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Abstract

In multi-view medical diagnosis, deep learning-based models often fuse infor-
mation from different imaging perspectives to improve diagnostic performance.
However, existing approaches are prone to overfitting and rely heavily on view-
specific features, which can lead to trivial solutions. In this work, we introduce
Random Token Fusion (RTF), a novel technique designed to enhance multi-view
medical image analysis using vision transformers. By integrating randomness into
the feature fusion process during training, RTF addresses the issue of overfitting
and enhances the robustness and accuracy of diagnostic models without incurring
any additional cost at inference. We validate our approach on standard mammog-
raphy and chest X-ray benchmark datasets. Through extensive experiments, we
demonstrate that RTF consistently improves the performance of existing fusion
methods, paving the way for a new generation of multi-view medical foundation
models.

1 Introduction

Physicians routinely employ multi-view analysis in diagnostic procedures. Images gathered at various
angles can unveil details that may be obscured in a single view, enhancing the precision of the
diagnosis. It has been shown in clinical trials that a large percentage of breast cancers can only be
detected when both craniocaudal (CC) and mediolateral oblique (MLO) views are analyzed [13].
Similarly, the frontal and lateral views of chest X-rays can provide unique information that is valuable
to the accurate diagnosis of diseases [11, 15, 31, 18]. This is because complementary information
from different views helps physicians tackle the challenges posed by superimposed tissues and
complex anatomy. Each additional view provides context and offers unique insights, enriching the
overall understanding of a patient’s condition [18].

Given the clear benefits of multi-view analysis in clinical practice, it stands to reason that foundation
models for medical image analysis could similarly improve their diagnostic accuracy by integrating
information from multiple views. Information from different views of anatomical structures may
reduce ambiguity, better explain spatial relationships, and provide additional context. Although only a
handful of works have addressed the topic of multi-view fusion in neural networks, evidence suggests
that there is a tangible benefit from fusing information from multiple views [4, 1, 42, 48, 38].

The question of how and where to mix information from different views is an open area of research,
with multiple strategies having been proposed in recent years. This is not our main focus. Rather,
we propose a solution that can enhance existing multi-view fusion strategies, which we call Random
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Figure 1: Illustration of the overfitting problem in multi-view medical diagnosis. The model’s
attention becomes overly focused on one of the two available views, resulting in an incomplete
interpretation of the case. In this example (top), model attention in the MLO view dominates over
the CC view in CBIS-DDSM (top left), and the frontal view over the lateral view in CheXpert (top
right). Random Token Fusion (RTF) encourages the model to better utilize information from both
views, resulting in balanced attention between both views and increased performance (bottom).

Token Fusion (RTF). The motivation for RTF is the observation that models often overfit to the more
informative or dominant view, neglecting complementary information in other views [42, 40], as
illustrated in Figure 1. This is particularly problematic in medical image analysis, where each view
can provide unique diagnostic insights [11, 15, 31, 18]. Integrating information occlusion and mixing
into the training process has been a proven method to combat overfitting and improve robustness [7,
22, 46, 45]. RTF randomly fuses tokens from different views, introducing variability in the fused
representation, which acts as a regularizer. This forces the model to consider diverse combinations of
tokens from both views, and reduces overfitting to any single view.

RTF can be seamlessly integrated with existing multi-view fusion strategies for vision transformers
(ViTs), enriching an existing model’s feature space without requiring any modification to the inference
process. Through extensive experiments on two public medical benchmark datasets, CBIS-DDSM
[20] and CheXpert [18], we demonstrate that RTF consistently improves performance of multi-view
models, achieving state-of-the-art performance on both mammograms and chest X-rays. The source
code used in this work can be found at https://jimyug.github.io/RandomTokenFusion.

2 Related Work

2.1 Multi-view Fusion in Medical Imaging

Multi-view fusion is a technique for integrating multiple input signals that typically represent the
same object or class [43]. It has been used in 3D scene comprehension in the natural domain [35, 30,
10, 12], and has recently gained attention in the medical field for improving diagnostics by exploiting
complementary information from multiple views taken from the same exam [26, 42].

For chest X-rays [15, 38] and mammography screenings [39, 36, 28, 42, 4], studies have demonstrated
the utility of merging different views. Although it has been established that registration is not
necessary for fusing multiple views [2, 4], simply combining modalities does not guarantee enhanced
performance [15, 42]. It is observed that in some cases, one view may overshadow the other in terms
of relevance, dominating the learning signal [15, 42]. As such, various approaches to multi-view
fusion have been investigated.

Wang et al. [39] adopt an attention mechanism coupled with a recurrent network to merge the
two views. Similarly, Iftikhar et al. [17] propose a sensitivity-based weighting mechanism to fuse
the predictions on individual views. Lopez et al. [24] treat the two views as separate channels,
constructing a channel-wise input, and employ convolutions to learn the correlations between them.
Liu et al. [23] employ graph convolutional networks to discern geometric and semantic relationships
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between two mammography views before merging them. MommiNet-v2 [44] emulates radiologists’
practice by integrating symmetry and geometry constraints for improved performance. Wu et al. [42]
randomly omit one of the views during training, forcing the network to utilize both views for improved
performance. With the emerging trend of vision transformers, their application in medical imaging
has great potential with the ability to model complex dependencies across diverse perspectives of
subjects. Van Tulder et al. [38] introduce cross-view attention at feature level to transfer information
between unregistered views, an approach further proven effective by [37] Moreover, Chen et al.
[4] demonstrate that vision transformers can effectively analyze unregistered multi-view medical
images. Kim [19] and Black et al. [1] also show that the self-attention mechanism can help aggregate
multi-view features efficiently.

2.2 Information Mixing as Regularization

Information occlusion and mixing have been used as a regularization technique in various other
contexts. Techniques such as CutOut [7] and PatchDropout [22] have shown their efficacy as
regularizers by denying partial information. Methods such as [46, 45, 9] have demonstrated useful
regularization effects when mixing information of different inputs. Mixup [46] and CutMix [45] mix
samples at image level during training, while PatchUp [9] works in the hidden space of CNNs. For
ViTs, Liu et al. [21] adapt Mixup by blending two images at the token level, guided by contextual
activation maps. Similarly, TokenMixup [5] employs self-attention-based saliency to guide the
mixing process towards the most significant tokens. Zhao et al. [47] further advance this approach by
optimizing both token and label spaces for ViTs.

The aforementioned methods provide effective strategies for increasing the diversity of data. They
have been applied to random image pairs of different objects and labels, although the pairs are
intentionally constructed and not intended to be mixed for the specific tasks, e.g.. classification.
Naturally, we believe that the idea could benefit multi-view medical diagnosis where image pairs exist
naturally: They originate from the same object and serve the exact same diagnostic goals, and we
want to encourage models to fully utilize both inputs. To this end, the proposed RTF randomly selects
features from both views before fusion, effectively functioning as a regularizer. By augmenting the
feature space, RTF encourages models to analyze cases more comprehensively, leading to improved
performance.

3 Methods

Combining information from multiple views in medical image analysis enhances diagnostic accuracy,
but existing methods often overfit by relying too much on the most informative view [42, 40]. To
address this, we introduce Random Token Fusion (RTF). RTF is designed to augment feature learning
in multi-view vision transformers by randomly selecting tokens from both views during the fusion
phase of training, forcing the model to utilize information from both views effectively (See Figure 2).

Given two views x1,2 ∈ RH×W×C , where H×W is the spatial dimension and C the number of image
channels, a local encoder fθlocal

processes each input independently, and generates representations
for both views:

z1,2 = fθlocal
(x1,2) (1)

where z1,2 ∈ R(N+1)×D, are the local representations of x1 and x2, consisting of N patch tokens
and a class (CLS) token [8] of size D. Then, z1,2 are processed by the fusion module that divides
them into two different fusion branches: the random token fusion module RTFF (described in 3.1)
and the global fusion module GlobalF (described in 3.2).

Subsequently, the fused outputs are independently forwarded to a global encoder fθglobal
that produces

the final predictions for both the global and RTF tokens. The overall process for the two branches is
described as follows:

ŷ = fθglobal
(GlobalF (fθlocal

(x1,2))) (2)
for the global branch, and

ŷRTF = fθglobal
(RTFF (fθlocal

(x1,2))) (3)

for the RTF branch, where ŷ and ŷRTF represent the model’s predictions for the global and RTF
branch, respectively. In this work, we construct the local and the global encoder from the original ViT
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Figure 2: Multi-view ViTs with Random Token Fusion (RTF). RTF utilizes a local encoder to generate
representations of different views, followed by a token fusion module. This module divides the
feature fusion into two distinct branches. One branch uses some strategy to merge all tokens from
both views, while the other one randomly drops spatial tokens from each view before mixing them.
The fused tokens are processed by a global encoder, which produces two types of predictions: one
for the global tokens and one for the RTF tokens. During training, the loss for both branches is
minimized towards the same task. After training, RTF tokens are not generated, they are merged
using the model’s fusion method and passed to the global encoder for inference.

variants [8] by allocating a certain proportion of the initial Encoder blocks to form the local encoder,
while the remaining blocks constitute the global encoder.

During training the objective is to minimize a combined loss function, considering both the global
and RTF branch

L = ℓCE (ŷ, y) + ℓCE (ŷRTF , y) (4)
where ℓCE is the cross-entropy loss between the model’s predictions and the target y. At inference
time, only the process described by Equation 2 is used.

3.1 Random Token Fusion

To better instruct the model to utilize information from both views, we introduce the Random Token
Fusion (RTF). RTF maximizes the mutual information I(Z;Y ) between the fused representation Z
and the target Y , mathematically defined as:

I(Z;Y ) = H(Z)−H(Z|Y ) (5)

where H(Z) is the entropy of the fused representation Z, and H(Z|Y ) is the conditional entropy
given the target Y . By incorporating randomness into the token fusion process, RTF encourages the
model to learn robust and generalized features from all views, ensuring that the fused representation
captures the most informative features.

RTF randomly selects part of the tokens from each view prior to fusion (see Figure 3 Right).
Specifically, given two features z1,2 ∈ R(N+1)×D, RTF randomly selects tokens from either view to
form a mixed representation

zspatial = 1M ⊙ z1,spatial + (1− 1M )⊙ z2,spatial, (6)

for the spatial tokens, where 1M ∈ RN is a binary mask, whose elements take the value of 1 with
a probability that follows a uniform distribution p ∼ U (0, 1). To preserve high-level features used
for classification from both views, we average the CLS tokens zcls =

z1,cls+z2,cls
2 . We concatenate zcls

and zspatial to form the final fused feature z = {zcls, zspatial}. By doing so, it compels the network to
capture dependencies between patches originating from different views, preventing the model from
overfitting to view-specific features.
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Figure 3: Illustration of different fusion strategies. (Left) Common fusion strategies to fuse the
features (tokens) of different views in ViTs. (Right) The proposed random token fusion (RTF)
strategy. In RTF, we randomly drop spatial tokens from both images and combine the remaining ones,
augmenting the representations during training.

RTF increases both H(Z) and H(Z|Y ) by introducing randomness in the token selection process.
Despite the increase in H(Z|Y ), the overall mutual information I(Z;Y ) still benefits because the
added randomness enhances the diversity and robustness of the representations, helping the model
capture informative complementary features from other views.

3.2 Fusion Strategies

RTF is designed to enhance common fusion strategies without bringing additional cost to inference.
There are a number of ways to mix representations of different views. In this work, we consider the
fusion strategies from the literature.

Given the representations of two views z1 and z2, where z = {zcls, zspatial1 , . . . , zspatialN }, and zcls
represents the class token, zspatiali represents the i-th spatial token, and i ranges from 1 to N , one
strategy is to perform some operation on the features to produce a fused feature z. The operation could
be token-wise, such as concatenation or selection, or element-wise, such as addition, subtraction,
multiplication, max, etc.

In this work, we consider token-wise fusion with concatenation, a choice widely adopted in current
research [4, 38], implemented for ViTs by concatenating all tokens from two views. As such, z is
defined as z = {z1,cls, z1,spatial1 , . . . , z1,spatialn , z2,cls, z2,spatial1 , . . . , z2,spatialm}, as depicted in Figure
3. Since ViTs are able to process an arbitrary number of tokens [38, 4], this is a trivial operation.
While this approach has the benefit of preserving information, it adds a considerable cost to the
memory and compute. A compromised solution would be keeping and fusing only the CLS tokens
z = {z1cls , z2cls} for efficiency.

An alternative approach is element-wise fusion by averaging [42], implemented by averaging all
tokens from two views z = z1+z2

2 or by using only the CLS tokens, z =
z1,cls+z2,cls

2 (see Figure 3).
While this approach is straightforward and computationally efficient, it may lead to loss of spatial
information, particularly when input images are not registered [38].

4 Experimental Setup

By design, RTF can be applied to most transformer-based multi-view fusion models. In this work, we
employ the standard ViT family [8] for both the local and global encoders. Using ViT Tiny, Small,
and Base, we conduct experiments on two standard benchmark medical datasets, CBIS-DDSM [20,
33] and CheXpert [18] to evaluate RTF performance on top of different fusion strategies, described in
Section 3.2. We also compare against other multi-view fusion methods designed for ViTs and, for
reference, against CNN-based multi-view fusion methods. For both datasets, we use the area under
the receiver operating characteristic curve (AUC) to evaluate model performance. All experiments
are repeated 4 times, and we report the mean value and standard deviation.

4.1 Datasets

CBIS-DDSM [20, 33] is a well-known public mammography dataset, containing 10, 239 samples
from 1, 566 unique patients, including both craniocaudal (CC) and mediolateral oblique (MLO) views.
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Table 1: The effect of using only a single view, multiple views with late fusion, and multiple views
with RTF on CBIS-DDSM (left) and CheXpert (right).

View DDSM, AUC ↑ View CheXpert, AUC ↑
Only CC 0.730 ± 0.004 Only Frontal 0.838 ± 0.003
Only MLO 0.747 ± 0.022 Only Lateral 0.832 ± 0.002

Late fusion 0.799 ± 0.008 Late fusion 0.841 ± 0.001
Fusion w/ RTF 0.815 ± 0.001 Fusion w/ RTF 0.849 ± 0.001

The objective is to classify mass abnormalities as either benign or malignant. We only select images
from exams for which both CC and MLO views are available, similar to [38]. This results in a subset
of 1, 416 images from 708 exams, corresponding to 636 patients.

CheXpert [18] is one of the largest publicly available datasets for chest radiograph interpretation,
consisting of frontal and lateral chest X-ray scans. The original dataset contains 224, 316 chest
radiographs of 65, 240 patients, annotated for 13 diagnostic observations, each labelled as negative,
positive, uncertain, or unknown (missing). The uncertain and unknown samples are handled following
the suggestion of [18]. For the purposes of this work, we only use exams that include both frontal
and lateral views, totaling 62, 826 images from 31, 413 exams (22, 414 patients).

4.2 Implementation Details

We resize all images to 384× 384 and initialize all models with weights pretrained on ImageNet-21K
[32, 41], as randomly initialized ViTs cannot effectively be trained on small medical datasets [27].
By default, we use ViT Small [8] as the backbone, with concatenation as the fusion strategy. 75% of
the total encoder blocks are used as the local encoder fθlocal

, and the remaining 25% are applied to
the fused feature. This partitioning is used by default throughout the rest of our experiments. We use
the AdamW optimizer [25] to train the models for 300 epochs on CBIS-DDSM and for 60 epochs
on CheXpert. The learning rate is selected based on a grid search. For both datasets, we use spatial
scaling, flipping, rotation, and color jittering for data augmentation. After training, the checkpoint
with the highest AUC validation score is selected for testing. We employ the same train/validation/test
split as in [38, 1] for both datasets. All experiments are conducted on NVIDIA GeForce RTX 4090
Ti GPUs with 24 GB of memory.

5 Results and Discussion

5.1 Ablation Study

We begin by confirming the advantages of multi-view over single-view ViTs across various fusion
strategies. We then show the benefits of incorporating RTF with standard fusion techniques. We then
delve into identifying the most compatible fusion strategy for RTF, and conduct ablation studies for
different model sizes.

Are there benefits to using multiple views compared to a single view? To assess the benefits of
multi-view ViTs, we conducted experiments training models on single views and with late fusions
and report results in Table 1. Specifically, single-view models only consider one view throughout the
task, while late-fusion models combine representations of different views at the end of the model [2,
1, 38]. We verify that, for both CBIS-DDSM and CheXpert, using two views results in improved

Table 2: Performance (AUC) depending on where the encoder is split for fusion, w/(w/o) RTF.

Local/ Global 25%/ 75% 50%/ 50% 75%/ 25%
CBIS-DDSM 0.802 (0.799) 0.810 (0.799) 0.815 (0.803)

CheXpert 0.845 (0.842) 0.849 (0.844) 0.849 (0.843)
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Table 3: AUC performance on CBIS-DDSM, showing the effect of using multiple views with and
without RTF for different model sizes and fusion strategies.

Method RTF Used ViT Tiny ViT Small ViT Base

Average No 0.798 ± 0.003 0.803 ± 0.008 0.813 ± 0.004
Yes 0.802 ± 0.001 0.809 ± 0.002 0.825 ± 0.005

CLScat
No 0.796 ± 0.002 0.802 ± 0.006 0.814 ± 0.007
Yes 0.801 ± 0.001 0.811 ± 0.008 0.826 ± 0.004

Concat No 0.798 ± 0.003 0.803 ± 0.003 0.814 ± 0.004
Yes 0.802 ± 0.003 0.815 ± 0.001 0.830 ± 0.002

Table 4: AUC performance on CheXpert, showing the effect of using multiple views with and without
RTF for different model sizes and fusion strategies.

Method RTF Used ViT Tiny ViT Small ViT Base

Average No 0.835 ± 0.003 0.844 ± 0.004 0.847 ± 0.003
Yes 0.838 ± 0.003 0.848 ± 0.002 0.850 ± 0.002

CLScat
No 0.833 ± 0.003 0.842 ± 0.003 0.846 ± 0.002
Yes 0.837 ± 0.003 0.846 ± 0.001 0.850 ± 0.001

Concat No 0.833 ± 0.002 0.843 ± 0.004 0.847 ± 0.004
Yes 0.839 ± 0.002 0.849 ± 0.001 0.852 ± 0.002

AUC performance compared to single-view models with the same capacity, and fusing information at
feature level is more effective than at a late stage, which is consistent with prior findings [15, 42].
This also highlights the importance of encouraging models to utilize both perspectives in medical
diagnosis, which is a key motivation for our research.

To determine the optimal point for fusing local features, we conducted experiments to assess its
impact on performance. We derived two key observations from the results 2 in Table 2. First, the
advantage of integrating multiple views within a model, as opposed to late fusion, generally persists.
On both datasets, effective intermediate feature fusion outperforms late fusion, as shown in Tables
1 and 2. Second, RTF consistently enhances performance across all settings. The best results are
achieved when the first 75% of the blocks are used for the local encoder, and the remaining 25%
blocks for the global encoder. We adopt this as the default setting in other experiments.

What are the benefits from using RTF to enhance multi-view fusion? To understand the
impact of integrating RTF with common fusion strategies, we train models of different capacities
employing the three token fusion strategies described in Section 3.2: averaging all tokens (Average),
concatenating only the CLS tokens (CLScat), and concatenating all tokens (Concat) from two views,
with and without RTF. We present the results on CBIS-DDSM and CheXpert in Table 3 and Table 4,
respectively.

The results show that training with RTF consistently improves performance across all configurations.
And the extent of improvement varies with the dataset and model size. CBIS-DDSM appears to
gain more from RTF, particularly for larger ViT variants. We hypothesize that this is due to the
regularization effects of RTF and the smaller size of the dataset, as higher-capacity models are more
prone to overfitting [16]. Overall, integrating RTF with concatenation fusion for the global encoder
generally yields better performance compared to other fusion methods, as it preserves the tokens and
retains the most information. Therefore, we adopt this combination as the default setting for later
comparisons.

Inspired by recent advancements in hybrid architectures [19, 1], we aim to examine the efficacy of
RTF with different backbone choices. Compared to the plain ViT [8], hybrid architectures adopt more
complex and powerful designs, e.g., the ResNet family or other CNNs, to project input images to
tokens before feeding them into a transformer-based network. Following [1], we employ three variants

2Extended tables can be found in the Supplement.

7



Table 5: Comparison vs. SOTA methods on CBIS-DDSM (left) and CheXpert (right).

Method CBIS-DDSM Method CheXpert
ResNet50 [24] 0.724 ± 0.007 MVC-NET [48] 0.813 ± 0.005
Shared ResNet [42] 0.735 ± 0.014 MVCNN [34] 0.815 ± 0.004
PHResNet50 [24] 0.739 ± 0.004 CVT [38] 0.834 ± 0.002
MVT [3, 4] 0.803 ± 0.003 MVT [3, 4] 0.843 ± 0.004
CVT [38] 0.803 ± 0.007 ViT-Average [29] 0.844 ± 0.004
ViT-Average [29] 0.803 ± 0.008 MV-HFMD [1] 0.845 ± 0.002
RTF 0.815 ± 0.001 RTF 0.849 ± 0.001

of the “ResNet + ViT” design and apply RTF between the ResNet and ViT Encoder. We apply RTF
to the tokens generated by the local CNN encoders and follow the same procedure outlined in Figure
2. As shown in Table 6, RTF consistently benefits the hybrid models. Although hybrid architectures
generally achieve better performance than plain ViTs, they are computationally expensive and require
larger memory [8, 41]. As such, we opt for standard ViTs as the main backbone in this work.

5.2 Comparison with State of the Art

We benchmark RTF against state-of-the-art (SOTA) methods from the literature. On CBIS-DDSM,
we include ResNet50 [24], Shared ResNet [42], PHResNet50 [24], Multi-view Transformer (MVT)
[3, 4], ViT with average fusion (ViT-Average) [29], and Cross-view Transformer (CVT) [38]. On
CheXpert, we compare RTF with MVC-NET [48], MVCNN [34], MVT [3, 4], ViT-Average [29],
CVT [38], and MV-HFMD [1]. We choose RTF Small, i.e., ViT Small with RTF, which has a
comparable capacity with other models.

As shown in Table 5, RTF outperforms all methods on both datasets, showing its efficacy in multi-
view medical diagnosis. Notably, RTF can be used in conjunction with transformer-based methods,
such as ViT-Average [29] and MVT [3, 4], for further enhanced performance, as demonstrated in
Section 5.1. By design, RTF during inference is essentially a standard ViT [8] with concatenation
for feature fusion. The fact that RTF achieves better performance on CheXpert than MV-HFMD
[1] – a hybrid architecture – highlights the potential of ViTs in this application when empowered
with RTF. It is important to note that comparing RTF against CNN-based methods may place the
latter at a disadvantage, as evidence suggests that transformers are more adept at fusion tasks [4, 14].
Nevertheless, these comparisons are presented for completeness.

5.3 Qualitative Results

The intuition behind RTF is that by withholding information during training, the model is encouraged
to focus its attention on features from both views. To better understand the impact of RTF on model
attention, we provide qualitative examples from CBIS-DDSM and CheXpert. In Figure 4, we compare
attention maps within the last block of the global encoder from models trained with and without
RTF, with each row showing the results of an image pair with two views. On CBIS-DDSM, the
baseline model sometimes focuses on uninformative background, a phenomenon observed where
patch information is redundant, as discussed in [6]. This may lead to poor generalization. With
RTF, the quality of the attention maps generally improves, with more attention focused on relevant
areas. RTF also appears to encourage a more balanced focus between both views in many cases. On
CheXpert, the model with RTF tends to consider both views, while the baseline model often ignores
the lateral view, which may provide valuable information for diagnosis [15, 18]. More examples are
included in the Supplement.

Table 6: Performance (AUC) on CheXpert of hybrid models, w/ and w/o RTF.

Fusion R+ViT-Ti/16 R26+ViT-S/16 R50+ViT-B/16
w/o RTF 0.834 ± 0.002 0.846 ± 0.002 0.848 ± 0.001
w/ RTF 0.839 ± 0.002 0.852 ± 0.002 0.854 ± 0.002
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Figure 4: RTF encourages the model to learn from both views, resulting in better quality of attention
maps. Given two views (left), standard fusion methods overfit on a specific view (MLO in CBIS-
DDSM and Frontal in CheXpert, in this example), under-utilizing information from the other (middle).
RTF encourages the model to use information for both views to make better predictions (right). For
mammograms, the model sometimes focuses on uninformative background, a known issue raised
when information of the patches is redundant, and may lead to poor generalization. With RTF, the
quality of the attention maps is better in general, with more attention focused on relevant areas. On
CheXpert, the baseline model ignores the lateral view that also provide valuable information for
diagnosis. RTF also seems to encourage more equal focus between both views.

5.4 Further Discussion

Can RTF work as a standalone, efficient training method? In this study, we propose RTF as
a solution to enhance existing multi-view fusion strategies. RTF is designed to function with an
additional branch in the network and loss function, making it compatible with various manipulations
of intermediate features (tokens). Some approaches corrupt spatial information, while others retain
all tokens as-is or completely discard the spatial ones. It would be intriguing to explore whether RTF
alone could serve as an effective fusion strategy, potentially reducing computational requirements
through random token selection compared to simple concatenation, and further improving perfor-
mance. The potential positive outcomes could contribute to both efficient training and robust medical
diagnosis. We plan to investigate this further in future work.

6 Conclusion

In this work, we focus on multi-view vision transformers for medical image analysis. We address
shortcomings of current fusion methods that tend to overfit on view-specific features, not fully
leveraging information from all views. Random token fusion (RTF) randomly drops tokens from both
views during the fusion phase of training, encouraging the model to learn more robust representations
across all views. RTF directly impacts the model’s attention and enhances its performance without any
additional cost at inference. Our experiments show that RTF exceeds the performance of other fusion
methods and seamlessly boosts performance when combined with them – the degree of improvement
is influenced by the dataset and model size. While our work focuses on multi-view ViTs for medical
diagnosis with chest X-rays and mammograms, we believe that our findings can be extended to
multiple medical modalities, as well as other tasks and domains, which we leave for future work.
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Appendix

Appendix A Extended Results

We report additional experimental results included in the main paper. Table 7 and Table 8 extend
Table 2 of the main paper. We investigate how many blocks of a standard ViT are used as the local
encoder and the remaining as the global encoder for the fused tokens with all mentioned fusion
strategies. Two key findings emerge from the results:

First, concatenation proves more robust to the choice of local/global ratio compared to the other
fusion strategies. This robustness is expected, as concatenation preserves the information to the
most extent and can fully utilize the global transformer blocks. Based on these results, we select
concatenation as the default fusion strategy. Second, RTF generally enhances performance across all
settings. The only exception occurs when using 25% blocks as the local encoder with CLScat. In this
scenario, all spatial tokens are discarded at a very early stage, and only the two CLS tokens are sent to
the global encoder, resulting in extremely low model capacity. Applying RTF in this situation harms
performance, similar to the effects of aggressive regularization techniques on an already under-fitting
model.

Table 7: Extended results on CBIS-DDSM, showing AUC performance depending on where the
encoder is split for fusion.

Fusion RTF Used 25% local 50% local 75% local

Average No 0.753 ± 0.007 0.789 ± 0.014 0.803 ± 0.008
Yes 0.756 ± 0.011 0.793 ± 0.006 0.809 ± 0.002

CLScat
No 0.711 ± 0.012 0.782 ± 0.007 0.802 ± 0.006
Yes 0.709 ± 0.005 0.796 ± 0.001 0.811 ± 0.008

Concat No 0.799 ± 0.002 0.799 ± 0.009 0.803 ± 0.003
Yes 0.802 ± 0.001 0.810 ± 0.003 0.815 ± 0.001

Table 8: Extended results on CheXpert, showing AUC performance depending on where the encoder
is split for fusion.

Fusion RTF Used 25% local 50% local 75% local

Average No 0.834 ± 0.004 0.845 ± 0.002 0.844 ± 0.004
Yes 0.835 ± 0.003 0.849 ± 0.001 0.848 ± 0.002

CLScat
No 0.815 ± 0.003 0.841 ± 0.003 0.842 ± 0.006
Yes 0.814 ± 0.003 0.844 ± 0.001 0.846 ± 0.001

Concat No 0.842 ± 0.003 0.844 ± 0.003 0.843 ± 0.004
Yes 0.845 ± 0.002 0.849 ± 0.001 0.849 ± 0.001
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Appendix B Additional Saliency Results

Without RTFOriginal images With RTF
MLOMLOCC CC CC MLO

MLOMLOCC CC CC MLO

MLOMLOCC CC CC MLO

Frontal Frontal FrontalLateral Lateral Lateral

Frontal Frontal FrontalLateral Lateral Lateral

Frontal Frontal FrontalLateral Lateral Lateral

Figure 5: Extended results on CBIS-DDSM (top) and CheXpert (bottom), showing the model’s
attention maps within the last block of the global encoder. RTF seems to address the issue of attention
being allocated to uninformative areas, a common phenomenon observed in ViTs. It also encourages
the model to focus on both views in many cases.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We discuss in detail the contributions and scope of this work in Section 1
Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have listed the limitations of our proposed method and under which
assumptions it works as described (Section 5.4).
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not include any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided detailed information on the architecture and hyperparameter
selection.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: This paper uses public data, and the code will be published upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We report in detail in experimental settings used in this work (Section 4) and
we will also release the code after publication..
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean results and the standard deviations, following the standard
protocol in this field.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: While this paper does not introduce methods that alter the common training
compute demands, we include sufficient information in the main paper and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No human subjects or crowdsourcing were used during the study. We adhered
to the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed potential impacts on AI-based medical diagnosis.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our study is about token fusion in ViTs and it does not pose a risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite papers, data and models we used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [NA]
Justification: We will release the code after publication. No other assets will be released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve research with human subjects. All data used is
public.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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