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Abstract
Promoters are critical regulatory elements that
control gene expression and harbor disease-
associated variants. We present PROSE (PRO-
moter SEt transformer), a generative model that
learns from evolutionary relationships across
mammalian species without requiring sequence
alignments. PROSE adapts set transformer archi-
tecture to process families of homologous promot-
ers, capturing patterns of conservation and vari-
ation that define functional regulatory elements.
Trained on 13.6 million promoter sequences from
447 mammalian species, PROSE generates human
promoters that accurately reproduce characteristic
motifs while maintaining appropriate nucleotide
distributions and achieving strong Sei regulatory
activity scores. Unlike single-sequence baselines
that overfit to repetitive patterns, PROSE produces
diverse, biologically plausible sequences by lever-
aging evolutionary context. Our homology-based
prompting approach outperforms single sequence
models and demonstrates the value of incorpo-
rating cross-species information for genomic se-
quence design.

1. Introduction
Homologous sequences across species encode the accumu-
lated knowledge from billions of years of natural selection.
This information has been utilized extensively in protein
language modeling (Rao et al., 2021; Notin et al., 2022;
Orenbuch et al., 2023; Su et al., 2024), but its effective
usage in DNA language modeling remains in its infancy.
While current DNA language models train across evolution
and can implicitly learn selection patterns, none explicitly
condition generation on sets of homologous sequences.

We propose evolutionary prompting for promoter sequences,
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using sets of evolutionarily related promoter elements
across species to learn the underlying distribution. Pro-
moters are particularly valuable targets for such modeling
as they regulate gene expression and harbor many disease-
associated variants in humans (Maurano et al., 2012; Albert
& Kruglyak, 2015). Learning these promoter sequence con-
straints through generation represents a first step toward
understanding the impact of non-coding variation in human
disease.

Promoters present unique challenges for computational mod-
eling due to their evolutionary dynamics—they evolve more
rapidly than coding sequences while maintaining essential
functional constraints across species, often in ways difficult
to capture through traditional sequence alignments (Bene-
gas et al., 2023). Alignment-based methods may struggle
with promoters where functional elements exhibit positional
flexibility or undergo compensatory mutations while main-
taining regulatory function, as transcription factor binding
site orientation and order are major drivers of gene regula-
tory activity (Georgakopoulos-Soares et al., 2023).

Previous autoregressive approaches like LOL-EVE (Shearer
et al., 2024) have made progress in modeling promoters
but are limited to single-sequence representations that miss
evolutionary context. Recent DNA sequence design ad-
vances include diffusion models like DDSM (Avdeyev
et al., 2023) that enable tunable regulatory activity, yet
these methods still process sequences independently. Mean-
while, homology-based approaches have shown remark-
able success in protein engineering, with set transformer
architectures like PoET demonstrating state-of-the-art per-
formance for predicting complex mutation effects using
only sequences (Truong Jr & Bepler, 2023), and CloneBO
efficiently guiding protein optimization by leveraging evolu-
tionary sequence families (Amin et al., 2024). Building on
advances in set transformers for protein families (Truong Jr
& Bepler, 2023), we introduce PROSE (PROmoter SEt
transformer), a generative model that learns directly from
sets of homologous promoters without requiring sequence
alignment. By processing collections of evolutionarily re-
lated promoters across species, PROSE captures patterns
of conservation and variation that define functional regula-
tory elements. This homology-based approach enables the
design of human promoter sequences that respect evolution-
ary constraints, with potential applications in understanding
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Figure 1. Architecture of PROSE. The highlighted encoder (and RoPE) is adapted from PoET.

non-coding variants in disease and designing synthetic regu-
latory elements.

2. Approach
2.1. Training Data

We collect a training dataset across mammalian species from
the Zoonomia project (Christmas et al., 2023), which pro-
vides full genome assemblies of a large number of species.
We adapt a comparative genomic approach to identify pro-
moter sequences from the 447 mammalian species included
in the dataset, which share the most homology with humans
(see subsection A.1).

2.2. Methods

PROSE adapts the architecture of PoET (Truong Jr & Be-
pler, 2023), designed for processing sets of sequences. This
adoption is crucial for handling homologous promoter sets,
as their collective evolutionary identity should be indepen-
dent of any specific presentation order. To achieve this
permutation invariance at the set level, PROSE employs
Rotary Positional Encoding (RoPE) applied within each
sequence, ensuring positional information is relative and lo-
cal. A two-tiered attention mechanism captures evolutionary
context: first, self-attention within each sequence models in-
ternal dependencies, and second, attention across sequence
representations identifies shared motifs and higher-order
relationships among homologs.

Our Zoonomia dataset comprises per-gene families of ho-
mologous promoter sequences. Each family typically in-
cludes a human promoter sequence and sequences from
various other mammalian species. Due to the large size of
these families, we employ sampling strategies to construct
smaller, representative input sets for efficient training.

For a given gene, let Smam denote the set of its non-human
mammalian promoter sequences, and let thum be its cor-
responding human promoter sequence. Each training in-

put consists of a query sequence (q) and a homology set
(HS = {h1, h2, . . . , hk−1}), which contains k − 1 homolo-
gous sequences.

We explore various strategies for constructing the model
input by varying the selection methods for the homology set
HS and the query q.

Homology Set Selection: The k − 1 sequences for HS are
chosen from Smam using one of two methods:

Random Sampler (-Rand): HS is formed by randomly
selecting k − 1 sequences from Smam without replacement.

Max-Hamming Greedy Sampler (-Greedy): This sam-
pler aims to maximize diversity within HS . It initializes
with a single sequence h0 randomly sampled from Smam.
Subsequently, sequences are iteratively added to HS from
Smam \HS . In each step, the sequence hi ∈ Smam \HS

that maximizes the average Hamming distance to sequences
already in HS is chosen:

hi = argmaxx∈Smam\HS

(
1

|HS |
∑

h′∈HS

Hamming(x, h′)

)

until |HS | = k−1. This greedy sampling strategy maintains
diversity of evolutionary context within a computationally
tractable subset size (Rao et al., 2021).

Query Selection: Given a selected homology set HS , the
query sequence q is chosen according to one of the following
strategies:

Human-Prioritized Query (-Human-): With probability
Phuman = 0.3, the human sequence thum is chosen as the
query (q = thum). Otherwise (with probability 0.7), q is
randomly sampled from Smam \HS . No special token is
used.

Conditional Human Prompt (-Prompt-): With probability
Pprompt, the human sequence thum is chosen as the query
(q = thum), and a conditioning token [H] is associated with
this input. Otherwise, q is randomly sampled from Smam \
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Table 1. Performance Metrics and Model Augmentations. Left to Right: Model Category; Mean Sei; Delta Frequencies of Nucleotide,
TATA Boxes, GC Islands, and CCAAT Boxes; Fréchet Inception Distance

Type Model Sei ↑ ATCG ↓
(10−2)

TATA ↓
(10−4)

GC ↓
(10−4)

CAT ↓
(10−4)

FID ↓

PROSE

30%-Human-Greedy 9.76 1.67 1.81 3.18 1.70 0.0039
30%-Prompt-Greedy 8.87 1.72 1.67 4.45 1.89 0.1062

30%-Human-Rand 6.21 1.04 2.29 6.03 2.52 0.0081

100%-Human-Greedy 9.43 0.93 1.39 2.86 1.43 0.0593

Baseline Single Sequence 21.39 9.62 3.20 23.5 5.17 0.0621

HS without the [H] token. The inclusion of the [H] token
aims to guide model learning of specific characteristics of
human promoters in relation to their homologs.

The generation process is modeled autoregressively. The
probability of observing the k biological sequences Xseqs =
(x1, . . . , xk) is given by:

P (x|H,X) = P (H) ·
|X|∏
i=1

P (xi|x<i) (1)

= P (H) ·
|X|∏
i=1

len(xi)∏
j=1

P (xi,j |x<i, xi,<j) (2)

where H refers to the optional presence of the [H] token.

For each query selection strategy (-Human-, -Prompt-), we
test performance when paired with homology set selection
methods (-Rand and -Greedy). For all approaches involv-
ing homology sets, each gene is sampled with probability
Pgene ∝ |Smam| during training to ensure larger families
are adequately represented.

We also evaluate a baseline model that does not explic-
itly leverage homology information. In this setup, the in-
put consists of a single sequence, randomly sampled from
Smam ∪ {thum}, and generated autoregressively without
any homology context.

3. Results
We experiment with the controllability of query sequences
during training of PROSE, focusing on the ability to gen-
erate human promoter sequences due to their relevance in
the genetic basis of human diseases. We evaluate results in
three aspects:

1. The frequencies of common motifs that characterize hu-
man promoter sequences: TATA, GC box, and CCAAT
boxes (Avdeyev et al., 2023). We report the mean delta
between motif frequencies of designed and ground
truth promoters.

2. The frequency of nucleotides, where most promoters
are rich in GC base pairs (Avdeyev et al., 2023). We

report the mean delta in the same fashion.

3. The mean score outputted by Sei (Chen et al., 2022), a
foundational model trained on human sequences that
scores promoter activities. Higher scores typically cor-
respond to higher promoter activity.

3.1. Homology Prompting Outperforms Single Sequence
Models

In Table 1, metrics are reported for PROSE trained with 30%
human queries, 100% human queries, 30% human queries
with special human token ([H]), random sampling instead
of greedy, and a baseline single sequence input model. Al-
though the baseline model has a high Sei score, the model
scores poorly on all other metrics. Upon inspecting gener-
ated sequences, the single sequence baseline model lacks
diversity and generates mostly GC repetitions (Figure 2),
which is likely picked up by Sei as an overwhelmingly
strong signal (as in Table 1). Since the score far surpasses
the natural human promoter set that the model is trained on,
this indicates the model failed to generalize to functional
promoters.

Apart from Sei score, the PROSE-based models achieve
better performance than the baseline model, with Greedy
30% and 100% models achieving the best overall perfor-
mance. Prompting with an additional token shows no benefit
for generating more human-like sequences. We therefore
choose PROSE with 30% Human-Greedy for the rest of the
generative results.

3.2. Generated Sequences Capture Known Promoter
Motifs

Figure 2 illustrates the occurrences of motifs and nucleotide
frequencies on a human promoter and PROSE designed pro-
moter on a validation chromosome for PROSE with 30%
Huma-Greedy. PROSE-generated sequences faithfully re-
produce characteristic motifs such as TATA boxes, GC is-
lands, and CCAAT boxes while maintaining appropriate
nucleotide distributions. The model accurately represents
positional preferences and frequency patterns of these crit-
ical regulatory elements, with patterns closely matching
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(a) TATA, GC, CCAAT motif frequencies (b) ATCG nucleotide frequencies

Figure 2. Biological properties of PROSE (Human 30%) designed sequences on validation chromosome 19 (top) and the human promoter
set (bottom). All frequencies were computed using a moving window of 600 base-pairs.

those observed in natural human promoters. The nucleotide
composition analysis further confirms that PROSE captures
the characteristic GC-rich nature of promoter sequences.
These features are essential for proper promoter function,
providing binding sites for transcription factors and estab-
lishing structural properties required for transcription initia-
tion.

3.3. PROSE generates diverse promoter sequences that
remain functional

In Figure 3, we compute the Hamming distance from each
PROSE designed sequence to the set of human sequences,
and visualize its correlation with the Sei score of promoter
activity. The model produces promoters with diversity from
human sequences, as shown by the Hamming distances,
while retaining functional aspects via Sei scores. Sequences
more similar to the human set have higher activity scores, as
expected. In addition to the 30% Human-Greedy, we looked
at the 100% Human-Greedy in 3. 100% Human-Greedy
model generates sequences that are further away from the
training distribution compared to the the 30% model, FID
0.0593 vs 0.0039, as well as the hamming distance to human
sequences. We hypothesize this is because the 100% model,
trained exclusively on human promoter queries, lacks suffi-
cient query diversity and consequently overfits to the human
promoter distribution, leading to mode collapse and reduced
generalization capability.

4. Conclusion & Future Directions
With homology prompting, PROSE designs biologically
consistent and diverse promoter sequences by effectively
capturing evolutionary context through a mixture of human
and non-human queries. Utilizing the PoET architecture,
PROSE is able to leverage a mixture of human and non-

Figure 3. Correlation between SEI score and Hamming distance of
PROSE designed promoters to human promoters. Left: PROSE (
30% Human-Greedy) score distribution

human queries to learn additional evolutionary context, com-
plementing performance with fitting on human queries only.
The model’s superior performance over single-sequence
baselines demonstrates that it has internalized the selective
pressures governing promoter homology, suggesting poten-
tial applications beyond sequence generation. Similar to
LOL-EVE’s approach for predicting indel effects, PROSE’s
learned representations could be adapted to score regulatory
variants, prioritize mutations in genome-wide association
studies, or guide therapeutic design targeting regulatory
elements.

Future improvements could incorporate phylogenetic infor-
mation into sampling strategies to create more evolutionar-
ily representative subsets and develop more sophisticated
human-specific prompting control. The convergence of gen-
erative modeling and variant effect prediction represents a
promising direction for understanding genetic disease mech-
anisms, with PROSE demonstrating that evolutionary ho-
mology provides a powerful framework for both generating
and evaluating regulatory sequences.
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Impact Statement
This paper introduces PROSE, a generative model designed
for creating biologically plausible promoter sequences by
leveraging evolutionary relationships across mammalian
species. By enabling the design of synthetic regulatory ele-
ments that capture natural evolutionary constraints, PROSE
has the potential to contribute to advances in synthetic biol-
ogy, gene therapy design, and our understanding of regula-
tory genomics. While the model’s ability to generate human-
like promoter sequences may aid in developing therapeutic
interventions and studying disease mechanisms, generated
sequences should be thoroughly validated experimentally
before any clinical applications to ensure safety and efficacy.
Ethical considerations include the responsible development
of synthetic regulatory elements to prevent potential misuse
in genetic engineering applications that could have unin-
tended consequences. As with any AI-driven approach for
biological sequence design, care must be taken to ensure
that applications benefit diverse populations equitably and
that generated sequences are not used for harmful purposes
such as creating dangerous biological agents. The model’s
training on evolutionary data from multiple species raises
considerations about biodiversity conservation and the re-
sponsible use of genomic resources. Nonetheless, this work
primarily seeks to enhance computational methods for un-
derstanding promoter evolution and regulatory sequence
design, with the goal of advancing basic biological research
and potentially contributing to beneficial medical applica-
tions.
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A. Appendix
A.1. Dataset

Typically, promoter regions are identified using Transcription Start Site (TSS) annotations. However, these are not readily
available for many species, which have not been extensively annotated by researchers. To address this, we identify putative
promoters using a genomic lift-over of the exon starting positions in a standard human genome, which is annotated, to the
477 mammalian species in the dataset in Zoonomia. The lift-over algorithm is part of the HAL toolkit (Hickey et al., 2013)
and aligned the exon positions in humans to other species by sequence similarity. 1000 base pairs upstream the exon starting
position were taken as the promoter sequence for each gene. We filter our dataset by retaining only promoters that have
corresponding exons that are at least 50% in length of their corresponding human exons to exclude unreliable alignment. In
total, we collect a dataset of 13.6 million promoter sequences. The Zoonomia training dataset has a mean Sei score of 5.487,
and the human subset has a mean score of 6.542.

Figure 1. Sei score distributions of 447 species promoters (left) and human promoters (right)

A.2. Training Details

PROSE is trained with 201M parameters on 2 NVIDIA L40s GPUs for 2 days. We withhold promoters on chromosome 19
for validation and testing. At training time, each set of promoters is reversed with probability P = 0.5 to improve model
robustness (Truong Jr & Bepler, 2023). We use a max set length of 16384 (including query), and Adafactor optimizer with
default parameters and a learning rate of 1e-3.

A.3. Additional Metrics

We report the FID (Fréchet Inception Distance) metric of validation promoters generated by PROSE. FID has been used to
measure diversity of images created by generative models with images in reference datasets (Heusel et al., 2017). Recent
works have adopted it to protein generation (Faltings et al., 2025). We compute it based on mean and covariance of k-mer
frequency and sequence properties of PROSE generated and ground truth human sequences. Low FID represents less
deviation from the ground truth distribution. We use 3 for k-mer size, and consider these properties: sequence length, GC
content, and dinucleotide frequencies.

Table A1. FID scores and Model Augmentations

Model FID ↓
30% 0.0039
30%[H] 0.1062
30%[R] 0.0081
100% 0.0593
Baseline 0.0621

PROSE with 30% human query achieves the lowest deviation from the human promoter distribution, achieving a balance
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between diversity and satisfaction of biological constraints.

A.4. Baseline Models

We examine the baseline model’s behavior with the same metrics and provide comparison against human promoters. The
plot confirms our reasoning about the high Sei score of the single sequence model, which potentially highlights a pitfall of
the Sei foundation model in validation of promoter designs.

Figure 2. GC-overfit patterns seen without homology prompting. Top: baseline designed promoters (chromosome 19), Bottom: ground
truth validation (chromosome 19) human promoters

We also examine the correlation between PROSE generated sequences and their Sei scores when queries are 100% human
sequence. We observe that sequences further from the human set have lower Sei scores compared to PROSE with 30%,
which was included in the main section.

Figure 3. Sei score vs. Hamming Distance for PROSE (100% Q-HumanP-Greedy ). Left: training set Sei Score distribution.
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