOUT THE MODELS AND PARAMETERS IN OUR ALGORITHMS

LLM Agents and Embedding Model. For the MAB tasks, the primary LLM agent is GPT-4-Turbo
and the fixed inference temperature is set to 7' = 0. For embedding generation, we employed
OpenAl’s text—embedding—3—-1large model, which outputs embeddings with a dimensionality
of 3072. These embeddings are utilized to represent the prompts provided to the LLM agent during
the experiments. At each iteration, the LLM is prompted once using the designed prompt.

21

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Neural Network Parameters. For the EXPO, the input to the neural network consists of the concate-
nated embeddings of the task description and meta-instruction, resulting in an input dimensionality
of 3072 + 3072 = 6144. The neural network employs a single hidden layer with a width of 1536 and
produces a scalar output. The model is trained by minimizing the Mean Squared Error (MSE) loss
function.

For the EXPO-ES, the neural network is designed to process K exemplars, where K is determined
by the total number of available summaries. To ensure fairness, K distinct exemplar combinations
are generated at each iteration using a cyclic rotation mechanism. This mechanism ensures that
each summary occupies every possible position within the exemplar sequence. Formally, given K
summaries indexed as {eg, e1, ..., ex_1}, the i-th exemplar combination is defined as:

(es, €(i+1) mod Ks---5€(i+K—1) mod K)~
This guarantees that each summary appears in every position across all X combinations.

Each exemplar is embedded into a 3072-dimensional vector using the embedding model, and these
embeddings are processed individually by the neural network. The neural network consists of a single
hidden layer with a width of 512 and produces a scalar output. Like EXPO, the training objective is
to minimize the Mean Squared Error (MSE) loss function.

EXP3 Learning Rate. For the EXPO, the learning rate parameter 7. is set to 10 for selecting task
descriptions and meta-instruction combinations. In the EXPO-ES, two learning rate parameters are
used: 7gesc 18 set to 10 for selecting task description and meta-instruction combinations, and Nexemplar
is set to 10 for selecting exemplars.

B.4 IMPROVING NUMERICAL STABILITY

To prevent numerical overflow during the computation of exponentials in our algorithms, a translation
constant C'®) is introduced at each iteration ¢. This constant stabilizes the computation by shifting
the cumulative scores, ensuring the algorithm operates reliably until convergence without altering the
resulting probability distribution. The translation constant is defined as:

oM — mjax S](t). 3)

The translated scores are: _
5P =5 .)

The probability distribution after translation is:

&(t)
~ exp (7S]
Pyli] = & (~)(t) . 5)
Zj:l exp (775]‘)
Substituting 5" = S — C®;
Bl = 2 (n(s - c®)) ©
Sy exp (n(8S” — o))
i _ 1) — exp(a).
Using exp(a — b) = EOL
B = 2 (087)/ exp (nC®) @
t - .
Sy (exp (n8)7)/ exp (nC®))
Simplifying:
()
50 exp (nS;
Pl = B ®)
Zj:l €Xp (US]‘)
Thus, the probabilities remain unchanged:

22

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

C MORE EXPERIMENTAL RESULTS

C.1 RESULTS OF GPT-4-TURBO FOR TSP

Fig. [13] shows a zoomed version of Fig. [7] (bottom right) in the main paper. It shows that when
GPT-4-Turbo is used as the LLM, our EXPO is still able to significantly outperform OPRO.

T
10] OPRO (Enhanced, GPT-4-turbo)

| =A= EXPO (GPT-4-turbo)

|
= |
& 1
o |
©
o I

|
2 5 \
o \
€ \
= \
o -
o \

1
A
-
0 Ly R
0 20 40 60 80

Iteration

Figure 13: Ablation study results using GPT-4-turbo in the TSP task with 20 nodes.

C.2 RESULTS OF OTHER VARIANTS OF OPRO

As we have discussed in Sec. [3.1]and Sec.[4.1] the original OPRO uses a temperature of 1 to choose
all 8 actions in a batch, while we have made a slight modification such that we choose the last action
in the batch with a temperature of 0. Here we show that this has a minimal impact on the performance
of OPRO (Fig.[T4). Specifically, in Fig.[T4] the orange curves represent the original OPRO (using
a temperature of 1 for all 8 actions) and the pink curves correspond to our modified version. We
have also compared the performances of the enhanced variants (see Sec. .1 for details) for both
the original (purple) and modified OPRO (green). The results show that setting the temperature to
0 while selecting the last action has negligible impact on the performance of OPRO. Importantly,
our EXPO and EXPO-ES algorithms consistently and dramatically outperform all variants of
OPRO.

C.3 IMPACT OF ADDING EXEMPLAR EMBEDDING TO THE NN IN EXPO

Recall that in every iteration of our EXPO (Algo. E]) we need to train a neural network (NN)
M(g(-); 0) to estimate the scores of the task descriptions and meta-instructions in the domain (line 8
of Algo.lﬂ). Note that the training set used to train this NN is {([¢(D;) @ g(Z;)] , si) }i=1,....t+1 (line
7 of Algo.[I). However, it is also important to note that in our EXPO algorithm, the set of exemplars
included in the meta-prompt £/ changes in every iteration and hence may also affect the scores s;’s.
Therefore, one may naturally wonder whether including the embedding of &/ in the input of the NN
can further improve the performance of the trained NN and, consequently, the performance of the
overall EXPO. We conduct an ablation study to validate this hypothesis, and the results are shown
in Fig. [I3] The results demonstrate that including the embedding of the exemplars in the input of
the NN does not lead to better performance than our standard approach of excluding it (Algo. [I).
This is likely due to the significantly increased dimensionality of the input to the NN, which makes
training the NN more challenging. Therefore, these results suggest that the benefit of additionally
accounting for the changing exemplars is outweighed by the drawback of the significantly increased
dimensionality of the input to the NN.

C.4 MORE ILLUSTRATIONS OF THE DISCOVERED TASK DESCRIPTION AND
META-INSTRUCTION

Here we provide more illustrations regarding the comparison of the original task description and

meta-instruction adopted by the original LLM-based sequential decision-making algorithm (i.e.,
OPRO or the LLM-based MAB algorithm from Krishnamurthy et al.|(2024)) and those optimized by

23

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

200 OPRO (Original) 300 OPRO (Original)
175 ‘ =X OPRO (Original, Enhanced) =X OPRO (Original, Enhanced)
. opRO . orRo
21501 & g OPRO (Enhanced) © 250 N OPRO (Enhanced)
w125 ? = 4200 S b
2100 2150 \‘*—-e_ —— =
g 75 N e
2 50 3100 ., \.\
z . € 50 o5__9--
0 - of Tt L TR
0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration
Linear Regression Linear Regression
(w=2, b=30) (w=36,b=-1)
35 OPRO (Original) 7019 OPRO (Original) 140] oreo oy
— e —_ =X=OPRO (Original, Enh: d) . '+ OPRO (Original, Enhanced)
30| O ool | Feo | o e | g 120/ -
225 -~ OPRO (Enhanced) 350 %\l _'g'_ e Enhanced) 21001 ¥y 2 btocs
o " -©O- EXPO o (\3 a 9 go -
>.20 Bl 401 Vs ~ft= EXPO-ES o ey
2 ~t= EXPO-ES = (A1) £ Y
=15 |‘\l“ = 30 S E 60 L%
E1o0] © £20 1\\{'_‘-0.__6_ £ 40 Sk
S 5 WS = [153 = -
o5 o10 Sa —= 20 -
0 0 - meea—s 0 b
0 0 50 100 150 0 50 100 150 200 250
Iteration Iteration Iteration
TSP TSP TSP
(10 Nodes) (15 Nodes) (20 Nodes)

Figure 14: Results of different algorithms in the Linear Regression task and TSP task (Sec. fi.T). We
have additionally included the original OPRO (which selects all 8 actions using a temperature of 1),
as well as its enhanced variant. Lower is better.

175 Foa YT —— 300 Ay ———— 175 Foa T ———— 300 N ————
=©- EXPO (Without exemplars embedding) ~©- EXPO (Without exemplars embedding) =©- EXPO-ES (Without exemplars embedding) ~©- EXPO-ES (Without exemplars embedding)
150 L 250 =150 . 250
e e e 2
S125 5200 125
§ 100 5 5
2 2150 100
g s g g 75
g 50 g100 2 50
o o o
25 50 25
0 0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration Iteration Iteration
£XPO (With exemplars embedding) £XPO (With exemplars embecding) 140
% B o on g empesiua| | 70 B Do Mmoo e B oot enpies crveaire)
g £o0 g1
g 30 250 2100
025 V] 8
> .40 © 8o
220 £ z
T 15 ®30 T 60
£ £90 £
510 =] 5 40
S5 o10 S 2
0 0
0 25 50 75 0 50 100 150 0 50 100 150 200 250
Iteration Iteration Iteration

Figure 15: Convergence curves of our EXPO with and without exemplars embedding across different
tasks: Linear Regression (top row) and TSP with 10, 15, and 20 nodes (bottom row).

our EXPO algorithm. We include the comparisons for the TSP task (Fig.[16)), and the two different
prompt designs for the LLM-based MAB task in Sec. 4.2 (Fig.[17and Fig.[I8).

C.5 MORE RESULTS ON THE ABLATION STUDY REGARDING COMPARISON WITH THE
STOCHASTIC MAB ALGORITHM OF NEURALUCB

Here we provide the additional ablation study results comparing the performance of our EXPO algo-
rithm with the stochastic MAB algorithm of NeuralUCB, using the TSP task. The results are shown
in Fig.[T9] which, together with Fig.[6] demonstrate that our EXPO algorithm based on adversarial
bandits significantly and consistently outperforms the stochastic MAB method of NeuralUCB.

24

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

OPRO
You are given a list of points with
coordinates below: {POINTS}.
Below are some previous traces and
their lengths. The traces are arranged
in descending order based on their
lengths, where lower values are better.

{EXEMPLARS}

Give me a new trace that is dif-
ferent from all traces above, and
has a length lower than any of the
above. The trace should traverse all
points exactly once. The trace should
start with <trace> and end with
</trace>.

EXPO

You are provided with a dataset containing a list of coordi-
nates labeled as {POINTS}.

The dataset also includes a series of previously calculated
routes, with associated lengths that are ordered from longest
to shortest. However, it’s key to note that shorter routes are
more desirable. Despite the presentation order, understand
that the optimal route is identified by the smallest total
length.

{EXEMPLARS}

Provide a unique trace that is distinct from any pre-
vious traces and shorter in length. Ensure that this trace
visits each point exactly once and adhere to the specified
format by starting with <trace> and concluding with
</trace>.

Figure 16: The task description (top) and meta-instruction (bottom) used by OPRO (left) and
optimized by our EXPO (right) in a TSP task.

BSSND

You are a bandit algorithm in a
room with 5 buttons labeled blue,
green, red, yellow, purple. Each
button is associated with a Bernoulli
distribution with a fixed but unknown
mean; the means for the buttons could
be different. For each button, when
you press it, you will get a reward
that is sampled from the button’s
associated distribution. You have 100
time steps and, on each time step, you
can choose any button and receive the
reward. Your goal is to maximize the
total reward over the 100 time steps.

At each time step, [will show
you a summary of your past choices
and rewards. Then you must
make the next choice. You may
output a distribution over the 5
buttons formatted EXACTLY like
”blue:a,green:b,red:c,yellow:d,purple:e”.

EXPO

You are presented as a bandit algorithm, located in an
environment offering five distinct buttons, each emblazoned
with colors such as blue, green, red, yellow, and purple.
Each button acts a vessel tied to a non-variable yet
undisclosed Bernoulli distribution mean which isn’t
subjected to be uniformly distributed across buttons. In this
mechanism, every button acts as a yielder of a capricious
reward, constructed from the associated distribution of the
respective button. With access to total life -encompassing
around 100 temporal stages - your voluntary element grants
you control towards opting the button insertion at each such
progressive phase. Precisely summoning your approach
could perpetually provide you with a regulatory provision_,
the aptitude - is flexibly dwelling within its underlining
motive- aiming at optimizing total accumulated cashbacks
during several phases of these 100 spatial temporalities.

During every step of the process, a recap highlight-
ing your previous selections and the prizes received will
be presented to you. Then, it’ll now be incumbent upon
you to proceed with the new decision-making process. For
your ease, a well-structured distribution comprising five
buttons in assorted colours such as ’blue”, “green,”, ’red”,
“yellow”, and “purple” will be exhibited before you. Make
sure to structure your output accordingly; this might look
something akin to "blue:a,green:b,red:c,yellow:d,purple:e”.

Figure 17: The suggestive framing (corresponding to the task description) and MAB problem
description (corresponding to the meta-instruction) used by BSSND hard (left) and optimized by our
EXPO (right) in an LLM-based MAB task.

25

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

BSSCD

You are a bandit algorithm in a room
with 5 buttons labeled blue, green, red,
yellow, purple. Each button is associated
with a Bernoulli distribution with a fixed
but unknown mean; the means for the
buttons could be different. For each
button, when you press it, you will get a
reward that is sampled from the button’s
associated distribution. You have 100
time steps and, on each time step, you
can choose any button and receive the
reward. Your goal is to maximize the
total reward over the 100 time steps.

At each time step, I will show you a sum-
mary of your past choices and rewards.
Then you must make the next choice.
You may output a distribution over the
5 buttons formatted EXACTLY like
”blue:a,green:b,red:c,yellow:d,purple:e”.
Let’s think step by step to make sure we
make a good choice.

EXPO
You are an algorithm designed to function as a bandit,
positioned within an environment that features five
distinct buttons, each colored blue, green, red, yellow,
and purple. These buttons are intricately connected to
individual Bernoulli distributions which possess unique
and undisclosed mean probabilities. When a button
is pressed, it delivers a reward based on its specific
distribution. Granted with 100 opportunities to act, your
objective is to strategically press these buttons in a manner
that optimizes the accrued total reward throughout these
attempts. Make your selections wisely to maximize the
gains from this stochastic setup.

In each phase, a concise recap of your previous
decisions and received rewards will be presented. Your
task is to make a subsequent choice based on this data. It
is essential to output your selection in an exact format
defined as “blue:a, green:b, red:c, yellow:d, purple:e”,
where ’a’, ’b’, 'c’, 'd’, ’e’ represent specific z-score
values for each color accompanied by the decision choice
letter(s). The process is designed to refine our strategy
progressively with each move, ensuring an informed and
impactful outcome.

Figure 18: The suggestive framing (corresponding to the task description) and MAB problem
description (corresponding to the meta-instruction) used by BSSCD hard (left) and optimized by our
EXPO (right) in an LLM-based MAB task.

140
40 =H= Neural UCB 70 === Neural UCB —E- Neural UCB
335 -6~ EXPO Se0 =6- EXPO 120 -~ EXPO
=100
©
© 80
2z
S 60
£
o
© 20
0 25 50 75 0 50 100 150 0 50 100 150 200 250
Iteration Iteration Iteration
TSP TSP TSP
(10 Nodes) (15 Nodes) (20 Nodes)

Figure 19: Comparison of our EXPO with NeuralUCB (i.e., a representative stochastic MAB
algorithm) in the TSP tasks.

26

	Introduction
	Problem Setting
	Algorithms
	The EXPO Algorithm (Algo. 1)
	EXPO with Exemplar Selection (EXPO-ES)

	Experiments
	Linear Regression and Traveling Salesman Problem
	LLM-Based Multi-Armed Bandits (MAB)

	Ablation Study
	Related Work
	Conclusion
	Our EXPO-ES Algorithm to Additionally Optimize the Exemplar Sequences
	More Details on Our Experimental Settings
	More Details on the Generation of the Domain of Task Description and Meta-Instruction
	More Details on OPRO for the Linear Regression and Traveling Salesman Problem (Sec. 4.1)
	Task Setting.
	Evaluation Metrics.
	Design of Prompt Score.
	Details about the Models and Parameters in Our Algorithms
	Enhanced OPRO

	More Details on the LLM-Based Multi-Armed Bandits Task (Sec. 4.2)
	Explanation of BSSCD and BSSND
	Task Setting
	Evaluation Metric.
	Design of Prompt Score.
	Details about the Models and Parameters in Our Algorithms

	Improving Numerical Stability

	More Experimental Results
	Results of GPT-4-turbo for TSP
	Results of Other Variants of OPRO
	Impact of Adding Exemplar Embedding to the NN in EXPO
	More Illustrations of the Discovered Task Description and Meta-instruction
	More Results on the Ablation Study Regarding Comparison with the Stochastic MAB Algorithm of NeuralUCB

