Estimating and Implementing Conventional Fairness
Metrics With Probabilistic Protected Features

Abstract—The vast majority of techniques to train fair models
require access to the protected attribute (e.g., race, gender),
either at train time or in production. However, in many
practically important applications this protected attribute is
largely unavailable. Still, AI systems used in sensitive business
and government applications—such as housing ad delivery and
credit underwriting—are increasingly legally required to measure
and mitigate their bias. In this paper, we develop methods for
measuring and reducing fairness violations in a setting with limited
access to protected attribute labels. Specifically, we assume access
to protected attribute labels on a small subset of the dataset of
interest, but only probabilistic estimates of protected attribute
labels (e.g., via Bayesian Improved Surname Geocoding) for the
rest of the dataset. With this setting in mind, we propose a method
to estimate bounds on common fairness metrics for an existing
model, as well as a method for training a model to limit fairness
violations by solving a constrained non-convex optimization
problem. Unlike similar existing approaches, our methods take
advantage of contextual information — specifically, the relationships
between a model’s predictions and the probabilistic prediction
of protected attributes, given the true protected attribute, and
vice versa — to provide tighter bounds on the true disparity. We
provide an empirical illustration of our methods using voting data
as well as the COMPAS dataset. First, we show our measurement
method can bound the true disparity up to 5.5x tighter than
previous methods in these applications. Then, we demonstrate that
our training technique effectively reduces disparity in comparison
to an unconstrained model while often incurring lesser fairness-
accuracy trade-offs than other fair optimization methods with
limited access to protected attributes.

Index Terms—algorithmic fairness, fair machine learning,
anti-discrimination, disparity reduction, probabilistic protected
attribute

I. INTRODUCTION

In both the private and public sectors, organizations are
facing increasing pressure to ensure they use equitable machine
learning systems, whether through legal obligations or social
norms [1112,/3,/4,/5]. For instance, in 2022, Meta Platforms
agreed to build a system for measuring and mitigating racial
disparity in advertising to settle a lawsuit filed by the U.S.
Department of Housing and Urban Development under the
Fair Housing Act [6L/7]]. Similarly, recent Executive Orders
in the United States [3}/8|] direct government agencies to
measure and mitigate disparity resulting from or exacerbated
by their programs, including in the “design, develop[ment],
acqui[sition], and us[e] [of] artificial intelligence and automated
systems” [8].

Yet both companies [9]] and government agencies [3]] rarely
collect or have access to individual-level data on race and
other protected attributes on a comprehensive basis. Given
that the majority of algorithmic fairness tools which could be

used to monitor and mitigate racial bias require demographic
attributes [[10}|11]], the limited availability of protected attribute
data represents a significant challenge in assessing algorith-
mic fairness and makes training fairness-constrained systems
difficult.

In this paper, we address this problem by introducing
methods for /) measuring fairness violations in, and 2) training
fair models on, data with limited access to protected attribute
labels. We assume access to protected attribute labels on only a
small subset of the dataset of interest, along with probabilistic
estimates of protected attribute labels for the rest of the dataset.
These probabilistic estimates may be generated using Bayesian
Improved Surname Geocoding (BISG) [12,|13]] or any predictive
model which can output probabilistic predictions.

We leverage this limited labeled data to establish (or ensure,
in the case of training) whether a certain condition holds
regarding the relationship between the model’s predictions,
the probabilistic protected attributes, and the ground truth
protected attributes hold. In particular, this condition is that
two residual correlations — the residual correlation between the
probabilistic proxy and the outcome of interest conditioned
on ground truth race, and the residual correlation between
ground truth race status and the outcome conditional on the
proxy — share the same sign. Given this condition, our first
main result (Theorem [I) shows that we can bound a range
of common fairness metrics, from above and below, over the
full dataset with easily computable (un)fairness estimators
calculated using the probabilistic estimates of the protected
attribute. We expound on these conditions, define the fairness
estimators, and introduce this result in Section [[]

To train fair models, we leverage our results on measuring
fairness violations to bound disparity during learning; we
enforce the upper bound on unfairness calculated with the
probabilistic protected attribute (measured on the full training
set) as a surrogate fairness constraint, while also enforcing the
conditions required to ensure the estimators accurately bound
disparity in the model’s predictions (calculated on the labeled
subset), as constraints during training. We leverage recent work
in constrained learning with non-convex losses [14] to ensure
bounded fairness violations with near-optimal performance at
prediction time.

We note that our data access setting is common across
a variety of government and business contexts: first, esti-
mating race using BISG is standard practice in government
and industry [6}[15,[16L/17,|18]]. Although legal constraints or
practical barriers often prevent collecting a full set of labels for
protected attributes, companies and agencies can and do obtain



protected attribute labels for subsets of their data. For example,
companies such as Meta have started to roll out surveys asking
for voluntary disclosure of demographic information to assess
disparities [[18]]. Another method for obtaining a subset of
protected attribute data is to match data to publicly available
administrative datasets containing protected attribute labels for
a subset of records, as in, e.g. [19]].

While our approach has stronger data requirements than
recent work in similar domains [20,21] in that a subset
of it must have protected attribute labels, many important
applications satisfy this requirement. The advantage to using
this additional data is substantially tighter bounds on disparity:
in our empirical applications, we find up to 5.5x tighter bounds
for fairness metrics, and up to 5 percentage points less of
an accuracy penalty when enforcing the same fairness bound
during training.

In sum, we present the following contributions:

1) We introduce a new method of bounding ground truth
fairness violations across a wide range of fairness metrics
in datasets with limited access to protected attribute data
(Section [M);

2) We introduce a new method of training models with near-
optimal and near-feasible bounded unfairness with limited
protected attribute data (Section [I1I));

3) We show the utility of our approaches, including com-
parisons to a variety of baselines and other approaches,
on various datasets relevant for assessing disparities in
regulated contexts: we focus on voter registration data,
commonly used to estimate racial disparities in voter
turnout [22]], and also demonstrate our results on COM-
PAS data [23]], a common dataset used in related work
(Section m In addition, we present some experiments on
synthetic data which outline the conditions under which
our technique is the most effective: relatively complex
problems with little access to labeled data.

The rest of this paper proceeds as follows: in the remainder
of this section (Section [[-A)), we describe in greater detail two
examples of real-world settings in which our approach may
be applicable. Following this, in Section [[I, we describe our
method of measuring disparities in data regimes with limited
access to protected attribute labels, then in Section [ILI] we lever-
age our measurement results to develop our training techniques
which bound unfairness in the resulting model. We display our
experimental evaluation of our method in Section including
comparisons to related bias measurement [20] and fair training
techniques [21,[24]]. Finally, we end our paper with our review
of the related work (Section [V)) and Conclusion (Section [VI).

A. Correspondence to real-world Settings

We now highlight two real-world examples which correspond
to our setting. First, consider the example of Meta Platforms
(“Meta”). Meta is the parent company of Facebook, a social
media platform with a large advertising business. Meta uses
machine learning to identify users likely to interact with
particular ads [25]]. The Department of Housing and Urban
Development brought a lawsuit [26] under the Fair Housing

Act alleging algorithmic discrimination by Meta. As part of a
settlement resolving the suit [7]], Meta agreed to build software
called the Variance Reduction System (VRS) [6] which uses
a differentially-private version of BISG to estimate deviation
of delivery rates by group relative to an underlying eligible
audience [27]. In accordance with the recommendations of
civil rights groups [28]], Meta also began to work with third-
party survey administrator YouGov to prompt users to provide
individual race off-platform (with privacy protection via tools
from secure multi-party computation) [[18}[29].

Second, consider the example of government agencies
such as the Internal Revenue Service (IRS). IRS, like many
other government agencies, does not collect taxpayer data on
race [30]], yet recent executive orders have required equity
(disparity) assessments [3|] and consideration of protections
from “algorithmic discrimination” [8]]. A paper by academic
and government researchers, [19], combines BISG for the
population of taxpayers with a publicly available administrative
dataset (voter registration data) that does contain ground truth
and can be matched to a subset of taxpayers and uses this
combined dataset to assess audit rate disparity.

In both these examples, disparity estimation is an important
goal hindered by a lack of individual-race data, yet probabilistic
estimates of race via BISG are available and race data can be
obtained for small subset of individuals. The key features thus
correspond to the setting we describe formally in Section [[I-A]
These prominent examples are likely representative of scenarios
faced by many other private and public sector actors; hence,
our approach is likely to be broadly useful. Indeed, while these
instances are some of the first legally required investigations
of disparities arising from algorithmic systems [31], they are
unlikely to be the last: along with recent executive orders [8}/32]]
and the Blueprint for an Al Bill of Rights [4]], a recent advanced
notice of proposed rulemaking (ANPR) from the Federal
Trade Comission (FTC) suggests the possibility of stricter
rules around the deployment of discriminatory systems [33]].
Increased regulation of algorithmic decision systems requires
the development of bias measurement and mitigation techniques
which correspond to the realities of data access, and legal
scrutiny, that exist on the ground.

II. METHODOLOGY FOR MEASUREMENT

In this section, we formally introduce our problem setting
and notation, define the types of fairness metrics we can
measure and enforce with our techniques, and define the
probabilistic and linear estimators of disparity for these
metrics. We then introduce our first main result: given certain
relationships between the protected attribute, model predictions,
and probabilistic estimates of protected attribute in the data,
we can upper and lower bound the true fairness violation for
a given metric using the linear and probabilistic estimators
respectively.

A. Notation and Preliminaries

Setting and Datasets. We wish to learn a model of an
outcome Y based on individuals’ features X. Individuals have



a special binary protected class feature B € {0,1} which
is usually unobserved, and proxy variables Z C X which
may be correlated with B. the unlabeled set, 7y, consists of
observations {(X;,Y;, Z;)}'Y, and the labeled set, 9y, addi-
tionally includes B and so consists of {(X;,Y;, Z;, B;)} "X,
An auxiliary dataset {(Z, B)};#, allows us to learn an estimate
of b; = Pr[B;|Z,;]. All three datasets are assumed to be
independent and drawn from the same underlying population.
Except where specified, we abstract away from the auxiliary
dataset and assume access to b. When considering learning,
we assume a hypothesis class of models { which map X
either directly to Y or a superset (e.g. [0, 1] rather than {0, 1}),
and consider models parameterized by 6, i.e. hy € H. An
important random variable that we will use is the conditional
covariance of random variables. In particular, for random
variables Q, R, S, T, we write Cg gis,r = Cov(Q, R|S,T).

Notation. For a given estimator § and random variable X,
we use 6 to denote the sample estimator and X to denote a
prediction of X. We use X to indicate the sample average of
a random variable taken over an appropriate dataset. In some
contexts we use group-specific averages, which we indicate with
a superscript. For example, we use b”' to denote the sample
average of b among individuals who have protected class feature
B equal to B;. We will indicate a generic conditioning event
using the symbol &£, and overloading it, we will write £; as an
indicator, i.e. 1 when & is true for individual ¢ and O otherwise.
In the learning setting, & will depend on our choice of model
h; when we want to emphasize this, we write &;(h). We will
also use the (-) notation to emphasize dependence on context
more generally, e.g. Cy . g(hg) is the covariance of f and b
conditional on B under hy.

Fairness Metrics. In this paper, we focus on measuring and
enforcing a group-level fairness metric that can be expressed as
the difference across groups of some function of the outcome
and the prediction, possibly conditioned on some event. More
formally:

Definition 1. A fairness metric (1 is an operator associated
with a function f and an event £ such that

u(D) = Epf(V,V)|€, B = 1] - Ep[f(V,Y)|€, B = 0],

where the distribution D corresponds to the process generating
(X,Y,Y).

Many common fairness metrics can be expressed in this form
by defining an appropriate event £ and function f. For instance,
demographic parity in classification [34}35[36]] corresponds
to letting £ be the generically true event and f be simply
the indicator 1[Y" = 1]. False positive rate parity [37,38]
corresponds to letting £ be the event that Y = 0 and letting
f(Y,Y) = 1[Y # Y]. True positive rate parity [39] (also
known as “equality of opportunity”) corresponds to letting £
be the event that Y = 1 and f(Y,Y) = 1[Y #Y].

For simplicity, we have defined a fairness metric as a scalar
and assume it is conditioned over a single event £. It is easy

Metric f(h(X),Y) &
Accuracy 1[h # y) {true}
Demographic Parity 1[h =1] {true}
True Positive Rate Parity 1fh#y] {y=1}
False Positive Rate Parity 1lh#y] {y=0}
True Negative Rate Parity 1[h # y] {y =0}
False Negative Rate Parity 1[h # y) {y=1}

TABLE I: Many fairness metrics can be written in the form
required by our formulation. For concreteness, we provide a
table based on [40,41]] summarizing the choice of f and &
that correspond to the many of the most prominent definitions
that can be written in our formulation.

to extend this definition to multiple events (e.g. for the fairness
metric known as equalized odds) by considering a set of events
{&;} and keeping track of Ep|[f;(Y,Y)|E;, B] for each. For
clarity, we demonstrate how many familiar notions of fairness
can be written in the form of Definition [T in Table There
are other metrics that cannot be written in this form; we do
not consider those here.

B. Fairness Metric Estimators

Our first main result is that we can bound fairness metrics
of the form described above over a dataset with linear and
probabilistic fairness estimates, given that certain conditions
hold on the relationships between model predictions, predicted
protected attribute, and the ground truth protected attribute. In
order to understand this result, we define the probabilistic and
linear estimators.

Intuitively, the probabilistic estimator is the population
estimate of the given disparity metric weighted by each
observation’s probability of being in the relevant demographic
group. Formally:

Definition 2 (Probabilistic Estimator). For fairness metric p
with function f and event &, the probabilistic estimator of p
for a dataset Z is given by

2ice bif (Vi, i)

Sice(1 =) f(Y3, i)
o Zies bi Zieg(l - bi) .
It is assumed that at least one observation in the dataset has
had £ occur.

PP

Meanwhile, the linear disparity metric is the coefficient of
the probabilistic estimate b in a linear regression of f (}A/, Y)
on b and a constant among individuals in £. For example, in
the case of demographic parity, where f (Y,Y) =Y, itis
the coefficient on b in the linear regression of Y on b and a
constant over the entire sample. Using the well-known form of
the regression coefficient (see, e.g. [42], we define the linear
estimator as:

Definition 3 (Linear Estimator). For a fairness metric p with
function f and associated event &, the linear estimator of u



for a dataset 2 is given by:

Ve (F¥) - £7.Y)) (- D)

DL = .
! 2ice(bi —0)?

represents the sample mean among event &£.

where *

We define D/ and D~ to be the asymptotes of the prob-
abilistic and linear estimators, respectively, as the identically
and independently distributed sample grows large.

C. Bounding Fairness with Disparity Estimates

Our main result proves that when certain covariance con-
ditions between model predictions, predicted demographic
attributes, and true demographic attributes hold, we can
guarantee that the linear and probabilistic estimators of disparity
calculated with the probabilistic protected attribute serve as
upper and lower bounds on frue disparity. This result follows
from the following proposition:

Proposition 1. Suppose that b is a probabilistic estimate of a
demographic trait (e.g. race) given some observable characteris-
tics Z and conditional on event &, so that b = Pr[B = 1|7, £].
Define DP as the asymptotic limit of the probabilistic disparity
estimator, DP and D/ as the asymptotic limit of the linear

disparity estlmator DL Then:

E[Cov(f(Y,Y), B|b,&)]
Var(B|£)

Df =D, — (1)

and

E[Cov(f(Y,Y),b|B,&)]
Var(b|€)

Since variance is always positive, the probabilistic and linear
estimators serve as bounds on disparity when Cyp p ¢ and
Cy,BJp,e are either both positive or both negative, since they
are effectively separated from the true disparity by these values:
if they are both positive, then DL serves as an upper bound
and DP serves as a lower bound if they are both negative,
then DP serves as an upper bound and D serves as a lower
bound. Formally,

D} =D, + )

Theorem 1. Suppose that p is a fairness measure with function
f and coqditioning event £ as described a}bove, and that
E[Cov(f(Y,Y),b|B,&)] > 0 and E[Cov(f(Y,Y), B|b,E] >
0. Then,

P L
DY <D, <DL

Proposition[T]and Theorem|[I] which we prove in Appendix [A]
subsume and generalize a result from [19]. These results define
the conditions under which D and D} serve as bounds on
ground truth fairness V101at10ns since we can use D and
Dﬁ to estimate these quantities from data (up to samplmg
uncertamtyﬂ) Theorem 1] I thus provides a path to bound fairness
metrics as long as the assumed conditions hold. We demonstrate

'We show how to compute these standard errors in Appendix and
then take the extremes of the confidence intervals as our bounds.

the efficacy of this method for measuring fairness metrics of
existing models in practice in Section [V-B] However, as we
demonstrate in the next section, this also provides us with
a simple method to bound fairness violations when training
machine learning models.

III. METHODOLOGY FOR TRAINING

We now combine our fairness estimators with existing
constrained learning approaches to develop a methodology
for training fair models when only a small subset labeled
with ground true protected characteristics is available. The
key idea to our approach is to enforce both an upper bound
on the magnitude of fairness violations computed with the
probabilistic protected attributes (DL) while also leveraging
the small labeled subset to enforce the covariance constraints
referenced in Theorem [I} This way, as satisfaction of the
covariance constraints guarantees that D serves as a bound
on unfairness, we ensure bounded falrness Vlolations in models
trained with probabilistic protected characteristic labels. Due
to space constraints, we defer discussion of the mathematical
framework underlying the ideas to Appendix [B}

Problem Formulation In an ideal setting, given access
to ground truth labels on the full dataset, we could simply
minimize the expected risk subject to the constraint that -
whichever fairness metric we have adopted - the magnitude of
fairness violations do not exceed a given threshold «. However,
in settings where we only have access to a small labeled subset
of data, training a model by directly minimizing the expected
risk subject to fairness constraints on the labeled subset may
result in poor performance, particularly for complicated learn-
ing problems. Instead, we propose enforcing an upper bound
on the disparity estimator as a surrogate fairness constraint.
Recall that Theorem [I] describes conditions under which the
linear estimator upper or lower bounds the true disparity; if we
can enforce these conditions in our training process using the
smaller labeled dataset, then our training process provides the
fairness guarantees desired while leveraging the information
in the full dataset.

To operationalize this idea, we recall that Theorem E]
characterizes two cases in which the linear estimator could
serve as an upper bound in magnitude: in the first case, both
residual covariance terms are positive, and D, < D ; in the
second, both are negative, and DL < D#I Mlnllell’lg risk
while satisfying these constraints 1n each case separately gives
the following two problems:

Problem 1.A.

min E[L(h(X),Y)]

L
s.t. Du <«

E[C Bpe] 20
E[Cs el >0
Note that as a result of Proposition 1, when CtpB,e and Cy gy, ¢ are

both positive, the true fairness metric is necessarily is forced to be positive,
and symmetrically for for negative values.



Problem 1.B.
mE[L(h(X),Y
min E[L(h(X),Y)]
s.it. —a< Dﬁ
E[C} Bppe] <0
E[Cfp,e] <0

To find the solution that minimizes the the fairness violation
with the highest accuracy, we select:

h* € argming. . E[L(h(X),Y)],

where hj,, hi, are the solutions to Problems and
By construction, h* is feasible, and so satisfies | D, (h*)| < a;
moreover, while A* may not be the lowest-loss predictor such
that |D,,| < «, it is the best predictor which admits the linear
estimator as an upper bound on the magnitude of the disparity.
In other words, it is the best model for which we can guarantee
fairness using our measurement technique.

Remark. Note that the second covariance constraint (associated
with the lower-bound, i.e. the probabilistic estimator) in each
problem is necessary to rule out solution far below the desired
range in the opposite sign; otherwise, a solution to Problem [T.A]
could have D, < —a and to Problem D, > o, and the
ultimate h* selected could be infeasible with respect to the
desired fairness constraint. (Note also that as a consequence,
the probabilistic estimator will also serve as a lower bound for
the magnitude of disparity under the selected model.)

Empirical Problem The problems above are over the full
population, but in practice we usually only have samples.
We thus now turn to the question of how we can solve the
optimization problem with probabilistic fairness constraints
empirically. We focus on the one-sided Problem for brevity
but the other side follows similarly. The empirical analogue of
Problem [I.A] is the following:

Problem 2.A.

Solving the empirical problem. While Problem 2.A]is a
constrained optimization problem, it is not, except in special
cases, a convex problem. Despite this, recent results [[14,[43]]
have shown that under relatively mild conditions, a primal-dual
learning algorithm can be used to obtain approximate solutions
with good performance guaranteesﬂ In particular, if we define

3For the special case of linear regression with mean-squared error losses,
we provide a closed-form solution to the primal problem. This can be used
for a heuristic solution with appropriate dual weights.

the empirical Lagrangian as:

E0.) = 3 Llhe(X), )

+ s (DE(he) — o) o

- Mb\BCf,b\B,s - MB\bCf,Bu;,g

(where éf,b\Bf and 6f7B|b7g are as in Problem [1.A)), the
optimization problem can be viewed as a min-max game
between a primal (f) and dual (p) player where players are
selecting 6 and p to max, ming £(6, ). Formally, Algorithm
[T}in the appendix provides pseudocode for a primal-dual learner
similar to [[14]], [44], etc. specialized to our setting; adapting and
applying Theorem 3 in [14], provides the following guarantee:

Theorem 2. Let H have a VC-dimension d, be decomposable,
and finely cover its convex hull. Assume that y takes on a finite
number of values, the induced distribution x|y is non-atomic
for all y, and Problem 2.A has a feasible solution. Then if Al-
gorithm [1{is run for T iterations, and 6 is selected by uniformly
drawing t € {1...T'}, the following holds with probability 1 —d:
For each target constraint £ € {Dﬁ, Cru.e, OBl

Bit(hg)) < e+ 0 (T2 ) +0 ()

and

E[L(hs,y)] < P*+ O (dlogN>

VN

where P* is the optimal value of Problem 2.A.

The theorem provides an average-iterate guarantee of
approximate feasibility and optimality when a solution is
drawn from the empirical distribution. Note that it is not a
priori obvious whether our bounds remain informative over
this empirical distribution, but we show in Appendix [A] that
the covariance conditions holding on average imply that our
bounds hold on average:

Proposition 2. Suppose 6 is drawn from the empirical
distribution produced by Algorithm |1} If:

E |E[Cov(f(hg(X), B))I<,8]/6] = 0

and

E |E[Cov(f(hg(X),b))I€, Bl6] >0,
then ED,,(h;) < EDk(hy).

Remark. Combining Theorem [2] and Proposition [2] guarantees
that a randomized classifier with parameters drawn according to
the empirical distribution from Algorithm [I] will approximately
meet our disparity bound goals on average. Without stronger
assumptions, this is all that can be said; this is a general
limitation of game-based empirical optimization methods,
since they correspond equilibrium discovery, and only mixed-
strategy equilibria are guaranteed to exit. In practice, however,
researchers applying similar methods select the final or best



feasible iterate of their model, and often find feasible good
performance [21}/44]]; thus in our results section, we compare
our best-iterate performance to other methods.

IV. EMPIRICAL EVALUATION

We now turn to experiments of our disparity measurement
and fairness enforcing training methods on predicting voter
turnout as well as on the COMPAS dataset [45]]. In addition,
we provide experiments on simulated data in order to outline
the conditions under which our method is most successful, and
in particular, outperforms relying on training a model with the
labeled subset alone, which we expand upon in Appendix [G|

A. Data

We perform experiments over two datasets: the L2
dataset [46]] and the COMPAS dataset [23[]. In both of these
datasets, the demographic attribute to which we pay attention
is race.

L2 Dataset. The L2 dataset provides demographic, voter,
and consumer data from across the United States collected by
the company L2. Here, we consider the task of predicting voter
turnout for the general election in 2016 and measuring model
fairness violations with respect to Black and non-Black voters.
This application is particularly relevant since race/ethnicity
information is often not fully available [13]], and much of
voting rights law hinges on determining whether there exists
racially polarized voting and/or racial disparities in turnout [47].
We focus on the six states with self-reported race labels (North
Carolina, South Carolina, Florida, Georgia, Louisiana, and
Alabama). We denote Y = 1 if an individual votes in the
2016 election and Y = 0 otherwise; refer to Appendix
for a detailed description of this dataset. We select seven
features as predictors in our model based on data completeness
and predictive value: gender, age, estimated household income,
estimated area median household income, estimated home value,
area median education, and estimated area median housing
value. Information on our selection process, pre-processing,
and distribution of these features are presented in Appendix
Section We denote ¥ = 1 if a voter shows up to vote
for the 2016 election and Y = 0 otherwise. The baseline rates
of voter turnout range between 52-63% across the six states
(see more information in Section [C-A]in the Appendix).

L2 Race Probabilities. The L2 dataset provides information
on voters’ first names, last names, and census block group,
allowing the use of Bayesian Improved (Firstname and)
Surname Geocoding Method (BISG/BIFSG) for estimating
race probabilities [[12}/13/48[]. We obtain our priors through

the decennial Census in 2010 on the census block group level.

AUC for BISG/BIFSG across the six states we investigate in
the L2 data ranges from 0.85-0.90. Further details on how we
implement BISG/BIFSG for the L2 data and its performance
can be found in Appendix [C-B]

COMPAS Dataset. We also evaluate our measurement and
training methods on models trained on the COMPAS [45]]
dataset. The COMPAS algorithm is used by parole officers
and judges across the United States to determine a criminal’s

risk of recidivism, or re-committing the same crime. In 2016,
ProPublica released a seminal article [45] detailing how the
algorithm is systematically biased against Black defendants.
The dataset used to train the algorithm has since been widely
used as benchmarks in the fair machine learning literature. We
use the eight features used in previous analyses of the dataset
as predictors in our model: the decile of the COMPAS score,
the decile of the predicted COMPAS score, the number of prior
crimes committed, the number of days before screening arrest,
the number of days spent in jail, an indicator for whether the
crime committed was a felony, age split into categories, and
the score in categorical form. Further information about our
preparation of the COMPAS dataset can be found in Section [F
of the Appendix.

COMPAS Race Probabilities. In the COMPAS dataset,
we generate estimates of race (Black vs. non-Black) based on
first name and last name using a LSTM model used in Zhu et
al. [49] that was trained on voter rolls from Florida. Accuracy
of these models is 73% while the AUC is 86%. Further detail
can be found in Appendix [{

B. Fairness Measurement

In this section, we showcase our method of bounding true
disparity when race is unobserved. Given /) model predictions
on a dataset with probabilistic race labels and 2) true race
labels for a small subset of that data, we attempt to obtain
bounds on three disparity measures: demographic disparity
(DD), false positive rate disparity (FPRD), and true positive
rate disparity (TPRD).

1) Experimental Design: To simulate measurement of fair-
ness violations on predictions from a pre-trained model with
limited access to protected attribute, we first train unconstrained
logistic regression models with an 80/20 split of the available
data: in the case of L2, this is state by state. Then, in order to
simulate realistic data access conditions, we measure fairness
violations on a random subsample of the test set, with a
percentage of this sample including ground truth race labels
to constitute the labeled subset which we use to calculate the
covariance constraints. In the case of the L2 data, the random
subsample over which we measure fairness violations has
n = 150,000, with 1% (n = 1,500) of this sample including
ground truth race labels to constitute the labeled subset. In
the case of the COMPAS dataset, which is much smaller, we
use the entire test set, with n = 1,226, and we construct the
labeled subset by sampling 50% of the test set (n = 613).

We first check the covariance constraints on the labeled
subset, and then calculate Dy and Dp on the entire set of
examples sampled from the test set. We also compute standard
errors for our estimators as specified by the procedure in
Appendix Section |B| To evaluate our method, we measure true
fairness violations on the examples sampled from the test set,
and check to see whether we do in fact bound the true fairness
violations within standard error. Further information about our
unconstrained models can be found in Appendix Section [D-A]
We present our results in Figure 1) which shows the results
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Fig. 1: (Bounding Disparity in L2 Data) Comparison of our method of bounding true disparity (blue) to the method proposed
in Kallus et al. [20] (grey), using a logistic regression model to predict voter turnout in six states. We compare results across
three disparity measures: demographic disparity (DD), false positive rate disp. (FPRD), and true positive rate disp. (TPRD).
Only a small subset (here, n = 1,500, i.e. 1%) of the data contains information on true race. The grey dot represents true
disparity. The dashed lines represent 95% confidence intervals. Both methods successfully bound true disparity within its 95%
standard errors, but our estimators provide much tighter bounds.
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Fig. 2: (Bounding Disparity in COMPAS Data) Comparison of our method of bounding true disparity (blue) to the method
proposed in Kallus et al. [20] (grey), using a logistic regression model to predict two-year recidivism on the COMPAS dataset.
We access disparity over the same measures as in Figure [I] The grey dot represents true disparity. The dashed lines represent
95% confidence intervals. Both methods always bound true disparity within the 95% standard errors, but our method provides
tighter bounds.

over the L2 data, and Figure |ZL which shows the results over
the COMPAS data.

2) Comparisons: We compare our method of estimating
fairness violations using probabilistic protected characteristic
labels to the method described in Kallus et al. [20], which
is one of the only comparable methods in the literature. We
will refer to as KDC from here on. Details of KDC and our
implementation can be found in Appendix Section [D-B]

3) Results: We first analyze our results on voter data.

Figure [I] compares our method of estimating disparity (blue)
with KDC (grey) for the three disparity measures on the six

states we consider. This figure shows estimates when training
a logistic regression model, and Figure [§] in the Appendix
shows similar results for training random forests. Across all
experiments, both KDC’s and our estimators always bound true
disparity. However, we observe two crucial differences: 1) our
bounds are markedly tighter (3.8x smaller on average, and as
much as 5.5x smaller) than KDC, and as a result 2) our bounds
almost always indicate the direction of true disparity. When
they do not, it is due to the standard error which shrinks with
more data. By contrast, KDC’s bounds consistently span[-0.5,
0.5], providing limited utility even for directional estimates.



We now turn to the COMPAS data. Similar to the L2 data,
our bounds are consistently tighter than KDC, albeit to a lesser
extent in this case since the COMPAS dataset is significantly
smaller (1.69x on average, and up to 2.04x smaller). We
emphasize that, unlike KDC, our estimators are always within
the same sign as the true disparity, barring the standard errors
which shrink as the data grows larger.

C. Fairness-constrained Training

In this section, we demonstrate the efficacy of our approach
to training fairness-constrained machine learning models. Fol-
lowing our algorithm in Section we train models with
both covariance conditions necessary for the fairness bounds
to hold and also constrain the upper bound on absolute value
of disparity, D{; , to be below some bound «. We find that our
method /) results in lower true disparity on the test set than
using the labeled subset alone, or using prior methods to bound
disparity; 2) more frequently reaches the target bound than
other techniques; and 3) often incurs less of an accuracy trade-
off when enforcing the same bound on disparity compared to
related techniques. We also demonstrate via our simulation
study that there exist regimes in which our approach meets the
goal of keeping disparity below the desired threshold whereas
training on the small labeled subset alone does not.

1) Experimental Design: We demonstrate our technique by
training logistic regression models to make predictions with
bounded DD, FPRD, and TPRD across a range of bounds, on
both the L2 dataset and the COMPAS dataset. We use logistic
regression as a proof-of-concept, but because our method builds
upon the algorithm proposed in [14]], it can be extended to
any gradient-based machine learning method, including e.g.
neural networks. Within the L2 dataset, we train these models
on the data from Florida, as it has the largest unconstrained
disparity among the six states, see Figure [I] We report the
mean and standard deviations of our experimental results over
ten trials. For each trial, we split our data (n = 150,000 for
L2 data, n = 6, 128 for COMPAS data) into train and test sets,
with a 80/20 split. From the training set, we subsample the
labeled subset so that it is 1% of the total data (n = 1, 500)
for the L2 data, and 10% of the total data for the COMPAS
dataset, since it is much smaller (around n = 613). To enforce
fairness constraints during training, we solve the empirical
problem 3A and its symmetric analogue, which enforces
negative covariance conditions and Dﬁ as a (negative) lower
bound. We use the labeled subset to enforce adherence to the
covariance conditions during training. We use the remainder of
the training da/t\a, as well as the labeled subset, to enforce the
constraint on Dﬁ during training. As noted in Section our
method theoretically guarantees a near-optimal, near-feasible
solution on average over #1)...0(T) . However, following Wang
et al. [21]], for each of these sub-problems,A we select the best
iterate #*) which satisfies the bound on Dﬁ on the training
set, the covariance constraints on the labeled subset, and that
achieves the lowest loss on the training set. We report our results
on the solution between these two sub-problems that is feasible
and has the lowest loss. We present the accuracy and resulting

disparity of model predictions on the test set after constraining
fairness violations during training for a range of metrics (DD,
FPRD, TPRD), across a range of bounds for our method as
well as three comparisons, described below, over L2 data and
COMPAS data, in Figure [3] and Figure [] respectively. We
note that the resulting disparities for the unconstrained model
differ among the three fairness metrics. On DD and TPRD, the
unconstrained model resulted in a 0.28-0.29 disparity, but it
drops to 0.21 for FPRD. We adjusted our target fairness bounds
accordingly. Further details about the experimental setup can
be found in Appendix Section [E-Al Our experimental design
for our experiments on synthetic data differ, and we outline
our setup and results in Section [[V-D}

2) Comparisons: We compare our results for enforcing
fairness constraints with probabilistic protected attribute labels
to the following methods:

(a) A model trained only on the labeled subset with true race
labels, enforcing a fairness constraint over those labels.
This is to motivate the utility of using a larger dataset with
noisy labels when a smaller dataset exists on the same
distribution with true labels. To implement this method,
we use the non-convex constrained optimization technique
from Chamon et al. [14] to enforce bounds on fairness
violations calculated directly on ground-truth race labels,
as we describe in greater detail in Appendix
We compare with a recent method by Wang et al. [21] for
enforcing fairness constraints on data with noisy protected
attributes and a labeled auxiliary set, which is based on
an extension of Kallus et al. [20]]’s disparity measurement
method. This method guarantees that the relevant disparity
metrics will be satisfied within the specified slack, which
we take as a bound. However, their implementation does
not consider DD — further details on this method can be
found in Appendix Section [E-C|

(c) We compare with a method for enforcing fairness with

incomplete demographic labels introduced by Mozannar
et al. [24]], which essentially modifies Agarwal et al. [50]’s
fair training approach to optimize accuracy on the entire
available data, but to only enforce a fairness constraint on
the available demographically labeled data. This method
also guarantees that the relevant disparity metrics will be
satisfied within specified slack, which we modify to be
comparable to our bound. Details on this approach can
be found in Appendix
In Appendix Section [E-F| we also compare to two other models:
1) an “oracle” model trained to enforce a fairness constraint
over the ground-truth race labels on the whole dataset; and 2)
a naive model which ignores label noise and enforces disparity
constraints directly on the probabilistic race labels, thresholded
to be in (0, 1).

3) Results: We first analyze our results on the L2 data. We
display our results in Figure [3] Looking at the top row of
the figure, we find that our method, in all instances, reduces
disparity further than training on the labeled subset alone (blue
vs. orange bars in Figure [3)), than using Wang et al. [21]] (blue
versus green bars in Figure [3)), and than using Mozannar er
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Fig. 3: (Satisfying fairness constraints in L2 Data) Mean and standard deviation of resulting disparity (top, y-axis) and
accuracy (bottom, y-axis) on the test set after enforcing the target fairness bounds (x-axis) on our method (blue); only using the
labeled subset with true labels (orange) and Wang et al. (green) over ten trials. On the top row, we fade bars when the
mean does not meet the desired bound, which is indicated by the dotted blue lines. The dashed grey line in all plots indicates
disparity from the unconstrained model.
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Fig. 4: (Satisfying fairness constraints in COMPAS Data) Mean and standard deviation of resulting disparity (top, y-axis)
and accuracy (bottom, y-axis) on the test set after enforcing the target fairness bounds (x-axis) on our method (blue); Wang et
al.’s method (green); Mozannar et al.’s method (red) and only using the labeled subset with true labels (orange). On the top
row, we fade bars when the mean does not meet the desired bound, which is indicated by the dotted blue lines. The dashed
grey line in all plots indicates disparity from the unconstrained model.

al. (blue versus pink bars in Figure EI) Second, our method
satisfies the target fairness bound on the test set more often than
the other methods (12 out of 12 experiments, as opposed to 0,
1, and O for labeled subset, Wang, and Mozannar respectively).
In other words, the disparity bounds our method learns on the
train set generalize better to the test set than the comparison
methods. We note that deviations from the enforced bound on
the test set, when they arise, are due to generalization error in
enforcing constraints from the train to the test set, and because
our training method guarantees near-feasible solutions.

The bottom row of the figure shows how our method

performs with respect to accuracy in comparison to other
methods. The results here are more variable; however, we note
that this dataset seems to exhibit a steep fairness-accuracy
tradeoff—yet despite our method reducing disparity much
farther than all other methods (indeed, being the only metric
that reliably bounds the resulting disparity in the test set), we
often perform comparably or slightly better. For example, when
mitigating TPRD, our method mitigates disparity much more
than Mozannar et al. and Wang et al. [21]], yet generally
outperforms both with respect to accuracy. In the case of FPRD
our method exhibits accuracy comparable to to Wang et al.



while consistently satisfying the target fairness constraint.

Next, we turn to our results on the COMPAS [45] dataset in
Figure [ which is set up identically to Figure [3] with disparity
results on top and accuracy results on the bottom. We see that
our method again is able to meet the desired disparity bound for
all but two disparity bound values (i.e. for all but 2 out of 36
experiments) across the three different metrics, even for small
target disparity values, while achieving accuracy comparable
to the baseline methods. In the cases where our method’s
accuracy is lower than the comparison methods, it is the only
method that consistently satisfies the target disparity constraint.
While Mozannar et al. (red) has the highest accuracy across
different target disparity values for DD and FPRD, it satisfies
the target disparity bound in only 3 of the 36 experiments
and particularly fails to satisfy the target disparity constraint
for small disparity values. Wang et al. (green) has the highest
accuracy for the TPRD experiments, however, it only satisfies
the disparity constraint for FPRD and TPRD for disparity
values greater than 0.1. Finally, the labeled subset baseline
(orange) is only able to satisfy the target disparity constraint
for large disparity values and typically has lower accuracy than
the other comparison methods.

D. Simulation Study

We note that the utility of our method is often dependent
upon the size of the subset of the data labeled with the protected
attribute—if this subset is relatively large, then (depending on
the complexity of the learning problem) it may be sufficient to
train a model using the available labeled data. Symmetrically,
if the labeled subset is exceedingly small, the enforcement of
the covariance constraints during training may not generalize
to the larger dataset. To characterize the regimes under which
our method may be likely to perform well relative to others,
we empirically study simulations that capture the essence of
the situation. We study the utility of our method in comparison
to only relying on the labeled subset to train a model along
two axes: /) size of the labeled subset and 2) data complexity,
which we simulate by adjusting the number of features. While
stylized, our simulation has the advantage that we can vary key
features of the setting like the dimensionality and distribution
of the data, the size of the labeled and unlabeled datasets, the
complexity of the relationship between the features and the
outcome, and so on. To be useful, however, we must be able
to ensure that the key conditions of our method are met by
the data-generating process.

To ensure this while also allowing for the tuneability and flex-
ibility we require, we settle on a hierarchical model specified
by parameterized components that are individually simple but
can serve as building blocks; mapping out these relationships
via the language of causal diagrams gives us intuition about
the conditional covariance terms. See Appendix [G| including
Figure [T3] for visualization and further discussion.

At a high-level, the model can be described as follows.
Individuals have a set of “primary” features denoted which
are drawn randomly from some distribution. The probability
that they the individual is Black is a function of these primary
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features, and their status as Black or non-Black is simply a
Bernoulli random variable with mean of said probability. There
are then “secondary” features which each are functions of all
the primary features. A score is generated as a function of these
secondary features, and the outcome of interest is generated by
thresholding this score and randomly perturbing it with small
probability.

Using this high-level structure, we can generate a family
of data-generating processes by choosing different functions
representing the links between the features. In particular, we
will use polynomials with randomly selected coefficients. This
allows us to vary the model by increasing the number of
features or degree of the polynomials without directly selecting
all the constants involved. We provide further details, including
specific functional forms and assumed distributions, in Section

Given the family of data-generating processes, we consider
three different levels of complexity - cubic polynomials of
10, 20, or 50 features - and draw datasets of 5,000, 10,000,
or 50,000 observations; of these, we vary the percentage
with labels revealed to the learner ranging from 0.5 to 40%,
depending on the size of the dataset. We then compare our
method to simply training on a fair model on the true labels of
the labeled subset. Figure [5] shows disparity for both methods
across the scenarios. Overall, we find that there exists a regime,
even in simple problems, where there is insufficient data for
the labeled subset to effectively bound disparity to the desired
threshold. We find that the more complex the data is, the
larger this regime is—with the most complex setting in our
simulations (50 features) suggesting that the labeled subset
technique does not converge to the desired disparity bounds
even when the size of the labeled subset is 10,000 samples, or
20% of the overall dataset.

V. RELATED WORK

Kallus et al. [20] propose a method for measuring fairness
violations in data with limited access to protected attribute
labels. Their method involves finding the tightest possible set
of true disparity given probabilistic protected attributes. An
important difference between Kallus et al. and our method
relates to their assumptions around the auxiliary dataset. The
core difference is that Kallus et al. considers settings where
the auxiliary and test sets are independent data sets while our
method considers the case where the test set subsumes the
auxiliary data. We explain this difference in further detail in
Appendix

With regards to bias mitigation, while there are many
methods available for training models with bounded fairness
violations [11}/39,/50], the vast majority of them require access
to the protected attribute at training or prediction time. While
there are other works which assume access only to noisy
protected attribute labels [21]], and no protected attribute labels
[51]], or a even a labeled subset of protected attribute labels,
but without an auxiliary set to generate probabilistic protected
attribute estimates [52]]; very few works mirror our data access
setting. One exception, from which we draw inspiration, is



n=5,000 n=10,000 n=50,000
X151 ] ]
>
p=10 glo;x;ll' N el
s . | |
I
k]
10 20 30 40 0 10 20 30 0 5 10 15 20
§ 15 i —— Qurs ]
E Labeled Subset
= 10 F-mmmmmm ] ey ey M I o |
P I Rl e ——— e —
P 8‘ /\—\__
2 51 1 1
wn
ki
10 20 30 40 0 10 20 30 0 5 10 15 20
R 151 ] ]
>
p=50 glO‘ """""""""""""""""" B e | B e |
@ —
_S ] /\/\__—\/ | |
wn
ki
10 20 30 40 0 10 20 30 0 5 10 15 20

Size of labeled data (%)

Size of labeled data (%)

Size of labeled data (%)

Fig. 5: (Simulation varying size of labeled subset) We present a three by three figure showing the test disparity of the our
disparity reduction method when compared with relying on only the labeled subset to reduce disparity by directly enforcing a
constraint on the protected attribute labels. The rows correspond to datasets of increasing sizes (number of features from 10 to
50), indicating problems of increasing complexity. The columns correspond to the size of the overall dataset, ranging from
5,000 to 50,000 samples. The x-axis shows the percentage of the total dataset is dedicated to the labeled subset, and the y-axis
denotes the percentage disparity between the two groups calculated on the test set. The blue graphs correspond to our method,
and the orange to the labeled subset method. The red dashed line is the desired disparity bound.

Elzayn et al. [19]]; that work studies in detail the policy-relevant
question of whether Black U.S. taxpayers are audited at higher
rates than non-Black taxpayers, and uses a special case of our
Theorem [] (for measurement only). In this paper, we formalize
and extend their technique to bound a wide array of fairness
constraints, and introduce methods to train fair models given
this insight.

Another exception, which we compare to in Section
is that of Mozannar et al. [24]. While Mozannar et. al largely
focus on the problem of training private fair models, thus
employing very strong conditional independence assumptions
on the protected attribute proxy which are infesible in our
setting, the authors do propose an extension of their method
to handle a the case of limited protected attributes without
considering privacy, which mirrors our data access assumptions.
This extension is essentially a re-purposing of Agarwal et
al. [50] fair training approach, modified such that the model
is trained with all available data, but the fairness bounds are
only enforced during training on the small subset of training
points with protected attribute labels. It is this extension that we
compare to in which we compare to in Section and find
that our method often outperforms theirs on disparity reduction
and performs comparably on accuracy.
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Within the set of techniques with a different data access
paradigm, we differ from many in that we leverage information
about the relationship between probabilistic protected attribute
labels, ground truth protected attribute, and model predictions
to measure and enforce our fairness bounds. Thus, while we
do require the covariance conditions to hold in order to enforce
our fairness bounds, we note that these are requirements we can
enforce during training, unlike assumptions over noise models
as in other approaches to bound true disparity with noisy
labels [53}/541/55]). Intuitively, leveraging some labeled data can
allow us to have less of an accuracy trade-off when training
fair models, as demonstrated with our comparison to Wang et
al. [21]]. In this case, using this data means we do not have to
protect against every perturbation within a given distance to the
distribution, as with distributionally robust optimization (DRO).
Instead, need only to enforce constraints on optimization— in
our experimental setting, we see that this can lead to a lower
fairness-accuracy trade-off.

VI. DISCUSSION

In this work, we introduce a technique for measuring and
reducing fairness violations in a setting with limited access to
protected attribute data by leveraging probabilistic proxies (e.g.



based on name and geolocation). These techniques may help
private and public actors better measure algorithmic disparity
and fulfill legal and moral obligations to ensure that algorithmic
decision-making does not disparately impact disadvantaged
or protected groups. However, the collection and use of
protected attribute information is inherently sensitive and brings
up privacy concerns. Additionally, building a probabilistic
model to estimate protected attributes raises important ethical
and practical questions as well, such as who has access to
these models and what are the protocols for its responsible
deployment. Moreover, the approach requires committing to a
particular notion of groups to measure and mitigate fairness
with respect to, an exercise which in itself can be fraught.
Given the increasing stakes of algorithmic deployment as well
as increasing regulatory and public pressure, we believe that
the benefit of being able to more effectively measure and
reduce unfairness in model predictions outweighs these risks,
but practitioners applying our method must carefully consider
these concerns in the wider context in which they work.

We note several avenues for future work. First, while our
framework can be applied iteratively to handle multiple sensi-
tive groups, generalizing our framework to account for them
directly, and additionally to handle intersectional groups, would
be preferable. Second, while binary classification is perhaps the
most common task in machine learning, handling more general
tasks, such as multi-label classification or regression, would
extend the applicability of results. Finally, in the proposed
method it is important that the probabilistic predictions are
representative of the population of interest; in practice this
means either assuming that the dataset from which probabilistic
predictions are learned is drawn from the same population,
or that reweighting techniques can be used to construct a
representative sample. In the future, it would be useful to use
techniques from sensitivity analysis to bound the impact of
selection bias on measurement error and robust learning to
train low-disparity models under worst-case selection bias.
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APPENDIX A
MAIN PROOFS

A. Proof of Theorem |

First, we demonstrate the following lemma:

Lemma 1. Suppose that 0 < b < 1 almost surely and
E|f(Y,y)|€| is finite. Under the assumption of independent
and identically distributed data with £ having strictly positive
probability, the asymptotic limits D/ and D/ satisfy:

Cov [b, £V, Y)|5} Cov [b, F(Y, Y)|E}

v = EpEla—EpE) M DT T e
and thus
P _ L Var[b|€]
D= D wpje - el

Proof. We note that:
165

and

LS (7, Y) D £V, V)]

n,
¢ ice

by the strong law of large numbers. Similarly,

le—b Y) "R - b) - (Y, Y]
268
EZ(M@;) 2 E[L - bl€]

€€
Then diving numerators and denominators in the definition of
the empirical estimator gives that:

5P _ ne iee bif (Vi Ys) A iee(l—b)f(Vi,Y2)
g % Ziee bi % Zief(l - bi)
neopo BV, Y)IE]  E[(1—b)f(V,Y)[E]
E[l€] E[(1 - b)[€]

Combining terms and expanding out the algebra, the last term
is:

Elby (V. Y)le] — EBEEL (V. V)le) _ Cov [ IV Vle]
E[b|E](1 - E[b|€]) E[b|](1 - E[b|€])

On the other hand, the linear estimator converges asymptotically
to

Cov [b,f(Y,Y)|E}

Var[b|€]

This result can be seen by conditioning on £ and then making
the standard arguments for the asymptotic convergence of the

OLS estimator. Comparing forms of the limits gives the final
result. O

NI ne—>00
D,

Our key theorem follows as a corollary from the following
proposition, (Proposition 1 in the main text):
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Proposition. Suppose that b is a prediction of an individual’s
protected attribute (e.g. race) given some observable characteris-
tics Z and conditional on event &, so that b = Pr[B = 1|7, £].
Define Dﬁ as the asymptotic limit of the probabilistic disparity
estimator, ﬁp, and D; as the asymptotic limit of the linear
disparity estimator, ﬁl. Then:

1)
E[Cov(f(Y,Y), BIb,€)]
D’lj =D Var(B|€) (LD
2)

Var(b|€)

We’ll split things into separate proofs for (I.I) and (L.2).
We’ll also first separately highlight that disparity is simply the
dummy coefficient on race in a(n appropriately conditioned)
regression model. This fact may be known by some readers
in the context of regression analysis (especially without
conditioning on a given event), but we provide proof of the
general case.

Lemma 2. Let D, be the disparity with function f and event
E. Then D, can be written as:

_ Cov(f(V,Y), BIE)

we Var(B|€) '

Proof. Note that by definition:
D, =E[f(Y,Y)|E, B =1]

D

—E[f(Y,Y)|,B=0].

If the right hand side of the equation in the statement of the
lemma can be written this way, we are done. But note that:

Cov(f(Y,Y),B|E) _ E[f(Y,Y)B|E] - E[f(Y,Y)|E]E[B|€]

Var(B|€) E[B\e]u —E[B|€])

Now using the law of iterated expectations and simplifying:

E[f(Y,Y)B|€] = E[E[f(Y,Y)BIE, B]
= E[f(Y,Y)B|B =1,£] Pr[B = 1/£]
+E[f(A Y)B|B = 0,&] Pr[B = 0|€]
=E[f(Y,Y)|B=1,&]Pr[B = 1|¢]
+E[0] Pr[B = 0[€]
=E[f(Y,Y)|B =1, Pr[B = 1|&]

Moreover, since B is a Bernoulli random variable, Pr[B

1/€] = E[B|€] and
Var(B|€) = E[B|£](1 — E[B|€&])
Combining these, we can write:
E[f(Y,Y)B|EIE[B|E] — E[f(Y,Y)|E]E[B|E]

E[B[&](1 - E[B|£])
_E[f(Y,Y)[B=1¢] - E[f(Y,Y)[€]E[BIE]
(1 - E[B[€])




This can be expanded as:

E[f(Y,Y)|B = 1,£]

(T-E[BIE)
E[f(Y,Y)|B = 1,€] Pr[B = 1|€]
)
E[f(Y,Y)|B =0, Pr[B = 0|€]
- (1 - E[B[£])

E[f(Y,Y)|B =1,E)(1 - Pr[B =1[&])
(1—Pr[B =1J&))

—E[f(Y,Y)|B =0,&](1 — Pr[B = 1|E])
(1—Pr[B =1J&))
= E[f(Y,YﬂB =1, - E[f(Y’Y”B =0,¢]

as desired. ]

Note that the familiar interpretation of demographic disparity
being the dummy coefficient falls out from this lemma by letting
€ be the event “always true” and f(Y,Y) =Y.

Now we can turn to proving (L.I). Recall first that, by
assumption:

b=Pr[B=1|Z,€| =E[1|B =1]|Z,&]
= b=E[B|Z,£]VZ
= E[b|€] = E[E[B|Z,£]] = E[B|¢]
by the law of iterated expectations. Moreover, if we define ¢
as B — b, then:

E[e|Z, €] = E[B|Z, €] — E[b|Z,&] = 0
Proof of (L.1). Note that by Lemmas 1 and 2:
. Cov {f(f’,Y),B|8] Cov {f(Y,Y),bﬂ
Do D= " NaBle) EREII-EBE)

“w
Since E[b|€] = E[B|£] and Var[B|€] = E[B|E](1-E[B|€]) =
E[bI€](1 — E[b€]), the denominators are the same and be
collected as Var(B|£). As for the numerators, we note that

Cov [f(f/,Y),B|5} — Cov [f(Y,Y),b\e}
= Cov [f(f/, Y),B - b|5}

by the distributive property of covariance. Recall that the law
of total covariance allows us to break up the covariance of

random variables into two parts when conditioned on a third.

Applying this to f(V,Y) and B — b, with the conditioning
variable being b, we have that:

Cov [f(f/, Y),B - b|5} —E :Cov (f(Y, Y),B - b) £, b]

+ Cov (E[f(ff,y)w, b, E[B — b€, b])

:Cov (f(Y, Y),B— b) £, b]

:Cov (f(Y,Y),B) |5,b}

where the second equality follows because b = E[B|Z,£] —
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E[B|b,&] = b and the third because b is trivially a constant
given b. Combining these together, we have that:

E [Cov (f(Y/,Y),B) \5,@

D, —

. B Var[BI€]
., E [cov (f(Y, Y), B) £, b}
= Dy =Du- Var[BIE] !
as desired. O
Let’s do (1.2).

Proof of (T.2). First, consider the linear projection of f(Y,Y’)
onto B given that £ occurs. We can write this as:

fY.Y)=a+~ B+,

where it is understood that the equation holds given £. Now,
by the definition of linear projection,

_ Cov(f(Y,Y),Bl€)
N Var(B|€)
where the last equality follows by Lemma 2, and by the
definition of linear projection, Cov(B,v|E) = 0.
Now, consider the linear projection of f (Y, Y’) onto b given
£. Again we can write the equation:

fY,Y)=d +Bb+n

=D

“w

and similarly

_ Cov(f(Y,Y),bl€)
Var(b|€)

B

and Cov(b,n|€) = 0.
Now, by applying the Law of Total Covariance to the
equation above, we have:

_ L
= D!

BVar(b|€) = Cov(f(Y,Y),blE)
= E[Cov(f(Y,Y),blE, B]
+ Cov(E[f(Y,Y)|€, B],EDIE, B]).
We’ll focus for now on the latter term. Note that by replacing
fY.Y) by o+ B + v, we can obtain:
Cov(E[f(Y,Y)|B, €], E[| B, £]) = Cov(yB + E[v|B],
B —E[¢|B]|€)
where we’ve moved out the event £ and used the fact that «

is a constant and B is a constant conditional on B to remove
them from the inner expectations. We can expand as

Cov (yB +E[v|B,&], B — E[¢|B]|€) .
We can further expand this covariance term to be
= yVar(B|E) — v Cov(B,E(¢|B)|E)
+ Cov(E(v|B), B|€) — Cov(E(v|B),E(e| B)|€)
= yVar(B|E) — v Cov(B,E(¢| B)|E),



where the last equality is due to the fact that B is binary so
the covariance between B and v equals zero.
Next we show that the term Cov(B,E(¢e|B)|) can be
written in terms of b and e,
Cov(B,E(¢|B) |5 E[BE[¢|B]] — E[B|E[E[¢| B]]
E[E[Be| B] |£] — E[B|E]E[E[|B]|€]
E[Be|€] — E[B|E]E[¢|¢]
= Cov(B, e|5
= Cov(b+¢€,€[€)
= Cov(b, €|€) + Var(e[€).

€

Plugging these results back into the original equation and
using the fact that B = b + ¢, we have

BVar(b|€) = E[Cov(f(Y,Y),b|E, B
+ yVar(B|E) — «yVar(e|€) — v Cov(b,
= y[Var(b|€) + Cov(b, €|&)]
+E[Cov(f(Y,Y),b|€, B]
= ~Var(b|€) + E[Cov(f(Y,Y),blE, B],

)

where the last equality is due to the fact that E[e|Z,E] =

0. O

B. Proof of Proposition 2

Proof. For a fixed 0, we can apply Theorem [1| to write that:

) E[Cov(f(hsY), B|b,&]
Var[B|£]

where the expectation in the numerator is over the distribution
of the data. Now, if 6 is drawn from a distribution 6 (in
particular, @ corresponding to #; with ¢ being drawn from
1...T) that is independent of the data, we can treat the quantities
as random variables drawn from a two step data-generating
process. In our setting (as in classical, but not all, learning
settings), the distribution of future data is assumed not to
depend on our selected model. Then by the linearity of
expectations, we have that

Ej 0 [Dﬁ(hé)} —Eje [Du(hé)]
E[Cov(f(hg,Y), Bb,&]
Var[B|£]

A similar statement can be made for the relationship between
Ej o, [Dﬁ(hﬂ and Ej_q_ [D (hé)]. O

0

Dﬁ(hé) = Du(h

)

=Ej.0

C. Standard Errors

Here, we discuss the calculation of standard errors; these
arguments are more general, but substantially similar, version
of Qlose mage in [19]. As shown in the proof of Theorem
Dlt and DY converge to their asymptotic limits, DIlL and
Dp respectively, however, given that we observe only a finite
sample our estimates D and DP are subject to uncertainty
whose magnitude depends on the sample size of the data.

Since the DL is simply the linear regression coefficient,
its distribution is well-studied and well known. In particular,
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under the classical ordinary least squares (OLS) assumptions
of normally distributed error, E ~N (8, Tf—; where sg is the
sample variance of b; under mild technical bconditions, central
limit theorems can be invoked to show that as the size of
data increases, 3 follows a distribution that is increasingly
well-approximated by said normal distribution [56]. Note that,
since as shown in Lemma [Tl

Cov(f(Y,Y),bl€)

L
D= Var[b|E
and N
DP —_ COV(f(Y, Y)v b|5)
*oEPEN - EPlE)’
it follows that
L Var[b|€] .
Du = Di'” e - EWED

analogously, by expanding the definitions of the sample
estimators, we can easily see that:

i Zies (bi,_ Bg)Q
b¢ (1 — b%) )
Then by Slutsky’s theorem, we can state that:

D oo & Var[b|€]
DP "= DL .
v PREREI - EPB))

NP _ PL _
DM_DH_

As a consequence, the distribution of DP is a scaled version
of the distribution of DL and in partlcular

AP P
Du _DM

" N(0,1).
Var[b|€]

EBIE](I_EBIE])

DL
VarD“ TE]

Thus, in practice, we can estimate the variance of lA)ﬁ as if it
were the usual OLS estimator and then estimate Var[b|€] and
E[b|€] to scale it appropriately.

D. Obtaining the probabilistic prediction

1) BIFSG: Recall that conceptually, b functions as a proba-
bilistic confidence score we have that an individual has B = 1.
A perfectly calibrated b will thus have E[B|b] = b, and our
main theorems assume that we have access to this. In practice,
however, b must be estimated; in this work, we focus on the
commonly used [[16,[20,|57,|58]] Bayesian Imputations with First
Names, Surnames, and Geography (BIFSG). In BIFSG, we
make the naive conditional independence assumption that the
proxy features are independent conditional on the protected
characteristic. In the case of BIFSG, this amounts to assume

that:
Pr[F, S,G|B] = Pr[F|B] Pr[S|B]| Pr[G|B],

where the random variable F' is first name, S is surname, and
G is geography . By applying Bayes’ rules to this assumption,



we can obtain that:
Pr[F, S,G|B]
Pr[F, S, G|
_ Pr[F|B] Pr[S|B] Pr[G|B]
B Pr[F, S, ] '

The right-hand side of this equation is fairly easy to estimate
because it requires knowing only marginals rather than joint
distributions (the denominator can be normalized away by
noting that we must have that Pr[B = 1|F,S,G| and
Pr[B = 0|F, S, G] must sum to 1), and these marginals are
often obtainable in the form of publicly available datasets. Note
that, BIFSG can be written in multiple forms by applying Bayes’
rule again to the individual factors (e.g. replacing Pr[F'| B] with
Pr[B|F]Pr[F]/Pr[B], which may be convenient depending
on the form of auxiliary data available.

For our setting, we leverage the census and home mortgage
disclosure act (HMDA) data, as mentioned, to estimate b from
publicly available data. We provide quantitative details on
our estimates in Appendix We note also that since b is
continuous, we will discretize into equally sized bins whenever
we need to compute quantities conditional on b.

2) Impact of Miscalibration: Throughout the theoretical
work, we have assumed that we have b = Pr[B = 1|7] - i.e.
that b is perfectly calibrated. In reality, this is a quantity that
is estimated, and will thus contain some uncertainty, including
bias due to the fact that the dataset which it is estimated on
(e.g. the census for the U.S. as a whole) may not be fully
representative of the relevant distribution (i.e. the distribution
of individuals to whom the model will be applied, which may
be a particular subset). This could result in miscalibration;
when this happens, it could be that applying our method with
our miscalibrated b results in failing to bound disparity (both
in measuring alone, and in training).

Ultimately, miscalibration is only a real problem insofar as it
causes the method to fail. For small amounts of miscalibration,
the method tends to succeed anyway — e.g. in our setting,
we do observe that our estimates are not perfectly calibrated,
but we still achieve good results. For larger, or unknown,
miscalibration, there are two paths that can be taken. The first
is to conduct a “recalibration" exercise, and obtain a modified b
that more closely matches the distribution of interest; this can be
as simple as fitting a linear regression of B on b in the labeled
dataset and replace b with the predictions of this regression.
Alternatively, given an assumed bound on the magnitude of
the miscalibration, Theorem E] can be extended to incorporate
its effect. In practice, recalibration is more straightforward to
do empirically, but the theoretical method can also be used
for sensitivity analysis; see [[19] for their discussion of the
recalibration approach as well as the effect on their special-
case bounds.

Note also that, in settings where £ is affected by the modeling
choice h - i.e. when the fairness metric involves conditioning
on model predictions, as in the case of positive predictive value
(PPV) - it may be the case that a perfect or well-calibrated
b for one model may be poorly-calibrated for another. That

Pr[B|F, S, G] =
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is, it may be that among observations, we find that that our
estimate |b(Z)—Pr[B|Z, E(hy)]| is small while our estimate of
|b(Z) —Pr[B|Z, E(hg)] is large. In this case, we can introduce
a recalibration step in-between iterations, although this deviates
from the theoretical assumptions that ensure convergence. Note
that a sufficiently expressive model over a sufficiently powerful
set of proxy features should be able obtain good calibration
overall events &; this suggests that another path forward in
such a setting may be in investing in alternative, more powerful
(e.g. machine-learned) models of b.

APPENDIX B
MATHEMATICAL FORMULATION OF FAIR LEARNING
PROBLEM

A. Theoretical Problem

We begin by discussing the theoretical problems - i.e.
abstracting away from the sample of data and considering
the problems we are trying to solve.

1) One-sided bound: We first consider the case of imposing
a one-sided bound on disparity, i.e. requiring that D, < «
but allowing D,, < —q; certainly this will not be desirable in
all situations, but we can use it as a building block for the
two-sided bound as well.

We begin by formalizing the ideal problem - that is, the
problem we would solve if we had access to ground truth
protected class. This is simply to minimize the expected risk
subject to the constraint that - whichever disparity metric we
have adopted - disparity is not “too high”. This is the:

Problem 3 (Ideal Problem). Given individual features X, labels
Y, a loss function L, a model class H, a disparity metric p,
and a desired bound on disparity «, find an h to:

hmeiLlE[L(h(X),Y)] s.t. Dy(h) < a,

where D,,(h) is the p-disparity obtained by h.

The ideal problem is not something we can solve because we
cannot directly calculate D,, over the dataset, since it requires
the ground truth protected class label B. But the Theorem [I]
suggests an alternative and feasible approach: using the linear
estimate of disparity as a proxy bound. That is, if the linear
estimator is an upper bound on the disparity, and the linear
estimator is below «, then disparity is below « too.

Formally, we would solve following problem:

Problem 4 (Bounded Problem Direct). Given individual
features X, labels Y, a loss function L, a model class H,
a disparity metric p, a desired on disparity «, and a predicted
protected attribute proxy b, find an h to:

i t DE<
hmglqr{lE[L(h(X),Y)] s.t. Dy <«
and D, < D,

Notice that any feasible solution to Problem ] must satisfy
the constraints of Problem [3] i.e. we must have that D, (h) < a.
The gap between the performance of these two solutions can be
regarded as a “price of uncertainty”; it captures the loss we incur



by being forced to use our proxy to bound disparity implicitly
rather than being able to bound it directly. We explore this price
by comparing to an “oracle” which can observe the ground
truth on the full dataset and perform constrained statistical
learning.

As in Problem 2, we cannot directly observe D, so the
second constraint is not one that we can directly attempt to
satisfy. But we know that it holds exactly in the conditions
under which Theorem [I] applies. Therefore, we can replace
that constraint with the covariance conditions:

Problem 5 (Fair Problem - Indirect). Given individual features
X, labels Y, a loss function L, a model class H, a disparity
metric p (with associated event £ and function f(h(X),Y)),
a desired maximum disparity «, and a predicted proxy b, find
an h to:

min E[L(h(X),Y)]

s.t. Dﬁ <
heH

and E[Cov(f(h(X),Y),b|B,€)] >0
And indeed, these problems are equivalent:
Proposition 3. Problems [5] and [ are equivalent.

Proof. Theorem E directly says that Dﬁ > D, <+
E[Cov(f(h(X),Y),b|B,E)] > 0. Hence if h satisfies the
constraints of Problem [3 iff it satisfies those of Problem
M Since the objectives are also the same, the problems are
equivalent. O

As written, Problem [3] is still using the population distribu-
tions; we will discuss its empirical analogue below.

2) Two-sided bound: The two-sided bound requires that
|D,| < o this may be more common in practice. Again, we
begin by considering the ideal problem:

Problem 6 (Ideal Symmetric Problem). Given individual
features X, labels Y, a loss function L, a model class H,
a disparity metric u, and a desired bound on disparity «, find
an h to:

géiﬂE[L(h(X),Y)] st. [Dy(h)| < o,

where D, (h) is the p-disparity obtained by h.

As with Problem 4] we cannot directly bound disparity, since
we do not have it, but we do have the disparity estimator. This
leads to the following problem:

Problem 7 (Symmetric Problem Direct ). Given individual
features X, labels Y, a loss function L, a model class H, a
disparity metric u, a desired on disparity «, and a predicted
protected attribute proxy b, find an h to:

inE[L(h(X),Y)] s.t. |IDE| <
irz%lﬁ [L(h(X),Y)] s.t. | M‘—‘O‘I
and |D,| < |D,IZ|

Unfortunately, we don’t have any theory about putting an
absolute value bound on disparity, and indeed, because the
weighted and linear disparity estimators are positive scalar
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multiples of one another, we cannot hope to use one as a
positive upper bound and the other as a negative lower bound.
But notice that if we were to find the best solution when
D/ € 10,0/, and the best solution when D/ € [—a, 0], then
we would cover the same range as [—«, .

One attempt to apply this principle would be to solve the
following two subproblems:

Problem 6.A.

' t DL <
hmelitlE[L(h(X)7Y)] st. D <a

and E[Cov(f(h(X),Y),b|B,€)] >0
Problem 6.B.
min E[L(h(X),Y)] st. —a < DX
and E[Cov(f(h(X),Y),b|B,€)] >0
And take:
hi = argminhgayhng[L(h(X), Y)).

But this does not even guarantee a feasible, let alone optimal,
solution to Problem [/| To see this, note that there is nothing
prevent hg, to be not simply < «, but in fact < —«, and vice
versa. In particular, what went wrong is that we did not find
the two best solutions over [—a, 0] and [0, «], but rather the
two best over [—oo, ] and [—«, oo], which is no constraint at
all.

To get around, this, though, we can solve the following two
problems instead:

Problem 7.A.

min B[L(h(X),Y)] st. Dl <o
and E[Cov(f(h(X),Y),b|B,E)] >0
and E[Cov(f(h(X),Y),B|b,E)] >0
Problem 7.B.
min E[L(h(X),Y)] st. —a < DX
and E[Cov(f(h(X),Y),b|B,£)] <0
and E[Cov(f(h(X),Y),B|b,E)] <0

Why are these different? Notice that imposing both co-

variance constraints in enforces that D%, < D, < D[
: » — NL Varb o D

since D, = D, EEIG-En) — - DE is always an attenuated
version of D! — this can only be the case if all three terms are
n.onpegative. Similarly, enforces that Dﬁ > D#? Dﬁt;.this
similarly ensures that all three terms are nonpositive. Since
these terms also include the bound on the linear estimator, they

thus ensure that if we take:
h € argminy,. ;. E[L(h(X),Y)],

we will indeed obtain a feasible solution to Problem [71 As
in Problem [5] there may again be a suboptimality gap since
we have effectively imposed more constraints to the original
problem.



B. Solving the Empirical Problems

In this section, we use recent results in constrained statistical
learning to formulate and motivate empirical problems that we
can solve which obtain approximately feasible and performant
solutions to the problems above. We summarize here the
conceptual basis at a high level, providing a discussion of
the rationale behind Theorem 2 in the main text, drawing
heavily on [14]], and refer interested readers to said work as
well as [43]] for a fuller and more detailed discussion of the
constrained statistical learning relevant to our setting and [44]]
for more general discussion of non-convex optimization via
primal-dual games.

1) Relating our Formulation: We begin by describing the
relationship between our problem of interest and that considered
in [14]. The (parameterized version of the) problem in [14] is
the following:

Problem 8 (Parameterized Constrained Statistical Learning
(P-CSL) from [14]).

P* =minE(, y)p, [fo(folx), )
s.t. B yyop; Gi(fo(z,9)] < iy i=1..m

That is, they aim to minimize some expected loss subject to
some constrained on other expected losses, with loss functions
that may vary and be over different distributions. Our problem,
i.e. Problem [5 can be seen as a special case of this, though
our framing is different. To see the correspondence, consider
applying the following to Problem [8}

1) Take D; to be the restriction of D to £

2) Take ¢ to be the loss function of interest, e.g. 1[h # y]

for accuracy

3) Take ¢; = f(h(X),Y) and ¢; as «

4) Take £ = f(h(X),Y) B~ J(A(X),¥) b and ¢ = 0

5) Take £5 = f(R(X),Y)-b— F(R(X),Y) B® and ¢ = 0
Then we arrive at Problem

2) Moving to the empirical problem: The problems de-
scribed above relate to the population distribution, but we only
have samples from this distribution. This is, of course, the
standard feature of machine learning situations; the natural
strategy in such a setting is to simply solve the empirical
analogue - i.e. to replace expectations over a distribution with
a sample average over the realized data. Instantiating this and
focusing on Problem (since the other problems can be
solved analogously and/or using it as a subproblem) we could
write the following empirical problem.

Problem 9.

min % ;j L(h(X;),Y;) s.t. DE < a

0 3 [t v~ FREDH) = %)
0< = 3 [(#(hx0.¥) - FRE)T") (5, - B

1€EDL

Problem@] is not, in general, a convex optimization problem;
if it were, the standard machinery and solutions of convex
optimization, i.e. formulating the dual problem and recovering
from it a primal solution via strong duality, could be applied.
However, as shown in [14], under some conditions, there exists
a solution to the empirical dual problem that obtains nearly the
same objective value as the primal population problem. In other
words, rather than applying strong duality as a consequence of
problem convexity, [[14] directly prove a relationship between
the primal and the dual under some conditions. These conditions
are that:

1) The losses ¢;(-,y) are Lipschitz continuous for all y

2) Existence of a family of funtions (;(N,d) > 0 that
decreases monontically in N and bounds the difference
between the sample average and population expectatoin
for each loss function

3) There is a ¥ > 0 so that for each ® in the closed convex
hull of H, there is a 8 such that

4) The problem is feasible

We briefly discussing these conditions. For 1), we note that
Lipschitz continuity requires existence of scalar such that
|f(x) — f(2')| < M|z — y|, which will be true for bounded
features when using sample averages. 2) simply requires that
we are in a situation where more data is better, and is implied
by the stronger condition we assume of H being of finite VC-
dimension. 3) asks that our hypothesis class is rich enough
to cover the space finely enough (how fine will determine the
quality of the solution), which is met for reasonable model
classes. 4), is simply a technical requirement ensuring that
there exists at least some solution, is analogous to Slater’s
criterion in numerical optimization.

Thus, we can leverage the described guarantees to assert
that solving the empirical dual would Yet this initial result,
while positive, is one of existence; to actually find a solution
requires a solution. To do so, one can construct an empirical
Lagrangian from the constrained empirical problem, and this
can be solved by running a game between primal player, who
selects a model to minimize loss, and a dual player, who
selects dual parameters in an attempt to maximize it. If we
construct this empirical dual in our settings, it is as in Equation
[ Algorithm [I] provides a primal-dual learner that instantiates
this idea of a game.

C. Theoretical Guarantees

If either all of the losses are convex, or:

6) The outcome of interest Y takes values in a finite set
7) The conditional random variables X |Y" is are non-atomic
8) The closed convex hull of H is decomposable

Then the primal-dual algorithm [I] performs well. In the
classification setting, which we focus on, Item 5) is trivially true.
Item 6) asks that it not be the case that any of the distribution
over which losses are measured induce an outcomes induce
an atomic distribution; this mild regularity condition prevents
pathological cases that would be impossible to satisfy. For
7) Decomposability is a technical condition stating that for a



Algorithm 1: Primal-dual algorithm for probabilistic
fairness

Input :Labeled subset Z;, unlabeled data 2y,
#-oracle, number of iterations 7' € N, step
size n >0

Define :h, as the model parameterized by 0(*)

Initialize : u(Ll) — 05 Mz(;|11)9 — 0; ”gl)b +—0

1for t=1...T do

2 | 60 « argmin, Z£(6, u®)
(t+1) (1)

3| myp < iyp T 1CsB(hew);
(t+1) () 5, h
B < Egp T 00 Bp(Re)
4 ILL(Lt"Fl) — /‘g) +n (DL(hg(t) — a)
5 end

6 return < (M) .. 9T) >

given function space, it closed in a particular sense: for any
two function ®, ®’ and any measurable set , the function that
is ® on y and ®’ on its complement is also in the function
space; many machine learning methods can be viewed from a
functional analysis as optimizing over decomposable function
space.

As we have shown that our problem can be written as a
case of the CSL problem, and Algorithm 1 is a specialization
of the primal-dual learner analyzed in [14], Theorem 3 in the
same applies, again with appropriate translation. In particular,
the promise is that when an iterate is drawn uniformly at
random, the expected losses (over the distribution of the
data and this draw) for the constraints are bounded by the
constraint limit ¢; plus the family of functions at the datasize
mention in Assumption 2, plus 2C'/(nT), where T is number
of iterations, 7 is the learning rate, and C' is a constant; at the
same time, the expected loss (again over both the data and
drawing the iterate) is bounded by the value of primal plus
several problem-specific constants that capture the difficult of
the learning problem and meeting the constraints, as well as
said monotonically decreasing function of the data capturing
the rate of convergence. Our Theorem [2] can be obtained by
applying a standard result from statistical learning theory and
collecting/re-arrange/hide problem-specific constants.

In this section, we discuss our approach to learning a fair
model using the probabilistic proxies and a small subset of
labeled data. To do so, we leverage recent results in constrained
statistical learning.

D. Handling Imperfect Calibration

In general, it may be that we do not have access to b =
Pr[B = 1|Z = 2], but instead have access to some imperfectly
calibrated b. In this case, we can write b=1b + ¢, where ¢
by definition is b — b. We could apply DP and DL using b
instead, but Theorem |l]| assumes access to b, and so does not
directly apply. To overcome this, we can obtain a recalibrated

b*. As a first step, we know that for a general b, the linear and
probabilistic estimators converge to:

Cov(b,elE),  E[Cov(f(Y,Y),b|B]
Dy — Du(lt = ey ) Varlb|€]
and
DP D, Var[B|E] — DL Cov(b,e)|€ _ E[Cov(Y,B[b,E) +p
g E[b|€](1 — E[b[£]) E[b|€](1 - E[ble])

respectively; € := B —b; and p := Cov(E(n|b, &), E[e|b, &]|E).

Now, with this form, we can see the following. First, for
general b, as long as Cov(b,e|€) = 0 - that is, as long as
miscalibration error ¢ is not correlated with the predictor itself
- then we will have exactly the same equation as in 1.1. But
we can obtain such a predictor simply by regressing B on b
among &; that is, if we run the linear regression

B=a+ gb+e,

and define b* as the & + Bb, then €* = B — b* by construction
satisfies Cov(b*,e*) = 0.
Then, in that case, we define:
E[Cov(f(¥, 1)), b"| B]
Var[b*|€] ’

and we can now solve an empirical version of the one-sided
problem (i.e. Problem [6.A] using b* instead of b, and all the
math discussed above follows directly. However, to solve
we of course must handle the probabilistic estimator as well.

Here, again we can use Cov(b*,c*|€) = 0 and also observe
that by construction:

EPp*|E] = E[B|€] = E[b|€](1 — E[b[€])
= E[B|€](1 - E[B|£])

L.,*
DLt =D, +

Px
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E[Cov(Y, B|b*, €)] + Cov(E[n*|b*], E[c*[b*]€)

to simplify the first term in D; *, and so overall write:

P P
Du — Du —

Var[B|€]

So to ensure that the lower bound holds, we must now incor-
porate the second term of the numerator into the optimization
problem. But this can be done in a similar manner as before,
as the residuals n* and £* can again be expressed as algebraic
sample averages.

E. Closed-form Solution to Fair Learning Problem for Regres-
sion Setting

In this appendix we provide a closed-form solution to the
primal problem Problem [2.A] for the special case of linear
regression with mean-squared error losses and demographic
parity as the disparity metric. We express the constraints in
matrix notation and show that the constraints are linear in the
parameter 3. Thus, we are able to find a unique, closed-form
solution for 3 by solving the first-order conditions. Given a
choice of dual variables, it can be interpreted as a regularized
heuristic problem with particular weights; while there are no
guarantees that this will produce a performant or even feasible
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solution, it may be useful when applying the method in its
entirety is computationally prohibitive.

We define the following notation for our derivation. Let
n denote the number of observations and p the number of
features in our dataset. Then let X € R"*P,y € R"¥! 3 €
RP*1 h € R™*1, and B € {0,1}"*!. For j = 0,1, let B; =
{i: B; = j} and n; = |B,| denote the set of observations for
which the observed protected feature B = j and the size of the
corresponding set, respectively. Since we consider demographic
parity as the disparity metric of interest, we denote the disparity
metric as f(V,Y) =Y.

For ease of exposition, we restate the empirical version of
the constrained optimization problem for linear regression and
demographic parity.

Problem 9.A.

~XB)"(y - XB)

As discussed in Section , the linear disparity metric lA)ﬁ
is the coefficient of the probabilistic attribute b in a linear
regression of Y on b. Thus, Dﬁ can be expressed as

L _ T\—=1.T

DM =(0'b)7 (b XP).

The covariance of Y and b conditional on B can be written as
Cov(Y,b|B) = E(b X5|B) — E(XB|B)E(|B) (4)

We expand the first term on the right-hand side of Equation 4]
considering the case where B = 1.

1
EG"XBB=1)=— Y biX,3
i 1€ By
1 P
=— D D biXi;f;
! iEB1 j=1
Y g,
j=14i€B;
. Zﬁﬂ Z biXij.
= i€ By
Collecting the second summation as the vector

v1; L =D icp, biXij, we can write the expression
for ]E(bTXﬂ|B =1) as

P
E(b'XBB=1) = Zﬁjvlj =plu,

j=1
where v, = (Ulj)?zl.

For the second term on the right-hand side of Equation [4] we
can rewrite the summation in a similar manner. Again focusing
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E(XS[B)E(b|B)

> b

ZEBI

(2

We again collect the second summation and write it as wi; =
n% > icp, Xij and then we can write E(X 3|B)E(b|B) as

)

> b

1€Bl

a2 (&

on the case where B =1,
ZZ%@

1€B1 j=1

e I I

i€By j=1

E(XB|B)E(b|B) = b1 w1,

where wp = (wlj)le

Now we can write Equation [Z_f] in matrix notation as,
Cov(Y,b|B) = 8Tv1 — by wy + BTvg — boBTwo, (5)

where vg, wy and by are defined equivalently for the set B,.
Finally we take the expectation of this covariance term to get,

Z% (BT o1 — b1 T wy)
+ % (BTvo — boB wo)

E(Cov(Y,b|B)) ©

We now consider the covariance of Y and B conditional on
b which can be written as

Cov(Y, B|b) = E(B"T XB|B) — E(XB|b)E(B|b).  (7)

The steps for expressing this conditional covariance in matrix
notation are similar to the first covariance term, however, now
we are summing over the continuous-valued variable b. Let
k € 10, 1] denote the value of b we are conditioning on and let
Gy, = {i: b; = k}, ni, = |G| denote the set of observations
with b = k and the size of the set, respectively.

Once again we expand the first term on the right-hand side
of Equation [/} this time considering the general case where
b=k,

E(B"XB|B) = BT .

Z@ZB%

1€Gy

_ . R X
Here we define vy = (vkj)i—y and v = =30, BiXij.
Following a similar process for the second term, we can express
the term as

E(X B|b)E(B|b) = B wy,

where wy = (wg;)}_; and wy; = nlk > icq, Xij. Combining
the two terms together we write Equation [7] as

Cov(Y,B|b) = Zﬂ%k — BB wp.
k

®)

For the last step we take the expectation of the conditional
covariance term to get,

k

E(Cov(Y, BID) = > ~F (8Tvr — BibTwi) . (9)



Now we can write the empirical Lagrangian of Problem [0.A]
as

LB, i) = (y— XB) (y— XB) — pr ((b70) (b XB))
+ fo]B (% (BT — b1 wr) + % (BT vy — EoﬁTwo))
+ B Z % (BT vk — BB wy,)
k
Solving for 8 we get the solution,

5 = XX X Ty (079167 ))

— Mty B (% (Ul - 51w1) + % (vo — Bowo))
— KB|b Z % ('Uk - Bkwk) }
k
APPENDIX C
DATA

A. L2 Data Description

We select seven features as predictors in our model based on
data completeness and predictive value: gender, age, estimated
household income, estimated area median household income,
estimated home value, area median education, and estimated
area median housing value. While L2 provides a handful of
other variables that point to political participation (e.g., interest
in current events or number of political contributions), these
features suffer from issues of data quality and completeness.
For instance, only 15% of voters have a non-null value for
interest in current events. We winsorize voters with an estimated
household income of greater than $250,000 (4%) of the dataset.
Table [T shows the distribution of these characteristics, as well
as the number of datapoints, for each of the states we consider.
In general, across the six states, a little more than half of
voters are female, and the average age hovers at around 50.
There is high variance across income indicators, though the
mean education level attained in all states is just longer than
12 years (a little past high school). Voting rates range from
53% in Georgia to 62% in North Carolina, while Black voters
comprise a minority of all voters in each state, anywhere from
16% in Florida to 35% in Louisiana and Georgia.

B. Race Probabilities

The decennial Census in 2010 provides the probabilities of
race given common surnames, as well as the probabilities of
geography (at the census block group level) given race. In
order to incorporate BIFSG, we also use the dataset provided
by [57] which has the probabilities of common first names
given race.

We default to using BIFSG for all voters but use BISG
when a voter’s first name is rare since we do not have data
for them. Consequently, we only use geography instead of
BISG when both one’s first name and surname are rare. On
average, around 70% of people’s race across the six states
were predicted using BIFSG, 10% using BISG, and 18% using
just geography; < 2% of observations were dropped because
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we could not infer race probabilities using any of the three
options.

Table shows results for our BI(FS)G procedure with
respect to true race. Accuracy and precision range from 80-90%,
but recall is much lower at around 30-50%. Note, however, that
we evaluate these metrics by binarizing race probabilities; in
our estimators, we use raw probabilities instead, which provide
a decent signal to true race. For instance, AUC hovers at 85-
90%, while Figure [6] shows that our predicted probabilities are
generally well-calibrated to true probability of Black (although
BIFSG tends to overestimate the probability of Black).

APPENDIX D
DETAILS ON MEASUREMENT EXPERIMENTS

A. Voter Turnout Prediction Performance

Table [[V] shows results for voter turnout prediction on logistic
regression and random forest models. In general, predicting
voter turnout with the features given in L2 is a difficult task.
Accuracy and precision hovers at around 70% throughout all
experiments, while recall for logistic regression ranges from
71-82% and random forests perform slightly better at 80-90%.
This result is in line with previous literature on predicting
turnout, which suggest that “whether or not a person votes is
to a large degree random” [59]. Note again that our predictors
rely solely on demographic factors of voters because those are
the most reliable data L2 provides us.

B. The KDC Method

In this section we expand on the different assumptions the
KDC method and our method make related to the auxiliary
data set. While we consider the case where the test set
(with predicted outcomes and race probabilities) subsumes
the auxiliary data (which contains true race), KDC mainly
considers settings where the marginal distributions P(B, Z)
and P(Y, Y,Z ) are learned from two completely independent
datasets — in particular, to estimate P(B|Z) and P(Y,Y|Z).
Therefore, in order to produce a fairer comparison between
the two methods, we instead reconfigure KDC to incorporate
all the data available by treating the auxiliary data as a subset
of our test seﬂ; doing so only strengthens KDC because we
pass in more information to learn both marginal distributions.
However, their main method does not leverage information on
P(Y, Z|B), as we do, so their bounds are notably wider. We

“Note that a component in calculating the variance of the KDC estimators
is r, the proportion of datapoints from the marginal distribution P(Y, Y, Z)
to the entire data. Without considering this independence assumption in our
calculation, = 1, but this loosely goes against the assumption that r is closer
to 0 in Section 7 of [20]]. For simplicity, we attenuate the multiplicative terms
in the variance calculations of Equations 25 and 26 to give KDC the tightest
bounds possible. However, as will be seen in Figure |1} KDC’s incredibly large
bounds are mostly attributed to its point estimates rather than their variances,
which are quite small.



Feature NC SC LA GA AL FL
(n=6,305,309) (n=3,191,254) (n=2,678,258) (n=6,686,846) (n=3,197,735) (n=13,703,026)
Gender (F) 0.54 0.54 0.55 0.53 0.54 0.53
0.5) 0.5) 0.5) 0.5) (0.5) 0.5)
Age 49.62 52.2 50.16 48.24 50.27 52.17
(18.76) (18.69) (18.29) (18.07) (18.44) (18.89)
Est. Household 89,788.54 82,172.22 80,770.79 90,622.61 79,919.66 90,145.4
(HH) Income (56,880.78) (53,886.64) (54,579.77) (57,699.76) (52,237.42) (56,786.94)
Est. Area Me- 76,424.55 69,666.4 68,068.86 78,377.2 69,070.63 74,547.99
dian HH Income (32,239.45) (25,911.0) (29,779.93) (35,941.68) (27,226.34) (29,820.33)
Est. Home 300,802.36 233,354.36 199,286.06 273,424.9 201,901.9 360,533.81
Value (202,634.22) (155,221.32) (123,564.26) (176,273.9) (126,255.0) (243,854.1)
Area Median 12.83 12.64 12.36 12.72 12.51 12.65
Education Year (1.13) (0.98) 0.92) (1.12) (0.99) 0.97)
Area Median 206,312.82 193,172.13 170,521.45 206,253.25 162,925.8 237,245.18
Housing Value (106,274.59) (107,225.93) (81,184.86) (112,142.54) (81,467.58) (118,270.22)
Black 0.22 0.26 0.32 0.33 0.27 0.14
Vote in 2016 0.61 0.57 0.63 0.52 0.55 0.57

TABLE II: Distribution of features used for L2 across all six states: from left to right, North Carolina, South Carolina, Louisiana,
Georgia, Alabama, and Florida. Each cell shows the mean of each feature and the standard deviation in parentheses. The last
two rows show the proportion of observations that are black, and voted in the 2016 General Election.
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Fig. 6: Calibration plots showing predicted probability of Black (x-axis) versus actual proportion of Black (y-axis).

Figure [7] but the results do not change substantiallyﬂ

C. Random Forest

We also run experiments on bounding disparity when voter

State Accuracy Precision Recall AUC
NC 0.83 0.77 0.30 0.85
SC 0.81 0.83 0.35 0.86
LA 0.82 0.87 052 0.89
GA 0.80 0.85 049  0.88
AL 0.84 0.89 045 0.90
FL 0.89 0.80 0.33  0.86

TABLE III: Accuracy, precision, recall (thresholded on 0.5),
and AUC for BI(FS)G for all six states considered in L2.

also implement the KDC estimators as originally proposed in
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turnout is predicted on random forest models, as seen in
Figure [§] We observe similar results to logistic regression
in that our methods always bound true disparity within 95%
confidence intervals, and with bounds that are markedly tighter
than KDC’s. While our bounds are always within 5 p.p. and
the same sign as true disparity, KDC is ranges from -0.5 to
0.5.

SIn Appendix A.5, [20] do in fact propose an estimator where the
independence assumption is violated (i.e., precisely the setting we consider
where we have race probabilities in our entire data), but it suffers from two
key limitations: a) we are only provided estimators for DD and none other
disparity measure, and ») we implemented the DD estimator and it failed to
bound true disparity in both applications we consider — see Figurem
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APPENDIX E data while satisfying the constraints on the training and labeled
DETAILS ON TRAINING EXPERIMENTS subset.
We use the [14] method with logistic regression models

A. Experimental Setup der the hood
under the hood.

As noted in the main text, to enforce fairness constraints
during training, we solve the empirical version of Problem [[.A] B. CSL (Chamon et al.)

and its symmetric analogue, which enforces negative covariance We implement our constrained problem using the official

.. AL .
conditions and D,; as a (negative) lower bound. For both of Pytorch implementation provided by [14[f] for a logistic

these problems we run the primal-dual algorithm described  reqression model We run the non-convex optimization problem
in Algorithm [I] for T iterations and then select the iteration

from these two problems with the lowest loss on the training Shttps://github.com/Ifochamon/csl
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State  Model Accuracy Precision Recall AUC
NC LR 0.72 0.75 0.81 0.75
RF 0.72 0.72 0.89 0.76
SC LR 0.67 0.69 0.77 0.71
RF 0.67 0.67 0.86 0.71
LA LR 0.70 0.73 0.84 0.72
RF 0.70 0.71 091 0.73
GA LR 0.69 0.70 0.71  0.75
RF 0.69 0.68 0.78 0.75
AL LR 0.67 0.69 0.74 0.72
RF 0.67 0.67 0.80 0.72
FL LR 0.67 0.69 0.76  0.71
RF 0.67 0.67 0.85 0.72

TABLE 1V: Accuracy, precision, recall, and AUC for voter
turnout prediction for all six states considered in L2. We eval-
uate two different model performances for turnout prediction:
logistic regression (LR) and random forests (RF).

for 1,000 iterations with a batch size of 1,024 and use Adam
[60] for the gradient updates of the primal and dual problems
with learning rates 0.001 and 0.005, respectively. We provide
further explanation of the mathematical background to the [14]
method in Appendix B above.

C. The Method of Wang et al.

[21]] propose two methods to impose fairness with noisy
labels: 1) a distributionally robust optimization approach and 2)
another optimization approach using robust fairness constraints,
which is based on [20]. We use code provided by [21ﬂ to
implement only the second method because it directly utilizes
the protected attribute probabilities and yields better results.

We tune the following hyperparameters: 7 €
{0.001,0.01,0.1} and n, € {0.25,0.5,1,2}, which
correspond to the descent step for € and the ascent
step for A\ in a zero-sum game between the f-player and
A-player, see Algorithm 1 and 4 of [21]. Finally, we also tune
Nw € {0.001,0.01,0.1}, which is the ascent step for w (a
component in the robust fairness criteria), see Algorithm 3 of
[21]]. In order to choose the best hyperparameters, we use the
same data as outlined in Section (80/20 train/test split),
but use a validation set on 30% of the training data (i.e., 24%
of the entire data). Note that as implemented in the codebase,
[21] chooses the hyperparameter that results in the lowest loss
while adhering to the fairness constraint with respect to true
race. Since we assume access to true race on a small subset
(1%) of the data, we only evaluate the fairness constraint on
1% of the validation set.

D. The Method of Mozannar et al.

[24] primarily focus on the setting of training a fair model
with differentially private demograpghic data, which poses
assumptions which are infeasible for our setting—however, the

7https://github.com/wenshuoguo/robust-fairness-code
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authors do propose a potential extension of their method to
handle a case that matches ours: training a fair model with
incomplete demographic data. The authors do not discuss this in
detail or provide the code for this extension, so we modify the
code [24] provide for their paper to implement the extension
of their approach, detailed in Section 6 of their paper that
is relevant for our setting. This involves using Fairlearn’ﬁ
exponentiated gradient method changed so that it will only
update for its fairness-related loss on data points in the labeled
subset, but allows classification loss to be calculated over the
entire training set.

We note that Mozannar’s method guarantees fairness viola-
tion 2(epsilon + best gap) [50] on their test set where epsilon is
set by the user, but gives no method of approximating best_gap.
Thus, we set epsilon = «/2 (i.e. assume best gap=0) in our
experiments in order to come as close as possible to their
method providing similar fairness bounds to ours on the test
set.

E. Pareto-Frontier of Accuracy vs. Disparity

In Figure [9] through [I2] we show the fairness-accuracy
Pareto frontiers for the L2 and COMPAS datasets enforcing
demographic parity (DD), false positive rate parity (FPRD),
and true positive rate parity (TPRD). We first note that the full
benefit of using our method is not fully captured by comparison
along Pareto frontiers. This is because the core aim of our
method is to ensure that the disparity does not go over a
particular bound input by the user, so the relationship between
the exact amount of disparity observed on the test data to the
bound set by the user is important beyond the fairness-accuracy
tradeoff itself; even if another method were to appear better
in terms of a fairness accuracy tradeoff, it cannot make the
guarantees to the user about meeting the bound that ours can.
We highlight the difference between the desired bound and the
disparity demonstrated on the test set by noting particular points
in the pareto frontier with symbols indicating the specified
bound (for example, in Figure 9] a circle indicates a a bound or
« value of 0.04). We note the specified bounds as dashed lines
parallel to the y axis. As we can see from all of the graphs,
our method is the only method which consistently meets the
desired fairness bound, and thus fully explores the disparity
regimes targeted.

In terms of dominance on the accuracy-fairness Pareto
frontier, we note that we do not count the oracle (the red
line) against our method as that is a model with complete
knowledge of the protected attributes of the dataset, where as
we only have protected attributes for a small subset. For the
L2 experiments, our method strictly dominates Mozannar et al.
and Wang et al. methods when available for comparison for
DD, FPRD, and TPRD. As expected, the oracle dominates our
method. For the labeled subset method, our method dominates
this approach nearly everywhere in the FPRD and TPRD plots.
The labeled subset method dominates in the middle fairness
values of the accuracy-fairness frontier for DD on L2 data.

8https://fairlearn.org/
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Metric State Method Lower Bound (95% CI) True Disparity Upper Bound (95% CI)
DP AL KDC —0.52 +£0.01 -0.14 0.23 £0.01
Ours —0.14 £0.09 -0.14 —0.08 £0.09
FL KDC —0.55£0.01 -0.16 0.28+0.01
Ours —0.27+£0.13 -0.16 —0.12£0.13
GA KDC —0.55£0.01 -0.13 0.32£0.01
Ours —0.22 £ 0.08 -0.13 —0.12 £ 0.08
LA KDC —0.53 £0.01 -0.14 0.25 £0.01
Ours —0.12 £ 0.07 -0.14 —0.07 £0.07
NC KDC —0.62 £0.01 -0.07 0.32£0.01
Ours —0.13£0.12 -0.07 —0.05£0.12
SC KDC —0.61 £0.01 -0.1 0.28 £0.01
Ours —0.08 £0.1 -0.1 —0.03£0.1
FPR AL KDC —0.58 £0.01 -0.14 0.69 £ 0.01
Ours —0.14£0.13 -0.14 —0.08 £0.13
FL KDC —0.57£0.01 -0.16 0.6 £0.01
Ours —-0.31+0.21 -0.16 —-0.13£0.21
GA KDC —0.59 £0.01 -0.1 0.77+0.01
Ours —-0.22£0.11 -0.1 —0.12£0.11
LA KDC —0.81 £0.01 -0.13 0.85£0.02
Ours —0.08£0.13 -0.13 —0.05£0.13
NC KDC —0.65 +£0.01 -0.07 0.86 + 0.01
Ours —0.07+0.21 -0.07 —0.03+0.2
SC KDC —0.69 £0.01 -0.12 0.77+0.01
Ours —0.14£0.15 -0.12 —0.06 £0.15
TPR AL KDC —0.78 £0.01 -0.12 0.3 +0.01
Ours —0.07£0.11 -0.12 —0.04 £0.11
FL KDC —0.8+0.01 -0.14 0.25£0.0
Ours —0.21£0.15 -0.14 —0.1+0.15
GA KDC —0.88 £0.01 -0.11 0.4+£0.01
Ours —0.18 £0.11 -0.11 —-0.1+0.11
LA KDC —0.68 £0.01 -0.1 0.2+0.0
Ours —0.14 £0.08 -0.1 —0.08 £0.08
NC KDC —0.86 £0.01 -0.06 0.25+0.0
Ours —-0.12+£0.12 -0.06 —0.05 £0.12
SC KDC —0.84 £0.01 -0.08 0.31+0.0
Ours —-0.0£0.12 -0.08 —0.0+£0.12

TABLE V: Companion table to Figure m

However, again we note that the labeled subset method was
not able to meet the desired fairness bounds on any experiment
across the L2 and COMPAS datasets, so there are other reasons
why this method is undesirable in situations where a reliable
bound is needed. For FPRD on the COMPAS dataset, with
a few exceptions, our method dominates all other methods
(except the oracle, as expected). For TPRD, besides the oracle,
a few points in the middle of the range (0.16, 0.14, 0.12, 0.1,
0.8) are dominated by either Mozannar et al. (0.1, 0.14), Wang
et al. (0.08, 0.12, 0.14) or labeled subset (0.16). However, our
method dominates the most consistently (7 out of 12 points) and
noticeably in the lower unfairness regime. For DD, Mozannar
et al. lead to a comparable but lower fairness-accuracy tradeoff
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for much of the space, but again we note that the Mozannar et
al. method cannot meet the desired fairness bounds for 33 out
of 36 experiments, suggesting it is not preferable in situations
where a bound is necessary.

F. Results on Oracle and Naive

In Figure [T3] we present the mean and standard deviation of
the resulting disparity and on the test set, as well as classifier
accuracy on the test set, of experiments with our method
compared to an oracle model, that has access to ground truth
race on the whole dataset and uses these to enforce a constraint
directly on ground truth disparity during training, as well as
a naive model which simply enforces a constrained directly
on the observed disparity of the noisy labels, without any
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correction. (Namely, in this technique, we simply threshold
the probabilistic predictions of race on 0.5 to make them
binary, and use as race labels.) As a whole, we perform
relatively comparably to the oracle, except on FPRD. We
always outperform the naive method in terms of reducing
disparity, which is to be expected. We typically perform within
2 percentage points of accuracy from the oracle, (except for the
0.04 and 0.06 bounds on DD and the 0.04 bound on TPRD).
We suggest the accuracy results in this figure show the fairness-
accuracy trade-off in this setting: when we dip below the oracle
in terms of accuracy, it is most often because we are bounding
disparity lower than the oracle is (e.g., on the 0.04 bounds in
DD or TPRD). And, while we do not outperform the naive
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method in terms of accuracy, we consistently out-perform it in
terms of disparity.

APPENDIX F
ADDITIONAL EXPERIMENTS: COMPAS

In this section, we present a suite of additional experiments
we run on the COMPAS [45]] dataset. The COMPAS algorithm
is used by parole officers and judges across the United States to
determine a criminal’s risk of recidivism, or re-committing the
same crime. In 2016, ProPublica released a seminal article
detailing how the algorithm is systematically biased against
Black defendants. The dataset used to train the algorithm has
since been widely used as benchmarks in the fair machine
learning literature.



A. Data Description

We use the eight features used in previous analyses of the
dataset as predictors in our model: the decile of the COMPAS
score, the decile of the predicted COMPAS score, the number
of prior crimes committed, the number of days before screening
arrest, the number of days spent in jail, an indicator for whether
the crime committed was a felony, age split into categories, and
the score in categorical form. We process the data following
[45]], resulting in n = 6, 128 data points. Table [VI| outlines the
feature distribution of the dataset.

Feature COMPAS
(n=6,128)

Decile Score 4.41
(2.84)

Predited Decile Score 3.64
(2.49)

# of Priors 3.23
4.72)

# of Days Before Screening Arrest -1.75
(5.05)

Length of Stay in Jail (Hours) 361.26
(1,118.60)

Crime is a Felony 0.64
(0.48)

Age Category 0.65
(0.82)

Risk Score in 3 Levels 1.08
(0.66)

Black 0.51

Two Year Recidivism 0.45

TABLE VI: Distribution of features used for COMPAS. Each
cell shows the mean of each feature and the standard deviation
in parentheses. The last two rows show the proportion of
observations that are Black and who recidivized within two
years.

B. Race Probabilities

We generate estimates of race (Black vs. non-Black) based
on first name and last name using a LSTM model used in [49]
that was trained on voter rolls from Florida. The predictive
performance and calibration of these estimates is displayed in
Table and Figure [14] respectively. In general, the results
are quite reasonable; accuracy is at 73% while the AUC is
86%. The probabilities are somewhat calibrated, although the
LSTM model tends to overestimate the probability of Black.
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Recall
0.56

AUC
0.86

Accuracy Precision

0.73 0.86

TABLE VII: Accuracy, precision, recall (thresholded on 0.5),
and AUC for predicting probability a person is Black in the
COMPAS dataset.
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Fig. 14: Calibration plot showing the predicted probability
a person in the dataset is Black (x-axis) versus the actual
proportion of Black people in the dataset (y-axis) for COMPAS.

C. Measurement Experiments

We first compare our method of bounding disparity to that
of KDC. We train an unconstrained logistic regression model
with a 80/20 split on the data, i.e., n = 1,226 in the test set.
Then, we construct the labeled subset by sampling 50% of
the test set (n = 613) and use that to check out covariance
constraints. We also compute D 1, and D p with standard errors
on the entire test set, as specified by the procedure in Appendix
Section

Our main results are displayed in Figure 2] Similar to the
L2 data, our bounds are consistently tighter than KDC, albeit
to a lesser extent in this case since the COMPAS dataset
is significantly smaller. Despite this fact, we emphasize that,
unlike KDC, our estimators are always within the same sign
as the true disparity, barring the standard errors which shrink
as the data grows larger.

Recall
0.57

AUC
0.74

Accuracy Precision

0.69 0.69

TABLE VIII: Accuracy, precision, recall (thresholded on 0.5),
and AUC for predicting two-year recidivism on the COMPAS
dataset using a logistic regression model.

D. Training Experiments Details

We compare our training method to [21]], [24] and a baseline
where we directly enforce disparity constraints on only the
labeled subset. We run 10 trials — each corresponding to
different seeds — and report the mean and standard deviation of



the accuracy and disparity on the test set in Figure ] For each
trial, we split our data (n = 6, 128) into train and test sets, with
a 80720 split. From the training set, we subsample the labeled
subset so that it is 10% of the total data (around n = 613).
We chose a higher proportion of the data compared to L2 to
adjust for the smaller dataset. The remaining details are as
described in Section [[V-CI] Note that the resulting disparities
for the unconstrained model differ among the three fairness
metrics. On DD and TPRD, the unconstrained model resulted
in a 0.28-0.29 disparity, but it drops to 0.21 for FPRD. We
adjusted our target fairness bounds accordingly.

APPENDIX G
SIMULATIONS

A. Simulation Design

In this section, we describe the design of our simulation
used for additional experiments.

o Primitive features 71, ..., Z,,

Conditional probability b of being Black a function of
Zy ... D,

Realized status as Black or not B drawn from Bernoulli(b)
Downstream features X1, ...X,, a function of Z1, ..., Z,,
and B

Score for outcome P(Y'), a function of downstream
features X;...X,

Outcome Y ,which is an indicator of P(Y") at threshold 7
with some noise probability of being flipped 0 <> 1

The primitive features 71, ..., Z, intuitively represent the
variables that correspond to proxies in BIFSG, e.g. geographic
locations. They serve a dual role: first, as in BIFSG, they give
rise to the probability that an individual is Black. Second, since
the secondary features X are a function of Z, they affect the
distribution of these features; thus downstream, they affect
P(Y") and ultimately Y, but do not directly enter into P(Y") or
Y themselves. This corresponds to how geography and other
variables which are correlated to race may also be correlated
to many learning-relevant features, even when not directly
entering causing the outcome of interest themselves. Note that
in addition to primitives affecting P(Y") through each X, we
allow for B to affect P(Y'). This corresponds to how there
may be associations between group membership and features
which affect the outcome of the interest via the downstream
features even if the group status is not directly relevant tot he
outcome of interest.

These relationships are not fully specified by the description
in the text above, of course, so we provide details of the selected
functional forms in Table [[X] Figure 12 also summarizes
the features and their associative relationships visually. This
visualization, along with the language of directed acyclic graphs
(DAGs), allows us to more easily reason about whether the
covariance conditions are likely to be satisfied in our model,
at least for the underlying outcome.

B. Experimental Setup

Following the notation above, we have p to be the number
of features X in our data, and let n be the number of
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Fig. 15: A heuristic depiction of the data generating process for
our simulations. Nodes indicate random variables, and edges
indicate (causal) relationships between nodes. Importantly,
relationships are not necessarily linear.

datapoints. We run experiments for p € {10,20,50} and
n € {5000, 10000, 50000}. For each p, we fix the parameters in
the data generation process and realize 50,000 datapoints. Refer
to Table [X] for a list of parameter values, which differ slightly
for each p to control demographic disparity on the dataset
at around 0.25-0.28. For experiments n € {5000, 10000}, we
simply randomly subsample from the 50,000 dataset.

The last dimension we tune is the size of the labeled subset
(measured by the percentage of n), which from hereon we
refer to as e. For each n, we specified slightly different e
as outlined in Table [XIl This is to account for the fact that,
for instance, one might need 40% of 5,000 datapoints with
protected attribute labels to learn a predictor that reaches the
target disparity bound. On the other hand, using 20% of 50,000
datapoints might be more than enough, especially considering
the exponentially higher costs to query thousands of people’s
protected attributes.

We prototype these simulation experiments on demographic
parity. For each experiment, we split the data 80/20 into
train/test data, then repeat 10 times with different seeds. We
run both our method and the labeled subset method, evaluating
disparity and accuracy on the test set.

C. Results

We present our results in Figures [5] and [16] In Figure [3]
we see that while increasing the size of the labeled subset
can sometimes lead to a regime where training on the labeled
subset alone can produce a model which comes close to (or in
one case—n = 50,000, p = 10, reaches) the desired disparity



Feature Interpretation Functional Form

Z; Primitive Feature Z; ~U0,1),j=1,..m
X; Secondary Feature X; = ZZ’;l ciXFi=1,.p
hy Degree hi ~U{0,1,2,3}

Ci Coefficients ¢ ~U0,1,i=1,.p

b Probability Black b = max{0, min{1,b}},

N N(0.1,.04) >, Z;i <
N(0.9,.04) >, Z; >

Th Threshold on b 1 +1.2¢/1/(12m)

(based Irwin-Hall distribution)

B Indicator for Black B ~ Bernoulli(b)
P(Y) Score of Outcome P(Y)=3,[d;XF + dipB|
. _ P(Y)—min(P(Y))
PY Normalized Score of Outcome PY)=— B —min(BTY)
B 1i(0.1) P(Y) <
Y Realized Outcome Y ~ ernod 1(0 ) (Y)<r
Bernoulli(0.9) P(Y) >
d; Coefficients for features X d; ~ U[0,1]
d;B Coefficients for indicator for Black dip ~ U[0,up|

TABLE IX: Description of several variables we use in our simulation study and their functional forms. For ease of notation, we
omit the index denoting individuals in the dataset. Unspecified constants were selected by inspection to match key indicators
across scenario and are specified in Table 8.
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Fig. 16: We present a three by three figure showing the test accuracy of the models created using our disparity reduction
method when compared with relying on training models only on the labeled subset and reducing disparity by directly enforcing
a constraint on the protected attribute labels. The rows correspond to datasets of increasing sizes (number of features from
10 to 50), indicating problems of increasing complexity. The columns correspond to the size of the overall dataset, ranging
from 5,000 to 50,000 samples. The x-axis shows the percentage of the total dataset is dedicated to the labeled subset, and the

y-axis denotes the test accuracy of the models. The blue graphs correspond to our method, and the orange to the labeled subset
method.
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p m T up
10 4 04 0.05

20 5 04 0.1
50 10 0425 02

TABLE X: List of parameters in the data generation process
for each p, the number of secondary features X in the data.
m corresponds to the number of primitive features Z, 7 is
the threshold for P(Y"), while up is the upper bound for the
uniform distribution to generate d;p, see Table

n e

5000  {2,4,6,8,10,15,20, 30,40}
10,000 {1,2,3,4,5,7,10,20,30}
50,000 {0.5,1,2,3,4,5,7,10,20}

TABLE XI: Suite of experiments varying percentage of the
data taken as labeled subset (e) by the size of the full dataset
(n).

bound, for the most part, even with a large labeled subset,
the mean of the disparity over 10 trials is above the desired
disparity threshold. Meanwhile, our method stays below the
desired disparity threshold across all nine experiments.

As we can see by looking at the rows from top to bottom,
the complex (i.e., more features in the data) the problem is, the
more data is necessary for the labeled subset to get close to the
desired disparity bound. Thus, our simulation experiment sheds
light on the fact that model applications with small amounts
of labeled data, and more complex data, are particularly well-
suited for our method.
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APPENDIX H
PAST REVIEWS AND RESPONSES

We enclose our unedited reviews and responses from a prior
submission. We provide here a summary of our additions and
changes from our initial version of the paper:

« Additional Datasets: We provide experiments on the
COMPAS dataset, using a non-BIFSG proxy as our
probabilistic estimate. We also provide experiments on
synthetic data.

Additional Methods: We incorporate a comparison to
Mozannar et al. [24], which, to our knowledge, is the only
paper that addresses a setting that is close to ours. We
also discuss why other methods are inapplicable to our
setting.

Simulation Study: We conduct a study on simulated
data where we can vary both dataset size and underlying
complexity of the data-generating process to understand
under what regimes our method is preferable to existing
methods.

We also add a variety of clarification measures, including
adding Table to the main paper; adding a section to the
introduction which clarified the real-world situations where our
technique may be used, and setting some of the stakes for our
paper, and others.

Additional Datasets: In response to reviewer concerns
surrounding the number of datasets considered, we provide
experimental results of our method over COMPAS data, which
had not originally been in the paper. We also note that while
the paper focused on the application of voter turnout, the
2 states for which we run learning experiments and the 7
states for which we perform measurement experiments all have
significantly different data distributions, providing insight to
different data settings.

Additional Baselines: In response to one reviewer, we added
a comparison to Mozannar et al. [24] in our main set of results.
As we show in the paper, we almost always outperform their
method on disparity reduction and accuracy. We address the
particular comparisons the reviewer brought up, and why the
Mozannar paper was the only comparison which shed additional
light to the paper, here:

Our setting differs substantially from the papers cited by the
reviewer and the literature more broadly. In particular, while
some papers assume noisy, perturbed, or nonexistent protected
attribute data, we consider an empirically common “mixed”
case, in which the learner has access to a probabilistic proxy
for the protected attribute over all their data, and ground truth
over a small subset only, spurring the question of how best to
combine the two data sources with fairness and performance
in mind.

With respect to the works the reviewer specifically high-
lighted: Mozannar et. al [24]], primarily focuses on a setting
with a very strong conditional independence assumption on
the protected attribute proxy, which is unlikely to be met
besides the (infeasible, for our setting) case in which the
learner can differentially privately generate noisy labels using
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the ground truth. However, as you point out, the authors do
propose a potential extension of their method to handle a
case that matches ours. The authors do not discuss this in
detail or provide the code for this extension, but we have
modified their original code to implement the changes described
and include these results in our updated draft. We note that
Mozannar et. al.’s method almost never meets the disparity
bounds, and does worse in accuracy on L2; see Figures 1-2
attached. Levy et. al [61] proposes and analyzes distributionally
robust optimization (DRO) algorithms. At its core, the idea
of DRO is to optimize for the worst-case distribution that is
“nearby” according to some metrics. This has applications to
fairness, as the reviewer points out. In particular, Wang et
al, to which we have already provided a comparison, applies
DRO to precisely the problem of fair classification with noisy
sensitive features. Like other methods that aim for worst-case
guarantees, the method is robust but sacrifices performance by
not using all available information, as can be seen in Figure
2 in our main results. Diana et. al. [|62] aims at an upstream
and somewhat orthogonal problem to that of ours. Our paper
focuses on training a fair model using an imperfect proxy (e.g.
BIFSG), where as Diana et al. study how to learn a model to
create proxy features with which to learn a fair model. They
do not focus on the downstream task of training the fair model,
and the methods are hence not directly comparable. We are
happy to include discussion of the above works in the related
work section of our paper.

Investigating Questions Around the Size of the Labeled
Subset: Prompted by the response of several reviewers, we
added experiments on the relationship between the size of
the labeled subset, dataset complexity, and the efficacy of our
method which we pointed to as future work in our limitations
section. Our results are in Section of the paper. Overall,
our method is consistently able to bound disparity across
varying sizes of the labeled subset, whereas training on the
labeled subset alone only comes close to bounding disparity
in low-complexity regimes.

We now enclose the unedited reviews and our responses.



Summary:
The paper proposes method of evaluating and mitigating unfairness with probabilistic estimate of sensitive attribute (e.g. predicting race from zip code). The key insight is to derive upper and lower
bound on the fairness measure, and then optimize the bound-related terms for mitigation.

Soundness: 2 fair
Presentation: 2 fair
Contribution: 2 fair
Strengths:
1. A practical and important problem

Weaknesses:
1. My main concern is the experiments. It only tried on one dataset, this is rare in machine learning. In addition, only one baseline (Wang et. al) is compared. Fairness under noisy sensitive attribute
is a growing area with many more recent baselines should be compared to, e.qg.

[11 Levy, Daniel, et al. "Large-scale methods for distributionally robust optimization.” Advances in Neural Information Processing Systems 33 (2020): 8847-8860.
[2] Mozannar, Hussein, Mesrob Ohannessian, and Nathan Srebro. "Fair learning with private demographic data.” International Conference on Machine Learning. PMLR, 2020.
[3] Diana, Emily, et al. "Multiaccurate proxies for downstream fairness." Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency. 2022.

There are more. I am not suggesting authors to compare to all of them. But since many papers in this area target the problem in a similar way as this paper, i.e. deriving bounds on fairness measure
and optimizing it as proxy, I think the experimental comparison is important.

2. I think notation can and should be simplified, e.g. the notation nyB‘b,g is clumsy. Consider simplifying by not defining event £ and writing it out explicitly. And write b as B‘*Z ¢ more explicitly.

Questions:
1. Can authors give some examples of what the event £ can be?

Limitations:
See Weakness.

Flag For Ethics Review: No ethics review needed.

Rating: 3: Reject: For instance, a paper with technical flaws, weak evaluation, inadequate reproducibility and incompletely addressed ethical considerations.

Confidence: 4: You are confident in your assessment, but not absolutely certain. It is unlikely, but not impossible, that you did not understand some parts of the submission or that you are unfamiliar
with some pieces of related work.

Code Of Conduct: Yes

Fig. 17
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Rebuttal:
Thank you for your review. We have made the following updates, which we will describe in detail below:

* We have added experiments on the COMPAS dataset, where our method performs better at decreasing disparity than the labeled subset method and Mozannar et al, which
we include as a comparison. We also note that the 2 states for which we run learning and the 7 states for which we perform measurement all have significantly different data
distributions.

¢ We have added a comparison to Mozannar et al. in our main results, though there are substantial differences between our method and theirs, where our method outperforms on
bounding disparity in all experiments and accuracy in most. We describe our differences from the other references pointed to below.

Additional Datasets

The experiments in the current draft of the paper are focused on one application, but over different populations: we consider data from 7 different states for measurement and 2 states for
our predictive task. As we detail in appendices C and D, the states have significant variation in key metrics like the fraction Black and non-Black, turnout, and the ease of the underlying
prediction problem, which provide informative variation over the space of possible problem settings.

We have selected this application because it is one with easily available public data in which individuals’ names and addresses are linked to their data, allowing for the application of Bayesian
Improved Firstname Surname Geocoding (BIFSG), which is likely the most common race proxy used for fairness in industry [2] and government [1]. The measurement of disparity in voting is
also an important question of both academic interest and legal importance. However, as our method does not require the use of BIFSG to estimate a protected feature, we have added
experiments on an additional dataset, COMPAS; for this application, we use an LSTM model used in [5] to estimate race (Black vs. non-Black) based on first name and last name instead of
BIFSG. Our results are attached in Figure 2 of the global response. We show that our method is able to train a classifier that makes predictions which satisfy the target disparity threshold for
several different threshold values, unlike the comparison methods which do not satisfy the target threshold except for the largest threshold value.

Additional Benchmarks

Our setting differs substantially from the papers cited by the reviewer and the literature more broadly. In particular, while some papers assume noisy, perturbed, or nonexistent protected
attribute data, we consider an empirically common “mixed” case, in which the learner has access to a probabilistic proxy for the protected attribute over all their data, and ground truth over
a small subset only, spurring the question of how best to combine the two data sources with fairness and performance in mind.

With respect to the works you specifically highlighted: Mozannar et. al, primarily focuses on a setting with a very strong conditional independence assumption on the protected attribute
proxy, which is unlikely to be met besides the (infeasible, for our setting) case in which the learner can differentially privately generate noisy labels using the ground truth. However, as you
point out, the authors do propose a potential extension of their method to handle a case that matches ours. The authors do not discuss this in detail or provide the code for this extension,
but we have modified their original code to implement the changes described and include these results in our updated draft. We note that Mozannar et. al.'s method almost never meets the
disparity bounds, and does worse in accuracy on L2; see Figures 1-2 attached. Levy et. al proposes and analyzes distributionally robust optimization (DRO) algorithms. At its core, the idea of
DRO is to optimize for the worst-case distribution that is “nearby” according to some metrics. This has applications to fairness, as the reviewer points out. In particular, Wang et al, to which
we have already provided a comparison, applies DRO to precisely the problem of fair classification with noisy sensitive features. Like other methods that aim for worst-case guarantees, the
method is robust but sacrifices performance by not using all available information, as can be seen in Figure 2 in our main results.

Diana et. al. aims at an upstream and somewhat orthogonal problem to that of ours. Our paper focuses on training a fair model using an imperfect proxy (e.g. BIFSG), where as Diana et al.
study how to learn a model to create proxy features with which to learn a fair model. They do not focus on the downstream task of training the fair model, and the methods are hence not
directly comparable. We are happy to include discussion of the above works in the related work section of our paper.

Notation and Event

For examples of the event £, we direct you to appendix A5, where we have a table of functions f(h(X), y) and corresponding epsilons that refer to various common fairness definitions. For
example, to enforce equalized false positive rate parity, f(h(X),y) := 1[h # y| and € = 1[y = 0]. We are happy to include further examples and a more detailed demonstration of their
equivalence in our updated version. We acknowledge that the notation is somewhat unwieldy; however, we do believe that the tracking of the event £ is helpful to illustrate the generality of
the methods. We will revisit this notation and experiment with other options (including with the reviewer’s proposed modification).

[1] Elzayn, Hadi et al. Measuring and mitigating racial disparities in tax audits. SIEPR, 2023.
[2] Austin, Roy L. Expanding Our Work on Ads Fairness. 21 June 2022.
[3] Agarwal, Alekh et al. "A reductions approach to fair classification." PMLR, 2018.

[4] Awasthi, Pranjal, et al. "Equalized odds postprocessing under imperfect group information." PMLR, 2020.

Fig. 18
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Summary:

This paper develops methods for measuring & reducing fairness violations when the protected attribute is private. Access to protected attribute labels for a small subset of the data is assumed, but
only probabilistic estimates are available for the remainder of the data. A method for measuring common fairness metrics is proposed for this setting. A theoretical bound on a range of common
fairness metrics is given. The utility of the approach is shown on various datasets.

Soundness: 4 excellent

Presentation: 4 excellent

Contribution: 3 good

Strengths:

This paper has numerous strengths. The paper is well motivated, with convincing practical examples of why this data setting and problem is relevant. The paper is also very well written, the notation is
clean and I found it easy to follow.

The technical results are strong. Theorem 1 is neat, drawing on a nice simple relationship between the bias in what the paper labels the probabilistic estimator and the linear estimator (or more
precisely, their asymptotic limit). The result is then applied to help solve the fair learning problem in a principled way.

The description of the experiments is thorough and precise. The results are well describes and are convincing evidence in favor of the proposed approach. The figures are well designed and easy to
understand.

Weaknesses:
There is generally not much to criticize about this paper. However it would be useful if the paper could elaborate on how well this approach works on small sample sizes when there is presumably
considerable variability in the probabilistic/linear estimates.

It would also be useful to better understand (either theoretically or via the experiments) how much public data is needed for this approach to give good performance (this is actually mentioned as a
limitation/extension).

Some discussion of how computationally demanding this approach is when compared to alternatives could be beneficial.

It would also be valuable to extend this to situations where the protected variable has more than two categories (perhaps this approach still applies, but that was not clear to me). I agree this
approach is still valuable in this setting but clearly generalization would be valuable.

Questions:
Why does the empirical problem not account for variability/uncertainty in the estimators?

How robust is the method to incorrectly calibrated probabilities for the protected features? In particular, what happens if there's disparity in these too?

Limitations:
The authors have addressed limitations adequately and noted certain privacy concerns that arise in this setting.

Flag For Ethics Review: No ethics review needed.

Rating: 8: Strong Accept: Technically strong paper, with novel ideas, excellent impact on at least one area, or high-to-excellent impact on multiple areas, with excellent evaluation, resources, and
reproducibility, and no unaddressed ethical considerations.

Confidence: 3: You are fairly confident in your assessment. It is possible that you did not understand some parts of the submission or that you are unfamiliar with some pieces of related work.
Math/other details were not carefully checked.

Code Of Conduct: Yes

Fig. 19
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Rebuttal:
Thank you for your review. We address your questions and concerns below:

Variability and dataset size: Regarding your questions on variability in probabilistic/linear estimates in small sample sizes, and questions about how much labeled subset data is required
for good performance, we have attached a study between our method and only training on labeled subset data that explores this question by training with different percentages of labeled
data on a synthetic dataset in Figure 3 in the global response PDF.

As we mentioned in limitations, it's not just labeled subset size that impacts how our method may function, but complexity of the dataset as well—as the more complex the data is, the more
data will be necessary to successfully bound disparity as well as predict accurately.

To conduct this study, we implement a data-generating process using analogues of the key features of our setting, as well as a tunable complexity parameter that we may vary (or hold fixed)
with sample size. Figure 3 shows the true disparity and accuracy obtained by our methaod (y-axes) on a test set over several different sizes of labeled subset data (from 50-2000 points) (x-
axes). The four graphs comprise a range of models on data generated from a 3rd degree polynomial with random coefficients over 10 features (less complex data, top row) and 20 features
(more complex data, bottom row), with an overall dataset of 5k (left) and 10k (right). The blue method is labeled subset, the orange method is our method, and the dotted line is the disparity
of an unconstrained classifier.

Results: Figure 3 in the attached PDF of the global response shows that our method consistently meets disparity goals even with small amounts of labeled data in both the low and
high complexity regimes. By contrast, the labeled subset method converges from above towards the desired disparity bound as the size of the labeled set increases; it comes close to
meeting the bound in the low complexity regime but does not meet it even with a large amount of data in the complex regime. Thus, this study suggests that our method is relatively more
valuable in high complexity regimes. We will add these results and discussion to the paper and discuss the simulation in detail in the appendix. We are happy to expand these experiments in
the final version should the paper be accepted.

Computation time: We would be happy to record the timing of the different methods in the appendix pending acceptance. As a rough estimate, the methods take approximately the
following amount of time: L2, 150k observations: Ours: ~7.5 minutes Mozannar: ~3 seconds Wang: ~24 minutes

Extension beyond two demographic groups: Our method is designed to measure/mitigate disparity between two demographic groups, but there is no reason why one would not be able
to use these bounds in tandem for any non-overlapping groups: in the measurement setting, one could simply compute the disparities across whatever comparisons are of interest, and
extra constraints could theoretically be added to the training setting (e.g. to enforce covariance constraints and upper bounds on multiple groups). However, with additional groups,
additional data would be needed to correct for multiple comparisons and the increased complexity of the learning problem.

Variability in empirical problem: We understand your concern to refer to why sample variation is not addressed directly in the covariance conditions or the linear estimator in the empirical
problem outlined in Problem 2A. We note that the generalization bounds in Theorem 2 provides guarantees that the bounds on all of the relevant terms in the empirical problem— the
covariance constraints as well as the bound on the disparity estimator—will translate to bounds on the ground truth data up to an error term which decreases with larger amounts of data.
Thus, once there is sufficient data, the instability in the samples of the covariance terms and disparity estimates should not influence the results. We're of course happy to clarify the
presentation of this result.

Calibration: Thank you for your question. It is true that a miscalibrated (i.e. systematically biased) probabilistic proxy will result in inaccurate bounds; to the extent this is known, this can be
accounted for in the bounds at the cost of some additional algebra (which we can add to the Appendix). But in practice, imperfect calibration does not seem to be a problem if it is not
extreme or pathological. We also note that the proxy can also be recalibrated for the specific population of interest, either via flexible machine learned models [2,3] or simple linear
regression. This latter technique is particularly compelling given recent work which suggests that additional features tend to make marginal improvements for accuracy after the key factors
in BIFSG are taken into account [1].

Thank you for taking the time to read and review our paper, and please let us know if you have any further questions.
[1] Cheng, Lingwei, et al. "How Redundant are Redundant Encodings? Blindness in the Wild and Racial Disparity when Race is Unobserved." FACCT, 2023.
[2] Pleiss, Geoff, et al. "On fairness and calibration."” Neurips, 2017.

[3] Elzayn, Hadi, et al. 2023. (16 in original paper)

Fig. 20
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Summary:

The paper proposes a technique for measuring and mitigating fairness disparities when most of the true attributes are protected and only probabilistic estimates of protected attribute labels (e.g., via
BISG) are accessible. The proposed method takes advantage of contextual information, i.e., the relationship between a model's predictions and the probabilistic prediction of attributes, to provide
tighter bounds on the true disparity.

Soundness: 3 good

Presentation: 3 good

Contribution: 2 fair

Strengths:
1. The paper considers a critical and practical problem, i.e., the sensitive attributes may be protected.
2. The proposed method is validated by both theoretical analyses and experiments.
3. The proposed method can give a significantly tighter bound.

Weaknesses:

1. The main concern is that the assumption that b = Pr[B = 1|Z, €] is too strong. In practice, the probabilistic estimates of attributes are likely to be biased. I b is unbiased, can we just estimate
the disparity by letting B= 15>0.57 How would this method compare to the proposed method?

2. Should the labeled attributes be iid with the unlabeled ones? In practice, iid is hard to guarantee, and requiring a small set of sensitive attributes may violate privacy regulations, e.g., differential
privacy.

3. The compared baselines are limited in Figure 1. There are five more baselines:

* The method in weakness 1.

* Evaluate fairness disparity only with the labeled attributes.

» The method in [R1--R3]

[R1] P. Awasthi et al. Evaluating fairness of machine learning models under uncertain and incomplete information. FAccT, 2021.
[R2]]. Chen et al. Fairness under unawareness: Assessing disparity when protected class is unobserved. FAccT, 2019.
[R3] Z. Zhu et al. Weak proxies are sufficient and preferable for fairness with missing sensitive attributes. ICML, 2023.

Questions:
Here are several questions in addition to the questions mentioned in weakness:

1. What would happen if the true disparity in Figure 1 is large? Would the method still work?
2.1n Line 300, does the "labeled subset with true race labels" refer to the set with 1,500 examples? If true, does this setting correspond to the orange curve in Figure 2 (bottom)? If also true, it seems
that this setting achieves the best performance, rather than the proposed method.

Limitations:
NA

Flag For Ethics Review: No ethics review needed.

Rating: 4: Borderline reject: Technically solid paper where reasons to reject, e.g., limited evaluation, outweigh reasons to accept, e.g., good evaluation. Please use sparingly.

Confidence: 4: You are confident in your assessment, but not absolutely certain. It is unlikely, but not impossible, that you did not understand some parts of the submission or that you are unfamiliar
with some pieces of related work.

Code Of Conduct: Yes

Fig. 21
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Rebuttal:
We thank the reviewer for their feedback. We first respond to your questions, and then the overall concerns:

Questions:

Larger true disparity: Yes, our method works in settings with larger disparity. In fact, the larger the disparity is, the smaller the variance in the estimators and thus the more precisely they
can be estimated with the same amount of data. We additionally highlight Figure 1, in which Dp and Dy, do in fact bound the true disparity, despite the relatively high disparity of an
unconstrained classifier at 15%. This is further supported by our new COMPAS experiments in which the disparity of an unconstrained classifier is around 26% yet we are able to successfully
train our classifier to make predictions with a disparity below 18%.

Clarification of Figure 2 re: |labeled subset with true race labels: The orange line does correspond to using a model that enforces the fairness constraint on the set of 1,500 with true race
labels. This baseline has higher accuracy, however, our target is not to maximize accuracy alone; it is to maximize accuracy subject to disparity constraints, and the labeled subset method
does not satisfy this constraint. The drop in accuracy of our method corresponds to a fairness-accuracy tradeoff: for huge decreases in disparity (e.g. from 15% to below 4% in the upper left-
hand graph, for demographic disparity), there is a noticeable difference in accuracy between our method and the labeled subset—however, when we bound demographic disparity at 10%
instead of 4% in the same graph, the accuracies of the two methods are comparable while our method is far more successful at reducing disparity.

The method and results speak to the ongoing debate about the extent of the fairness/accuracy tradeoff [1]. While many works have shown that it is possible to reduce disparity by some
amount without noticeable accuracy tradeoffs, our work adds to this debate by showing that one cannot reduce disparity by an arbitrary amount—e.g. to a specific threshold—with no
repercussions on accuracy. Using the labeled subset alone maintains higher accuracy primarily by failing to decrease disparity to the desired threshold. As we see Figure 2 in the original
paper and Figures 1 and 2 in the additional PDF, as we relax the fairness constraints, the accuracy improves with it linearly.

Concerns:
Bias in the probabilistic estimate b:

s We understand that miscalibration of b is a concern, and direct the reviewer to appendix A.4.2 where we discuss this issue. Overall, while miscalibration of b will affect the bounds, the
method still works with some miscalibration (indeed, as we see in appendix C.2, the race probabilities are not perfectly calibrated).

* Regarding your suggestion to directly use b thresholded at 0.5, we have included this experiment in Appendix Figure 6 (the bars labeled “Threshold”). As you can see, this method of
thresholding the BISG estimates does not ever effectively bound disparity to the desired level. This is consistent with Chen et. al.’s findings that thresholded estimators will under- or
over-estimate disparity depending on fundamental parameters of the problems.

LLD. Samples: As in many ML settings, our theoretical guarantees require that the labeled subset is drawn from the same underlying distribution as the unlabeled dataset. But, also like
many machine learning settings, deviation from this assumption will degrade results smoothly rather than catastrophically. And in settings of interest - e.q. healthcare, tax audits, recidivism
prediction, etc. - existing empirical evidence as well as (setting-specific) theoretical arguments often suggest that satisfaction of the covariance conditions is driven by societal-level factors
like historical discrimination and socioeconomic differences which are very likely to generalize even if the labeled subset is not perfectly representative. Of course, the gold standard remains
a perfectly representative subset. Note that one can also conduct sensitivity analyses to quantify the degree to which the labeled subset must differ in order to change the qualitative impact
of measurements or the presumption of improved fairness via our model, but this is beyond the scope of the paper.

Other comparisons for disparity measurement: Chen et. al. analyze the probabilistic estimator (which is in fact well-known in the literature, dating at least as far back as 1953 [2]) and the
thresholded estimator. Both estimators are biased (even with a perfectly calibrated probabilistic proxy), which Chen et. al. highlight as an impediment to their usage. But we note that we do
incorporate the probabilistic estimator and take advantage of its bias in our framework. As mentioned above, the thresholded estimator does not bound disparity well in our experiments.
We will add a discussion as to these points and the citations to our related works section appropriately.

More generally, the disparity estimation methods pointed to in the review are all point estimators. By contrast, our approach recovers upper and lower bounds on the disparity. These
approaches are fundamentally different: whereas the bounds approach tries to capture all parameter values that could have generated the data without attaching special significance to any
one of them, the point estimation approach tries instead to obtain one parameter. Kallus et. al., to which we do compare, is the only alternative method for disparity estimation we are aware
of that also obtains upper and lower bounds.

We are happy to add a discussion on these papers and the differences from our approach to the related work.
[1] Rodolfa, Kit T., et al. "Empirical observation of negligible fairness-accuracy trade-offs in machine learning for public policy.” 2021.

[2] Duncan, Otis Dudley, and Beverly Davis. "An alternative to ecological correlation.” 1953.
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Summary:
The paper proposes to regress the label's dependence on the sensitive attribute b assuming access to sensitive labels for a small subset of the data, and using BISG for the rest of the samples. This
estimate is then used to bound fairness violations in the form of what authors call probabilistic constraints.

This process decouples the sensitive attribute estimation from the concept learning, supposedly reducing estimation errors of a typical fairness-constrained optimization problem. The method is for
voter turnout data. However, despite the additional burden of sensitive attribute regression, the method does not bound worst-case fairness violations.

Soundness: 2 fair

Presentation: 2 fair

Contribution: 2 fair

Strengths:

The two-step training procedure is an interesting approach.

Weaknesses:
¢ Compared to [16], the novelty of theorem 1 is questionable.
e The empirical section is somewhat sparse. In particular, the method is tested on one dataset. I suspect this is a limitation of the particular data regime the paper adopts where BISG applicability is
a concern. Otherwise, the methods and baseline comparisons are sensible. Given the lack of novelty (see previous point), I think the empirical section should have been more substantial.
In particular, several ablation studies are in order. First, given that BISG estimation comes from a separate data domain, the paper needs an ablation study to show how much the method
improves upon just using a normal fairness-constrained optimization problem using BISG labels.
Yet another ablation study should be on the size of the labeled dataset. In other words, the paper should provide a concrete answer to this observation:
We note that the utility of our method is dependent upon the size360 of the subset of the data labeled with the protected attribute—if this subset is relatively large, then361(depending on the
complexity of the learning problem) it may be sufficient to train a model using the362 available labeled data. Symmetrically, if the labeled subset is exceedingly small, the enforcement 0f363
the covariance constraints during training may not generalize to the larger data set

Despite the additional burden of sensitive attribute regression, the method does not bound worst-case fairness violations, not even asymptotically. I am afraid the generalization bound in
Theorem 2 does not alleviate these concerns, as it looks pretty much like a normal generalization bound. What is the extra constraint doing here? I may be missing something, and invite authors
to explain their exact contribution here.

Overall, between the fact that the sensitive attribute regression does not help bound worse-case violations despite the additional hassle (and BISG dependence) and the limited empirical evidence,
I.am not convinced of the method's general usefulness.

e Some factual issues in the text:

o demographic parity101 in classification (6; 35 ; 36) corresponds to letting E be the generically true event and f be simply102 Y = 1 . False positive rate parity (11 ; 12) corresponds to letting E
be the event that Y = 0 and the103 function f (Y ,Y)=1["Y6=Y].

= Demographic parity does not take into account the ground truth.

o | well-known form of the regression coefficient,

= This lacks a reference. It seems the paper assumes L2 loss for regression.
o Certain less-common terms are not defined before use. For instance, "near-feasibility." The reader should not be left guessing here.
e Criticism but not ground for reduced score:
© Predicting sensitive attributes is problematic at best and illegal in many contexts where fairness is a concern. I also take issue with the systematic use of sensitive data prediction. We should
not be promoting cross-matching of data, beyond the reason they were collected for.

Questions:
e Canyou expand on the novelty of your analysis in Theorem 1 compared to prior work [16]?
e Figure 8 (middle), it seems none of the methods can bound FPRD. How can you claim this is near-feasible?

Limitations:
The limitations are well-addressed in the main paper. Maybe authors could expand on it using the collective reviews.

Flag For Ethics Review: No ethics review needed.

Rating: 6: Weak Accept: Technically solid, moderate-to-high impact paper, with no major concerns with respect to evaluation, resources, reproducibility, ethical considerations.

Confidence: 4: You are confident in your assessment, but not absolutely certain. It is unlikely, but not impossible, that you did not understand some parts of the submission or that you are unfamiliar
with some pieces of related work.
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Rebuttal:
We thank the reviewer for their feedback. We note that:

* We have performed the two ablation studies mentioned which we describe in detail further below—we point to in Appendix F for the naive comparison of our method to
thresholded BIFSG estimates, and the study about dataset size we present in Figure 3 in the PDF attached to the global response.
* We also include new versions of our false positive rate disparity (FPRD) results in response to your questions on near-feasibility.

We first provide some clarifications:

* Itis true that in our setting, the problem of learning a sensitive attribute proxy is decoupled from the problem of learning the outcome of interest. But our learning problem does
depend on the proxy: we learn a fair model by measuring and constraining the relationship between the outcome and the proxy (namely, constraining the covariance conditions C 5
and Cf |y to be the same sign in order to guarantee that the linear estimator D, will serve as a bound on disparity, and then constraining Dy to the desired upper bound on disparity)
in the training process.

* The proxy we use-BIFSG-is used over the entire dataset. The labeled subset is used only to constrain the relationship between the proxy and the outcome of interest.

Worst-case violations and Theorem 2: If we understand the point correctly, the reviewer is concerned about the “worst case” in the sense of “worst case over distributions”, i.e. that the
method will not work if the covariance conditions are not met. In our technique for training a fair model, it is precisely for this reason that we add the constraints on the covariance terms.
Thus, we are limiting our search to models for which we can guarantee that our measurement method works and thus that we can reliably bound disparity; in doing so, we trade off some
performance for the security of bounding disparity. Of course, we cannot work with the population covariance terms directly, but instead work with their sample analogues. As in any
empirical optimization problem, working with the sample introduces some noise and approximation error. Theorem 2 is useful, because it provides a formal guarantee and quantification of
the intuition that (with high probability) these errors will become negligible with enough data and iterations under mild conditions.

Size of the labeled subset: We agree that this is an important question; we have conducted studies of this and display our results in Figure 3 of the attached one-page addition. Due to
space constraints, please see our response to reviewer Vf4j for a discussion of this experiment.

Comparing to fairness-constrained optimization with BISG labels: In Appendix F, we provide an ablation study in which we train a fairness-constrained optimization method based on
thresholded versions of the BIFSG labels for all experiments in Figure 2 of our original paper. Our study shows that while the thresholded approach has higher accuracy than our method, it
consistently fails to control disparity below the specified threshold. We will highlight this more prominently in the text.

Novelty of Theorem 1: Theorem 1 is similar to the result of [16], but Theorem 1 generalizes the result beyond demographic parity to a very broad class of fairness definitions, a
generalization that was not obvious from [16]. In any case, we do not view this particular theorem as our primary contribution, but rather as a rigorous justification of and basis for our
methods as applied to fairness metrics more generally.

Near-feasibility: We thank the reviewer for pointing out this imprecision. Near feasibility refers to a solution produced which may violate constraints, but that this violation can be made
arbitrarily small (in particular, with enough data and training iterations), as described in Theorem 2. Near feasibility occurs widely in settings where constraints are formulated over
distributions but only sample data is available; in practice, researchers will either fix a constant below which constraint violation is considered negligible, or fix a number of iterations and
dataset size based on data availability and observe the constraint violations. See, e.g. [1]. We will clarify this point in the paper.

Regarding the FPRD results, we provide improved results displayed in Figure 2b of the attached PDF. In our initial presentation, for consistency, we used the same hyperparameters for each
of the disparity metric experiments. By tuning for the FPRD problem specifically, we see greatly improved results. We will update the paper to reflect the problem-specific hyperparameter
optimization approach.

Relationship between linear estimator and linear regression coefficient: We thank the reviewer for pointing out how our statement could be misinterpreted. We will change the
sentence to emphasize its relationship to the ordinary least squares regression coefficient.

Typos: We thank the reviewer for pointing out the typos, which we will fix.

Finally, we share the reviewer's concern that sensitive data be protected. But it is well-established in the literature that fairness cannot be achieved through unawareness; hence, in settings
without labeled data, if we don’t use proxies to measure and mitigate unfairness, our options are to either remain ignorant about potential unfairness, or use distributionally-robust
optimization approaches, which may come at a cost to performance (see discussion in our response to Reviewer ZFXj). In some cases, these solutions may be desirable, but we believe
enough high-stakes settings (e.g. [1], [2], and 3]) exist that developing methods to measure and mitigate unfairness based on proxies is worth the potential risks.

[1] Cotter et al, 2019. (13 in original paper)
[2] Elzayn, et al. 2023. (16 in original paper)
[3] Obermeyer, et al. "Dissecting racial bias in an algorithm used to manage the health of populations.” Science, 2019.

[4] Executive Order 13985
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Estimating and Implementing Conventional Fairness
Metrics With Probabilistic Protected Features

Abstract—The vast majority of techniques to train fair models
require access to the protected attribute (e.g., race, gender),
either at train time or in production. However, in many
practically important applications this protected attribute is
largely unavailable. Still, AI systems used in sensitive business
and government applications—such as housing ad delivery and
credit underwriting—are increasingly legally required to measure
and mitigate their bias. In this paper, we develop methods for
measuring and reducing fairness violations in a setting with limited
access to protected attribute labels. Specifically, we assume access
to protected attribute labels on a small subset of the dataset of
interest, but only probabilistic estimates of protected attribute
labels (e.g., via Bayesian Improved Surname Geocoding) for the
rest of the dataset. With this setting in mind, we propose a method
to estimate bounds on common fairness metrics for an existing
model, as well as a method for training a model to limit fairness
violations by solving a constrained non-convex optimization
problem. Unlike similar existing approaches, our methods take
advantage of contextual information — specifically, the relationships
between a model’s predictions and the probabilistic prediction
of protected attributes, given the true protected attribute, and
vice versa — to provide tighter bounds on the true disparity. We
provide an empirical illustration of our methods using voting data
as well as the COMPAS dataset. First, we show our measurement
method can bound the true disparity up to 5.5x tighter than
previous methods in these applications. Then, we demonstrate that
our training technique effectively reduces disparity in comparison
to an unconstrained model while often incurring lesser fairness-
accuracy trade-offs than other fair optimization methods with
limited access to protected attributes.

Index Terms—algorithmic fairness, fair machine learning,
anti-discrimination, disparity reduction, probabilistic protected
attribute

I. INTRODUCTION

In both the private and public sectors, organizations are
facing increasing pressure to ensure they use equitable machine
learning systems, whether through legal obligations or social
norms [1}2}|3}/4l/5]. For instance, in 2022, Meta Platforms
agreed to build a system for measuring and mitigating racial
disparity in advertising to settle a lawsuit filed by the U.S.
Department of Housing and Urban Development under the
Fair Housing Act [6}|7]. Similarly, recent Executive Orders
in the United States [3|/8] direct government agencies to
measure and mitigate disparity resulting from or exacerbated
by their programs, including in the “design, develop[ment],
acqui[sition], and us[e] [of] artificial intelligence and automated
systems” |8|.

Yet both companies [9] and government agencies |3] rarely
collect or have access to individual-level data on race and
other protected attributes on a comprehensive basis. Given
that the majority of algorithmic fairness tools which could be

used to monitor and mitigate racial bias require demographic
attributes |10}/11], the limited availability of protected attribute
data represents a significant challenge in assessing algorith-
mic fairness and makes training fairness-constrained systems
difficult.

In this paper, we address this problem by introducing
methods for /) measuring fairness violations in, and 2) training
fair models on, data with limited access to protected attribute
labels. We assume access to protected attribute labels on only a
small subset of the dataset of interest, along with probabilistic
estimates of protected attribute labels for the rest of the dataset.
These probabilistic estimates may be generated using Bayesian
Improved Surname Geocoding (BISG) [12}/13] or any predictive
model which can output probabilistic predictions.

We leverage this limited labeled data to establish (or ensure,
in the case of training) whether a certain condition holds
regarding the relationship between the model’s predictions,
the probabilistic protected attributes, and the ground truth
protected attributes hold. In particular, this condition is that
two residual correlations — the residual correlation between the
probabilistic proxy and the outcome of interest conditioned
on ground truth race, and the residual correlation between
ground truth race status and the outcome conditional on the
proxy — share the same sign. Given this condition, our first
main result (Theorem |1) shows that we can bound a range
of common fairness metrics, from above and below, over the
full dataset with easily computable (un)fairness estimators
calculated using the probabilistic estimates of the protected
attribute. We expound on these conditions, define the fairness
estimators, and introduce this result in Section

To train fair models, we leverage our results on measuring
fairness violations to bound disparity during learning; we
enforce the upper bound on unfairness calculated with the
probabilistic protected attribute (measured on the full training
set) as a surrogate fairness constraint, while also enforcing the
conditions required to ensure the estimators accurately bound
disparity in the model’s predictions (calculated on the labeled
subset), as constraints during training. We leverage recent work
in constrained learning with non-convex losses [14] to ensure
bounded fairness violations with near-optimal performance at
prediction time.

We note that our data access setting is common across
a variety of government and business contexts: first, esti-
mating race using BISG is standard practice in government
and industry [6}/15}/16/{17}/18]. Although legal constraints or
practical barriers often prevent collecting a full set of labels for
protected attributes, companies and agencies can and do obtain



protected attribute labels for subsets of their data. For example,
companies such as Meta have started to roll out surveys asking
for voluntary disclosure of demographic information to assess
disparities [18]]. Another method for obtaining a subset of
protected attribute data is to match data to publicly available
administrative datasets containing protected attribute labels for
a subset of records, as in, e.g. [19].

While our approach has stronger data requirements than
recent work in similar domains [20l21] in that a subset
of it must have protected attribute labels, many important
applications satisfy this requirement. The advantage to using
this additional data is substantially tighter bounds on disparity:
in our empirical applications, we find up to 5.5x tighter bounds
for fairness metrics, and up to 5 percentage points less of
an accuracy penalty when enforcing the same fairness bound
during training.

In sum, we present the following contributions:

1) We introduce a new method of bounding ground truth
fairness violations across a wide range of fairness metrics
in datasets with limited access to protected attribute data
(Section [H);

2) We introduce a new method of training models with near-
optimal and near-feasible bounded unfairness with limited
protected attribute data (Section ;

3) We show the utility of our approaches, including com-
parisons to a variety of baselines and other approaches,
on various datasets relevant for assessing disparities in
regulated contexts: we focus on voter registration data,
commonly used to estimate racial disparities in voter
turnout [22]], and also demonstrate our results on COM-
PAS data [23], a common dataset used in related work
(Section In addition, we present some experiments on
synthetic data which outline the conditions under which
our technique is the most effective: relatively complex
problems with little access to labeled data.

The rest of this paper proceeds as follows: in the remainder
of this section (Section , we describe in greater detail two
examples of real-world settings in which our approach may
be applicable. Following this, in Section [lI} we describe our
method of measuring disparities in data regimes with limited
access to protected attribute labels, then in Sectionwe lever-
age our measurement results to develop our training techniques
which bound unfairness in the resulting model. We display our
experimental evaluation of our method in Section including
comparisons to related bias measurement [20] and fair training
techniques [21)24]. Finally, we end our paper with our review
of the related work (Section and Conclusion (Section [VI).

A. Correspondence to real-world Settings

We now highlight two real-world examples which correspond
to our setting. First, consider the example of Meta Platforms
(“Meta”). Meta is the parent company of Facebook, a social
media platform with a large advertising business. Meta uses
machine learning to identify users likely to interact with
particular ads [25]. The Department of Housing and Urban
Development brought a lawsuit [26] under the Fair Housing

Act alleging algorithmic discrimination by Meta. As part of a
settlement resolving the suit [7], Meta agreed to build software
called the Variance Reduction System (VRS) [6] which uses
a differentially-private version of BISG to estimate deviation
of delivery rates by group relative to an underlying eligible
audience |27]. In accordance with the recommendations of
civil rights groups [28], Meta also began to work with third-
party survey administrator YouGov to prompt users to provide
individual race off-platform (with privacy protection via tools
from secure multi-party computation) [|18}29].

Second, consider the example of government agencies
such as the Internal Revenue Service (IRS). IRS, like many
other government agencies, does not collect taxpayer data on
race |30]], yet recent executive orders have required equity
(disparity) assessments [3] and consideration of protections
from “algorithmic discrimination” |8|]. A paper by academic
and government researchers, [19], combines BISG for the
population of taxpayers with a publicly available administrative
dataset (voter registration data) that does contain ground truth
and can be matched to a subset of taxpayers and uses this
combined dataset to assess audit rate disparity.

In both these examples, disparity estimation is an important
goal hindered by a lack of individual-race data, yet probabilistic
estimates of race via BISG are available and race data can be
obtained for small subset of individuals. The key features thus
correspond to the setting we describe formally in Section
These prominent examples are likely representative of scenarios
faced by many other private and public sector actors; hence,
our approach is likely to be broadly useful. Indeed, while these
instances are some of the first legally required investigations
of disparities arising from algorithmic systems [31], they are
unlikely to be the last: along with recent executive orders [8}/32]
and the Blueprint for an Al Bill of Rights [4]], a recent advanced
notice of proposed rulemaking (ANPR) from the Federal
Trade Comission (FTC) suggests the possibility of stricter
rules around the deployment of discriminatory systems [33].
Increased regulation of algorithmic decision systems requires
the development of bias measurement and mitigation techniques
which correspond to the realities of data access, and legal
scrutiny, that exist on the ground.

II. METHODOLOGY FOR MEASUREMENT

In this section, we formally introduce our problem setting
and notation, define the types of fairness metrics we can
measure and enforce with our techniques, and define the
probabilistic and linear estimators of disparity for these
metrics. We then introduce our first main result: given certain
relationships between the protected attribute, model predictions,
and probabilistic estimates of protected attribute in the data,
we can upper and lower bound the true fairness violation for
a given metric using the linear and probabilistic estimators
respectively.

A. Notation and Preliminaries

Setting and Datasets. We wish to learn a model of an
outcome Y based on individuals’ features X. Individuals have



a special binary protected class feature B € {0,1} which
is usually unobserved, and proxy variables Z C X which
may be correlated with B. the unlabeled set, 7y, consists of
observations {(X;,Y;, Z;)}'Y, and the labeled set, 9y, addi-
tionally includes B and so consists of {(X;,Y;, Z;, B;)} "X,
An auxiliary dataset {(Z, B)};#, allows us to learn an estimate
of b; = Pr[B;|Z,;]. All three datasets are assumed to be
independent and drawn from the same underlying population.
Except where specified, we abstract away from the auxiliary
dataset and assume access to b. When considering learning,
we assume a hypothesis class of models { which map X
either directly to Y or a superset (e.g. [0, 1] rather than {0, 1}),
and consider models parameterized by 6, i.e. hy € H. An
important random variable that we will use is the conditional
covariance of random variables. In particular, for random
variables Q, R, S, T, we write Cg gris,r = Cov(Q, R|S,T).

Notation. For a given estimator § and random variable X,
we use 6 to denote the sample estimator and X to denote a
prediction of X. We use X to indicate the sample average of
a random variable taken over an appropriate dataset. In some
contexts we use group-specific averages, which we indicate with
a superscript. For example, we use b”' to denote the sample
average of b among individuals who have protected class feature
B equal to B;. We will indicate a generic conditioning event
using the symbol &£, and overloading it, we will write £; as an
indicator, i.e. 1 when & is true for individual ¢ and O otherwise.
In the learning setting, & will depend on our choice of model
h; when we want to emphasize this, we write &;(h). We will
also use the (-) notation to emphasize dependence on context
more generally, e.g. C . g(hg) is the covariance of f and b
conditional on B under hy.

Fairness Metrics. In this paper, we focus on measuring and
enforcing a group-level fairness metric that can be expressed as
the difference across groups of some function of the outcome
and the prediction, possibly conditioned on some event. More
formally:

Definition 1. A fairness metric 1 is an operator associated
with a function f and an event £ such that

u(D) = Ep[f(V,V)|€, B = 1] - Ep[f(V,Y)|€, B = 0],

where the distribution D corresponds to the process generating
(X,Y,7).

Many common fairness metrics can be expressed in this form
by defining an appropriate event £ and function f. For instance,
demographic parity in classification [34//35|/36| corresponds
to letting £ be the generically true event and f be simply
the indicator 1[Y" = 1]. False positive rate parity [37/[38]
corresponds to letting £ be the event that Y = 0 and letting
f(Y,Y) = 1[Y # Y]. True positive rate parity [39] (also
known as “equality of opportunity”) corresponds to letting £
be the event that Y = 1 and f(Y,Y) = 1[Y #Y].

For simplicity, we have defined a fairness metric as a scalar
and assume it is conditioned over a single event £. It is easy

Metric f(h(X),Y) &
Accuracy 1[h # y) {true}
Demographic Parity 1[h =1] {true}
True Positive Rate Parity 1lh#y] {y=1}
False Positive Rate Parity 1lh#y] {y=0}
True Negative Rate Parity 1[h # y] {y =0}
False Negative Rate Parity 1[h # y) {y=1}

TABLE I: Many fairness metrics can be written in the form
required by our formulation. For concreteness, we provide a
table based on [40l/41] summarizing the choice of f and £
that correspond to the many of the most prominent definitions
that can be written in our formulation.

to extend this definition to multiple events (e.g. for the fairness
metric known as equalized odds) by considering a set of events
{&;} and keeping track of Ep[f;(Y,Y)|E;, B] for each. For
clarity, we demonstrate how many familiar notions of fairness
can be written in the form of Definition |1| in Table There
are other metrics that cannot be written in this form; we do
not consider those here.

B. Fairness Metric Estimators

Our first main result is that we can bound fairness metrics
of the form described above over a dataset with linear and
probabilistic fairness estimates, given that certain conditions
hold on the relationships between model predictions, predicted
protected attribute, and the ground truth protected attribute. In
order to understand this result, we define the probabilistic and
linear estimators.

Intuitively, the probabilistic estimator is the population
estimate of the given disparity metric weighted by each
observation’s probability of being in the relevant demographic
group. Formally:

Definition 2 (Probabilistic Estimator). For fairness metric u
with function f and event &, the probabilistic estimator of p
for a dataset Z is given by

2ice bif(Vi, Vi)

Siee(1 =) f(Y:, Y7)
o Zies bi Zieg(l - bi) .
It is assumed that at least one observation in the dataset has
had £ occur.

PP

Meanwhile, the linear disparity metric is the coefficient of
the probabilistic estimate b in a linear regression of f (}A/, Y)
on b and a constant among individuals in £. For example, in
the case of demographic parity, where f (Y,Y) =Y, itis
the coefficient on b in the linear regression of Y on b and a
constant over the entire sample. Using the well-known form of
the regression coefficient (see, e.g. |[42], we define the linear
estimator as:

Definition 3 (Linear Estimator). For a fairness metric p with
function f and associated event &, the linear estimator of u



for a dataset 2 is given by:

Ve (FOLY) - FTV)) (0 - D)

DL = _
! 2ice(bi —0)?

where T represents the sample mean among event &.

We define D/ and D~ to be the asymptotes of the prob-
abilistic and linear estimators, respectively, as the identically
and independently distributed sample grows large.

C. Bounding Fairness with Disparity Estimates

Our main result proves that when certain covariance con-
ditions between model predictions, predicted demographic
attributes, and true demographic attributes hold, we can
guarantee that the linear and probabilistic estimators of disparity
calculated with the probabilistic protected attribute serve as
upper and lower bounds on frue disparity. This result follows
from the following proposition:

Proposition 1. Suppose that b is a probabilistic estimate of a
demographic trait (e.g. race) given some observable characteris-
tics Z and conditional on event &, so that b = Pr[B = 1|7, £].
Define Dl}f as the asymptotic limit of the probabilistic disparity
estimator, 135 , and Dﬁ as the asymptotic limit of the linear
disparity estimator, ﬁ{; Then:

 E[Cov(f(Y,Y), Bb,€)]

P _
D, =D, Var(BIE) (1)
and A
DL =D, + E[Cov(f(Y,Y),b|B, &) o

Var(bE)

Since variance is always positive, the probabilistic and linear
estimators serve as bounds on disparity when Cyp p ¢ and
Cy,B|p,e are either both positive or both negative, since they
are effectively separated from the true disparity by these values:
if they are both positive, then Dﬁ serves as an upper bound
and fo serves as a lower bound; if they are both negative,
then Dﬁ serves as an upper bound and Dﬁ serves as a lower
bound. Formally,

Theorem 1. Suppose that p is a fairness measure with function
f and coqditioning event £ as described a}bove, and that
E[Cov(f(Y,Y),b|B,&)] > 0 and E[Cov(f(Y,Y), B|b,E] >
0. Then,

P L
DY <D, <DL

Proposition[T]and Theorem[T] which we prove in Appendix[A]
subsume and generalize a result from [19]]. These results define
the conditions under which D and D,; serve as bounds on
ground truth fairness violations; since we can use ﬁf and
ﬁﬁ to estimate these quantities from data (up to sampling
uncertaint Theoremthus provides a path to bound fairness
metrics as long as the assumed conditions hold. We demonstrate

'We show how to compute these standard errors in Appendix and
then take the extremes of the confidence intervals as our bounds.

the efficacy of this method for measuring fairness metrics of
existing models in practice in Section[I[V-B] However, as we
demonstrate in the next section, this also provides us with
a simple method to bound fairness violations when training
machine learning models.

III. METHODOLOGY FOR TRAINING

We now combine our fairness estimators with existing
constrained learning approaches to develop a methodology
for training fair models when only a small subset labeled
with ground true protected characteristics is available. The
key idea to our approach is to enforce both an upper bound
on the magnitude of fairness violations computed with the
probabilistic protected attributes (Dﬁ), while also leveraging
the small labeled subset to enforce the covariance constraints
referenced in Theorem [I| This way, as satisfaction of the
covariance constraints guarantees that Dﬁ serves as a bound
on unfairness, we ensure bounded fairness violations in models
trained with probabilistic protected characteristic labels. Due
to space constraints, we defer discussion of the mathematical
framework underlying the ideas to Appendix

Problem Formulation In an ideal setting, given access
to ground truth labels on the full dataset, we could simply
minimize the expected risk subject to the constraint that -
whichever fairness metric we have adopted - the magnitude of
fairness violations do not exceed a given threshold «. However,
in settings where we only have access to a small labeled subset
of data, training a model by directly minimizing the expected
risk subject to fairness constraints on the labeled subset may
result in poor performance, particularly for complicated learn-
ing problems. Instead, we propose enforcing an upper bound
on the disparity estimator as a surrogate fairness constraint.
Recall that Theorem [I] describes conditions under which the
linear estimator upper or lower bounds the true disparity; if we
can enforce these conditions in our training process using the
smaller labeled dataset, then our training process provides the
fairness guarantees desired while leveraging the information
in the full dataset.

To operationalize this idea, we recall that Theorem
characterizes two cases in which the linear estimator could
serve as an upper bound in magnitude: in the first case, both
residual covariance terms are positive, and D, < Dﬁ; in the
second, both are negative, and Dﬁ < D Minimizing risk
while satisfying these constraints in each case separately gives
the following two problems:

Problem 1.A.

imE[L(h(X),Y
min E[L(h(X), ¥)]
s.t. Dﬁ <«
E[C} Bppe] >0

E[Cy el >0
Note that as a result of Proposition 1, when CypB,e and Cy gy, ¢ are

both positive, the true fairness metric is necessarily is forced to be positive,
and symmetrically for for negative values.



Problem 1.B.
mE[L(h(X),Y
min E[L(h(X), Y]
sit. —a< Dﬁ
E[C} Bppe] <0
E[Cfp,e] <0

To find the solution that minimizes the the fairness violation
with the highest accuracy, we select:

h* € argming. . E[L(h(X),Y)],

where h},, h%, are the solutions to Problems and

By construction, h* is feasible, and so satisfies |D,,(h*)| < a;
moreover, while A* may not be the lowest-loss predictor such
that |[D,,| < «, it is the best predictor which admits the linear
estimator as an upper bound on the magnitude of the disparity.
In other words, it is the best model for which we can guarantee
fairness using our measurement technique.

Remark. Note that the second covariance constraint (associated
with the lower-bound, i.e. the probabilistic estimator) in each
problem is necessary to rule out solution far below the desired
range in the opposite sign; otherwise, a solution to Problem
could have D, < —a and to Problem D, > o, and the
ultimate h* selected could be infeasible with respect to the
desired fairness constraint. (Note also that as a consequence,
the probabilistic estimator will also serve as a lower bound for
the magnitude of disparity under the selected model.)

Empirical Problem The problems above are over the full
population, but in practice we usually only have samples.
We thus now turn to the question of how we can solve the
optimization problem with probabilistic fairness constraints
empirically. We focus on the one-sided Problem for brevity
but the other side follows similarly. The empirical analogue of
Problem is the following:

Problem 2.A.

Solving the empirical problem. While Problemis a
constrained optimization problem, it is not, except in special
cases, a convex problem. Despite this, recent results [14}43]
have shown that under relatively mild conditions, a primal-dual
learning algorithm can be used to obtain approximate solutions
with good performance guarantees In particular, if we define

3For the special case of linear regression with mean-squared error losses,
we provide a closed-form solution to the primal problem. This can be used
for a heuristic solution with appropriate dual weights.

the empirical Lagrangian as:

L(6, fi) :é ZL(%(XZ»)%)

+ s (DE(he) - o) ”

- Mb\BCf,b\B,s - MBlef,BH;,S

(where éf,b\Bf and 6f7B|b7g are as in Problem , the
optimization problem can be viewed as a min-max game
between a primal (f) and dual (p) player where players are
selecting 6 and p to max, ming £(6, ). Formally, Algorithm
in the appendix provides pseudocode for a primal-dual learner
similar to [14], [44], etc. specialized to our setting; adapting and
applying Theorem 3 in [14], provides the following guarantee:

Theorem 2. Let H have a VC-dimension d, be decomposable,
and finely cover its convex hull. Assume that y takes on a finite
number of values, the induced distribution x|y is non-atomic
for all y, and Problem 2.A has a feasible solution. Then if Al-
gorithm|1|is run for T iterations, and 6 is selected by uniformly
drawing t € {1...T'}, the following holds with probability 1 —d:
For each target constraint £ € {Dﬁ, CruB.e,CrBels

Bit(hg)) < e+ 0 () +0 ()

and

E[L(hs,y)] < P*+ O (legN>

VN

where P* is the optimal value of Problem 2.A.

The theorem provides an average-iterate guarantee of
approximate feasibility and optimality when a solution is
drawn from the empirical distribution. Note that it is not a
priori obvious whether our bounds remain informative over
this empirical distribution, but we show in Appendixthat
the covariance conditions holding on average imply that our
bounds hold on average:

Proposition 2. Suppose 6 is drawn from the empirical
distribution produced by Algorithm |I| If:

E |E[Cov(f(hg(X), B))I<,8]/6] = 0

and

E |E[Cov(f(hg(X),b))I€, Bl6] >0,
then ED,,(h;) < EDk(hy).

Remark. Combining Theorem and Proposition [2| guarantees
that a randomized classifier with parameters drawn according to
the empirical distribution from Algorithm will approximately
meet our disparity bound goals on average. Without stronger
assumptions, this is all that can be said; this is a general
limitation of game-based empirical optimization methods,
since they correspond equilibrium discovery, and only mixed-
strategy equilibria are guaranteed to exit. In practice, however,
researchers applying similar methods select the final or best



feasible iterate of their model, and often find feasible good
performance |21}/44]]; thus in our results section, we compare
our best-iterate performance to other methods.

IV. EMPIRICAL EVALUATION

We now turn to experiments of our disparity measurement
and fairness enforcing training methods on predicting voter
turnout as well as on the COMPAS dataset [45]. In addition,
we provide experiments on simulated data in order to outline
the conditions under which our method is most successful, and
in particular, outperforms relying on training a model with the
labeled subset alone, which we expand upon in Appendix

A. Data

We perform experiments over two datasets: the L2
dataset [46] and the COMPAS dataset [23]. In both of these
datasets, the demographic attribute to which we pay attention
is race.

L2 Dataset. The L2 dataset provides demographic, voter,
and consumer data from across the United States collected by
the company L2. Here, we consider the task of predicting voter
turnout for the general election in 2016 and measuring model
fairness violations with respect to Black and non-Black voters.
This application is particularly relevant since race/ethnicity
information is often not fully available [13], and much of
voting rights law hinges on determining whether there exists
racially polarized voting and/or racial disparities in turnout [47].
We focus on the six states with self-reported race labels (North
Carolina, South Carolina, Florida, Georgia, Louisiana, and
Alabama). We denote Y = 1 if an individual votes in_the

2016 election and Y = 0 otherwise; refer to Appendix |C-A

for a detailed description of this dataset. We select seven
features as predictors in our model based on data completeness
and predictive value: gender, age, estimated household income,
estimated area median household income, estimated home value,
area median education, and estimated area median housing
value. Information on our selection process, pre-processing,
and distribution of these features are presented in Appendix
Section We denote Y = 1 if a voter shows up to vote
for the 2016 election and Y = 0 otherwise. The baseline rates
of voter turnout range between 52-63% across the six states
(see more information in Section [C-A]in the Appendix).

L2 Race Probabilities. The L2 dataset provides information
on voters’ first names, last names, and census block group,
allowing the use of Bayesian Improved (Firstname and)
Surname Geocoding Method (BISG/BIFSG) for estimating
race probabilities [12)13}|48|]. We obtain our priors through

the decennial Census in 2010 on the census block group level.

AUC for BISG/BIFSG across the six states we investigate in
the L2 data ranges from 0.85-0.90. Further details on how we
implement BISG/BIFSG for the L2 data and its performance
can be found in Appendix [C-B]

COMPAS Dataset. We also evaluate our measurement and
training methods on models trained on the COMPAS [45]
dataset. The COMPAS algorithm is used by parole officers
and judges across the United States to determine a criminal’s

risk of recidivism, or re-committing the same crime. In 2016,
ProPublica released a seminal article [45] detailing how the
algorithm is systematically biased against Black defendants.
The dataset used to train the algorithm has since been widely
used as benchmarks in the fair machine learning literature. We
use the eight features used in previous analyses of the dataset
as predictors in our model: the decile of the COMPAS score,
the decile of the predicted COMPAS score, the number of prior
crimes committed, the number of days before screening arrest,
the number of days spent in jail, an indicator for whether the
crime committed was a felony, age split into categories, and
the score in categorical form. Further information about our
preparation of the COMPAS dataset can be found in Section
of the Appendix.

COMPAS Race Probabilities. In the COMPAS dataset,
we generate estimates of race (Black vs. non-Black) based on
first name and last name using a LSTM model used in Zhu et
al. [49] that was trained on voter rolls from Florida. Accuracy
of these models is 73% while the AUC is 86%. Further detail
can be found in Appendix

B. Fairness Measurement

In this section, we showcase our method of bounding true
disparity when race is unobserved. Given /) model predictions
on a dataset with probabilistic race labels and 2) true race
labels for a small subset of that data, we attempt to obtain
bounds on three disparity measures: demographic disparity
(DD), false positive rate disparity (FPRD), and true positive
rate disparity (TPRD).

1) Experimental Design: To simulate measurement of fair-
ness violations on predictions from a pre-trained model with
limited access to protected attribute, we first train unconstrained
logistic regression models with an 80/20 split of the available
data: in the case of L2, this is state by state. Then, in order to
simulate realistic data access conditions, we measure fairness
violations on a random subsample of the test set, with a
percentage of this sample including ground truth race labels
to constitute the labeled subset which we use to calculate the
covariance constraints. In the case of the L2 data, the random
subsample over which we measure fairness violations has
n = 150,000, with 1% (n = 1,500) of this sample including
ground truth race labels to constitute the labeled subset. In
the case of the COMPAS dataset, which is much smaller, we
use the entire test set, with n = 1,226, and we construct the
labeled subset by sampling 50% of the test set (n = 613).

We first check the covariance constraints on the labeled
subset, and then calculate Dy and Dp on the entire set of
examples sampled from the test set. We also compute standard
errors for our estimators as specified by the procedure in
Appendix Section To evaluate our method, we measure true
fairness violations on the examples sampled from the test set,
and check to see whether we do in fact bound the true fairness
violations within standard error. Further information about our
unconstrained models can be found in Appendix Section
We present our results in Figure |1} which shows the results
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Fig. 1: Bounding: Disparity, im L2 Data:) Comparison of our method of bounding true disparity (blue) to the method proposed
in Kallus et al. [20] (grey), using a logistic regression model to predict voter turnout in six states. We compare results across
three disparity measures: demographic disparity (DD), false positive rate disp. (FPRD), and true positive rate disp. (TPRD).
Only a small subset (here, n = 1,500, i.e. 1%) of the data contains information on true race. The grey dot represents true
disparity. The dashed lines represent 95% confidence intervals. Both methods successfully bound true disparity within its 95%
standard errors, but our estimators provide much tighter bounds.

DD FPRD TPRD
o | e
Q| o : . bed | ] b — bt | | b : . e
% i| ........ {—| ......... | }i.}_| ........ | }1: ..... .'_' ..........
S i i a
—-0.25 0.00 0.25 0.50 0.0 0.5 0.0 0.5
Disparity Disparity Disparity

Fig. 2: Bounding; Disparity im COMPAS Data:) Comparison of our method of bounding true disparity (blue) to the method
proposed in Kallus et al. [20] (grey), using a logistic regression model to predict two-year recidivism on the COMPAS dataset.
We access disparity over the same measures as in Figure The grey dot represents true disparity. The dashed lines represent
95% confidence intervals. Both methods always bound true disparity within the 95% standard errors, but our method provides
tighter bounds.

over the L2 data, and Figure |2| which shows the results over
the COMPAS data.

2) Comparisons: We compare our method of estimating
fairness violations using probabilistic protected characteristic
labels to the method described in Kallus et al. [20], which
is one of the only comparable methods in the literature. We
will refer to as KDC from here on. Details of KDC and our
implementation can be found in Appendix Section [D-B|

3) Results: We first analyze our results on voter data.

Figurecompares our method of estimating disparity (blue)
with KDC (grey) for the three disparity measures on the six

states we consider. This figure shows estimates when training
a logistic regression model, and Figure |8|in the Appendix
shows similar results for training random forests. Across all
experiments, both KDC’s and our estimators always bound true
disparity. However, we observe two crucial differences: /) our
bounds are markedly tighter (3.8x smaller on average, and as
much as 5.5x smaller) than KDC, and as a result 2) our bounds
almost always indicate the direction of true disparity. When
they do not, it is due to the standard error which shrinks with
more data. By contrast, KDC’s bounds consistently span[-0.5,
0.5], providing limited utility even for directional estimates.



We now turn to the COMPAS data. Similar to the L2 data,
our bounds are consistently tighter than KDC, albeit to a lesser
extent in this case since the COMPAS dataset is significantly
smaller (1.69x on average, and up to 2.04x smaller). We
emphasize that, unlike KDC, our estimators are always within
the same sign as the true disparity, barring the standard errors
which shrink as the data grows larger.

C. Fairness-constrained Training

In this section, we demonstrate the efficacy of our approach
to training fairness-constrained machine learning models. Fol-
lowing our algorithm in Section we train models with
both covariance conditions necessary for the fairness bounds
to hold and also constrain the upper bound on absolute value
of disparity, D{; , to be below some bound «. We find that our
method /) results in lower true disparity on the test set than
using the labeled subset alone, or using prior methods to bound
disparity; 2) more frequently reaches the target bound than
other techniques; and 3) often incurs less of an accuracy trade-
off when enforcing the same bound on disparity compared to
related techniques. We also demonstrate via our simulation
study that there exist regimes in which our approach meets the
goal of keeping disparity below the desired threshold whereas
training on the small labeled subset alone does not.

1) Experimental Design: We demonstrate our technique by
training logistic regression models to make predictions with
bounded DD, FPRD, and TPRD across a range of bounds, on
both the L2 dataset and the COMPAS dataset. We use logistic
regression as a proof-of-concept, but because our method builds
upon the algorithm proposed in [14], it can be extended to
any gradient-based machine learning method, including e.g.
neural networks. Within the L2 dataset, we train these models
on the data from Florida, as it has the largest unconstrained
disparity among the six states, see Figure |I| We report the
mean and standard deviations of our experimental results over
ten trials. For each trial, we split our data (n = 150,000 for
L2 data, n = 6, 128 for COMPAS data) into train and test sets,
with a 80/20 split. From the training set, we subsample the
labeled subset so that it is 1% of the total data (n = 1, 500)
for the L2 data, and 10% of the total data for the COMPAS
dataset, since it is much smaller (around n = 613). To enforce
fairness constraints during training, we solve the empirical
problem 3A and its symmetric analogue, which enforces
negative covariance conditions and Dﬁ as a (negative) lower
bound. We use the labeled subset to enforce adherence to the
covariance conditions during training. We use the remainder of
the training da/t\a, as well as the labeled subset, to enforce the
constraint on Dﬁ during training. As noted in Section our
method theoretically guarantees a near-optimal, near-teasible
solution on average over #1)...0(T) However, following Wang
et al. [21]], for each of these sub-problems,A we select the best
iterate #*) which satisfies the bound on Dﬁ on the training
set, the covariance constraints on the labeled subset, and that
achieves the lowest loss on the training set. We report our results
on the solution between these two sub-problems that is feasible
and has the lowest loss. We present the accuracy and resulting

disparity of model predictions on the test set after constraining
fairness violations during training for a range of metrics (DD,
FPRD, TPRD), across a range of bounds for our method as
well as three comparisons, described below, over L2 data and
COMPAS data, in Figure |3| and Figure |4| respectively. We
note that the resulting disparities for the unconstrained model
differ among the three fairness metrics. On DD and TPRD, the
unconstrained model resulted in a 0.28-0.29 disparity, but it
drops to 0.21 for FPRD. We adjusted our target fairness bounds
accordingly. Further details about the experimental setup can
be found in Appendix Section [E-A] Our experimental design
for our experiments on synthetic data differ, and we outline
our setup and results in Section

2) Comparisons: We compare our results for enforcing
fairness constraints with probabilistic protected attribute labels
to the following methods:

(a) A model trained only on the labeled subset with true race
labels, enforcing a fairness constraint over those labels.
This is to motivate the utility of using a larger dataset with
noisy labels when a smaller dataset exists on the same
distribution with true labels. To implement this method,
we use the non-convex constrained optimization technique
from Chamon et al. [14] to enforce bounds on fairness
violations calculated directly on ground-truth race labels,
as we describe in greater detail in Appendix
We compare with a recent method by Wang et al. [21] for
enforcing fairness constraints on data with noisy protected
attributes and a labeled auxiliary set, which is based on
an extension of Kallus et al. [20]’s disparity measurement
method. This method guarantees that the relevant disparity
metrics will be satisfied within the specified slack, which
we take as a bound. However, their implementation does
not consider DD — further details on this method can be
found in Appendix Section

(c) We compare with a method for enforcing fairness with

incomplete demographic labels introduced by Mozannar
et al. [24], which essentially modifies Agarwal et al. [50]’s
fair training approach to optimize accuracy on the entire
available data, but to only enforce a fairness constraint on
the available demographically labeled data. This method
also guarantees that the relevant disparity metrics will be
satisfied within specified slack, which we modify to be
comparable to our bound. Details on this approach can
be found in Appendix
In Appendix Section[E-F] we also compare to two other models:
1) an “oracle” model trained to enforce a fairness constraint
over the ground-truth race labels on the whole dataset; and 2)
a naive model which ignores label noise and enforces disparity
constraints directly on the probabilistic race labels, thresholded
to be in (0, 1).

3) Results: We first analyze our results on the L2 data. We
display our results in Figure|3| Looking at the top row of
the figure, we find that our method, in all instances, reduces
disparity further than training on the labeled subset alone (blue
vs. orange bars in Figure , than using Wang et al. [21] (blue
versus green bars in Figure , and than using Mozannar er

(b)
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al [24] (blue versus pink Béts in Figure; Second, our method
satisfies the target fairness bound on the test set more often
than the other methods (12/out of 12 times, as opposed to 0,
1,-and 0 for labeled subset, Wang, and Mozannar respectively).
In other words, the disparity bounds' our method learns on the
train set generalize better'to"the tést set'thdn the comparisons
methods. We note that deviations from the enforced bound on
the test set, when they arise, are-due to generalization error in
enforciﬁg constraints from the train to the test set, and because
our training method guarantees near-feasible solutions.
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methods. The results here are more variable; however, we note
that thisSdataset, seems, tosexhibitasteep fairnesssaccuragy |
tradepff*yet despite oursmethoddeducing .disparity muchi:
fartherthan| all jother methods. (indeed, being,the only, metric,
that reliably- bounds \theresulting (disparityin- the ~tests set), b
we often perform comparably. atslightly better.-For example:
when mitigating TPRD, our method mitigates disparity much
more than Mozannar et al. [24] and Wang et al. [21], yet
outperformscbothswith réspect to aceuracy:. Incthencase of FPRD,
whilecounmethod doessexhibit! worse: aceuracy; these! sets of
experiments(also exhibit thel largestidifferenceoimcdispanity.
reduction (between ourhmethodnand ithe)\othen methods; twhich
mayimake su¢ch ancaccuracy differenice inevitable! Similarly, the
accuracy discrepancycbetweenhthe-labeledhsubset methodiand
our'method/dsireasonable: givennther fairness<accuracy trade-ofi.
thdNext, swie ‘turn’ tolour! results conlitheoCOMPAS|45)] dataset
in Figure [#) which isoset up rideriticalty cto ‘Figure B} cwith
disparity resuts'on! toprandcaccuracy cresults son thel ‘bottom.
Wel see [that iourcmethod hagdinuis: ablevte consistently cmeet
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"fhedesired disparity bound across all eiﬁgﬁ‘ments—, as opposed

to the Mozannar, et al. method (red) or the labeled subset
method (orange), which only meet 'the constraint 3 out of
12, times each. While thel Wang et al. method does meet the
disparity bound. at each .experiment. where the comparison is
> possible_(i.e.;'excluding PDY; i the-case of FPRD; thereis a
steep accuracy cost. In the case of DD, our method has worse
accuracy bounds likely due to actually meeting the disparity
bounds (the accuracy is comparable in the experiment where
all three method reach the DD constrainf,i.e."'0.24)."Tn"TPDR
an FPRD, our method performs Jargely comparably, to the, other
methods ‘with thé excéption of the Tow accuracy of Warg et
al. in FPRD.

ndard deviation of resulting dis
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oupon theisize of the subset ofithe data-labéled with thé protected
attribute—if this subset is relatively large, then (depending on
the complexity of the learning problem) it may be sufficient to
train a model using the available labeled data. Symmetrically,
if-therlabeled subsetcis exceedinglyysmallothe enforcément’of
the! covarihhee constraints ‘during training anay ‘notcgeneralize
toathe larger datasetc Mo charactérize’ thesregimes under Which
our' methodemay beltikely tocperformcwell selhtive to’ others,
welempirically stiidy simulations (that.captute! thecessence of
the!situation. 'Werstudy the utility: of our method in' comparison
tolonly ielyingoon theblabeled Subsétcto train axmodel. along
two axes: /) 'size) of the labeled subsetcand! 2)-data comiplexity,
which Awe simulate by |adjustidg the numbér lof features: Whilg
stylized) our simulation has the advantage that'we can vary kéy
features of the: Settinglike the’ dimensionalityoand distribution.
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We note that the utility of our method is often dependent
upon the size of the subset of the data labeled with the protected
of theidata;| the size) of| therlabeled \and unlabeled |datasets, the
complexity: of therelationship betweenithe. featuresiand, the
outcome;cand soion.iTo be useful,.however, e mustcbeable
t0 ensure:- thatsthe key conditions ofour methodcare imet: by
the datasgeneratings progessiuring training may not generalize
to Tocehsure this whilélalso allowingfon the:tuneabilitycand flex-
ihility eweorequire bwéisettle: oma hierarchi¢alemodel specified
by: parametetizedicomponents: that iare individually simple-buft
can serveas building blocks; mappingroutithese relationships
viacthie laniguage ofilcausal-didgrams (gives us intuition about
the conditional, covariance) terts: See. Appendix |Gl angluding
Figute [18]-for visualization and furthen discussionures. While
styAtea highslevel;tithe 'model :cannbeo described:as follows.
Individuals thave @set of “primany?sfeatires «dehoted which
aretldrawmn randomly (from $omeé-distributione [Thelprobability
thati they thecindividual (is Black hs tavfunction of these primdry
features;, and theirrstatu$asiBlack lorvnon+:Blackiisssimply la
Bernoulli randomevariable withanean' of isaidi probability: TThere
are then-¥secondary)ifeatures which each are functions of all
thelprimary:features: | A-scorel is generatedhas arfunction of these
secondary features, and: thécoutcomecofiinterestiis)geherated by
thresholding:this! score)andirandomily: perturbing it withy lsmall
prabahilityas building blocks; mapping out these relationships
vidUsingathis -high-levelsstructure;iwer can generatei @i family
oftdata<generating processes by choosing different functions
representingotheilinks” between | ther features:ulniparticular, we
wilkuse polynomialsiwithirandomly selected icoefficients!|This.
atlowslslstoiavary. the modelrbynincreasing theiamambeni of
featuresior degreerof the polynomialsimithout directly selecting
allithe constants/involved: We provide! furthen detailssincluding

the labeled subset. Figure 5 shows disparity for both methods
across the scenarios. Overall, we find that there exists a regime,
even in simple problems, where there is insufficient data for
specific functional forms and-assumed) distributions, in Section
@'esh()ld, We find that the more complex the data is, the
|arGiven ithecfamily; of datargenerating processes;cwe, consider
three! different(lavels of )complexity: Icubic.polynomials of
10,1204 0r 50-featuresr and: drawdatasets! of 5,000 10.000,
orc50;000 observations:: ofthese; we: vary) the percentage
with labels revealedito the learner ranging from 0.5 to 40%,
depending on the size of the dataset. We then compare our
method to simply traifing on’d fair 1odét on the true labels of
thelabeled: subsEtF igure [5} shows idispasity: for, both: methods
across the seenanioswOverall;iwe find-thatthere exists a regime,
eveninsimple problems; where thereiis insufficient data for
thelabeled subset o effectively bound disparity 10 the desired
threshold. Weefind cthati the rmiore complex the dataris;|the
larger; this [regime ismpiwith thenmost complex:gettingein Our
simulations (50 ifeatures) Suggesting dhatdthe labeled subset
techniguie:does motconverge to the:desired disparity [bounds
evemwhenthe Isize (of theslabeled subsetds 10;000 samples,jor
20%!of theaoverall dataset. this difference in further detail in
Appendix D-B

With regards to Xia!‘%ﬁ?g%%cﬂo%ne there are many
mdatlus etaalaf20f proposena method for imeasuring fairness
violations [in/ |Fata> Withh dimitedn ageess @6 (protectediattribute
labels. Their imethodbinvolvesafinding thectightest possiblelset
ofctruendispdrity vgiven probabilisticiprotected atttibutesioAn
jmpocrtadtadiﬁﬁnmkzdmﬁetnaKhHuspeﬁnad:lcahmllcibnlmhthc;ld
teldtes to their assumptions around the auxiliary dataset: The
corevdifferencenis<that Kallus etat:rconsiders settingsowhere
theauxiliary andstest’ sets are independent idataosets! whilecour
method Considersythencase wherecthevtestrset subsumesithe

10
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the(percentagelofathe ltotal dataset iis «decicated toithe labeled (Subset;l and the y-axisidendtes the percentage disparity between
theitwo igroups:calentatedponithectestset.iThe blue graphsccorrespondhito tour smethod,hand theorangectodhe labeledisubset

method. (Thegredodashédbline! isuthe: desired disparity chbound:

auxiliary datal ‘Welexplain: this/difference lith furthery detailoin
Appendix

Withategards 'to« biag “mitigation whileDthere “are ‘many
methods available forl training’/models ‘withbounded fairness
violationis | 11139 (500, 1the vast majority of them’ requiré aceess
to'the protected attribute at'training lor/prediction time:> While
therearelother works which assume access only to noisy
protected-attribute ilabels |2 1], .and no, protected,attribute labels
|5 1}, orareven a  labeled subset of] protectednattribute [labels,
but without,an auxiliary set to ;generate, probabilistic protected
attribute estimates: |524; veryifew .works mirror, our, data,access
setting. (One exceptidn, fromowhich,iwe draw,inspiration,,is
Elzayn etal. |19} that-werk-studies in.detail the policy-relevant
question of ,whether; Black jU.S¢ taxpayers-are audited; at, higher
rates; than, non-Black taxpayers,and uses a special,case, of our
T heorem(for measugementonly). In thispaper;fwe formalize
and/extend; their, technigue to, bound ja-wide array: of fairness
constraints,, and,introduce | methods, to #rain, fair models given
this, insight.

Anothen exceptiongwhich Wweccompareito an Section
i thatroftMozannath et/ alc §241.r'While1Mozannar\et.” abdargely
focusuonntheoproblenyof ctitaining private daivamodelsy thus
employingvery stronghé¢onditionalrindependence assumptions
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on\the protected attribute proxyvwwhichdare infesible incour
setting;rthevauthors ‘dorproposeianextension of theitmethod
tochandle ralthercase oftlimitedr protected attributes without
considering ptivacy; which mirrots bur-data‘access assumptions.
Thiscextension! is1essentiallyaa respurposing ofi A ganwal vet
ab {50]ifaithtrainingrapproach; imodified lsuchcthat thecntodel
isitrainedswithoallsavailable dataihbut the fairness bounds are
only enforced during training onsthersmall subsetoof: training
points withprotected lattributé labels. (Itiis this)extension/thab we
compare 1o i1 whichiwe \compare ito incSection dnd: find
thatoursmethod oftens outperforms theirs: ot disparity reduction
and performs comparablyton accuracy.

Within'the'set"of techniques”with''a“different’ data'access
paradigm;“we differ from 'many’in ‘that'we leverage iformation
about’the’ relationship' between 'probabilisticprotected attribute
labels; ground truth ‘protected ‘attribute; and model' predictions
to 'measure ‘and enforce-our fairness bounds.' Thus, ‘while ‘we
do'require-the ‘covariance conditions to hold in order to enforce
our fairness bounds, we note that these are requirements we can
enforce during training, unlike assumptions over noise models
as lin tlotheroapproacheso tocbound: trueg udisparity awith) noisy
labelsi531:54755). intuitively,rleveraging somellabeléd:-data can
allow: sl tothave-less:of yane accuracytradesofft when training



faircmodelsy as: demonstrated iwith ‘our «comparison:tonWang: et
ali[21] aInl thi$ cases usingcthis data meanscwe (donot/haveito
protectagainst! every perturbation within i givenldistanceitoithe
distribution; asnwithodistributionally ‘robustipptimization: (IDRO).
Instead{cneed onlyito enforceconstraints) oncoptimizations=— i
ourtexperimental setting,awenseeithatcthis canslead toi@ lower
fairness-accuracyctrade-off.

VI. DISCUSSION

In. this work,we,introducea technique for measuring. and
reducing-fairness violations .in-a setting, with. limited; aceess, to
protected; attribute data by leveraging, probabilistic.proxies (e.g.
based,on,name, and geolocation) These;techniques, may, help
private and, public,actors better, measure algorithmic, disparity
and fulfill Jegal.and moral . obligations to-ensure thatialgorithmic
decision-making.does. not dispasatelyimpact, disadvantaged
or | protected groups. Howeyern; -the, collection, .and cuse . jof
protected; attribute, information is,inherently. sensitive and,brings
up:privacy:concerns. Additionally,  building (a-probabilistic
mogdel to estimate protected attributes-raises important, gthical
and practical ,questions.as; well, such,as, who hasaccess; to
these, models, and . what.are, the, protocels for its, responsible
deployment: Moreoyery the approach; requires, committing, to|a
particular notion- of groups to,measure jand mitigate fairness
with respect,to,.an exercise- whichin jitself; can, be- fraught.
Given thejincreasing stakes of.algorithmic deployment as well
as increasing regulatory and public pressure,; werbelieve that
the benefit; .of \being able. to . more, effectively, measure, and
reduce-unfairness in-model| predictions; outweighs, these risks,
but. practitioners applying .our method must, carefully iconsider
these concerns- in- the -wider icontext-in,which they work.

We, note, several .avenues for. future, work. |First, while our
framewerk; can be applied jiteratively :to, handle multiple  sensi-
tive, groups,  generalizing; our, frameworkito, account for. them
directly, -and.additionally, to handle intersectional, groups, would
be preferable,, Second,,while binary, classification is perhaps the
most common task in machine learning, handling more general
tasks, such as multi-label classification or regression, would
extend the applicability of results. Finally, in the proposed
method it is important that the probabilistic predictions are
representative of the population of interest; in practice this
means either assuming that the dataset from which probabilistic
predictions are learned is drawn from the same population,
or that reweighting techniques can be used to construct a
representative sample. In the future, it would be useful to use
techniques from sensitivity analysis to bound the impact of
selection bias on measurement error and robust learning to
train low-disparity models under worst-case selection bias.
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APPENDIX A
MAIN PROOFS

A. Proof of Theorem

First, we demonstrate the following lemma:

Lemma 1. Suppose that 0 < b < 1 almost surely and
E|f(Y,y)|€| is finite. Under the assumption of independent
and identically distributed data with £ having strictly positive
probability, the asymptotic limits D/’ and D/ satisfy:

cm{aﬂYJmﬂ cm{aﬂYJwﬂ

v = Epea—EpE) M 0T e
and thus
P _ L. Var[b|€]
D= D e — )

Proof. We note that:

168

and

.LE:mﬂYJU@2?EwnﬂYJNﬂ

e e
by the strong law of large numbers. Similarly,

-—§:1—b

ZES

YY) "EEEE[(1-b) - f(V,Y)[E]
-—EZIfb ) " E[1 — b|€]
zeE

Then diving numerators and denominators in the definition of
the empirical estimator gives that:

DP — % Dice bif(Yi’ Y;) - % > iee(l— bi)f(Yi, Y;)
: 7z 2ice bi = Yice(l—bi)
neoe EIDF(V.YV)IE] B[~ 0)F(V V)le]
E[l€] E[(1 - b)|€]

Combining terms and expanding out the algebra, the last term
is:

Elby (V. Y)le] ~ EpEE (7. V)le] _ Cov [ SV VIE]

E[b|E](1 - E[b|€]) E[b|](1 - E[b|€])
On the other hand, the linear estimator converges asymptotically
to
cm{aﬂYJwﬂ

Var[b|€]

This result can be seen by conditioning on £ and then making
the standard arguments for the asymptotic convergence of the

OLS estimator. Comparing forms of the limits gives the final
result. (|

NI ne—>00
D,

Our key theorem follows as a corollary from the following
proposition, (Proposition 1 in the main text):
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Proposition. Suppose that b is a prediction of an individual’s
protected attribute (e.g. race) given some observable characteris-
tics Z and conditional on event &, so that b = Pr[B = 1|7, £].
Define Dﬁ as the asymptotic limit of the probabilistic disparity
estimator, lA)p, and D; as the asymptotic limit of the linear
disparity estimator, ﬁl. Then:

1)
E[Cov(f(Y,Y), BIb, )]
D’lj = D= Var(B|€) (LD
2)

Var(b|€)

We’ll split things into separate proofs for and .
We’ll also first separately highlight that disparity is simply the
dummy coefficient on race in a(n appropriately conditioned)
regression model. This fact may be known by some readers
in the context of regression analysis (especially without
conditioning on a given event), but we provide proof of the
general case.

Lemma 2. Let D, be the disparity with function f and event
E. Then D, can be written as:

_ Cov(f(V,Y), BIE)

re Var(B|€) '

Proof. Note that by definition:
D, =E[f(Y,Y)|E, B=1]

D

—E[f(Y,Y)|,B=0].

If the right hand side of the equation in the statement of the
lemma can be written this way, we are done. But note that:

ngﬁjmm&:EmﬁYBMf f(Y,Y)|E]E[BIE]

Var(B|€) E[B|€](1 - E[BI£])

Now using the law of iterated expectations and simplifying:

E[f(Y,Y)B|E] = E[E[f(Y,Y)BIE, B]
—E[f(Y,Y)B|B =1,£] Pr|B = 1/£]
+EU( Y)B|B = 0,&] Pr[B = 0|€]
=E[f(Y,Y)|B=1,&]Pr[B = 1|¢]
+E[0] Pr[B = 0[€]
=E[f(Y,Y)|B =1, Pr[B = 1|&]

Moreover, since B is a Bernoulli random variable, Pr[B

1/€] = E[B|€] and
Var(B|€) = E[B|£](1 — E[B|€&])
Combining these, we can write:
E[f(Y,Y)B|EJE[B|E] — E[f(Y,Y)|E]E[B|E]

E[B[&](1 - E[B|£])
_Ef(V,Y)[B=1¢] ~E[f(Y,Y)[E]E[BIE]
(1 - E[B[€])




This can be expanded as:

E[f(Y,Y)|B = 1,£]

(T-E[BIE]
E[f(V,Y)|B = 1,€] Pr[B = 1|¢]
T (-EBE)
E[f(Y,Y)|B =0, Pr[B = 0|€]
- (1 - E[B[£])

E[f(Y,Y)|B =1,E)(1 - Pr[B = 1/|&])
(1—Pr[B =1J&))

~E[f(Y,Y)|B =0,&](1 — Pr[B = 1|E])
(1—Pr[B =1J&))
= E[f(Y’YNB =1,€ - E[f(Y’Y”B =0,¢]

as desired.

3

Note that the familiar interpretation of demographic disparity
being the dummy coefficient falls out from this lemma by letting
€ be the event “always true” and f(Y,Y) =Y.

Now we can turn to proving (L.I). Recall first that, by
assumption:

b=Pr[B=1|Z,&| =E[1[B =1]|Z,&]
= b=E[B|Z,£]VZ
— E[blé] = E[E[B|Z,£)) = E[BI€]
by the law of iterated expectations. Moreover, if we define ¢
as B — b, then:

E[e|Z, €] = E[B|Z, €] — E[b|Z,&] = 0
Proof of (1.1). Note that by Lemmas 1 and 2:
. Cov {f(f’,Y),B|8] Cov [f(f/,Y),bw}
[ 7 T R TS

“w
Since E[b|€] = E[B|£] and Var[B|€] = E[B|E](1-E[B|€]) =
E[bI€](1 — E[b|€]), the denominators are the same and be
collected as Var(B|£). As for the numerators, we note that

Cov [f(f/,Y),Bw} — Cov [f(Y,Y),b\e}
= Cov [f(f/, Y).B - b|5}

by the distributive property of covariance. Recall that the law
of total covariance allows us to break up the covariance of

random variables into two parts when conditioned on a third.

Applying this to f(V,Y) and B — b, with the conditioning
variable being b, we have that:

Cov [f(f/, Y),B - b|5} —E :Cov (f(f/, Y),B - b) |5,b]

+ Cov (E[f(ff,mg, b, E[B — b€, b])

:Cov (f(Y, Y),B— b) £, b]

:Cov (f(Y,Y),B) |5,b}

where the second equality follows because b = E[B|Z,£] —
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E[B|b,&] = b and the third because b is trivially a constant
given b. Combining these together, we have that:

E [Cov (f(?,Y),B) \5,@

D, —

. " Var[BI€]
., E [cov (f(Y, Y), B) £, b}
DY =D, —
— Pu Tk Var[BIE] ’
as desired. 3
Let’s do (I.2).

Proof of (1.2). First, consider the linear projection of f(Y,Y)
onto B given that £ occurs. We can write this as:

fY.Y)=a+7 B+,

where it is understood that the equation holds given £. Now,
by the definition of linear projection,

_ Cov(f(Y,Y),Bl€)
N Var(B|€)
where the last equality follows by Lemma 2, and by the
definition of linear projection, Cov(B,v|E) = 0.
Now, consider the linear projection of f (Y, Y’) onto b given
£. Again we can write the equation:

fY,Y)=d +Bb+n

=D

“w

and similarly

_ Cov(f(Y,Y),bl€)
Var(b|€)

B

and Cov(b,n|€) = 0.
Now, by applying the Law of Total Covariance to the
equation above, we have:

_ L
= D!

BVar(b|E) = Cov(f(Y,Y),b|€)
= E[Cov(f(Y,Y),b|&, B]
+ Cov(E[f(Y,Y)|&, B],E[b|&, B]).

We’ll focus for now on the latter term. Note that by replacing
fY.Y) by o+ B + v, we can obtain:

Cov(E[f(Y,Y)|B,£],E[b| B,£]) = Cov(vB + E[v|B],
B —E[¢|B]|€)
where we’ve moved out the event £ and used the fact that «

is a constant and B is a constant conditional on B to remove
them from the inner expectations. We can expand as

Cov (yB +E[v|B,&], B — E[¢|B]|€) .
We can further expand this covariance term to be
= yVar(B|E) — v Cov(B,E(¢|B)|E)
+ Cov(E(v|B), B|€) — Cov(E(v|B),E(e| B)|€)
= yVar(B|E) — v Cov(B,E(¢|B)|E),



where the last equality is due to the fact that B is binary so
the covariance between B and v equals zero.
Next we show that the term Cov(B,E(¢e|B)|€) can be
written in terms of b and e,
Cov(B,E(¢|B) |5 E[BE[¢|B]] — E[B|E[E[¢| B]]
E[E[Be|B]|£] — E[B|E]E[E[¢|B] €]
E[Be|€] — E[B|E]E[e|¢]
= Cov(B, e|5
= Cov(b+¢€,€[€)
= Cov(b, €|€) + Var(e|€).

€

Plugging these results back into the original equation and
using the fact that B = b + ¢, we have

BVar(b|€) = E[Cov(f(Y,Y),b|E, B
+ yVar(B|E) — yVar(e|€) — v Cov (b,
= y[Var(b|€) + Cov(b, €|&)]
+E[Cov(f(Y,Y),b|€, B]
= ~Var(b|€) + E[Cov(f(Y,Y),blE, B],

)

where the last equality is due to the fact that E[e|Z,&] =

0. A

B. Proof of Proposition 2
Proof. For a fixed 0, we can apply Theoremto write that:
) E[COV(f(hé,Y),BllL g]
Var[B|£] ’
where the expectation in the numerator is over the distribution
of the data. Now, if 6 is drawn from a distribution 6 (in
particular, @ corresponding to #; with ¢ being drawn from
1...T') that is independent of the data, we can treat the quantities
as random variables drawn from a two step data-generating
process. In our setting (as in classical, but not all, learning
settings), the distribution of future data is assumed not to
depend on our selected model. Then by the linearity of
expectations, we have that

Ej 0 [Dﬁ(hé)} —Eje [Du(hé)]
E[Cov(f(hg,Y), Bb,&]
Var[B|£]

A similar statement can be made for the relationship between
Ej g, [Dﬁ(hﬂ and Ej_q_ [D (hé)]. (|

Dfi(hg) = Dy(hy

=Ej0

C. Standard Errors

Here, we discuss the calculation of standard errors; these
arguments are more general, but substantially similar, version
of Qlose mage in [19]. As shown in the proof of Theorem
Dlt and DY converge to their asymptotic limits, DIlL and
Dy, respectively, however, given that we observe only a finite
sample our estimates D and DP are subject to uncertainty
whose magnitude depends on the sample size of the data.

Since the DL is simply the linear regression coefficient,
its distribution is well-studied and well known. In particular,
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under the classical ordinary least squares (OLS) assumptions
of normally distributed error, E ~N (8, T%i-) where sg is the
sample variance of b; under mild technical bconditions, central
limit theorems can be invoked to show that as the size of
data increases, 3 follows a distribution that is increasingly
well-approximated by said normal distribution [56]. Note that,
since as shown in Lemma

Cov(f(Y,Y),bl€)

L
D= Var[b|E
and N
DP —_ COV(f(Ya Y)v b|5)
“oEPENT - EDpIE)’
it follows that
L Var[b|€] .
Du'=Di'” e - EWET)

analogously, by expanding the definitions of the sample
estimators, we can easily see that:

n_lg Zies (bi,_ Bg)Q
b¥ (1 — b%) )
Then by Slutsky’s theorem, we can state that:

D oo & Var[b|€]
DP "= DL .
v PREREI - EPB))

NP _ PL _
DM_DH_

As a consequence, the distribution of DP is a scaled version
of the distribution of DL and in partlcular

NP P
D — DE

n—oo
e =" N (.1).
BIEI(1—E[b|E])

Thus, in practice, we can estimate the variance of lA)ﬁ as if it
were the usual OLS estimator and then estimate Var[b|€] and

E[b|€] to scale it appropriately.

D. Obtaining the probabilistic prediction

1) BIFSG: Recall that conceptually, b functions as a proba-
bilistic confidence score we have that an individual has B = 1.
A perfectly calibrated b will thus have E[B|b] = b, and our
main theorems assume that we have access to this. In practice,
however, b must be estimated; in this work, we focus on the
commonly used [[16}[20l{57}/58] Bayesian Imputations with First
Names, Surnames, and Geography (BIFSG). In BIFSG, we
make the naive conditional independence assumption that the
proxy features are independent conditional on the protected
characteristic. In the case of BIFSG, this amounts to assume

that:
Pr[F, S,G|B] = Pr[F|B] Pr[S|B] Pr[G|B],

where the random variable F' is first name, S is surname, and
G is geography . By applying Bayes’ rules to this assumption,



we can obtain that:
Pr[F, S, G|B]
Pr[F, S, G|
_ Pr[F|B] Pr[S|B] Pr[G|B]
B Pr[F, S, ] '

The right-hand side of this equation is fairly easy to estimate
because it requires knowing only marginals rather than joint
distributions (the denominator can be normalized away by
noting that we must have that Pr[B = 1|F,S,G| and
Pr[B = 0|F, S, G] must sum to 1), and these marginals are
often obtainable in the form of publicly available datasets. Note
that, BIFSG can be written in multiple forms by applying Bayes’
rule again to the individual factors (e.g. replacing Pr[F'| B] with
Pr[B|F]Pr[F]/Pr[B], which may be convenient depending
on the form of auxiliary data available.

For our setting, we leverage the census and home mortgage
disclosure act (HMDA) data, as mentioned, to estimate b from
publicly available data. We provide quantitative details on
our estimates in Appendix We note also that since b is
continuous, we will discretize into equally sized bins whenever
we need to compute quantities conditional on b.

2) Impact of Miscalibration: Throughout the theoretical
work, we have assumed that we have b = Pr[B = 1|7] - i.e.
that b is perfectly calibrated. In reality, this is a quantity that
is estimated, and will thus contain some uncertainty, including
bias due to the fact that the dataset which it is estimated on
(e.g. the census for the U.S. as a whole) may not be fully
representative of the relevant distribution (i.e. the distribution
of individuals to whom the model will be applied, which may
be a particular subset). This could result in miscalibration;
when this happens, it could be that applying our method with
our miscalibrated b results in failing to bound disparity (both
in measuring alone, and in training).

Ultimately, miscalibration is only a real problem insofar as it
causes the method to fail. For small amounts of miscalibration,
the method tends to succeed anyway — e.g. in our setting,
we do observe that our estimates are not perfectly calibrated,
but we still achieve good results. For larger, or unknown,
miscalibration, there are two paths that can be taken. The first
is to conduct a “recalibration" exercise, and obtain a modified b
that more closely matches the distribution of interest; this can be
as simple as fitting a linear regression of B on b in the labeled
dataset and replace b with the predictions of this regression.
Alternatively, given an assumed bound on the magnitude of
the miscalibration, Theorem can be extended to incorporate
its effect. In practice, recalibration is more straightforward to
do empirically, but the theoretical method can also be used
for sensitivity analysis; see [19] for their discussion of the
recalibration approach as well as the effect on their special-
case bounds.

Note also that, in settings where £ is affected by the modeling
choice h - i.e. when the fairness metric involves conditioning
on model predictions, as in the case of positive predictive value
(PPV) - it may be the case that a perfect or well-calibrated
b for one model may be poorly-calibrated for another. That

Pr[B|F, S, G] =
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is, it may be that among observations, we find that that our
estimate |b(Z)—Pr[B|Z, E(hy)]| is small while our estimate of
|b(Z)—Pr[B|Z, E(hg )] is large. In this case, we can introduce
a recalibration step in-between iterations, although this deviates
from the theoretical assumptions that ensure convergence. Note
that a sufficiently expressive model over a sufficiently powerful
set of proxy features should be able obtain good calibration
overall events &; this suggests that another path forward in
such a setting may be in investing in alternative, more powerful
(e.g. machine-learned) models of b.

APPENDIX B
MATHEMATICAL FORMULATION OF FAIR LEARNING
PROBLEM

A. Theoretical Problem

We begin by discussing the theoretical problems - i.e.
abstracting away from the sample of data and considering
the problems we are trying to solve.

1) One-sided bound: We first consider the case of imposing
a one-sided bound on disparity, i.e. requiring that D, < «
but allowing D,, < —q; certainly this will not be desirable in
all situations, but we can use it as a building block for the
two-sided bound as well.

We begin by formalizing the ideal problem - that is, the
problem we would solve if we had access to ground truth
protected class. This is simply to minimize the expected risk
subject to the constraint that - whichever disparity metric we
have adopted - disparity is not “too high”. This is the:

Problem 3 (Ideal Problem). Given individual features X, labels
Y, a loss function L, a model class H, a disparity metric p,
and a desired bound on disparity «, find an h to:

hmeiLlE[L(h(X),Y)] s.t. Dy(h) < a,

where D,,(h) is the p-disparity obtained by h.

The ideal problem is not something we can solve because we
cannot directly calculate D,, over the dataset, since it requires
the ground truth protected class label B. But the Theorem
suggests an alternative and feasible approach: using the linear
estimate of disparity as a proxy bound. That is, if the linear
estimator is an upper bound on the disparity, and the linear
estimator is below «, then disparity is below « too.

Formally, we would solve following problem:

Problem 4 (Bounded Problem Direct). Given individual
features X, labels Y, a loss function L, a model class H,
a disparity metric p, a desired on disparity «, and a predicted
protected attribute proxy b, find an h to:

i t DE<
hmgl}{lE[L(h(X),Y)] s.t. Dy <«
and D, < D},

Notice that any feasible solution to Problem must satisfy
the constraints of Problem i.e. we must have that D, (k) < a.
The gap between the performance of these two solutions can be
regarded as a “price of uncertainty”; it captures the loss we incur



by being forced to use our proxy to bound disparity implicitly
rather than being able to bound it directly. We explore this price
by comparing to an “oracle” which can observe the ground
truth on the full dataset and perform constrained statistical
learning.

As in Problem 2, we cannot directly observe D, so the
second constraint is not one that we can directly attempt to
satisfy. But we know that it holds exactly in the conditions
under which Theorem |1| applies. Therefore, we can replace
that constraint with the covariance conditions:

Problem 5 (Fair Problem - Indirect). Given individual features
X, labels Y, a loss function L, a model class H, a disparity
metric p (with associated event £ and function f(h(X),Y)),
a desired maximum disparity «, and a predicted proxy b, find
an h to:

min E[L(h(X),Y)]

s.t. Dﬁ <
heH

and E[Cov(f(h(X),Y),b|B,€)] >0
And indeed, these problems are equivalent:
Proposition 3. Problems [5|and [4] are equivalent.

Proof. Theorem directly says that Dﬁ > D, <<=
E[Cov(f(h(X),Y),b|B,E)] > 0. Hence if h satisfies the
constraints of Problem |5] iff it satisfies those of Problem
Since the objectives are also the same, the problems are
equivalent. (|

As written, Problemis still using the population distribu-
tions; we will discuss its empirical analogue below.

2) Two-sided bound: The two-sided bound requires that
|D,| < o this may be more common in practice. Again, we
begin by considering the ideal problem:

Problem 6 (Ideal Symmetric Problem). Given individual
features X, labels Y, a loss function L, a model class H,
a disparity metric u, and a desired bound on disparity «, find
an h to:

i%iﬁE[L(h(X)’Y)] st. [Dy(h)| < e,

where D, (h) is the p-disparity obtained by h.

As with Problem we cannot directly bound disparity, since
we do not have it, but we do have the disparity estimator. This
leads to the following problem:

Problem 7 (Symmetric Problem Direct ). Given individual
features X, labels Y, a loss function L, a model class H, a
disparity metric u, a desired on disparity «, and a predicted
protected attribute proxy b, find an h to:

inE[L(h(X),Y)] st. |DE| <
hm€1£ [L(R(X),Y)] s.t. | Ml—lal
and |D,| < |D,IZ|

Unfortunately, we don’t have any theory about putting an
absolute value bound on disparity, and indeed, because the
weighted and linear disparity estimators are positive scalar
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multiples of one another, we cannot hope to use one as a
positive upper bound and the other as a negative lower bound.
But notice that if we were to find the best solution when
D € [0, 0], and the best solution when D/ € [—a, 0], then
we would cover the same range as [—a, .

One attempt to apply this principle would be to solve the
following two subproblems:

Problem 6.A.

i t. DE <
hmel"itlE[L(h(X)7Y)] st. D <a

and E[Cov(f(h(X),Y),b|B,€)] >0
Problem 6.B.
min E[L(h(X),Y)] st. —a < DX
and E[Cov(f(h(X),Y),b|B,€)] >0
And take:
hi = argminhgayhng[L(h(X), Y)).

But this does not even guarantee a feasible, let alone optimal,
solution to Problem To see this, note that there is nothing
prevent hg, to be not simply < «, but in fact < —«, and vice
versa. In particular, what went wrong is that we did not find
the two best solutions over [—a, 0] and [0, «], but rather the
two best over [—oo, ] and [—a, oo], which is no constraint at
all.

To get around, this, though, we can solve the following two
problems instead:

Problem 7.A.

min B[L(h(X),Y)] st. Dl <o
and E[Cov(f(Rh(X),Y),b|B,E)] >0
and E[Cov(f(h(X),Y),B|b,E)] >0
Problem 7.B.
min E[L(h(X),Y)] st. —a < DX
and E[Cov(f(h(X),Y),b|B,£)] <0
and E[Cov(f(h(X),Y),B|b,E)] <0

Why are these different? Notice that imposing both co-

variance constraints in [1.A|enforces that Dﬁ <D, < Dﬁ;
: D L Varb s J2

since D, = D, e — e DE is always an attenuated
version of DL — this can only be the case if all three terms are
nonrlegative. Similarly,enforces that Dﬁ > D#? Dﬁt;.this
similarly ensures that all three terms are nonpositive. Since
these terms also include the bound on the linear estimator, they

thus ensure that if we take:
h € argminy,. ;. E[L(h(X),Y)],

we will indeed obtain a feasible solution to Problem [7] As
in Problem there may again be a suboptimality gap since
we have effectively imposed more constraints to the original
problem.



B. Solving the Empirical Problems

In this section, we use recent results in constrained statistical
learning to formulate and motivate empirical problems that we
can solve which obtain approximately feasible and performant
solutions to the problems above. We summarize here the
conceptual basis at a high level, providing a discussion of
the rationale behind Theorem 2 in the main text, drawing
heavily on [14], and refer interested readers to said work as
well as [43] for a fuller and more detailed discussion of the
constrained statistical learning relevant to our setting and [44]
for more general discussion of non-convex optimization via
primal-dual games.

1) Relating our Formulation: We begin by describing the
relationship between our problem of interest and that considered
in [14]. The (parameterized version of the) problem in [14] is
the following:

Problem 8 (Parameterized Constrained Statistical Learning
(P-CSL) from [14]).

P* = rerélél E(m,y)NDo [EO (f@ ($)7 y)]

s.t. B yyop; Gi(fo(z,9)] < iy i=1..m

That is, they aim to minimize some expected loss subject to
some constrained on other expected losses, with loss functions
that may vary and be over different distributions. Our problem,
i.e. Problem [5]can be seen as a special case of this, though
our framing is different. To see the correspondence, consider
applying the following to Problem

1) Take D; to be the restriction of D to £

2) Take ¢ to be the loss function of interest, e.g. 1[h # y]

for accuracy

3) Take ¢; = f(h(X),Y) and ¢; as «

4) Take 5 = f(h(X),Y)- B—F(R(X),¥) b¥ and c; = 0
A A R
5) Take /3 = f(h(X),Y)-b— f(h(X),Y) B’ and c3 =0
Then we arrive at Problem [3]

2) Moving to the empirical problem: The problems de-
scribed above relate to the population distribution, but we only
have samples from this distribution. This is, of course, the
standard feature of machine learning situations; the natural
strategy in such a setting is to simply solve the empirical
analogue - i.e. to replace expectations over a distribution with
a sample average over the realized data. Instantiating this and
focusing on Problem (since the other problems can be
solved analogously and/or using it as a subproblem) we could
write the following empirical problem.

Problem 9.
1 _
hmgggz;@ L(h(X;),Yi) st. DE < a
_ 1 N Bz 7_Bi
0%~ GZ@ (X, Y0) = TR, ) (b = )
0= _n; > [(f(h(Xi)vyi)—f(h(Xi))»Yibi)(BZ-—B’”
L ieay

Problem@] is not, in general, a convex optimization problem;
if it were, the standard machinery and solutions of convex
optimization, i.e. formulating the dual problem and recovering
from it a primal solution via strong duality, could be applied.
However, as shown in [[14], under some conditions, there exists
a solution to the empirical dual problem that obtains nearly the
same objective value as the primal population problem. In other
words, rather than applying strong duality as a consequence of
problem convexity, [14] directly prove a relationship between
the primal and the dual under some conditions. These conditions
are that:

1) The losses ¢;(-,y) are Lipschitz continuous for all y

2) Existence of a family of funtions (;(N,d) > 0 that
decreases monontically in N and bounds the difference
between the sample average and population expectatoin
for each loss function

3) There is a ¥ > 0 so that for each ® in the closed convex
hull of H, there is a 8 such that

4) The problem is feasible

We briefly discussing these conditions. For 1), we note that
Lipschitz continuity requires existence of scalar such that
|f(x) — f(2')| < M|z — y|, which will be true for bounded
features when using sample averages. 2) simply requires that
we are in a situation where more data is better, and is implied
by the stronger condition we assume of H being of finite VC-
dimension. 3) asks that our hypothesis class is rich enough
to cover the space finely enough (how fine will determine the
quality of the solution), which is met for reasonable model
classes. 4), is simply a technical requirement ensuring that
there exists at least some solution, is analogous to Slater’s
criterion in numerical optimization.

Thus, we can leverage the described guarantees to assert
that solving the empirical dual would Yet this initial result,
while positive, is one of existence; to actually find a solution
requires a solution. To do so, one can construct an empirical
Lagrangian from the constrained empirical problem, and this
can be solved by running a game between primal player, who
selects a model to minimize loss, and a dual player, who
selects dual parameters in an attempt to maximize it. If we
construct this empirical dual in our settings, it is as in Equation
Algorithm provides a primal-dual learner that instantiates
this idea of a game.

C. Theoretical Guarantees

If either all of the losses are convex, or:

6) The outcome of interest Y takes values in a finite set
7) The conditional random variables X |Y" is are non-atomic
8) The closed convex hull of H is decomposable

Then the primal-dual algorithm [1| performs well. In the
classification setting, which we focus on, Item 5) is trivially true.
Item 6) asks that it not be the case that any of the distribution
over which losses are measured induce an outcomes induce
an atomic distribution; this mild regularity condition prevents
pathological cases that would be impossible to satisfy. For
7) Decomposability is a technical condition stating that for a

)
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Algorithm 1: Primal-dual algorithm for probabilistic
fairness

Input :Labeled subset Z;, unlabeled data 2,
#-oracle, number of iterations 7' € N, step
size n >0

Define :h, as the model parameterized by ()

Initialize : u(Ll) — 05 Mz(;|11)9 — 0 “gl)b +—0

1for t=1...T do

2 | 60 « argmin, Z£(6, u®)
(t+1) (t)

3| Hyp < Hyp T Waf b5 (how);

Mg‘tl) ~ uﬁg,b +1C7 51 (ho)
s | e 4 (DL(hem - a)
5 end

6 return < (M) .. 9T) >

given function space, it closed in a particular sense: for any
two function ®, ®’ and any measurable set y, the function that
is ® on y and ®’ on its complement is also in the function
space; many machine learning methods can be viewed from a
functional analysis as optimizing over decomposable function
space.

As we have shown that our problem can be written as a
case of the CSL problem, and Algorithm 1 is a specialization
of the primal-dual learner analyzed in [14], Theorem 3 in the
same applies, again with appropriate translation. In particular,
the promise is that when an iterate is drawn uniformly at
random, the expected losses (over the distribution of the
data and this draw) for the constraints are bounded by the
constraint limit ¢; plus the family of functions at the datasize
mention in Assumption 2, plus 2C'/(nT), where T' is number
of iterations, 7 is the learning rate, and C' is a constant; at the
same time, the expected loss (again over both the data and
drawing the iterate) is bounded by the value of primal plus
several problem-specific constants that capture the difficult of
the learning problem and meeting the constraints, as well as
said monotonically decreasing function of the data capturing
the rate of convergence. Our Theorem can be obtained by
applying a standard result from statistical learning theory and
collecting/re-arrange/hide problem-specific constants.

In this section, we discuss our approach to learning a fair
model using the probabilistic proxies and a small subset of
labeled data. To do so, we leverage recent results in constrained
statistical learning.

D. Handling Imperfect Calibration

In general, it may be that we do not have access to b =
Pr[B = 1|Z = 2], but instead have access to some imperfectly
calibrated b. In this case, we can write b=b+ e, where €
by definition is b — b. We could apply DP and DL using b
instead, but Theorem [1]assumes access to b and so does not
directly apply. To overcome this, we can obtain a recalibrated

b*. As a first step, we know that for a general b, the linear and

probabilistic estimators converge to:

Cov(b,e|€)
Var[b|£]

) E[Cov(f(Y,Y),b|B]
Var[b|€]

D) — D,(1+

and
DP D, Var[B|£]

— D}, Cov(b,e)|E _ E[Cov(Y, BJb,E) + p

! E[b|€](1 — E[b[E]) E[ble](1 -

respectively; € := B —b; and p := Cov(E(n[d, &), E[e|b, &]|E).

Now, with this form, we can see the following. First, for
general b, as long as Cov(b,e|€) = 0 - that is, as long as
miscalibration error ¢ is not correlated with the predictor itself
- then we will have exactly the same equation as in 1.1. But
we can obtain such a predictor simply by regressing B on b
among &; that is, if we run the linear regression

B=a+ gb+e,

and define b* as the & + Bb, then €* = B — b* by construction
satisfies Cov(b*,e*) = 0.

Then, in that case, we define:
E[Cov(f(Y,Y)),b*|B]

Var[b*|€] ’

and we can now solve an empirical version of the one-sided
problem (i.e. Problem using b* instead of b, and all the
math discussed above follows directly. However, to solve
we of course must handle the probabilistic estimator as well.

Here, again we can use Cov(b*,¢*|€) = 0 and also observe
that by construction:

Ep*|E] = E[B|€] = E[b|E](1 - E[b[€])
= E[B[€](1 - E[B|£])

Dy* =D, +

and so overall write:

to simplify the first term in D[L ,
&) + Cov(E[n*|b*], E[e*[b7]€)

P P
Du — Du —

E[plE])

E[Cov(Y, B|b*,
Var[B|€]

So to ensure that the lower bound holds, we must now incor-
porate the second term of the numerator into the optimization
problem. But this can be done in a similar manner as before,
as the residuals n* and £* can again be expressed as algebraic
sample averages.

E. Closed-form Solution to Fair Learning Problem for Regres-
sion Setting

In this appendix we provide a closed-form solution to the
primal problem Problem [2.A] for the special case of linear
regression with mean-squared error losses and demographic
parity as the disparity metric. We express the constraints in
matrix notation and show that the constraints are linear in the
parameter 3. Thus, we are able to find a unique, closed-form
solution for 3 by solving the first-order conditions. Given a
choice of dual variables, it can be interpreted as a regularized
heuristic problem with particular weights; while there are no
guarantees that this will produce a performant or even feasible
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solution, it may be useful when applying the method in its
entirety is computationally prohibitive.

We define the following notation for our derivation. Let
n denote the number of observations and p the number of
features in our dataset. Then let X € R"*P,y € R"¥! 3 €
RP*L h € R™*1, and B € {0,1}"*!. For j = 0,1, let B; =
{i: B; = j} and n; = |B,| denote the set of observations for
which the observed protected feature B = j and the size of the
corresponding set, respectively. Since we consider demographic
parity as the disparity metric of interest, we denote the disparity
metric as f(V,Y) =Y.

For ease of exposition, we restate the empirical version of
the constrained optimization problem for linear regression and
demographic parity.

Problem 9.A.

As discussed in Section , the linear disparity metric lA)ﬁ
is the coefficient of the probabilistic attribute b in a linear
regression of Y on b. Thus, Dﬁ can be expressed as

L _ 3 Tm\—=1.T

DM =(0'b) (b XP).

The covariance of Y and b conditional on B can be written as
Cov(V,b|B) = E(b” XB|B) — E(XB|B)EG|B) ()

We expand the first term on the right-hand side of Equation
considering the case where B = 1.

1
EGTXBIB=1)=— > bXf
i 1€ By
1 P
- 3 Yy
! i€B1 j=1
= Z D biXusf,
] 1ieB;
T Zﬁﬂ Z biXij.
= i€ By
Collecting the second summation as the vector

L

V1 - > icp, biXij, we can write the expression
for ]E(bTXB|B =1) as

P
E(b'XBIB=1) = Zﬁjvlj =plu,

j=1
where v, = ('Ulj)?:l.

For the second term on the right-hand side of Equation we
can rewrite the summation in a similar manner. Again focusing
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E(XB[B)E(b|B)

> b

ZEBI

(5

We again collect the second summation and write it as wi; =
nil > icp, Xij and then we can write E(X 3| B)E(b|B) as

)

> b

1€Bl

w3 ) (

on the case where B =1,
Z > X

1€B1 j=1

SE D) IE

i€By j=1

E(XB|B)E(b|B) = b1 w1,

where wp = (wlj)le

Now we can write Equation E]in matrix notation as,
Cov(Y,b|B) = 8Tv1 — by wy + BTvg — bpBTwo, (5)

where vg, wy and by are defined equivalently for the set B,.
Finally we take the expectation of this covariance term to get,

Z% (BT o1 — b1 T wy)
+ % (BTvo — boB wo)

E(Cov(Y,b|B)) ©

We now consider the covariance of Y and B conditional on
b which can be written as

Cov(Y, B|b) = E(B"T XB|B) — E(XB|b)E(B|b).  (7)

The steps for expressing this conditional covariance in matrix
notation are similar to the first covariance term, however, now
we are summing over the continuous-valued variable b. Let
k € 10, 1] denote the value of b we are conditioning on and let
Gy, = {i: b; = k}, ni, = |G| denote the set of observations
with b = k and the size of the set, respectively.

Once again we expand the first term on the right-hand side
of Equation this time considering the general case where
b=k,

E(B"XB|B) = BT

Zﬁa > BiXy =

1€Gy

_ ) o — L X
Here we deﬁlne' vp = (vkj)j—; and vy = == 37, o BiXij.
Following a similar process for the second term, we can express
the term as

E(X B|b)E(B|b) = By wy,

where wy = (wg;)}_; and wy; = nlk > icq, Xij. Combining
the two terms together we write Equation [7]as

Cov(Y,B|b) = Zﬂ%k — BpB wy.
k

®)

For the last step we take the expectation of the conditional
covariance term to get,

k

E(Cov(Y, BID) = >~ = (8Tvn — BifTwi) . 9)



Now we can write the empirical Lagrangian of Problem

as

LB, i) = (y—XB) (y— XB) — e ((070) 7' (07 XB))
+ [0 B (% (BT — b1 wr) + % (BT vy — EoﬁTwo))
ny,

+ UBb Z "

— (5Tvk - Bkﬂka)
k

Solving for 8 we get the solution,
1
B =5 (XTX) T 2X Ty 4 (5707 (07 )

— Mty B (% (Ul - 51w1) + % (vo — Bowo))

— By Z

k

N

? (’Uk — Bkwk) :|
APPENDIX C

DATA
A. L2 Data Description

We select seven features as predictors in our model based on
data completeness and predictive value: gender, age, estimated
household income, estimated area median household income,
estimated home value, area median education, and estimated
area median housing value. While L2 provides a handful of
other variables that point to political participation (e.g., interest
in current events or number of political contributions), these
features suffer from issues of data quality and completeness.
For instance, only 15% of voters have a non-null value for
interest in current events. We winsorize voters with an estimated
household income of greater than $250,000 (4%) of the dataset.
Table shows the distribution of these characteristics, as well
as the number of datapoints, for each of the states we consider.
In general, across the six states, a little more than half of
voters are female, and the average age hovers at around 50.
There is high variance across income indicators, though the
mean education level attained in all states is just longer than
12 years (a little past high school). Voting rates range from
53% in Georgia to 62% in North Carolina, while Black voters
comprise a minority of all voters in each state, anywhere from
16% in Florida to 35% in Louisiana and Georgia.

B. Race Probabilities

The decennial Census in 2010 provides the probabilities of
race given common surnames, as well as the probabilities of
geography (at the census block group level) given race. In
order to incorporate BIFSG, we also use the dataset provided
by [57] which has the probabilities of common first names
given race.

We default to using BIFSG for all voters but use BISG
when a voter’s first name is rare since we do not have data
for them. Consequently, we only use geography instead of
BISG when both one’s first name and surname are rare. On
average, around 70% of people’s race across the six states
were predicted using BIFSG, 10% using BISG, and 18% using
just geography; < 2% of observations were dropped because
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we could not infer race probabilities using any of the three
options.

Table shows results for our BI(FS)G procedure with
respect to true race. Accuracy and precision range from 80-90%,
but recall is much lower at around 30-50%. Note, however, that
we evaluate these metrics by binarizing race probabilities; in
our estimators, we use raw probabilities instead, which provide
a decent signal to true race. For instance, AUC hovers at 85-
90%, while Figure@ shows that our predicted probabilities are
generally well-calibrated to true probability of Black (although
BIFSG tends to overestimate the probability of Black).

APPENDIX D
DETAILS ON MEASUREMENT EXPERIMENTS

A. Voter Turnout Prediction Performance

Table[IV]shows results for voter turnout prediction on logistic
regression and random forest models. In general, predicting
voter turnout with the features given in L2 is a difficult task.
Accuracy and precision hovers at around 70% throughout all
experiments, while recall for logistic regression ranges from
71-82% and random forests perform slightly better at 80-90%.
This result is in line with previous literature on predicting
turnout, which suggest that “whether or not a person votes is
to a large degree random” [59]. Note again that our predictors
rely solely on demographic factors of voters because those are
the most reliable data L2 provides us.

B. The KDC Method

In this section we expand on the different assumptions the
KDC method and our method make related to the auxiliary
data set. While we consider the case where the test set
(with predicted outcomes and race probabilities) subsumes
the auxiliary data (which contains true race), KDC mainly
considers settings where the marginal distributions P(B, Z)
and P(Y, Y,Z ) are learned from two completely independent
datasets — in particular, to estimate P(B|Z) and P(Y,Y|Z).
Therefore, in order to produce a fairer comparison between
the two methods, we instead reconfigure KDC to incorporate
all the data available by treating the auxiliary data as a subset
of our test se doing so only strengthens KDC because we
pass in more information to learn both marginal distributions.
However, their main method does not leverage information on
P(Y, Z|B), as we do, so their bounds are notably wider. We

“Note that a component in calculating the variance of the KDC estimators
is r, the proportion of datapoints from the marginal distribution P(Y,Y, Z)
to the entire data. Without considering this independence assumption in our
calculation, = 1, but this loosely goes against the assumption that 7 is closer
to 0 in Section 7 of [20]. For simplicity, we attenuate the multiplicative terms
in the variance calculations of Equations 25 and 26 to give KDC the tightest
bounds possible. However, as will be seen in Figure KDC'’s incredibly large
bounds are mostly attributed to its point estimates rather than their variances,
which are quite small.



Feature NC SC LA GA AL FL
(n=6,305,309) (n=3,191,254) (n=2,678,258) (n=6,686,846) (n=3,197,735) (n=13,703,026)
Gender (F) 0.54 0.54 0.55 0.53 0.54 0.53
0.5) 0.5) 0.5) 0.5) (0.5) 0.5)
Age 49.62 52.2 50.16 48.24 50.27 52.17
(18.76) (18.69) (18.29) (18.07) (18.44) (18.89)
Est. Household 89,788.54 82,172.22 80,770.79 90,622.61 79,919.66 90,145.4
(HH) Income (56,880.78) (53,886.64) (54,579.77) (57,699.76) (52,237.42) (56,786.94)
Est. Area Me- 76,424.55 69,666.4 68,068.86 78,377.2 69,070.63 74,547.99
dian HH Income (32,239.45) (25,911.0) (29,779.93) (35,941.68) (27,226.34) (29,820.33)
Est. Home 300,802.36 233,354.36 199,286.06 273,424.9 201,901.9 360,533.81
Value (202,634.22) (155,221.32) (123,564.26) (176,273.9) (126,255.0) (243,854.1)
Area Median 12.83 12.64 12.36 12.72 12.51 12.65
Education Year (1.13) (0.98) 0.92) (1.12) (0.99) 0.97)
Area Median 206,312.82 193,172.13 170,521.45 206,253.25 162,925.8 237,245.18
Housing Value (106,274.59) (107,225.93) (81,184.86) (112,142.54) (81,467.58) (118,270.22)
Black 0.22 0.26 0.32 0.33 0.27 0.14
Vote in 2016 0.61 0.57 0.63 0.52 0.55 0.57

TABLE II: Distribution of features used for L2 across all six states: from left to right, North Carolina, South Carolina, Louisiana,
Georgia, Alabama, and Florida. Each cell shows the mean of each feature and the standard deviation in parentheses. The last
two rows show the proportion of observations that are black, and voted in the 2016 General Election.
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Fig. 6: Calibration plots showing predicted probability of Black (x-axis) versus actual proportion of Black (y-axis).

Figure but the results do not change substantiall

C. Random Forest

We also run experiments on bounding disparity when voter

State Accuracy Precision Recall AUC
NC 0.83 0.77 0.30 0.85
SC 0.81 0.83 0.35 0.86
LA 0.82 0.87 052 0.89
GA 0.80 0.85 049  0.88
AL 0.84 0.89 045 0.90
FL 0.89 0.80 0.33  0.86

TABLE III: Accuracy, precision, recall (thresholded on 0.5),
and AUC for BI(FS)G for all six states considered in L2.

also implement the KDC estimators as originally proposed in

23

turnout is predicted on random forest models, as seen in
Figure 8| We observe similar results to logistic regression
in that our methods always bound true disparity within 95%
confidence intervals, and with bounds that are markedly tighter
than KDC’s. While our bounds are always within 5 p.p. and
the same sign as true disparity, KDC is ranges from -0.5 to
0.5.

SIn Appendix A.5, [20] do in fact propose an estimator where the
independence assumption is violated (i.e., precisely the setting we consider
where we have race probabilities in our entire data), but it suffers from two
key limitations: a) we are only provided estimators for DD and none other
disparity measure, and ») we implemented the DD estimator and it failed to
bound true disparity in both applications we consider — see Figurem
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substantively changed. The top and bottom pairs of each state correspond to the estimators from logistic regression (LR) and
random forest (RF) models, respectively. additionally proposes estimators for estimating DD where the independence

assumption is violated but they rarely bound true disparity (right

subfigure), so we omit these results in our main experiments.
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Fig. 8: Comparison of our method of bounding true disparity (blue) to the method proposed in (grey), using a random
forest model to predict voter turnout on L2 data in six states. We evaluate three disparity measures: demographic disparity

(DD), false positive rate disp. (FPRD), and true positive rate disp.

always bound true disparity within their 95% standard errors.

APPENDIX E
DETAILS ON TRAINING EXPERIMENTS

A. Experimental Setup

As noted in the main text, to enforce fairness constraints
during training, we solve the empirical version of Problem
and its symmetric analogue, which enforces negative covariance
conditions and Dﬁ as a (negative) lower bound. For both of
these problems we run the primal-dual algorithm described
in Algorithm for T iterations and then select the iteration
from these two problems with the lowest loss on the training
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(TPRD). The grey dot represents true disparity. Both methods

data while satisfying the constraints on the training and labeled
subset.

We use the method with logistic regression models
under the hood.

B. CSL (Chamon et al.)

We implement our constrained problem using the official
Pytorch implementation provided by |ﬁ for a logistic
regression model We run the non-convex optimization problem

€https://github.com/Ifochamon/csl



State Model Accuracy Precision Recall AUC
NC LR 0.72 0.75 0.81 0.75
RF 0.72 0.72 0.89 0.76
SC LR 0.67 0.69 0.77 0.71
RF 0.67 0.67 0.86 0.71
LA LR 0.70 0.73 0.84 0.72
RF 0.70 0.71 091 0.73
GA LR 0.69 0.70 0.71  0.75
RF 0.69 0.68 0.78 0.75
AL LR 0.67 0.69 0.74 0.72
RF 0.67 0.67 0.80 0.72
FL LR 0.67 0.69 076  0.71
RF 0.67 0.67 0.85 0.72

TABLE 1V: Accuracy, precision, recall, and AUC for voter
turnout prediction for all six states considered in L2. We eval-
uate two different model performances for turnout prediction:
logistic regression (LR) and random forests (RF).

for 1,000 iterations with a batch size of 1,024 and use Adam
for the gradient updates of the primal and dual problems
with learning rates 0.001 and 0.005, respectively. We provide
further explanation of the mathematical background to the
method in Appendix B above.

C. The Method of Wang et al.

propose two methods to impose fairness with noisy
labels: ) a distributionally robust optimization approach and 2)
another optimization approach using robust fairness constraints,
which is based on . We use code provided by to
implement only the second method because it directly utilizes
the protected attribute probabilities and yields better results.

We tune the following hyperparameters: 1 €
{0.001,0.01,0.1} and n, € {0.25,0.5,1,2}, which
correspond to the descent step for € and the ascent
step for A in a zero-sum game between the f-player and
A-player, see Algorithm 1 and 4 of . Finally, we also tune
Nw € {0.001,0.01,0.1}, which is the ascent step for w (a
component in the robust fairness criteria), see Algorithm 3 of
. In order to choose the best hyperparameters, we use the
same data as outlined in Section [IV-C1](80/20 train/test split),
but use a validation set on 30% of the training data (i.e., 24%
of the entire data). Note that as implemented in the codebase,
chooses the hyperparameter that results in the lowest loss
while adhering to the fairness constraint with respect to true
race. Since we assume access to true race on a small subset
(1%) of the data, we only evaluate the fairness constraint on
1% of the validation set.

D. The Method of Mozannar et al.

primarily focus on the setting of training a fair model
with differentially private demograpghic data, which poses
assumptions whichaareninfeasible foriourtsettings+however,

“https://github.com/wenshuoguo/robust-fairness-code
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thelauthors do propose arpotential extension of-theircmethod
torhandlecascase: thatmiatchesrours:itraininga faivdmoodel
withrinéompleterdemographic ‘dataa Therauthorstdosnot discuss
thisiindetailior provide the ¢ode fon this, extensiondso we
modify’ thepcode!{24]r provide forr theirpaper ¢otimplement; the
extensionof theirhapproach detailediinrSéctiont 6eof theirpaper
thatcis relevant fonourisettingl [Thisrinvolves using Fairleam’
exponentiated gradient method changed so that it will only
update for its fairness-related loss on data points in the labeled
subset, but allows classification loss to be calculated over the
entire training set.

We note that Mozannar’s method guarantees fairness viola-
tion 2(epsilon + best gap) on their test set where epsilon is
set by the user, but gives no method of approximating best_gap.
Thus, we set epsilon = «/2 (i.e. assume best gap=0) in our
experiments in order to come as close as possible to their
method providing similar fairness bounds to ours on the test
set.

E. Pareto-Frontier of Accuracy vs. Disparity
F. Resylts . onoOracle-and INaive

In Figure wel present thenean'and standard (deviation 'of
the resulting” disparity -and. on 'thetest'set, ‘as wellas classifier
accuracypon the rtestpset,/ of 'experimentsswithe out! method
compared toan ‘oracle 'model, that/hascaccess to yground truth
race on the whole dataset' and uses‘thesecto'enforce a'constraint
directly on 'ground truth'disparity [during‘training, as welrag
a‘naive'model ‘which simply lenforces’a constrained directly
on thecobserved dispatity!'of (the 'noisylabels; swithout any
cotrection? (Namely, 'in''this technique, we- simply sthreshold
the!probabilistic’ predictionsof 'race on 05 o' imake 'them
binary]sand auselias srace Clabels.)rPAsoa . wholelnwelperform
relatively s comparably «tothenoracle, 'except’on 'FPRD: We
alwayshoutperform ' thelnaive 'method® insterms ‘of reducing
disparity, whichisto beexpected.sWe typicallyPperform within
2ipercentage points 'of accuracy froms thecoracle (éxcept forlthe
0041 and 006 bounds on2DD “and ‘the 0104 bound: 6n°TPRD).
We'suggest'the'accuracy results lincthis figure show the fairness-
accuracy'trade-off-in this setting? whesi we'dip' below'the’oracle
inlterms of 'accuracy) it is'most-oftenbecause swe are 'bounding
disparity dlowersthan'the oraclelis (e.g) onithe0.04boundsin
DDroesTPRD).CAnd, while we do not outperform the naive
method inl terms cof laccuracy,owe lconsistentlyyout-performaitin
termiscof disparity.

APPENDIX.F
ADDITIONAL EXPERIMENTS: COMPAS

In>this' sectionp welpresentsa suite (of additionaloexperiments
wedruncon the COMPAS f45] dataset! The COMPAS algorithm
is'used by parole officers/and judges across thel United States) to
determine @ criminal’s risk 'of recidivism) or re-committing:the
samelerime. In12016, ProPublica reléased a’seminalldrticlen459
detailing howuthe lalgorithmdisTsystematically biased 'against
Blacks defendants. Theydatasetsused to train the! algorithmchas

Ehttps://fairlearn.org/
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Metric  State Method Lower Bound (95% CI) True Disparity Upper Bound (95% CI)
Dp AL KDC —0.52 £0.01 -0.14 0.23 £0.01
Ours —0.14 £ 0.09 -0.14 —0.08 £0.09
FL KDC —0.55£0.01 -0.16 0.28 £0.01
Ours —0.27+£0.13 -0.16 —0.12£0.13
GA KDC —0.55£0.01 -0.13 0.32£0.01
Ours —0.22 £0.08 -0.13 —0.124+0.08
LA KDC —0.53 £0.01 -0.14 0.25 £0.01
Ours —0.12+£0.07 -0.14 —0.07 £0.07
NC KDC —0.62 £0.01 -0.07 0.32£0.01
Ours —0.13£0.12 -0.07 —0.05£0.12
SC KDC —0.61 £0.01 -0.1 0.28 +£0.01
Ours —0.08 £0.1 -0.1 —0.03 +£0.1
FPR AL KDC —0.58 £0.01 -0.14 0.69 £ 0.01
Ours —0.14£0.13 -0.14 —0.08 £0.13
FL KDC —0.57 £ 0.01 -0.16 0.6 £0.01
Ours —0.31£0.21 -0.16 —0.13£0.21
GA KDC —0.59 £0.01 -0.1 0.77+0.01
Ours —0.22£0.11 -0.1 —0.12£0.11
LA KDC —0.81 £0.01 -0.13 0.85£0.02
Ours —0.08 £0.13 -0.13 —0.05+0.13
NC KDC —0.65 £ 0.01 -0.07 0.86 +0.01
Ours —0.07+0.21 -0.07 —0.03£0.2
SC KDC —0.69 £0.01 -0.12 0.77£0.01
Ours —0.14£0.15 -0.12 —0.06 £0.15
TPR AL KDC —0.78 £0.01 -0.12 0.3 +0.01
Ours —0.07+£0.11 -0.12 —0.04 £0.11
FL KDC —0.8+0.01 -0.14 0.25£0.0
Ours —0.21£0.15 -0.14 —0.1+0.15
GA KDC —0.88 £0.01 -0.11 0.4+£0.01
Ours —0.18 £0.11 -0.11 —-0.1£0.11
LA KDC —0.68 £0.01 -0.1 0.2+£0.0
Ours —0.14 £ 0.08 -0.1 —0.08 £ 0.08
NC KDC —0.86 £0.01 -0.06 0.25+0.0
Ours —0.12+£0.12 -0.06 —0.05£0.12
SC KDC —0.84 £0.01 -0.08 0.31+0.0
Ours —-0.0£0.12 -0.08 —-0.0£0.12

TABLE V: Companion table to Figure

since- beem widelye used: as:benchmarks!inithe(fairtmachine
learning literature:

AlData Description

We use the eight features used inprevious analyses of, the
dataset aspredictors.in.our. model;, therdecile, of the GOMPAS
score, the decile of the predicted. COMPAS score; .the) number
ofiprior crimes.committed, the number of days before screening
arrest, the number of| days spent in jail,.an indicaton for.whether
the;crime commaitted was a felony, age split intocategories; and
the;score, in, categorical form., We process the data following
[45], resulting in n= 6,128 datapoints, Tableoutlines the
feature distribution of the dataset.
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By Race) Probabilities

We generate estimates of race (Black vs. non-Black) based
on first name and last name using a LSTM model used in" [49]
that was trained on voter tolls from Florida. The predictive
performance;and-calibration of these estimates is displayed in
Table V1] and, Figure [14] respectively. In general, the results
are quife reasonable; accuracy. is.at. 73%_ while, the AUC. is
86%,.The probabilities_are somewhat calibrated, although,the
LSTM model tends to overestimate, the probability. of Black;

C. Measurement Experiments

We firstccompare: ouri method) of bounding disparitydtocthat
of KIDCoWer traincanpunconstrained logistichbrégression maodel
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A DaBeatareription

We
alasuDlQCH%cﬁSR’YFs in our modd the dculc%ﬂhu COMPAS
score, the decile of the predicted COMPAS s@n% the number
of priopgedited Devile Seorec number of daysbggore screening
arrest, the numbel of d‘lys spent in jail, an md]@mg)f()l whether
the cri 7 g 3, and
thL su#golfnpcd?w(mcdl f()l m. WL pmccs% thc ta following
, resulting in n = 6. 128 data points. Tabﬁ 'V?' oullmu the

Teatune#doﬁl]ﬂaysoBafbmtSdrﬁtaﬂa:ng Arrest  -1.75
(5.05)
Length of Stay in Jail (Hours) 361265
(1:118.60)
Crimé 134'Felony 0.64
(0.48)
j&lg@i@ﬂe@@gye Score 0.65
(0.82)
Risk 'Sdore in 3 Levels 1.08
(0.66)
ﬁl(gllékDays Before Screening Arrest l 75
Two Year Recidivism 65 %S)
Length of Stay 1n Jail (Hours) 361.20
(1,118.60)
TABLF( VI D1strlllgu'&10n of features used for MPAS. Each
rime 1S ny 7
cell shows the mean of éach feature and the s%n&@&rd dev1at10n
in p n of
observzi’tﬁsnﬁj@ﬂa‘i%be Black and who recidivized within two
years. (0.82)
Risk_Score in 3 | evels 1 0R
Accuracy Precision Recall AUE)
Black 0.73 0.86 0.56  0:86
Two Year Recidivism_ 0.45
TABLE 0.5),

and AUC for predlctmg probablhty a person is Black in the
COMPAS datasetibution of features used for COMPAS. Each
cell shows the mean of each feature and the standard deviation
in mleng]esﬁ Th lows show, th 10p rtior 0
iy Db and TERD. the unsonsiipel mode eilcd
é b 1spar1ty, ut it drops {0 0.21 for Fi
ajusted our target fairness bounds accordingly.

APPENDIX G
SIMULATIONS
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I this, section,we describe the; design of pur|simulation
used; for, additional, experimentso o 1.STM model used in
thee Rrimitive deatures) i, rollZ fyom Florida. The predictive
pewoConditional probabilityob of beingBlackia dunction of
TableZYIlZpd Figure 14, respectively. In general, the results
arce (Realizedsstatuis cas Black or netaB drawnyfrom Bernoulli(b)
860 Downstréamifeaturese Xomea X ta fimction of | Zpp.eh Zyy
LSTNhdndle]l tends to overestimate the probability of Black.

Accliity Precision Recall /;X[C
NE 086 056" 06
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in additio ch X, we
allow for E\fiftﬂffé%t PYY: This dorrésponds to how there
may be assomatlorwbetweemg;@up mt@ersh}p&nd features
which affi wnstream
features even if the groupstatus is not directly relevant tog he
QHECOIRC oo IRERSbting two-year recidivism on the COMPAS
daMhese relationshipsiarecpotsfully specified by the description
in the text above, of course, so we provide details of the selected
functional forms in Table Figure 12 also summarizes
fhe fE4HITes And tHéir Assééiffive relationships visually. This
visualizationy-along withithe language-of directed acyclic graphs
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Note that the resulting disparities
differ among the three fairness
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ENDIX G Score of Outcome

P(Yyr
P(¥)
A. Simulation Design
be the deRealized,Qutcome,ion

nts. .
Coefficients for features X

In this section, we Hescri
used for additional ex;zfrime

s es . i
o Primitive features; Z;, ..

o Conditional pl‘Ob’d%Blli[y b of being Black a function of

ni 1919 @ulted
i all distri 'u%%eil)

LANGrmalized Score of Outcome

" Coefficients for indicator for Black

nal/F'(m;n
\1]’ 5 é

0.

Bernoulli(0.1)

Bernoulli(0.9)
d; ~U[0,1]

diB ~ U[O,UB]/Y

7
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TABL%lX?.nDescription of several variables we use in our simulation study and their functional forms. For ease of notation, we

omiit theinddx ‘denoting individuals i the dataset Unspecitied constants\werg, selected; by inspegction, to mateh: key indicators

acms]::s)%&%fé%lﬁn@%%‘pe}giﬁed)fw Tadwagion of Zy, ..., Zy,
an

a function of downstream

e Score for outcome P(Y),

, €.g. geographic
BIFBG, they give

) through each X, we

in addition to primitives affe
allow for B to affect P(Y').| TR kdrresponds to how there
may be associations between group/membership and features
which affect the outcome of thesinterest via the downstream
features even if the group statu Jot directly relevant tot he
outcome of interest.
o 5 Al i o

sgetciﬁed bytthe descrigjtigon
’Ezro A GRTORIT DR RE SRl

ndom yvari b}es, and e

d

s Simletians Nodes Ifisge | e e e
th lﬁé‘}ﬁF S tﬁglﬁ‘t%l%&?c%&flwi?rc S0 RSy IR R pR
Iesdunns i 8nr<1g0\twﬂﬁcl%ses%h¥ml§gégf directed acyclic graphs

(DAGsS), allows us to more easily reason about whether the

=Y

variance conditions are likely to be satisfied in our model,
B Ex erime tc% ts.ot i y : ’
at leaSt for the underlying outcome.

Following the notation above, we have p to be the number
Of fedttred X in“6tit data, and let n be the number of
datapoints: oWe- runaexperimentswfotiape @ 1020050 mdnd
nfef{50005 10000y 50000} Foreeachlpl we fix thecparaméters in
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our simulations. Nodes indicate random variables, and edges
indicate (causal) relationships between nodes. Importantly,

relationships are not necessarily linear. )
the data generation process and realize 50,000 datapoints. Refer

to Tablefor a list of parameter values, which differ slightly
for each p to control demographic, disparity jonthe; dataset
at @TRBQ{P&%Q@%{E%}‘%XPSF%HSH%. 1, & 12000, 10000}, g
SiRlY.raedomiy P esamelsnfromhe S99 Sakshis. Refer
to Table X for a listof parameter values—which differ slightly
for each p to contPol d#&fnogfaphic dikparity on the dataset
at around 0.25-0.28gForgexpegiments g g5 {5000, 10000}, we
simply randomly sylppamyple fipp the §3,000 dataset.

The last dimensiggq wejfunegylye sigeyof the labeled subset
(measured by the—pereentage—of—r);—whieh from hereon we
TABLE X: List Of parimieters”in'the data ‘Senétation protéss
for GHER P! the ntithber' of Secondary féattires’ X in e data.
Y Corréspondy to the huimber Of ‘primitiid featirey 7, #1154
tHe thteshold For Py s while it is the dpper botind for the
{imiforin distibution o gehdrate d; 5 e "Tabte fiX] ©f 20000
datapoints might be more than enough, especialtyTonsidering
THEPLE diménsion We e 1 the Sizd bF e fabRlel SibSet
Pﬁ%&gﬁ%d’d%}b{’ﬂgSpercentagq of n), which from hereon we
refd¥e BrYO PRI s A en R B AR SRR SFRRbIS
REGtiRhed i Tab1 [RIPHYs 1¥ to hllotlit FoF the Halt thie,
for iistancd oné  hight tetd 40% of 51000’ datapoints’ with
Protected Atribute Tabets 't 1eain 4’ prédictor that réaches the
tAreeY ispatity Botindy OR the dthidrhand, using 20% of 50,000
datapoints might be more than enough, especially considering
El'e ﬁfiléllli‘%ntially higher costs to query thousands of people’s
protéctedeattributes.esults in Figures 5 and 16 In Figure 5,
weWe prototypeé ithesecsimulation @xperiméentscom deimographic
parityynFonreach aexperimentycwehsplitrthe ndatar 80/20binto
train/testodata; thero depeat b timeshwith: differentsseedsoiWe
run: botheour-method)and the llabeled 'subset method;cevaluating
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Fig. 16: We present a ,three by three figure showing the test accuracy of the H}pdels{ {f()eqﬂed using our disparity reduction
method when comparegl w1th relying on training models only;on the labeled subwt and [regm?]mg disparity by directly enforcing

a constraint on the protected attribute labels. The rows correspon

d to datasets of increasing sizes (number of features from

10t 50)x indicating problems of inereasing complexity: The columns correspond; to, the size of the overall dataset, ranging

from 5,000 050,000 samples; [The; Xraxis shows thes pescentage of, the,total-dataset is dedicated- toi thelabeled, subset; and the
yraxis (;1@99{@5(113@]@egg-@qgﬁaqsﬁe@fl,gth‘-tqugls. The blue graphs correspond to our method, and the orange to the labeled subset

method.

n &
5000  {2,4,6,8,10,15,20,30,40} n=10,000 n=50,000
10,000 {l32,3,4,5,7,10,20,30}
50,000 {0,5,1,2,3;4,5,7,10,20} | R
p=10 5 ' y B— A e =)
o 601 / 1 =y
TABLE XI: Suite of éxperiments varying percentage Lf the
data taken as labeled Subset (e) by the size of the full dataset
10 20 30 40 0 10 20 30 0 5 10 15 20
(n) ‘” 70
3 65
p=20 ? i — P
disparity and accuracy~ 6ft | the fest set—————— ’ ="
C. Results <L 55 ‘ ‘ ‘ AL‘c.hv‘ ibset ‘
10 70 30 10 20 30 0 S 10 15 20
We present our results in Figures [3] and [16] In F gure :
we see that while increasing the size of the labeled subset
can sometimes léadf’(foua( regime where training on the labeled
subset alone can produ;ce a model which comes close to"(or-in-— T —
one case-n = 50,000, p -J_cQ—reacheséﬂae desnre{kd}sp ty—m s T ¥ e =

2 40
bound, for the most part, CVCIL\WMthH.JJ&Eg@ labeled subset,x of labeled data (%)

the mean of the disparity over 10 trials is above the desired
dispatity threshold) Mednwhile, dueamethod staysibelow thet accuracy of the models created using our disparity reduction
desited dibparitynthtesHold thcroksiall Giinieaexperimeneds only on the labeled subset and reducing disparity by directly enforcing
4 Ag welcan sed by looking am[}ilbultg“}gtﬁblnlibp tovbottorgspond to datasets of increasing sizes (number of features from
fht teontplexndieatinprefeatares inf the duta)the problemtis, the columns correspond to the size of the overall dataset, ranging

mote a;{iﬂ(istﬁeé@&ﬁfyf@ﬁ[ﬁeslaﬂs}edgmjget;lw\g@tlbtbmwmege of the total dataset is dedicated to the labeled subset

Size of labeled data (%)

, and the

ﬁssiﬂedldispmtylbdgm;lqcnuggbuﬁ'sih@umﬁdgleXiE@mhém gheghs correspond to our method, and the orange to the labeled subset
light@n the fact that model applications with small amounts
of labeled data, and more complex data, are particularly well-

suited for our method.
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APPENDIX H
PAST REVIEWS AND RESPONSES

We enclose our ureditéd reviews and)responses from a prior
submission. We provide here & suimmmaty’of our additions and
changes from our initial version of the paper:

o Aldditienal “Datasets: “We'provide ‘experiments 'on“the
COMPAS 'dataset, ‘usingVa“won-BIFSG proXy''as “our
probabilistic’ estimatel 'We ‘also! provide 'experiments on
sythetic 'data.

« VAdditional ' Methods:®We incorporate “a“comparison to
Mozannar et al. |24], which, to our knowledge, is the only
paper that addresses a setting that is close to ours. We
also discuss, why, other. methods are inapplicable to our
setting.

« Simulatjon Study:. We conduct.a study, on simulated
data where we can-vary both-dataset size-and-underlying
complexity. of the data-generating process to understand
under what regimes our, method is preferable to existing
methods.

We also add a variety of clarification measures, including
adding Tablemto the main paper; adding a section to the
introduction (whichoclarified the real-world situations where our
technique mayhbeluseds;iand setting some of :thestakes foriour
paperyiand| others!

AdditionalriDatasetsy| Inaaesponsenito: reyviewernconcerns
surtoundingnthecnumberiofodatasets considered, we provide
experimental (resultscof ourimethod:over -COMPAS data; which
had mot originally sbeenin: the| paperl Wesalso note:that while
theipaper: focused on . theuapplicationl :of) votere turnout, the
2 ostates for fwhichaweaun learning cexperimentsandnthe 7
states forowhich welperformmeasurement experimentsall have
significantly diffetent data distributions, providing insight to
different data settings.

Additional Baselines: In response to one reviewer, we added
a comparison to Mozannar et al. [24] in our main set of results.
As we show in the paper, we almost always outperform their
method on disparity reduction and accuracy. We address the
particular comparisons the reviewer brought up, and why the
Mozannar paper was the only comparison which shed additional
light to the paper, here:

Our setting differs substantially from the papers cited by the
reviewer and the literature more broadly. In particular, while
some papers assume noisy, perturbed, or nonexistent protected
attribute data, we consider an empirically common ‘“mixed”
case, in which the learner has access to a probabilistic proxy
for the protected attribute over all their data, and ground truth
over a small subset only, spurring the question of how best to
combine the two data sources with fairness and performance
in mind.

With respect to the works the reviewer specifically high-
lighted: Mozannar et. al [24], primarily focuses on a setting
with a very strong conditional independence assumption on
the protected attribute proxy, which is unlikely to be met
besides the (infeasible, for our setting) case in which the
learner can differentially privately generate noisy labels using

the ground truth. However, as you point out, the authors do
propose a potential extension of their method to handle a
case that matches ours. The authors do not discuss this in
detail or provide the code for this extension, but we have
modified their original code to implement the changes described
and include these results in our updated draft. We note that
Mozannar et. al.’s method almost never meets the disparity
bounds, and does worse in accuracy on L2; see Figures 1-2
attached. Levy et. al [61] proposes and analyzes distributionally
robust optimization (DRO) algorithms. At its core, the idea
of DRO is to optimize for the worst-case distribution that is
“nearby” according to some metrics. This has applications to
fairness, as the reviewer points out. In particular, Wang et
al, to which we have already provided a comparison, applies
DRO to precisely the problem of fair classification with noisy
sensitive features. Like other methods that aim for worst-case
guarantees, the method is robust but sacrifices performance by
not using all available information, as can be seen in Figure
2 in our main results. Diana et. al. [62] aims at an upstream
and somewhat orthogonal problem to that of ours. Our paper
focuses on training a fair model using an imperfect proxy (e.g.
BIFSG), where as Diana et al. study how to learn a model to
create proxy features with which to learn a fair model. They
do not focus on the downstream task of training the fair model,
and the methods are hence not directly comparable. We are
happy to include discussion of the above works in the related
work section of our paper.

Investigating Questions Around the Size of the Labeled
Subset: Prompted by the response of several reviewers, we
added experiments on the relationship between the size of
the labeled subset, dataset complexity, and the efficacy of our
method which we pointed to as future work in our limitations
section. Our results are in Section of the paper. Overall,
our method is consistently able to bound disparity across
varying sizes of the labeled subset, whereas training on the
labeled subset alone only comes close to bounding disparity
in low-complexity regimes.

We now enclose the unedited reviews and our responses.
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APPENDIX H
PAST REVIEWS AND RESPONSES

We enclose our unedited reviews and responses from a prior
submission. We provide here a summary of our additions and
changes from our initial version of the paper:

o Additional Datasets: We provide experiments on the
COMPAS dataset, using a non-BIFSG proxy as our
probabilistic estimate. We also provide experiments on
synthetic data.

o Additional Methods: We incorporate a comparison to
Mozannar et al. , which, to our knowledge, is the only
paper that addresses a setting that is close to ours. We
also discuss why other methods are inapplicable to our
setting.

o Simulation Study: We conduct a study on simulated

data where we can vary both dataset size and underlying
Summary:

the ground truth. However, as you point out, the authors do
propose a potential extension of their method to handle a
case that matches ours. The authors do not discuss this in
detail or provide the code for this extension, but we have
modified their original code to implement the changes described
and include these results in our updated draft. We note that
Mozannar et. al.’s method almost never meets the disparity
bounds, and does worse in accuracy on L2; see Figures 1-2
attached. Levy et. al proposes and analyzes distributionally
robust optimization (DRO) algorithms. At its core, the idea
of DRO is to optimize for the worst-case distribution that is
“nearby” according to some metrics. This has applications to
fairness, as the reviewer points out. In particular, Wang et
al, to which we have already provided a comparison, applies
DRO to precisely the problem of fair classification with noisy
sensitive features. Like other methods that aim for worst-case
guarantees, the method is robust but sacrifices performance by
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2 in our main results. Diana et. al. aims at an upstream
and somewhat orthogonal problem to that of ours. Our paper
focuses on training a fair model using an imperfect proxy (e.g.
BIFSG), where as Diana et al. study how to learn a model to
create proxy features with which to learn a fair model. They

extorunetatasd, tisds sarefireadiine learning. I addiion. fyly one baselite:Wang ehaltixcampared Farsessiundsi noisy sensifivé etirhutse ],

and the methods are hence not directly comparable. We are

ems 33 (2020): 8847-8860. B

1scussion of the above works in the related
." International Conference on Machine Learning. PMLR, 2020.

work section of our paper. .

the Size of the Labeled

There are more..I am nqt suggesting authors to compare t of them. But since an{ pwf{sfn this area target the imilar way as this paper, i.e. deriving bounds oh fairness measure
Qﬂ&{omtzi%kgmﬁm}ifﬁmi L&etﬁﬁngﬁﬁm};an s isexdote tha ile  Subset: Prompted by the response of several reviewers, we

(1 R RtackdA cah e sl B LG AR ABkash Q6 UM Lol Simpinind bt eiflg bee B b WitinglGud il Aidiie bEsLBs Sord Bipriidye OF

Zuidlatgs for which we run learning experiments and the 7
statesn dahiow Give forive exgppréarwhanteesventd bz x periments all have
gignatieantly different data distributions, providing insight to
ARt data settings.

iew neede

the labeled subset, dataset complexity, and the efficacy of our
method which we pointed to as future work in our limitations
section. Our results are in Section IV-D of the paper. Overall,
our method is consistently able to bound disparity across

R S e TIONSG A2, QI VI The S LS8 AR G S St hablgth stthset, Whereas training on the

Canfitieqeas v vy 4@ chATIE I yauT fsessndnt b

1%5;;6@ :mfjﬁamémﬁ‘aper, we almost always outperform their
method on disparity reduction and accuracy. We address the

particular comparisons the reviewer brought up, and why tge

Mozannar paper was the only comparison which shed additional
light to the paper, here:

Our setting differs substantially from the papers cited by the
reviewer and the literature more broadly. In particular, while
some papers assume noisy, perturbed, or nonexistent protected
attribute data, we consider an empirically common “mixed”
case, in which the learner has access to a probabilistic proxy
for the protected attribute over all their data, and ground truth
over a small subset only, spurring the question of how best to
combine the two data sources with fairness and performance
in mind.

With respect to the works the reviewer specifically high-
lighted: Mozannar et. al , primarily focuses on a setting
with a very strong conditional independence assumption on
the protected attribute proxy, which is unlikely to be met
besides the (infeasible, for our setting) case in which the
learner can differentially privately generate noisy labels using

33

t/btiiot ahsolutaly tertaie 1tGslumiket b6t not imvssible] thanymucid adtunderstanid some parsofehesubniissidn ot thatlyeuarelinfamiliat y

in low-complexity regimes.
We now enclose the unedited reviews and our responses.
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Rebuttal:
Thank you for your review. We have made the following updates, which we will describe in detail below:

* We have added experiments on the COMPAS dataset, where our method performs better at decreasing disparity than the labeled subset method and Mozannar et al, which
we include as a comparison. We also note that the 2 states for which we run learning and the 7 states for which we perform measurement all have significantly different data
distributions.

* We have added a comparison to Mozannar et al. in our main results, though there are substantial differences between our method and theirs, where our method outperforms on
bounding disparity in all experiments and accuracy in most. We describe our differences from the other references pointed to below.

Additional Datasets

The experiments | |n the current draft of the paperare focused on one ap;?hcatlon,
1"‘ pape ,) OpOses yod JHH'] ’i unfairne //h slgele] # stimate 3 D
redictive task. Aswed n appe d al a ve 51 nifica vanatnon in ey metrics lik
U l Oﬂ the fairness mea &IY 1I ale mm%n 10
predlcnon problem, whlch provvde |n ormative varlatlon over the space of possible problem settings.

i er data from 7 dlfferent sta s for m asurement and 2 states for
g rac fom zi

C ), code y insig o deriye u nd lowe
non-Black, turn /and the ease of the Under ying '

a

We have se!quglthis application because it is one with easily available public data in which individuals’ names and addresses are linked to their data, allowing for the application of Bayesian
Improved Firstname Surname Geocoding (BIFSG), which is likely the most common race proxy used for fairness in industry [2] and government [1]. The measurement of disparity in voting is
also an important question of both academic interest and legal importance. However, as our method does not require the use of BIFSG to estimate a protected feature, we have added
experiments on an additional dataset, COMPAS; for this application, we use an LSTM model used in [5] to estimate race (Black vs. non-Black) based on first name and last name instead of
BIFSG. Our results are attached in Figure 2 of the global response. We show that our method is able to train a classifier that makes predictions which satisfy the target disparity threshold for

several different threshold values, unlike the comparison methods which do not satlsfy the target threshold except for the !argest threshold value.
1. My main concern is the experime It only trie 10nec et, this is rare in machine learning. In addition, only one basel Wang et. al) is compared. Fairness under noisy sensitive attribute

Addlxiqml Bench marks, 1any more recent basel ild be compared to, e.g.
[ 10ur setting differs substantially from the papers cited by the reviewer andthe literature more broadiy. In particular, while some pay isy/perturbed, or nonexistent protected
?:‘E‘;Eggﬁ ?Iati‘we”c‘ogslder an empmcmw common a%nlgg ca;l%, ;n whllﬁir? tt!?,!?ﬁ[ﬂer,hﬁs access tq'a Probablhstlc _proxy fK ;he R’°§ﬁ$§ﬁ';"\ t‘t{‘lbﬁtg f’,}fﬁr ajl mglr Qata and ground truth over

a small subset only, spurring the question of how best to comblne the two data sources wnth falrness and performance in mind
[3] Diana, Emily, et al. "Multiaccurate proxies for downstream fairness." Proceedings of the 2022 ACM Conference on Fairness, Accoun mbm(, and Transparency. 202
With respect to the works you specifically highlighted: Mozannar et. al, primarily focuses on a setting with a very strong conditional independence assumptlon on the protected attribute

Tproxy) whickris GHWQS/ tobe met besides the (infeasible, for olr Setting) case in Which the learher can differentially privately generate noisy fabels tsifg the grotnd trath. Howeéver s you”

IIpoiit GUE the atithors do propose &'potential extefsion of theif Method to handle a case that matches ours. The authors do not discuss this in detail or provide the code for this extension,
but we have modified theirioriginal code toimplement the changes described and.include:these results in ourupdated draft, We.note that Mezannar et al.s method;almostnever meets the
disparity bounds, and does worse in accuracy on L2; see Figures 1-2 attached. Levy et. al proposes and analyzes distributionally robust optimization (DRO) algorithms. At its core, the idea of
DRO is to optimize for the worst-case distribution that is “nearby” according to some metrics. This has applications to fairness, as the reviewer points out. In particular, Wang et al, to which
We'HAve Alreddy provided s tomparison. applies BRO to précisely the problem of fair classification with noisy sensitive features. Like other methods that aim for worst-case guarantees, the
methodis robust but sacrifices performance by not using all available information, as can be seen in Figure 2 in our main results.

SMDiana:et.als aims at an upstream and somewhat orthogonal problem to that of ours. Our paper focuses on training a fair model using an imperfect proxy (e.g. BIFSG), where as Diana et al.
study how to learn a deel to create p xyﬂf atures with which to learn a fair model. They do not focus on the downstream task of training the fair model, and the methods are hence not

S revie J
directly.comparable, Weare epaysanslvds dissHasion aftheaorvawerksintharelatsd werktestian Af QU R2RSF addressed ethical consideration
e, that you did not understand some parts of the submission or that you are unfamiliar

Notation andEvent confident in your ass itely certain. It is unlikely, but not imposs

with some pieces of related wgrk
For examples of the event f we direct you to appendix A5, where we have a table of functions f(h(X), y) and corresponding epsilons that refer to various common fairness definitions. For

example, to enforce equalized false positive rate parity, f(h(X),y) := 1[h # y] and £ = 1]y = 0]. We are happy to include further examples and a more detailed demonstration of their
equivalence in our updated version. We acknowledge that the notation is somewhat unwieldy; however, we do believe that the tracking of the event £ is helpful to illustrate the generality of
the methods. We will revisit this notation and experiment with other options (including withi the rkviewer's proposed modification).

ssment, but not absc

[1] Elzayn, Hadi et al. Measuring and mitigating racial disparities in tax audits. SIEPR, 2023.

[2] Austin, Roy L. Expanding Our Work on Ads Fairness. 21 June 2022.

[3]1 Agarwal, Alekh et al. "A reductions approach to fair classification." PMLR, 2018.

[4] Awasthi, Pranjal, et al. "Equalized odds postprocessing under imperfect group information." PMLR, 2020.

Fig. 18
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Rebut
F

Thank you for your review. We have made the following updates, which we will describe in detail below:

* We have added experiments on the COMPAS dataset, where our method performs better at decreasing disparity than the labeled subset method and Mozannar et al, which
we include as a comparison. We also note that the 2 states for which we run learning and the 7 states for which we perform measurement all have significantly different data
distributions.

Summaryiave added a comparison to Mozannar et al. in our main results, though there are substantial differences between our method and theirs, where our method outperforms on

This paperdevelops methods for measuring,&reducing faisness violations.when the protected atiribute is private; Access to protected attribute Jabels for a small subset of the data is assumed, but
only probabilistic estimates are available for the remainder of the data. A method for measuring common fairness metrics is proposed for this setting. A theoretical bound on a range of common

. {3H8tri8 18 §én. The utility of the approach is shown on various datasets.

solRanBeEMEStSdfletite current draft of the paper are focused on one application, but over different populations: we consider data from 7 different states for measurement and 2 states for
Preseititionic daltefianre detail in appendices C and D, the states have significant variation in key metrics like the fraction Black and non-Black, turnout, and the ease of the underlying
@mimmm@mdmhnch provide informative variation over the space of possible problem settings.

sVQ;E"‘%‘“&."SeIected this application because it is one with eas#{ available public data in which individuals’ names and addresses are linked to their data, allowing for the application of Bayesian
This paper has.numerous strengths, The papsy is el motivated, with convincing practical examples of why this data setting and problem is relevant, The paper s also very well written, the notation is
"zﬁi’d ﬁﬂqr‘\fﬁmg&ﬁw&%ﬂ?%‘&oth academic interest and legal importance. However, as our method does not require the use of BIFSG to estimate a protected feature, we have added
Thejtechnivaloresults arestrong. Thi (Tis'Aéat, drawing:on lanic p ionship betweers the bids| imwha paper labels the probabilist orand thedinedr estimator ( re)’
précisely; theirasymptetic timit): The resultis thierhapplied to-help solvethelfair learning preblem in alprincipledwayiassifier that makes predictions which satisfy the target disparity threshold for
T?\%\’E@lcr ﬁ) fon of ERE"&‘;?AHM%‘H&%&%‘FS&EE 58818%&?5%'.‘1%3%%3&;” }iec Qvgﬁ é‘é’s‘c?ﬁ:‘é%%’&%%‘é’&ﬁ%\hﬂ%?&& %'\ﬂfexﬁ?é’ h‘f?gvtgreolfw the Sp%%réssgd) .‘a%i‘%%%h. The figures are well designed and easy to
understand.! Benchmarks

Weaknasses:differs substantially from the papers cited by the reviewer and the literature more broadly. In particular, while some papers assume noisy, perturbed, or nonexistent protected

There:is generally notmuch tocriticize aboyt this paper However it would be useful if the paper could elaborate on how well this appreach.warks on small sample sizes when.thereis presumably, .-
considerable variability in the probabilisticdinear,estimates, combine the two data sources with fairess and performance in mind.

Ttwould also be useful to better understand (sither thearetically, or, via the experiments) how much public data is needed for this approach to give good.performance (thisiis.actually mentioned.as a
“m’&%},"%ﬁm‘lﬂ%my to be met besides the (infeasible, for our setting) case in which the learner can differentially privately generate noisy labels using the ground truth. However, as you
Some discussion of how computatienally demandirig this approach is whenl comparéd tocalteriativescold belbeneficiallthors do not discuss this in detall or provide the code for this extension,
but Vﬁ hav%moqifi their orlggwi‘l.code,m ig‘ldplem nt the changes esctiiﬁd and include these results in our ypdated draft. We, noiﬁ thai Mogzannar et. al.'s m?[hod almo%t never R]eets the
It would also be valuable to extend this to situations where the protécted vari. has moref an two categories (perl 3@5 _(EBIS %pr{:r?ach sti a(? ies, but that was not clear to me). agree is
dis ary: Ouﬁ\ds an do%ﬁwor&e N pcediasyon L St Fxl%ures 1-5 gttacFe .Levy et. al proposes an analyges istributiorially robust ;?tvmlzanon (DRO) algorithms. At its cdre, the idea of
BB% oach'is still valuable in this setting but clea Iggenéra ization would be valuable. v y : : v .

O is to optimize for the worst-case distribution that is “nearby” according to some metrics. This has applications to fairness, as the reviewer points out. In particular, Wang et al, to which
Qﬂm’élready provided a comparison, applies DRO to precisely the problem of fair classification with noisy sensitive features. Like other methods that aim for worst-case guarantees, the
Whydoes the .empirical problem.nat,accaunt forvariability/uncertaintyin the @stimators2 «an be seen in Figure 2 in our main results.

Holw tablistis the method to incorrectly ealibrated probabilities for the protectad features?In particular, wiat Happens if there's disparitylinthese tos? ect proxy (2.0, BIFSG) where as Diana et al.
IJstuldy r'mw to learn a model to create proxy features with which to learn a fair model. They do not focus on the downstream task of training the fair model, and the methods are hence not
(mec °cn()sr:n arable. We are ha to include discussion of the above works in the related work section of our paper.

The aut%ors hgve aclgfessed Iimitg%ns adequately ands noted certain privacy concerns that arise in éﬂs setting. pap

Fﬂﬁ‘?&#”ﬁ»ﬁ?f l;:\;lre‘vtfr No ethics review needed.

Rating:- 8:Strong Aceept: Technically strong paperwith/novs! ideas -excellent impacton st least one &réal or high-to-excellentimpact onlmultiple ardas, with excellent i cesjand For
reproducibility; and nounaddi hethicaticensiderations.f (h(X), y) := 1[h # y| and £ = 1[y = 0]. We are happy to include further examples and a more detailed demonstration of their
Confidence:- 3: You arefairly confident/in your assessmerit:lt is possible that you did not understand artsiof thesubrni rthatyou are=unfamiliar with some pieces-of related workiy of

Math/atheodetails were naticatefully cheskedid experiment with other options (including with the reviewer’s proposed modification).
Code Of Conduct: Yes
[1] Elzayn, Hadi et al. Measuring and mitigating racial disparities in tax audits. SIEPR, 2023.
[2] Austin, Roy L. Expanding Our Work on Ads Fairness. 21 June 2022. %
Fig. 19

[3] Agarwal, Alekh et al. "A reductions approach to fair classification.”" PMLR, 2018,

[4] Awasthi, Pranjal, et al. "Equalized odds postprocessing under imperfect group information." PMLR, 2020.

Fig. 18
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Rebuttal:
Thank you for your review. We address your questions and concerns below:

Variability and dataset size: Regarding your questions on variability in probabilistic/linear estimates in small sample sizes, and questions about how much labeled subset data is required

for good performance, we have attached a study between our method and only training on labeled subset data that exp|ores this question by training with different percentages of labeled
&ata H’é's&n&h’&lc H&%ggﬁ rhéturégm thg {;Ibbaﬂés’ ”h(sép'b#mo when the pr d attribute is private. Access to protected attribute labels for a small subset of the data is assumed, but

only probabilistic estimates are available for thé rems unim of the data. A method for measuring common fairness metrics is proposed for this s 1g. A theoretical bound on a range of
Aswe:mentioned in limitations) it's natjustjabeled-subset size that.impacts:how our method may function, but complexity of the dataset as well—as the more complex the data is, the more
data will be neges;ﬂryﬁto successfully bound disparity as well as predict accurately.

& excelle

To:conduct this‘study, we implement a data-generating process using analogues of the key features of our setting, as well as a tunable complexity parameter that we may vary (or hold fixed)
with sample sizeJFigure 3 shows the true disparity and accuracy obtained by our method (y-axes) on a test set over several different sizes of labeled subset data (from 50-2000 points) (x-
axes). The four graphs comprise a range of models on data generated from a 3rd degree polynomial with random coefficients over 10 features (less complex data, top row) and 20 features
(morecomplex data, bottorm row), with an‘overall dataset of Sk(left) and 10k (right). The blue'method is labeled subset; the orarge method is our methed, and the dotted line s the disparity ©
ofan unconstrained classifier.

Resufts: Figure 3'in‘thé attached PDF of the global resporise shows that olir method consistently meets disparity goals even with small amounts of labéled data in both the Tow and
Righ complexity Fegimles. By coRftrast, the [abeled slibset Hethod converges froM above toWitds tHe désited disparity bound as the size of the labeled set increases; it comes close to
meeting the bound in.the low.complexity regime but dees not meet.it.even.with.a large,amount.of data in.the complex regime. Thus, this study suggestsithat.our, method is relatively more,,
valuable in high complexity regimes. We will add these results and discussion to the paper and discuss the simulation in detail in the appendix. We are happy to expand these experiments in
the final version should the paper be accepted.

Chmpuu;tinntimmWetWouldbl.\hapﬁywrecondmhetimmgmﬁthe;dlﬁerensméﬂﬁcdsmnhe ppendix pending ptance; As(a rough estimate; the methedstake approxi ly theably
9 nt'of time: 12) 150k vations:0urs><7.5 minutes Mozannar: ~3 seconds Wang: ~24 minutes

xte L Our me s d d tolmeasure/mitigate ‘bétween: emographic groups, but there‘is' no'reaso one 'motbe @ble:

E; sion beyond two'd phic group: di i /mitigate disparity be two'demographic groups, but thered nwhy onewouldmotbe able:

to'Use these' bbwnds in tandem for any non-overlapping groups: in the measurement setting, one could simply compute the disparities across whatever comparisons are of interest, and

extra constraints gould theoretically be added to thetraining setting (e.g. ta.enfarce covariance.constraints andupper bounds on multiple groups). However, with additional groups,

additional data would be needed to correct for multiple comparlsons and the increased complexity of the Iearmng problem.

It would also be valuable to extend this to situations where the protected variable has more than two categories (perhaps this approach still applies, but that was not clear to me). I agree this

Variability injempirical problem: We understand your concern torefer.to why-sample variation is not addressed directly in the covariance conditions or the linear estimator in the empirical

problem outlined in Problem 2A. We note that the generalization bounds in Theorem 2 provides guarantees that the bounds on all of the relevant terms in the empirical problem— the

coﬁ.‘/ig:!}pte constravl_rltg as well as the bo)tdn‘c‘! er‘\ t/he qlspanty es,f"f,‘:’?""j""'" translate to bounds on the ground truth data up to an error term which decreases with larger amounts of data.
Thus, once there is sufﬁctent data ‘the mstablhty in'the zamples of the covariance terms and disparity estimates should not influence the results. We're of course happy to clarify the

presértatidis 6 eHzaRdsuito incorrectly calibrated probabilities for the protected features? In particular, what happens if there's disparity in these too?

Calibration: Thank you for your question. It is true that a miscalibrated (i.e. systematically biased) probabilistic proxy will result in inaccurate bounds; to the extent this is known, this can be
accotnted for'in the bounds at the ¢ost of $orme additionar algelra (Which we can’add tothe"Appendix). But in practice, imperfect calibration does not seem to be a problem if it is not
extreme or pathological. We also. note that the proxy can also be recalibrated for the specific population of interest, either via flexible machine learned models [2,3] or simple linear
regression . This latter technigue is particularly compelling-given recent work which suggests that.additional features tend to.make marginal improvements for accuracy after the key factors
in BIFSG are:taken into.account{1. =11

al considerations.

are fajrly confiden assessment. It is ible that yoy did not understand spme
ﬂ'\anl/( yPu fgr talklng the flmé to ‘reaul d're rev1ew our paper, aﬁd)mease let us know #y ave any fu rthe
Math/ather details were not carefully checked

[11.Cheng, Lingwei, et al. "How Redundant are Redundant Encodings? Blindness in the Wild and Racial Disparity when Race is Unobserved." FACCT, 2023.

the submission or th iliar with some pieces of related work.
ns.

you are un

[2] Pleiss, Geoff, et al. "On fairness and calibration." Neurips, 2017.

[3] Elzayn, Hadi, et al. 2023. (16 in original paper) Fig. 19

Fig. 20
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Thank you for your review. We address your questions and concerns below:

\Surimhidiy and dataset size: Regarding your questions on variability in probabilistic/linear estimates in small sample sizes, and questions about how much labeled subset data is required
Thejpapep prop hnique for ing an igating fairness disparitieswhen mestof the:t i re'pratectedand only probabitistice s of protected attribute dabels(e.g: vi

BISG)are agcessibleFheproposed method takes,advantage of contextual information, i.e., the relationship between a model's predictions and the probabilistic prediction of attributes, to provide

tighter bounds on the true disparity. : : < . ;
As we mentioned in limitations, it’s not just labeled subset size that impacts how our method may function, but complexity of the dataset as well—as the more complex the data is, the more

Saundness:399dry to successfully bound disparity as well as predict accurately.
Presentation: 3 good
Teortribitichis 2%4fy, we implement a data-generating process using analogues of the key features of our setting, as well as a tunable complexity parameter that we may vary (or hold fixed)

\si¥angtmsle size. Figure 3 shows the true disparity and accuracy obtained by our method (y-axes) on a test set over several different sizes of labeled subset data (from 50-2000 points) (x-
X5 THé papert considers a eritical and'practical probiem), flalake sensitivb aaributsimisybesppetetredlial with random coefficients over 10 features (less complex data, top row) and 20 features
(M2 Fhepropused method is validated byboth theoreticaldnalyses afid experiténtsit). The blue method is labeled subset, the orange method is our method, and the dotted line is the disparity
of 3/The proposedamethod can give a significantly tighter bound.

AMeaknesgese 3 in the attached PDF of the global response shows that our method consistently meets disparity goals even with small amounts of labeled data in both the low and
hidnThe-mainconce s thattheassumption that b &= (B =|Z,¢l is too strong, dn practice; the probabilistic-estimates ofiattributesiare likely torbe biased: I is unbiased; can wejust estimate
meeﬂn\gdbpdmymdlettmglﬁmﬁdwp_b. tthis meth re tothe proposed of data in the complex regime. Thus, this study suggests that our method is relatively more

- 2uShieuld the labeled attributes besiid with the ntabeled-ones? In practice did is hard-to guarantee) and-requiring:a smalt shisittve atprilutésmaly viokite el these ol e
the fpriNagysion should the paper be accepted.

3. The compared baselines are limited in Figure 1. There are five more baselines: ‘
Computation time: We would be happy toTecord the timing of the different methods in the appendix pending acceptance. As a rough estimate, the methods take approximately the

foltolhiegnatheshinoveakeess 1450k observations: Ours: ~7.5 minutes Mozannar: ~3 seconds Wang: ~24 minutes
* Evaluate fairness disparity only with the labeled attributes.
EuevﬁmquﬁIMg,&ﬁmographic groups: Our method is designed to measure/mitigate disparity between two demographic groups, but there is no reason why one would not be able

to use these rk‘)oun?s in tanc_iernffpr any r;on—ovgzrlappmg grougs: in the measurqmené setting,lonq cfould simpl comgute the disparities across whatever comparisons are of interest, and
é)'(‘gr]ae:énwsi%qufst icsdu\aa{%aetg}gueclgﬂ\f%seoamcé\l%et#eawéri\gi%osee .HS‘E%Tg'."t‘S%‘?’é‘rEQ cé@%?mgceéecémgﬂ'%téso%n@ﬁcgpe?gdunds on multiple groups). However, with additional groups,
{R2]fCheénletal:Faifdéss underd srAssessing disparity i classisid idy FAatT;26483ing problem.

F s b S

\[R3]:Z: Zhy et alrWeak proxies are sufficientand preferable for fairness with missing sensitive-attributes JEML} 2023.d directly in the covariance conditions or the linear estimator in the empirical
Fﬁﬂﬁmﬂ!t"”ed in Problem 2A. We note that the generalization bounds in Theorem 2 provides guarantees that the bounds on all of the relevant terms in the empirical problem— the
nggmmm&%wum%ﬁ Wmmﬂimmmimmgkﬁg&translate to bounds on the ground truth data up to an error term which decreases with larger amounts of data.
Thus, once there is sufficient data, the instability in the samples of the covariance terms and disparity estimates should not influence the results. We're of course happy to clarify the

pr é;g}’{‘g i\ggtgp‘“??ee&ﬁphe true disparity in Figure 1 is large? Would the method still work?

2. In Line 300, does the "labeled subset with true race labels" refer to the set with 1,500 examples? If true, does this setting correspond to the orange curve in Figure 2 (bottom)? If also true, it seems
Calilthatithis Setting achieves the bestpe 1ance,rath inthe proposed atically biased) probabilistic proxy will result in inaccurate bounds; to the extent this is known, this can be
ﬁﬁﬂ{ﬁﬂ.&‘” in the bounds at the cost of some additional algebra (which we can add to the Appendix). But in practice, imperfect calibration does not seem to be a problem if it is not
fieme or pathological. We also note that the proxy can also be recalibrated for the specific population of interest, either via flexible machine learned models [2,3] or simple linear
regression. This latter technique is particularly compelling given recent work which suggests that additional features tend to make marginal improvements for accuracy after the key factors
iF'ag:Eor Ethics Review:, Nogthics review needed.

Rating: 4: Borderline reject: Technically solid paper where reasons to reject, e.g., limited evaluation, outweigh reasons to accept, e.g., good evaluation. Please use sparingly.
Confidence? 4:Yol are eorifident inyourassessment, biutinot absolutelycartain. Tt s unlikely, butnot impossible; that You did not understand some parts of the submission or that you are unfamiliar

[ﬁ'@ﬁ%ﬁe Pnr‘z&%e'?féf@fe%w&edundant are Redundant Encodings? Blindness in the Wild and Racial Disparity when Race is Unobserved." FACCT, 2023.
Code Of Conduct: Yes
[2] Pleiss, Geoff, et al. "On fairness and calibration." Neurips, 2017.
[3] Elzayn, Hadi, et al. 2023. (16 in original paper) Flg 21
Fig. 20
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Rebuttal:
We thank the reviewer for their feedback. We first respond to your questions, and then the overall concerns:

Questions:

Larger true disparity: Yes, our method works in settings with larger disparity. In fact, the larger the disparity is, the smaller the variance in the estimators and thus the more precisely they
tan bejestimated-withthe same amount of data: We additionally highlight Figure 1, imwhich .2 p and.[) jf do-in-fact bound the truel disparity, despite the relatively high disparity of an (= .o 2

unconstrained classifier at15%: This:is further-supported by ourinew COMPAS experi inwhich thedisp 'uofnnwmmustrmned«ﬂassaﬁermmumi '26% yetiwe are able torsuccessfully
traincourclassifier te makel predictions with a disparity below 18%.

Clarification’of Figure 2 re: labeled subset with true race labels: The orange line does correspond to using a model that enforces the fairness constraint on the set of 1,500 with true race
labels. This baseline'has higher accuracy, however, our target is not to maximize accuracy alone; it is to maximize accuracy subject to disparity constraints, and the labeled subset method
does'not satisfy this constraint. The drop in accuracy of our method corresponds to a fairness-accuracy tradeoff: for huge decreases in disparity (e.g. from 15% to below 4% in the upper left-
hand graph, for demographic disparity), there is a noticeable difference in accuracy between our method and the labeled subset—however, when we bound demographic disparity at 10%
|n§t{%d Of 4% i {Héiéame gr‘a;‘ﬁ# {[Héi'tét?t[ura?é i858 the ‘{t\(NO‘ Hriethdds 4ré Comparable/whild 3l fiethod is far more successful at reducing disparity.

e pro U S valigated Dy botr theoretical analyses and experiment
The rneti;qq;gng resul;g(spgak,mihe ongeing demrabgq{fghe extent ‘of the falrness/accuracy tradeoff [1]. While many works have shown that it is possible to reduce disparity by some
amount without noticeable accuracy tradeoffs, our work adds to this debate by showing that one cannot reduce disparity by an arbitrary amount—e.g. to a specific threshold—with no

repercussions on accuracy. Using the labeled subset alone m ins higher accuracy primarily by to decrease disparity to the desired thr hold we see Fl ure 2in the original

Per e main <()VMPHWL!% ’cy ﬁ” 9\\&1 M JRUHI ilP ?J ')e ﬁE ns\% too st trong, in cyrq tice, [!y ¥ abf \IOH est ?p Wul‘% are ﬁr\”l) to [) \(’\t d%? an we Jus Ilg imate
paper and Figures 1 and 2 in the a ditional PDF, as we relax the fairness constraints, 'the accura improves with it linearly.

the disparity by letting B = 130,57 How wou Id this method com pare to the proposed method?

Conearnsd the labeled attributes be iid with the unlabeled ones? In practice, iid is hard to guarantee, and requiring a small set of sensitive attributes may violate privacy regulations, e.g., differential
Bias| fn the probabilistic estimate b:

3. The compared baselines are limited in Figure 1. There are five more baselines:

. We und’ersfand that mlscallbranon of bis a concern, and direct the reviewer to appendix A.4.2 where we discuss this issue. Overall, while miscalibration of b will affect the bounds, the

L4 e methog in wea

netho still wol

e H still work ‘\pdt” s%m$ ml‘%callbraﬂttqn )(lndegd as we see in appendix C.2, the race probabilities are not perfectly calibrated).

Wgﬂ{ﬂpg(ym Ir suggestion to directly use bthresholded at 0.5, we have included this experiment in Appendix Figure 6 (the bars labeled “Threshold"). As you can see, this method of
thresholding the BISé estimates does not ever effectively bound disparity to the desired level. This is consistent with Chen et. al.'s findings that thresholded estimators will under- or
[11] bverestimate disparity depending’on furidaniental parameters of the problems. Ncomplete information. FACCT, 2021

LID. Samiplest As'in iany ML’ settings; Surtheoretical guarantess require that the 1abeled sibset is drawn from the same underlying distribution as the unlabeled dataset. But, also like
many machine learning settings, deviation from thi ptionwill degrade result othly rather tharvcatastrophically. And in settings of interest - e.g. healthcare, tax audits, recidivism
prediction, etc. - existing empirical evidence as well as (setting-specific) theoretical arguments often suggest that satisfaction of the covariance conditions is driven by societal-level factors
J on ],m:llsrt‘:u’chlowelc‘p(n(tlwt,rrycl Igi‘ﬁeggnﬁag rwpl']lch arevery| likely to generalize even if the labeled subset is not perfectly representative. Of course, the gold standard remains
a perfectly representatlve subset. Note that one can also conduct sensmwty analyses to quantify the degree to which the labeled subset must differ in order to change the qualitative impact

f‘n*@éshfé%%ts’bf’tﬁe drésdn‘fpﬁbﬁ%f‘khpf&é&féi‘rﬁég\s‘\f a0l Y(Fanél‘%UTfhiE'ls‘ﬁifond the scope of the paper.
e with true race | efer to the set with 1 examples? If true, does this setting correspond to the orange curve in Figure 2 (bottom)? If also true, it seems

easurement: (;hpn atdql qngl‘y}e the pfqbahl_lstfc estimator (whlch is in fact well-known in the literature, datmg at least as far back as 1953 [2]) and the

thresholded estlmator Both estimators are biased (even with a perfectly calibrated probabilistic proxy), which Chen et. al. highlight as an impediment to their usage. But we note that we do

incorporate the probabilistic estimator and take advantage of its bias in our framework. As mentioned above, the thresholded estimator does not bound disparity well in our experiments.
‘e will add a discussion as to these points and the citations to our related works section appropriately.

qnods p?mted toin the revuew are all Pqint

estimators. By coptrast our approach recovers upper and lo ounds on the disparity. These
f reynt wl 'eréast;‘\ ounds a pre th tur re ‘;] ““’r%réié{ve’#"‘é|d“s“i“ia‘§ coul ave gen Wi 'Zfﬁw “‘a wit t dg ec|al si mﬁcanc 0 an

N your assessment, Y, PQ ? ?u /fug T \(!"VSA xnri Some parts '? 9 F mil yﬂ

one gmtme[ " e gglgt F“'Wﬁ?tﬁm approach tries |nstead to obtam one parameter Kallus et. al., to ‘which we do compare, is the only alternative method for dlsparlty estlmanon we are aware

of that also ob'tamagpper and lower bounds.

We are happy to add a discussion on these papers and the differences from our approach to the related work.
[1] Rodolfa, Kit T., et al. "Empirical observation of negligible fairness-accuracy trade-offs ir{-?vighi&]earning for public policy.” 2021.

[2] Duncan, Otis Dudley, and Beverly Davis. "An alternative to ecological correlation." 1953.
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Summary:
The paper proposes to regress the label's dependence on the sensitive attribute b assuming access to sensitive labels for a small subset of the data, and using BISG for the rest of the samples. This
\éstitate s then used-to’ bound fdirnessiviolations in theform of what authors callprobabilistic constraintsicerns:

Thissprocess decouples the sensitive attribute estimation from the concept learning, supposedly reducing estimation errors of a typical fairness-constrained optimization problem. The method is for

voter turnout data. However, despite ﬁ\e onal burden of nfltive agnbute re?r sion th? method dges not bound worst-case fairness violations.
Larger true disparity: Yes, our met o s in settings with larger disparity. act, the larger the disparity is, the smaller the variance in the estimators and thus the more precisely they

Saundnessn2:faifwith the same amount of data. We additionally highlight Figure 1, in which D p and Dy, do in fact bound the true disparity, despite the relatively high disparity of an
Presentation: 2£aififier at 15%. This is further supported by our new COMPAS experiments in which the disparity of an unconstrained classifier is around 26% yet we are able to successfully
Conteibution:;2fait make predictions with a disparity below 18%.

Strengths:

MM@Eﬂﬁﬁiﬂgﬁ&mM?Wiﬁmiﬂw*ﬁf&&ﬁ?“ labels: The orange line does correspond to using a model that enforces the fairness constraint on the set of 1,500 with true race
label'smThls baseline has higher accuracy, however, our target is not to maximize accuracy alone; it is to maximize accuracy subject to disparity constraints, and the labeled subset method
(y\c’)es s tsfy this cotﬂstramt Th;g]ro in a1ccuracy ?f our method corresponds to a fairness-accuracy tradeoff: for huge decreases in disparity (e.g. from 15% to below 4% in the upper left-
hanac°m%?1'5" odgmlb ;] nv?lc t%;?arlt?&%ere'lss%uno lceagke difference in accuracy between our method and the labeled subset—however when we bound demographic disparity at 10%

1T SmeIia secin s somenhatspars, n ar i the mesho 1 ested o are datast, | uspect i 3 Imiatio of e particiar dta fegme the paper adops where BISG appicabity i
a concern. Otherwise, rE\ethods and baseline comparisons are sensible. Given the lack of novelty (see previous point), I think the emplr?cal section should have been more substantial.

The meparticalar, several ablation stlidies are inlorder First) given that BISG éstimation Comes fromya separate datd domain| the' paperneeds an'ablation studyito show How riuch the midthod e
AMOiMproves o jlist Using & nermal fairmess-constrained optinization problefy using BISG labelse cannot reduce disparity by an arbitrary amount—e.g. to a specific threshold—with no
rEpEVet anather ablation study Shiouldbe o the sizeof the labefed datasetd i bther Words, thepaper/sholld provide & conerate answer t6 this 6Bservatior: /¢ A5 we see Figure 2 in the original

papgy Wed n':o‘geu{ﬁstb?en 8tﬁl.n(t> %\?rd r?\'&?\oﬁl @%E«p%% den {ﬂ%mﬁefas‘{zesgﬁ ot ?\E{‘Eh tssetﬂt’ft% caa?ﬂag‘e?er ﬁh"‘fﬁg 'trlége& d attribute—if this subset is relatively large, then361(depending on the

Concegomplexity of the learning problem) it may be sufficient to train a model using the362 available labeled data. Symmetrically, if the labeled subset is exceedingly small, the enforcement of363

the covariance constraints dunpg training may not generalize to the larger data set
Biaslin the probabilistic estimate

¢ Reshiiasheadditionalhurdap afrsnsitys auribute rRatsraian.dhe methor s potReunA werpbcRse faICDE T viclations: Aot even arymRspticalyLameiiis the pns ilzationO8nAMR, the
H"t%’e!i"s% ﬁmrﬂg&e'!m%s%shmmg 1125 i ooks presty much like 2 normal.ogneralization bound. What i the extra sonstraint doing here? [ may be missing something, and invite authors

m Shei Rxhcs co?(tgr?‘g ’%ﬂrec use b thresholded at 0.5, we have included this experiment in Appendix Figure 6 (the bars labeled “Threshold”). As you can see, this method of

ol &09 g N our su
" %"g%'?! F&gﬂyﬁ%’é@ggﬁ%ﬁh %es5&5‘5&"?48?&&‘?%‘&5585%??‘88388‘0"865}?!9 Retnd e asaiolations dewpite heradiiond hassie @nd: §5§R§Pﬁﬂ%§%‘<ﬁh%'&deﬁﬁﬂglgﬁgﬁ‘ﬂmﬂaae' Syjgence,

(Ijam 29 |F'r(1)§tve!'n lesdgl'fl %renpeetngmg en?ralétassnﬁejrﬂe? parameters of the problems.

* Some factual i |ssues in the text:
D rapic ] hgbas?t;n'”@;ss? S e e A e R
many madynfvh ar, "Fir?E:‘V %v@g%xs [Ty 'SWW sults smoothly ra er than catastrop 1cal And in setnngs mterest ealthicare, tax au ts recidiviSm
prediction, etc. - emstmg empmcal evidence as weH as (setting- specnflc) theoretical arguments often suggest that satisfaction of the covariance conditions is driven by societal-level factors
like historiﬂab@mgmpﬁmmmmqmaﬁgmqﬁ@gmhmqm likely to generalize even if the labeled subset is not perfectly representative. Of course, the gold standard remains
a perfgctlymrﬁﬁsm?%mapa% rgl&}&gw 8&%&8&!50 conduct sensitivity analyses to quantify the degree to which the labeled subset must differ in order to change the qualitative impact
of measdirements or the presumption of improved fairness via our model, but this is beyond the scope of the paper.

Other compyp‘% 3 é‘?@.’%‘nﬁ%"é‘ﬁﬁy‘%g?&rﬁ‘%gﬂ?eﬁR%%“E'Eei|"2al."aﬁs fon F]eeqres%ogmsuc estimator (which is in fact well-known in the literature, dating at least as far back as 1953 [2]) and the
threshol&SE@QFE?E'S?W&N%PE&"?&%@% ?SVQFF\HRﬁ S%Jm%amrﬁ'naﬂ%%ﬁbﬁ{ %?Sﬁpf’w#ﬁ'&"eﬁ?ﬁ g‘:ﬁ!"ﬁﬁmﬂgmr& an impediment to their usage. But we note that we do
inEoﬁfm?ﬂﬁmﬁbﬂ[ﬂﬂ%@gﬁﬁqﬁﬂﬁarﬁke advantage of its bias in our framework. As mentioned above, the thresholded estimator does not bound disparity well in our experiments.

We wif? Predicting sensitive attributes isiproblematic at best and, igggqgﬂwarwmgmmg@&gamw concern. I also take issue with the systematic use of sensitive data prediction. We should

not be promoting cross-matching of data, beyond the reason they were collected for.
Mor enerally, the disparity estimation methods pointed to in the review are all point estimators. By contrast, our approach recovers upper and lower bounds on the disparity. These

2PE are fundamen(ally dlfferenx whereas the bounds approach tries to capture all parameler values that could have generated the data without attaching special significance to any

on ?W“ n glg &% ‘P( g ‘r’gscaﬁ?rysgsllr? '!'hegrem B&?nmga':gara%gre‘fy?('ﬁlks t. al., t? Whlih we do compare, is the only alternative method for disparity estimation we are aware
Figu e Id tseems one the rget ods can bound FPRD. How can you claim this is near-feasibl
of tha a so o alns ipper and lower boun

Limital
b ﬁ.’ﬁ:f%aﬁ& s Sra Viell-addressed in the main paper. Maybe atthors Colld expand o 1t Using the collective reviews.
?ILB%?‘E%&ER&W: Nb RtHi %&?&&Vﬁé@d}&f negligible fairness-accuracy trade-offs in machine learning for public policy." 2021.

[Rating: 6: Weak Accept: Technically sofid, moderate-to-high-impact papes with no,major concerns with respect to evaluation, resources, reproducibility, ethical considerations.
Confidence: 4: You are confident in your assessment, but not absolutely certain. It is unlikely, but not impossible, that you did not understand some parts of the submission or that you are unfamiliar
with some pieces of related work. .
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Rebuttal:
We thank the reviewer for their feedback. We note that:

* We have performed the two ablatlon studies mentioned which we describe in detail further below—we pomt toin Appendlx F for the nalve comparison of our method to

" reshoided BIFSG efimates, 5nd the SKUAY aboit dataset size e préseriin Figlie 3 the PDF atticied to thé global fesporise. 1** 14 1<e B Ter e estafihesamplis s

L V S L N < VIC iy at jlisti

“s"\We also incllide new versions of our faise goslﬁive rate dfs‘pg‘rﬁy“f?l’ﬁﬁfresu ts in fééponse to your questions on near-feasibility.

Thrs p'o ess decouple: w“r sensitive attribute estimation from the concept \mvmm; supposedly reducing estimation errors of a typical fairness-constrained optimization problem. The method is for

We fil ﬁuﬂ oVil

a
voter outdat urpuwll Vel

catiol N £
; ? q; the additional burden of sensitive attribute rec n, the method does not bound worst-case fairness violations.

¢ Itis true that in our setting, the problem of learning a sensitive attribute proxy is decoupled from the problem of learning the outcome of interest. But our learning problem does
depend on the proxy: we learn a fair model by measuring and constraining the relationship between the outcome and the proxy (namely, constraining the covariance conditions Cy 5
and C'y.p)s torbe the same sign in order to guarantee that the linear estimator D, will serve as a bound on disparity, and then constraining D, to the desired upper bound on disparity)
inthe training process.
TecThe proxy we usesBIFSG+is d the entiredata The labeled subset is used only to constrain the relationship between the proxy and the outcome of interest.

Worst-case violations and Theorem 2: If we understand the point correctly, the reviewer is concerned about the “worst case” in the sense of “worst case over distributions”, i.e. that the
méthod will Aot Work if thé covariahce conditions are' ot'met. In our technique for training a fair model, it is precisely for this reason that we add the constraints on the covariance terms.
Thts, Weare limitinig our searchto models for which we cai guarantde that our measurement riethod works and thus that we'can reliably bound disparity; i doing'se, we trade off some
performance for the security 6f bounding disparity. OF course) we cannot Work with the population covariance terms directly) but instead work with'their sample d@nalogues As'in'any
empirical optimization problem, working with the sampleiintroduces some d'appro arror Theorem 2 is useful] because it provides a formal guarantee and quantification of
the iﬂfunmthbt‘wm‘hlyh‘pfdbémﬁ)f)‘tﬂesé erm‘swmtsét%m'ﬁ@gngiblé‘wrtwEﬁu&;’ﬁfd‘a!erhnd iterations under mild conditions.

"""" ablation study should be on the size of the labeled dataset. In other words, the paper should provide a cor e answer to this observation
Size of the labeled subset: We agree that this is an important question; we have conducted studies of this and dlsplay our results in Figure 3of the attached one-page addmon Due to
space CORStals, pledde Sek G Fesfionse to teUieWer VIA[For s discsien OFthil aperfient 112/ w1 the prorecied arute I (1 subeet e reaiely rge. g ey
complexity of the learning problem) it may be sufficient to train a model using the362 available labe ta. Symmetrically, if the labeled subset is exceedin nuH the enforc

Comparingto fairness-constrained optimization with BISG labels: In Appendix F-we provide an ablation study in which we train a fairness-constrained optimization method based on
thresholded versions of the BIFSG labels for all experiments in Figure 2 of our original paper. Our study shows that while the thresholded approach has higher accuracy than our method, it
cofsistently fbﬂs)tbiédﬁtbedlsbam&stwmé!ﬁédﬁé&(h‘rﬁhbl‘d"W@EWEW%iﬁ?ﬂfqﬁt‘thi‘sumbwprbmméﬁt{y‘i‘h!th@kéxt."> not even asymptotically. I am afraid the generalization bound in

Theorem 2 does not alleviate these concerns, as it looks pretty much like a normal generalization bound. What is the extra constraint doing ? I may be missing something, and invite authors

ere
Novelty of Theorem 1: Theorem 1.is similar to the result of [16], but Theorem 1 generalizes the result beyond demographic parity to a very broad class of fairness definitions, a

generglization.that was not obvious from [16]. In. any «case, we do not viewthis particular theorem as our primary contribytion, but rather.as a igar 9H§dH§E‘f%‘9§L9M’?&P§§ﬁ forourience,
methods as applied to fairness metrics more generally.. .

Near-féasibility! We'thank the‘réviewer for pointing out this imprecision. Near feasibility refers to a solution produced which may violate constraints, but that this violation can be made
arbitrarily small-(in-particulan, with enough.data,and:training iterations); as-described in-Theorem 2. Near feasibility occurs widely in settings wheve constraintsiare formulated over: jotting ¢
distributionschut enly:sample datais availableyinipractice, researchers will either fix a constant below which constraint violation is considered negligible, or fix a number of iterations and

dataset size based on data availability and observe the constraint violations. See, e.g. [1]. We will clarify this point in the paper.
= Demographic parity does not take into account the ground truth
Regarding the FPRD results we provide |mproved results displayed in Figure 2b of the attached PDF. In our initial presentation, for consistency, we used the same hyperparameters for each

II-know, oeffic
of the dlspant)‘( metric exbenments %y tu(ﬁ'l]ng) for the FPRD problem specifically, we see greatly improved results. We will update the paper to reflect the problem-specific hyperparameter

optimization QHP'IQRSJ‘« reference. It seems the paper
Relationship between linear estimator and linear regression coefficient: We'thank the reviewer for poifiting out how our'statement could be misinterpreted. We will change the
senténice to'emphasize its relationshipto the ordinary least squares regression coefficient.

s L2 loss for regression

icting sensitive attribut;

Pred
Typos: We thank the reviewer for poin

s problematic at best and illegal in r mmy ontexts where fairness is a concern. I also take issue with the systematic use of sensitive data prediction. We should
ng out the typos, which we il fix, | 1. 1

Finally, we share the reviewer’s concern that sensitive data be protected. But it is well-established in the literature that fairness cannot be achieved through unawareness; hence, in settings
without labeled data, if we dan't use proxies to measure and mitigate unfairness, our options are to either remain ignorant about potential unfairness, or use distributionally-robust

optimization approaches, which maycome at;a cost to performance (see discussion,in qur.response to Reviewer ZFXj). In some cases, these solutions may be desirable, but we believe
enough high-stakes settings (e.g. [1], [2], and 3]) exist that developing methods to measure and mitigate unfairness based on proxies is worth the potential risks.

[11Cotter-etal, 2019-(13dnoriginal paper)in paper. Maybe authors could expand on it using the collective reviews
[2] Elzayn, et al. 2023.(16'in original paper}cded

Tech plmln solid,
issectil g‘r”c al bi

i‘are confide 1 your a

[4] Executive Order 13985 work

rate-to-high impact pimv with | 0T U\m concerns

er gqn hm«“?!e\d\\glmyan m LIS eavl\\llpf plo

V"\pr[( to l‘v"llU‘!H(‘ﬂ resources, '(‘O(O(}Uﬂhl‘\[‘;h ethical considerations
tions. Science, 2019.
Impossible, th d‘ you did

6: Weak Ac
[3] Obermeyer, q} al

not understand some parts of the submission or that you are unfamiliar
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Rebuttal:
We thank the reviewer for their feedback. We note that:

* We have performed the two ablation studies mentioned which we describe in detail further below—we point to in Appendix F for the naive comparison of our method to
thresholded BIFSG estimates, and the study about dataset size we present in Figure 3 in the PDF attached to the global response.
* We also include new versions of our false positive rate disparity (FPRD) results in resp to your g ions on near-feasibility.

We first provide some clarifications:

« Itistrue that in our setting, the problem of learning a sensitive attribute proxy is decoupled from the problem of learning the outcome of interest. But our learning problem does
depend on the proxy: we learn a fair model by measuring and constraining the relationship between the outcome and the proxy (namely, constraining the covariance conditions C 5
and Cy g, to be the same sign in order to guarantee that the linear estimator D, will serve as a bound on disparity, and then constraining Dy, to the desired upper bound on disparity)
in the training process.

* The proxy we use-BIFSG-is used over the entire dataset. The labeled subset is used only to constrain the relationship between the proxy and the outcome of interest.

Worst-case violations and Theorem 2: If we understand the point correctly, the reviewer is concerned about the “warst case” in the sense of “worst case over distributions”, i.e. that the
method will not work if the covariance conditions are not met. In our technique for training a fair model, it is precisely for this reason that we add the constraints on the covariance terms.
Thus, we are limiting our search to models for which we can guarantee that our measurement method works and thus that we can reliably bound disparity; in doing so, we trade off some
performance for the security of bounding disparity. Of course, we cannot work with the population covariance terms directly, but instead work with their sample analogues. As in any
empirical optimization problem, working with the sample introduces some noise and approximation error. Theorem 2 is useful, because it provides a formal guarantee and quantification of
the intuition that (with high probability) these errors will become negligible with enough data and iterations under mild conditions.

Size of the labeled subset: We agree that this is an important question; we have conducted studies of this and display our results in Figure 3 of the attached one-page addition. Due to
space constraints, please see our response to reviewer Vf4j for a discussion of this experiment.

Comparing to fairness-constrained optimization with BISG labels: In Appendix F, we provide an ablation study in which we train a fairness-constrained optimization method based on
thresholded versions of the BIFSG labels for all experiments in Figure 2 of our original paper. Our study shows that while the thresholded approach has higher accuracy than our method, it
consistently fails to control disparity below the specified threshold. We will highlight this more prominently in the text.

Novelty of Theorem 1: Theorem 1 is similar to the result of [16], but Theorem 1 generalizes the result beyond demographic parity to a very broad class of fairness definitions, a
generalization that was not obvious from [16]. In any case, we do not view this particular theorem as our primary contribution, but rather as a rigorous justification of and basis for our
methods as applied to fairness metrics more generally.

Near-feasibility: We thank the reviewer for pointing out this imprecision. Near feasibility refers to a solution produced which may violate constraints, but that this violation can be made
arbitrarily small (in particular, with enough data and training iterations), as described in Theorem 2. Near feasibility occurs widely in settings where constraints are formulated over
distributions but only sample data is available; in practice, researchers will either fix a constant below which constraint violation is considered negligible, or fix a number of jterations and
dataset size based on data availability and observe the constraint violations. See, e.g. [1]. We will clarify this point in the paper.

Regarding the FPRD results, we provide improved results displayed in Figure 2b of the attached PDF. In our initial presentation, for consistency, we used the same hyperparameters for each
of the disparity metric experiments. By tuning for the FPRD problem specifically, we see greatly improved results. We will update the paper to reflect the problem-specific hyperparameter
optimization approach.

Relationship between linear estimator and linear regression coefficient: We thank the reviewer for pointing out how our statement could be misinterpreted. We will change the
sentence to emphasize its relationship to the ordinary least squares regression coefficient.

Typos: We thank the reviewer for pointing out the typos, which we will fix.

Finally, we share the reviewer’s concern that sensitive data be protected. But it is well-established in the literature that fairness cannot be achieved through unawareness; hence, in settings
without labeled data, if we don't use proxies to measure and mitigate unfairness, our options are to either remain ignorant about potential unfairness, or use distributionally-robust
optimization approaches, which may come at a cost to performance (see discussion in our response to Reviewer ZFXj). In some cases, these solutions may be desirable, but we believe
enough high-stakes settings (e.g. [1], [2], and 3]) exist that developing methods to measure and mitigate unfairness based on proxies is worth the potential risks.

[1] Cotter et al, 2019. (13 in original paper)
[2] Elzayn, et al. 2023. (16 in original paper)
[3] Obermeyer, et al. "Dissecting racial bias in an algorithm used to manage the health of populations.” Science, 2019.

[4] Executive Order 13985
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