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Abstract

The choice of pooling strategies and layer selec-
tion and aggregation plays a crucial role in the
quality of sentence embeddings in Transformer-
based models for classification. While the
[CLS] token is commonly used for sentence
representation, research suggests that alterna-
tive pooling methods, such as token averag-
ing, often yield better results. In this work,
we systematically study various pooling tech-
niques, including average, sum, and max pool-
ing, as well as novel combinations, alongside
layer aggregation strategies for sentence and
document embeddings in Transformer encoder-
only models. Additionally, we propose to
the concatenation of multiple pooling methods
to represent a single document. Our experi-
ments, conducted on multiple text classification
benchmarks, demonstrate that carefully select-
ing pooling methods and layer combinations
can improve classification accuracy by up to
9% compared to standard approaches. These
findings emphasize the importance of exploring
diverse strategies for sentence representation
and offer valuable insights for optimizing em-
bedding extraction in NLP tasks.

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
has revolutionized NLP through contextual word
representations (Lin et al., 2022). Models like
BERT (Devlin et al., 2018), GPT and its successors
(Radford et al., 2018, 2019; Brown et al., 2020;
Achiam et al., 2023) have driven a paradigm shift,
significantly improving NLP tasks (Wolf et al.,
2020). Despite their success, these models pro-
duce token-level outputs, and using special tokens
(e.g., [CLS] in BERT) for sentence embeddings
often yields suboptimal results. Research therefore
favors aggregation techniques like pooling (Li and
Li, 2024; Stankevicius and LukoSevicius, 2024).
Pooling aggregates token vectors into a single
sentence embedding (Xue et al., 2024), typically

using mean or sum operations to retain key seman-
tics. Performance also depends on the selected
model layers (Dubey et al., 2023; Hosseini et al.,
2023). However, pooling methods struggle with
token order and long documents, often degrading
representations. Though solutions exist, like us-
ing intermediate layers or diverse pooling, most
are applied ad hoc, without systematic evaluation.
This gap is critical given the variety of encoders
used today, such as RoOBERTa (Liu et al., 2019),
DeBERTaV3 (He et al., 2021), SBERT (Reimers
and Gurevych, 2019), SimCSE (Gao et al., 2021),
and HNCSE (Liu et al., 2024b).

While decoder-only models dominate recent Al
trends, encoder-based architectures like BERT re-
main the standard for embedding generation in
tasks such as classification, RAG, duplicate detec-
tion, sentiment analysis, and similarity measure-
ment. Although some studies (Fu et al., 2024) use
large autoregressive LLMs for sentence encoding,
their high computational cost hinders scalability.
Recent work (Patil et al., 2023; Hongliu, 2024)
continues to explore ways to improve text repre-
sentations in encoder-only models. We argue that
advancing pooling strategies and context-aware em-
bedding training is essential to enhance sentence
and document representations.

In this context, this work proposes a comprehen-
sive systematic study of approaches for generating
representative embeddings for sentences and docu-
ments based on Transfomer encoder-only models
for classification tasks, focusing on four main as-
pects:

» Extraction of individual token information
and pooling: Investigating ways to combine
token embeddings into a single vector repre-
sentation. We evaluated the use of the [CLS]
token to represent sentences as well as aver-
age, sum and max pooling of token embed-
dings. We also study the impact of excluding
special tokens, such as [CLS] and [SEP], and



stopwords from the pooling. The stopwords
used were extracted from the standard English
list provided by the Natural Language Toolkit
-NLTK), a commonly used tool in NLP re-
search.

Impact of extraction layer selection and ag-
gregation: Analyzing the performance vari-
ations in downstream tasks when extracting
embeddings from different model layers. We
also conducted experiments with various layer
aggregation strategies, including sum aggrega-
tion (SUM), average aggregation (AVG), and
individual layers preceding the final layer.
Generalization across encoders: Evaluating
whether the observed trends hold when using
different encoding models.

Combinations of representations: Evaluate
whether combining multiple pooling strate-
gies along with layer aggregation via concate-
nation can produce better results.

In addition to reviewing existing pooling meth-
ods, we propose novel strategies for pooling and
aggregating encoder layers to better capture token-
level information. We also introduce techniques for
combining multiple pooling and layer aggregation
methods into a single representation.

Using the SentEval toolkit (Conneau and Kiela,
2018), we evaluate these strategies across stan-
dard text classification benchmarks. Our approach
yields substantial improvements: SBERT average
accuracy increased by 4.31% (85.27% to 89.58%),
and DeBERTaV3 by 8%. Compared to state-of-
the-art methods, our technique achieved superior
average accuracy, gaining 0.9% against the best
encoder-only baseline, while simply selecting spe-
cific pooling and layer aggregation options.

The remainder of this paper is organized as fol-
lows: Section 2 discusses related work; Section 3
introduces our pooling and aggregation strategies;
Section 4 presents the experiments and results; and
Section 5 concludes the paper.

2 Related Works

Sentence embeddings, which represent the mean-
ing of a sentence as a dense vector, have been exten-
sively studied as a fundamental task in natural lan-
guage processing (NLP). Recently, leveraging pre-
trained language models for sentence embedding
has become a dominant approach (Cha and Lee,
2024). Various techniques have been proposed to

"https://www.nltk.org/

improve both feature extraction and computational
efficiency, including Transformer-based architec-
tures, pooling strategies, and contrastive learning
methods.

A crucial aspect of sentence representation learn-
ing is the pooling strategy, which determines how
token embeddings are aggregated to obtain a single
vector representing the entire sentence. Traditional
methods include mean pooling, which averages
the embeddings of all tokens, and [CLS] pooling,
which uses the [CLS] token’s embedding as the
sentence representation.

BERT (Bidirectional Encoder Representations
from Transformers) introduced bidirectional pre-
training and Masked Language Modeling (MLM),
enabling the capture of rich contextual represen-
tations. Sentence embeddings in BERT are typi-
cally derived from the [CLS] token (Devlin et al.,
2018). RoBERTa improved upon BERT by remov-
ing the Next Sentence Prediction (NSP) objective
and adopting a more robust training strategy, en-
hancing token embeddings’ generalization. These
embeddings can be aggregated using either [CLS]
pooling or mean pooling (averaging token embed-
dings) (Liu et al., 2019).

To further improve sentence representations, sev-
eral model adaptations have been proposed. De-
BERTaV3 introduced Replaced Token Detection
(RTD) as a pretraining objective, refining contex-
tual representations while maintaining computa-
tional efficiency. However, it still primarily relies
on [CLS] and mean pooling for sentence embed-
ding generation (He et al., 2021).

Contrastive learning has emerged as a promis-
ing approach for producing more discriminative
sentence representations. SimCSE introduced a
simple yet effective contrastive learning framework
in which different forward passes of the same sen-
tence, with dropout applied, serve as positive pairs,
while other sentences in the batch act as negative
samples (Gao et al., 2021). This approach opti-
mizes sentence representations by encouraging se-
mantically similar sentences to have closer embed-
dings in vector space. Building upon this idea,
HNCSE incorporated hard negative mining, where
semantically similar sentences belonging to differ-
ent classes are used as negative samples to refine
class separation and improve sentence-level dis-
criminability (Liu et al., 2024b).

Previous works predominantly relied on the
[CLS] token or the average of tokens from the last
layer for sentence representation. While widely



adopted, recent studies suggest that alternative
strategies can yield substantial improvements. For
instance, BERT-LC (BERT Layers Combination)
proposed aggregating multiple Transformer layers
to capture hierarchical semantic information, out-
performing methods that rely solely on the final
layer (Hosseini et al., 2023). However, it aggre-
gated layers solely by averaging them, and our
experiments show that summing layers achieve su-
perior results. Similarly, AoE (Angle-optimized
Embeddings) introduced an optimization method
to reduce gradient saturation and enhance class
separation by refining angular differences in the
embedding space (Li and Li, 2024), evaluating sen-
tence embeddings using [CLS], average, and max
pooling.

The integration of layer aggregation, pooling
strategies, and contrastive learning has proven to
be effective in generating high-quality sentence em-
beddings. In this work, we explore these techniques
by combining multiple pooling methods and layer
aggregation strategies to enhance the quality and
expressiveness of sentence representations. The
next section details our proposed approach.

3 Proposed Approach

Given an input sentence, the goal of a sentence em-
bedding model is to generate a vector that captures
its semantic and/or syntactic information. To obtain
a sentence embedding, we first pass the sentence
through a Transformer model, which outputs the
tensor [, then apply a pooling function p, which
can be max, mean, etc (Hosseini et al., 2023).

Our approach to studying pooling involves ex-
perimenting with various vector pooling techniques
combined with different hidden layer aggrega-
tion methods in Transformer encoder-only models
(specifically BERT-based models). These pooling
techniques have been widely explored in the litera-
ture (Hosseini et al., 2023; Reimers and Gurevych,
2019; Liu et al., 2024b), and, in this work, we in-
troduce novel combinations of pooling strategies
and layer aggregation methods.

Our work focuses on four key aspects: identify-
ing the most effective pooling strategy, determining
the best layers to use for pooling, determining the
best layer combination, and evaluating the interplay
between different pooling methods and layer ag-
gregation techniques as well as their combinations.
First, we assess four BERT based encoder models
in our initial experiments to establish a baseline:

BERT, RoBERTa, DeBERTaV3 and SBERT (in our
case, using the allmpnet model?).

Second, we evaluate simple pooling methods ap-
plied to the last layer to identify the most effective
strategies, including a proposed variation that ex-
cludes special tokens and stopwords. Third, we ex-
amine the impact of selecting different Transformer
layers for pooling and explore layer aggregation
techniques to assess their effect on sentence embed-
dings. Finally, we investigate the combination of
pooling techniques through concatenation (using
two or three token vectors) alongside layer aggre-
gation to determine the optimal configuration for
producing high-quality sentence embeddings.

Below we describe the pooling techniques and
aggregation strategies used in our study.

3.1 Pooling Techniques
3.1.1 Classification Token

Our first approach to sentence embedding is to
simply use the [CLS] token. Encoder-only mod-
els such as BERT and its derivatives generate this
token as a common method for representing a sen-
tence as a single vector, as demonstrated in studies
like (Devlin et al., 2018), among others.

3.1.2 Simple Pooling and Simple-NS Pooling

Next, we propose studying the application of basic
pooling techniques from the literature to conduct
initial experiments. These pooling methods are
listed below:

* AVG: Simple average of the token embed-
dings of a given layer from a given input text;

* SUM: Simple sum of the token embeddings
of a given layer from a given input text;

* MAX: Embedding generated by selecting the
maximum value across each dimension from
the token embeddings of a given layer of a
given input text.

All pooling methods exclude the [PAD] token. Ad-
ditionally, we conducted experiments excluding
special tokens [CLS] and [SEP] and stopwords to
assess their impact on pooling. To evaluate this ef-
fect, we created three variations by removing these
tokens: AVG-NS, SUM-NS, and MAX-NS.

3.1.3 Pooling Concatenation
We also evaluated whether combining two differ-
ent pooling methods could impact classification

Zhttps://huggingface.co/sentence-transformers/all-mpnet-
base-v2



performance by concatenating their vectors into a
single representation. Since there are six pooling
methods plus the [CLS] token (treated as another
pooling technique for simplicity), pairwise combi-
nations resulted in 21 new pooling strategies. These
combinations are denoted by a plus sign, such as
CLS+SUM, which represents the concatenation of
the [CLS] vector and the SUM pooling vector.

We also explored concatenating three pooling
vectors, generating 35 additional pooling configu-
rations. These are denoted by two plus signs, such
as CLS+AVG+AVG-NS.

All concatenation techniques produce a single
vector with increased dimensionality, potentially
improving classification performance. Preliminary
experiments with four-vector concatenation, with
35 additional pooling configurations, showed infe-
rior results, so they were omitted for clarity and
space.

3.2 Hidden Layers Selection and Aggregation

3.2.1 Single Hidden Layers

We evaluated applying the pooling to the nth en-
coding layer to assess the impact of extracting em-
beddings from different hidden layers rather than
exclusively from the last layer, as commonly done
in (Devlin et al., 2018) and most prior works.

This hypothesis has been explored in studies
such as (Liu et al., 2024¢) and (Jin et al., 2024).
In this paper, we denote this technique using the
suffix LYR-X, where X is the layer number.

3.2.2 Sum of Hidden Layers

Instead of applying pooling to a single layer, we
apply it to the sum of token embeddings across
X hidden layers from the input model. The goal
is to evaluate whether different layers contribute
distinct information about each token. Additionally,
summing layers amplifies consistently larger values
with the same sign while dampening values closer
to zero or those with varying signs.

In (Devlin et al., 2018), layer summation was ex-
plored, but only for token-based tasks, not for sen-
tence representation. We conducted experiments
summing between 2 and 12 consecutive layers. In
our notation, summed layers are denoted by the
prefix SUM, followed by the layer range. For ex-
ample, SUM-7-10 represents the sum of hidden
layers 7, 8, 9, and 10.

3.2.3 Average of Hidden Layers

Similar to summing hidden layers, we also propose
aggregating layers by averaging their hidden repre-
sentations. In our experiments, averaged layers are
denoted by the prefix AVG, followed by the layer
range.

4 Experiments and Results

In our experiments, we analyze the impact of differ-
ent pooling and layer selection/aggregation strate-
gies on text classification tasks. The goal is to
identify pooling techniques that enhance represen-
tations and improve performance without modify-
ing the encoding network structure or requiring
retraining/fine-tuning. Given the numerous varia-
tions in pooling methods, we systematically eval-
uate different approaches based on their nature.
We begin with commonly used pooling techniques
from the literature, then assess their effectiveness
when extracting information from different Trans-
former layers, followed by the impact of layer ag-
gregation, and finally, the effects of concatenating
multiple pooling methods. In our experiments, we
evaluate:

* 4 different base encoder models: BERT (De-
vlin et al., 2018), RoBERTa (Liu et al., 2019),
DeBERTa (He et al., 2021), Sentence BERT
(SBERT) (Reimers and Gurevych, 2019);

* 63 differents poolings: 7 simple poolings
(CLS, AVG, AVG-NS, SUM, SUM-NS, MAX
and MAX-NS), 21 poolings generated by two-
vector concatenation and 35 poolings generate
by three-vector concatenations;

* 144 differents layers (selected or aggrega-
tions): 12 hidden layers (because we use only
base models), 66 aggregates by SUM and 66
aggregates by AVG.

The total number of variations is: 4 X 63 x 144 =
36,288 variation results (9,072 per encoder model).
We present a subset of the results during this anal-
ysis due to the sheer amount of variations, while
making considerations regarding the full set where
relevant.

4.1 Datasets and Evaluation Setup

For text classification (i.e, transfer tasks), we used
seven benchmark datasets from the popular SentE-
val toolkit: MR, CR, SUBJ, MPQA, SST2, TREC
and MRPC. These datasets are used primarily to
assess the classification performance of text embed-
dings and have been used in several previous works,



such as (Liu et al., 2024b), (Gao et al., 2021), (Li
and Li, 2024), (Hosseini et al., 2023), and (Fu et al.,
2024). To ensure a fair comparison, we follow the
setup of our baselines and use the default SentE-
val parameters, primarily relying on the average
accuracy score of test datasets for evaluation.

We generate sentence embeddings using the pro-
posed approach (combinations of pooling tech-
niques and selected/aggregated layers) and employ
them as input vectors for a logistic regression clas-
sifier. The classifier is configured in the SentEval
Toolkit (Conneau and Kiela, 2018) with the fol-
lowing parameters: 10-fold validation, Adam opti-
mizer, batch size of 1,024, one training epoch and
tenacity=5. We adopt this method as it is a widely
used embedding evaluation strategy, also employed
by most of our baselines.

4.2 Basic Pooling Methods

To begin our analysis, we first identify which basic
pooling methods yield the best results when applied
to the last embedding layer of the Transformer en-
coder. We focus on this layer configuration as it is
the most commonly used in recent methods from
the literature, with averaging token embeddings be-
ing the most popular pooling approach (Liu et al.,
2024a). The results for these pooling configura-
tions are shown in Figure 1, which presents the av-
erage performance across all SentEval benchmarks
for each pooling method across the evaluated en-
coders.

AVG

g 8 AVG-NS
G 80 cLs
g MAX
o 76 MAX-NS
g ;Azl I sum
$ SUM-NS
< 70 I I
* BERT DeBERTVS RoBERTa SBERT

Models

Figure 1: Average accuracy of tasks per model using
basic pooling methods. The average accuracy is the
mean accuracy of all eight benchmarks.

Several conclusions can be drawn from this anal-
ysis: (1) Although originally proposed for sentence-
level representations, the [CLS] token consistently
yielded the worst results across all encoders ex-
cluding the original BERT. This aligns with recent
text embedding studies (Liu et al., 2024a), where
pooling methods such as AVG generally perform
better. (2) MAX pooling also performed worse
than AVG and SUM, which were consistently the

best choices across benchmark datasets. (3) Ex-
cluding special tokens during pooling had mixed
results, improving DeBERTa slightly while having
worse results for SBERT and RoBERTa. (4) SUM
achieved the best results for all encoders except
BERT, with SUM-NS achieving the best results for
DeBERTa only. These findings were also observed
in the validation set.

Based on the results from pooling embeddings
in the last layer, we conclude that [CLS] and MAX-
based pooling methods are not the most effective,
a finding consistent with previous studies. Con-
versely, SUM aggregation produced surprisingly
strong results despite being less commonly used in
prior works compared to AVG.

4.3 Pooling Layer Selection Impact

Next, we evaluate the impact of pooling layer se-
lection on classification tasks. Due to space con-
straints and for clarity in the figures, we focus on
AVG and SUM pooling, both with and without spe-
cial tokens/stopwords, as they produced the best
results in layer 12 across all encoders. Although
not presented, the advantage of AVG and SUM
over [CLS] and MAX observed in the last layer
persists in the earlier layers.

As shown in Figure 2, using the last layer (layer
12 in BERT-base-based encoders) resulted in worse
performance compared to layers 7 to 10. This
aligns with (Liu et al., 2024c), which suggests
that the last-layer embeddings are primarily op-
timized for token prediction and contain weaker
semantic information. Conversely, layers below 7
yielded consistently lower performance across all
pooling methods. For both DeBERTa and SBERT,
the best results were achieved in layers 7 through
11, with SUM pooling performing best. Regarding
encoders, while SBERT kept the strongest results
overall, DeBERTa had a overally superior perfor-
mance when compared to RoOBERTa and BERT-
based encoders when considering other layers, re-
gardless of the pooling method, with occasional ties
or competitive results in some of the earlier layers,
unlike when pooling from the last layer. All trends
in Figure 2 were also observed in the validation set.

The best results were mostly obtained using
SUM pooling from the third to forth-to-last layer
(layers 9 and 10). With SBERT, SUM pooling
achieved an average benchmark score of 88.02
(85.99 with SUM-NS). DeBERTa with SUM ag-
gregation reached 87.9. For comparison, the best
result using layer 12 was 86.61 (SBERT + SUM).
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Figure 2: Average accuracy of tasks per model using the best basic pooling methods. The layers range from 1 to 12

because BERT-base models are used.

These results indicate that pooling from layers near
the end, but not the last, consistently improves clas-
sification performance, differing from the standard
approach in most prior studies. Given this behav-
ior, we further explore and evaluate methods for
aggregating multiple layers before pooling.

4.4 Aggregating Layers

Figure 3 shows results for layer aggregation prior
to pooling in SBERT and DeBERTa. Since aggre-
gation occurs at the token level, pooling is still re-
quired to obtain sentence or document embeddings.
We report results for four pooling methods: AVG,
AVG-NS, SUM, and SUM-NS. For each pooling
method, only the best-performing aggregation size
is shown, i.e., the optimal number of layers /N for
that method, resulting in 44 lines per encoder-layer
aggregation pair (11 per pooling method). Due to
space constraints and the inferior performance of
average aggregation, we present results for sum
aggregation in SBERT (Figure 2(a)) and DeBERTa
(Figure 2(b)), and average aggregation results for
both models in Figure 2(c).

Summing layers combined with AVG pooling
consistently outperformed other strategies by a
large margin. On the other hand, averaging layers
lead to inferior overall results, with SUM pooling
having the best performance in this scenario. This
advantage may stem from signal amplification: di-
mensions with consistently high absolute values
across layers are reinforced, while inconsistent or
low-variance dimensions are diminished. To our
knowledge, summing layers followed by AVG pool-
ing has not been previously explored in sentence
encoding. Interestingly, using the same method for
both aggregation and pooling (e.g., averaging lay-
ers with AVG pooling) reduced performance. This
is notable, as prior works that applied layer aggre-

gation (e.g., (Hosseini et al., 2023)) used average
aggregation with average pooling.

For SBERT, aggregating layers 6—12 yielded the
best performance, with 5—12 a close second. This
aligns with the individual layer results in Figure 2,
where layers 1-4 underperformed. For DeBERTa,
the best results came from aggregating layers 8-11,
closely followed by 7-11. The absence of layer
12, which is typically used for pooling, is notable
and consistent with Figure 2, where it performed
poorly for this model.

4.5 Two and Three vector concatenation

In addition to traditional single-token represen-
tations, we explore concatenating two or three
pooled tokens to represent a document. Figure 4
presents results for these concatenation strategies.
For each layer aggregation size, we report the best-
performing pooling combination for DeBERTa and
SBERT using two- and three-token concatenations.
Four-token representations were also evaluated
but consistently underperformed, and are omitted
for brevity. Concatenations involving SUM and
MAX pooling, as well as average layer aggrega-
tion, yielded poor results across all settings and are
likewise excluded from Figure 4.

When concatenating two tokens, including the
[CLS] token generally underperformed compared
to combining AVG and AVG-NS, across both en-
coders. The best two-token configuration was
DeBERTa-AVG+AVG-NS with sum aggregation
over layers 8-10, achieving an average accuracy
of 89.4. This performance was nearly tied with
the best three-token setup—CLS+AVG+AVG-NS
using layers 6-11 for SBERT and 8-10 for De-
BERTa, both reaching 89.65. These multi-token
results surpass the best single-token configuration
(SBERT-AVG/SUM, layers 6—12) which achieved
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with the best result for each size of layer aggregations for both two and three vectors presented.

89.43. In contrast, SBERT’s best two-token con-
figuration reached only 89.41, slightly below the
single-token result.

The layer aggregation trends observed for con-
catenation align with those in Figure 3, with
top-performing single-token aggregations also ex-
celling in multi-token settings. These findings sug-
gest that combining multiple pooling methods is a
promising strategy for enhancing document repre-
sentations.

4.6 Comparison with baselines

To compare the impact of pooling and layer ag-
gregation relative to existing embedding methods,
Table 1 presents the results of previously proposed
methods. It also presents our best pooling and layer
aggregation strategies for 1, 2, and 3 tokens when
considering the validation set average task accu-
racy. We used the validation set for choosing the
configurations to ensure a fair comparison with the

baselines, as these choises function as hyperparam-
eters.

As shown in Table 1, careful selection of pooling
and aggregation strategies significantly improves
performance, even with a single-token represen-
tation. Our best result—DeBERTa with concate-
nated [CLS], AVG, and AVG-NS pooled from the
sum of layers 8—11 achieved an average accuracy
of 89.49, surpassing the strongest baseline, su-
SupSimCSE-RB-LC (Hosseini et al., 2023), which
reached 88.66 after 3 epochs of training.

To isolate the effect of pooling and aggregation,
we compare original encoder results with their op-
timized single-token configurations. SBERT’s av-
erage accuracy increased from 85.27 to 89.42 by
summing layers 5—12 and applying AVG pooling,
a nearly 5% improvement. DeBERTa showed even
greater gains, from 81.51 to 88.88, marking a 9%
increase. These improvements underscore the sub-
stantial, often overlooked, impact of pooling and



Model MR CR SUBJ MPQA SST2 TREC MRPC Average
RoBERTaavG/Last Layer 80.46 72.24 93.01 80.60 8748  74.80 66.49 79.30
DeBERTaavG/Last Layer 83.71 73.40 9246 83.01 90.55  78.20 69.22 81.51
BERT avG/Last Layer * 78.66  86.25  94.37 88.66 84.40  92.80 69.45 84.94
SBERT A 80.10 86.25 94.61 88.78 84.90  89.00 73.25 85.27
su-HNCSE-PM © [lep] 81.94 86.99 95.20 89.77 86.81  85.31 75.49 85.93
su-AoE-BERTA [lep] 83.00 89.38 94.72 89.87 87.20  89.00 75.54 86.96
su-CLTC-RoBERTat [5ep] 86.86 9235 9431 89.91 9136 87.73 77.14 88.52
su-SRoBERTa-B-LC<} [200iter] 85.76  91.75 94.80 90.51 90.78  87.95 78.92 88.64
su-SimCSE-RoBERTa-MLMA [3ep] 85.08 91.76  94.02 89.72 92.31 91.20 76.52 88.66
SBERT AvG / suM-5-12 8593 9036 95.30 90.56  91.65  96.00 76.23 89.43
DeBERTaavG / sum-7-10 86.50 88.77  95.10 90.27 92.42  93.80 75.30 88.88
SBERT AVG+AVG-NS / SUM-8-12 85.99 89.72 94.81 90.42 90.94  95.20 77.04 89.16
DeBERTaavG+avG-Ns / suM-6-10 86.89 90.23  95.67 90.73 92.15  94.40 71.19 88.75
SBERT ¢1 5+AVG+AVG-NS / SUM-7-12 86.19 91.02 95.77 90.76 91.93  96.00 74.90 89.48
DeBERTaCLs+AVG+AVG_Ns / SUM-8-11 87.47 90.12 95.39 90.43 92.59 95.20 75.25 89.49

Table 1: Results of sentence embeddings on classification tasks for the baselines and the best 1,2, and three token
alternatives for SBERT and DEBERTA on the validation set. The reported metric is accuracy. *: (Reimers and
Gurevych, 2019); A: (Li and Li, 2024); ®: (Liu et al., 2024b); {: (Liu et al., 2024a); A\: (Gao et al., 2021); <$:

(Hosseini et al., 2023).

aggregation choices in sentence representation.

On individual tasks, our best pooling and aggre-
gation strategies, combined with token concatena-
tion, achieved top results on five of the seven tasks
(MR, SUBJ, MPQA, SST2, and TREC). In MRPC,
while not leading, our methods outperformed the
vanilla encoders (BERT, DeBERTa, SBERT, and
RoBERTa with last-layer AVG pooling). Across
the full range of configurations tested, our results
remained consistently strong, demonstrating that
pooling and aggregation are critical factors in opti-
mizing transformer-based embeddings for classifi-
cation tasks.

5 Conclusion

In this work, we systematically studied the impact
of different pooling strategies and layer aggrega-
tion techniques in Transformer encoder-only mod-
els for text classification. Our analysis covered
widely used pooling methods, including [CLS],
mean, sum, and max pooling, along with novel
combinations of these techniques. We also ex-
amined the effects of extracting embeddings from
different model layers and proposed aggregation
strategies to enhance sentence representations. Ad-
ditionally, we introduced the concatenation of mul-
tiple pooling vectors as a way to further improve
performance.

Our experimental results show that pooling se-
lection and layer aggregation significantly affect
text classification accuracy. By carefully choosing
the pooling method and combining multiple layers,
we achieved improvements of up to 9% over tradi-

tional approaches using the same encoder. Notably,
our study show that standard practices, such as re-
lying solely on the [CLS] token, using only the last
layer’s embeddings, or averaging tokens based on
a single layer, often yield suboptimal results. In-
stead, combining multiple pooling techniques and
leveraging intermediate layers leads to more robust
representations, especially when summing layers
and averaging tokens. We believe our findings may
provide a roadmap for optimizing Transformer en-
coders in text classification tasks.

These results highlight the untapped potential in
Transformer-encoded sentence and document repre-
sentations, opening several venues for future work.
A key next step is developing a method to automat-
ically select pooling and aggregation parameters,
better adapting to the encoder’s characteristics and
the task at hand. We are actively working on this
automatic selection process.

Furthermore, we believe that integrating layer ag-
gregation and pooling into encoder training could
further enhance classification performance, and we
plan to explore strategies for retraining existing
encoders with optimized pooling/aggregation con-
figurations. Finally, we aim to extend our analy-
sis to large Transformer encoders (24 layers) and
similarity tasks, as well as investigate additional
aggregation techniques, such as weighted averages
and concatenating poolings from non-consecutive
layers.



Limitations

While we believe this work is an important first step
in demonstrating the impact of pooling, layer aggre-
gation, and pooling concatenation in classification
tasks, there are several scenarios and limitations
that could not be addressed within the scope of a
single paper. In this section, we highlight what we
consider the most important aspects not tackled in
this work.

¢ A systemized approach to automatically
choose pooling and layer aggregations. In
this paper, we are interested in showing the
full potential of pooling and layer aggregation
that is mostly not being used by Transformer
encoder-based methods. We did not focus,
however, in how to automatically select the
best configurations. While we offer general in-
sights and recurring patterns across encoders,
the optimal settings remain model-specific, as
can be seen in the fact that in SBERT using
both the last and deeper layers (5 and 6) lead
to the best results overall, unlike DeBERTa.
We believe that defining heuristics and, more
importantly, developing automatic methods to
select pooling strategies is essential to fully
realize the potential demonstrated here. We
are currently investigating such approaches.

* Comparison with autoregressive LLM
models. Our baselines focus on Transformer
encoder-based models, as our contributions,
pooling, aggregation, and token concatena-
tion, are designed to improve this class of
models. We exclude autoregressive LLMs
such as (Li and Li, 2024) from the main com-
parison due to their fundamentally different
architecture (e.g., using prompts to compress
information into a single token) and signifi-
cantly larger scale (7—13 billion parameters
versus 110-140 million in BERT-base mod-
els). Nonetheless, we include a comparison in
Appendix B.

Similarity tasks. Our primary focus is on
classification tasks, while much of the existing
literature emphasizes similarity tasks for both
training and evaluation. We recognize the rel-
evance of similarity tasks, particularly in ap-
plications like RAG, and have conducted ex-
periments in this setting using our pooling and
aggregation strategies. However, we chose to

center our analysis on classification to provide
a clearer directional evaluation. Results for
similarity tasks using our best classification
configurations are presented in Appendix A.

* More sophisticated layer aggregations. In
this paper, we explored summing and aver-
aging consecutive layers. While this lead to
good results, obviously more sophisticated ap-
proaches, such as weighting different layers,
choosing non consecutive layers, and using
machine learning to determine the aggregation
are possible and must be further evaluated.
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A Similarity Tasks

While the main focus of this work is on classi-
fication, we also evaluate our pooling and layer
aggregation strategies on semantic textual simi-
larity (STS) tasks, which are widely adopted for
benchmarking sentence embeddings. An interest-
ing aspect to consider when exploring these new
pooling and aggregation methods is how they af-
fect similarity tasks. Thus, we present the results
of our best pooling and layer aggregation strate-
gies on the classification validation set on semantic
textual similarity (STS) tasks, which are widely
adopted for benchmarking sentence embeddings.
We use the standard seven STS datasets from the
SentEval suite: STS12-STS16, STS-Benchmark
(STS-B), and SICK-Relatedness (SICK-R). These
benchmarks compute the Spearman correlation be-
tween the cosine similarity of sentence embeddings
and human-labeled similarity scores.

Table 2 presents the results for baseline models
and our best-performing configurations. As ex-
pected, SBERT significantly outperforms vanilla
transformer models (e.g., BERT and RoBERTa)
when used with average pooling on the last layer.
This is due to the fact that SBERT was specifi-
cally trained to capture semantic similarity rela-
tionships between sentences, using a siamese archi-
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Model STSI2 STSI3 STSI4 STSI5 STSI6 STS-B SICK-R  Average
ROBERTaAVG/Lavt Layer 3947 1749 2441 3196 4555 6961  76.80 13561
DeBERTaAVG/Last Layer 3808 2746 3452 3882 3690 48.74  66.06 4151
BERT AvG/Last Layer * 3878 5708 5798 63.15 61.06 4635  58.40 5481
SBERT A 7097 7653 73.19  79.09 7430  77.03 7201 74.89
su-AoE-BERT A 7526 8561 80.64 8636 8251 8564  80.99 8243
su-ANCSE-PM & 7102 8392 7552 8293 81.03 8145  72.76 7838
su-CLTC-RoBERTa T 7785  88.96 8172 8663 8398 8427  82.12 83.65
su-SImCSE-RoBERTa-MLM A 7653 8521 8095 8603 8257 8583  80.50 82.52
Su-SRoBERTa-B-LC & 7294 76.14 7283 8229 7713 7899 7690 76.75
SBERTAvG / suM.s-12 63.04 6885 7064 8025 80.10 7708  81.65 75.23
DeBERTaavG/sum-7-10 5264 4721 5493 6767 6338 6200  75.00 60.42
SBERT AvG+AVGNS / SUMLS.12 69.46 7238 7243 8146 81.02  78.18  82.44 76.77
DeBERTaAVG+AVGNS / SUM-6-10 5457 5128 57.16 6937 64.00 5487 6551 59.55
SBERT LS+ AVG+AVGNS / SUMT-12 6635  68.86 69.66 78.03 8022 6501 8245 73.14
DeBERTacLs,avoravons/sumstr  51.67 4332 5331 6573 6082 6051 7538 58.68

Table 2: Spearman’s correlation scores across seven STS benchmarks for various models. x: (Reimers and Gurevych,
2019); A: (Li and Li, 2024); ®: (Liu et al., 2024b); t: (Liu et al., 2024a); A: (Gao et al., 2021); {>: (Hosseini et al.,
2023). The remaining lines are the best pooling and layer aggregation configurations in the classification validation

set.

tecture and supervised objectives aimed at bring-
ing semantically equivalent sentences closer to-
gether. This focus naturally makes it more suitable
for STS benchmarks, where the evaluation metric
is precisely the semantic closeness between sen-
tence pairs. Among baselines, SIimCSE and CLTC-
RoBERTa deliver the highest correlation scores
across all tasks, demonstrating the effectiveness of
contrastive learning for similarity.

Our pooling and aggregation methods, despite
being developed without supervision or fine-tuning,
show competitive results. The best-performing
configuration for similarity was the combination
AVG+AVG-NS applied over the sum of layers 8
to 12 of SBERT, which achieved an average Spear-
man correlation of 76.77, surpassing the original
SBERT baseline (74.89). This indicates that care-
fully selecting intermediate layers and combining
pooling strategies can yield improvements even in
tasks the models were not directly optimized for.

Interestingly, while our configurations show
solid results with SBERT, DeBERTa’s performance
lags behind on similarity tasks despite excelling
in classification. For instance, DeBERTa with
AVG+AVG-NS over layers 6-10 reached only
59.55 on average. This suggests that while pooling
and aggregation improve classification, similarity
tasks may benefit more from supervised fine-tuning
or contrastive training, particularly for encoders
like DeBERTa that were not originally designed for
sentence-level semantics.

These findings reinforce our hypothesis: pooling
and aggregation are key factors in sentence rep-
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resentation, but optimal configurations may differ
between classification and similarity tasks. Future
work will further explore strategies that unify both
objectives under a shared representation framework.
Also, in future work, it will be important to perform
fine-tuning of the encoders themselves to further
optimize their performance for similarity tasks and
potentially align them better with pooling and ag-
gregation strategies.

B Comparison with decoder-only LLMs

We also present a comparison our best results with
recent decoder-only large language models (LLMs)
to contextualize their relative performance and re-
source requirements.

Table 3 presents the classification accuracy of
several LLLM-based methods, such AoE-LLaMA
and PromptEOL, alongside our best pooling and ag-
gregation configurations for SBERT and DeBERTa.
Notably, LLM-based approaches typically rely on
prompt-based encoding, where the input sentence
is embedded into a fixed position within a prompt
and the final token embedding is extracted to rep-
resent the full sentence. While effective, these
methods depend heavily on prompt engineering
and incur substantial computational costs, often in-
volving models with 7 to 13 billion parameters or
even much larger.

Despite this, our encoder-only methods, par-
ticularly those using DeBERTa (86M parame-
ters) with optimized pooling and aggregation (e.g.,
CLS+AVG+AVG-NS over SUM-8-11), achieved
an average accuracy of 89,49, 1.93 smaller than



Model MR CR SUBJ MPQA SST2 TREC MRPC Average

AoE-Llama7B 90.54 93.06 96.14  91.61  95.00 95.80 74.90 91.01
AoE-Llamal3B 90.77 93.01 96.15 91.83 9495 96.60 76.87 91.45
PromptEOL (Lllama2-7B) 90.63 92.87 9632  91.19  95.00 95.40 75.19 90.94
PromptEOL + TP (Ours) (Lllama2-7B) A 9090 93.35 96.58  91.51 9550  96.00 76.12 91.42
Pretended CoT (Lllama2-7B) 90.10 9224 9632  91.54 9511 94.20 75.77 90.75
Pretended CoT + TP (Ours) (Lllama2-7B) 90.45 92.61 96.52  91.59  95.77  96.00 76.81 91.39
Knowledge (Lllama2-7B) 89.84 93.03 96.21 91.54 9478  97.20 7391 90.93
Knowledge + TP (Ours) (Lllama2-7B) 90.39 93.32  96.31 91.56 9451  97.60 76.06 91.39
SBERT AvG/sum-s-12 8593 90.36 9530  90.56  91.65  96.00 76.23 89.43
DeBERTaavG /sum-7-10 86.50 88.77 95.10  90.27 9242  93.80 75.30 88.88
SBERT AvG+AvVG-NS / SUM-8-12 8599 §9.72 9481 90.42 9094 9520 77.04 89.16
DeBERTaavG+AvG-Ns / SUM-6-10 86.89  90.23  95.67 90.73  92.15 94.40 71.19 88.75
SBERT CLs+AVG+AVG-NS / SUM-T-12 86.19 91.02 95.77 90.76 9193  96.00 74.90 89.48
DeBERTACLs+AVG+AVG-NS / SUM-8-11 87.47 90.12 9539 9043 9259  95.20 75.25 89.49
* DeBERTa 86M versus Llama 7B A -342 323 -1.19 -1.08 -2.91 -0.8 -0.87 -1.93
* DeBERTa 86M versus Llama 13B <> -3,3 -2,89  -0.76 -6.4 -2.36 -1.4 -1.62 -1.96

Table 3: Results of sentence embeddings on classification tasks for decoder-only LLM baselines and the best 1,2,
and three token alternatives for SBERT and DeBERTa on the validation set. The reported metrics is accuracy. <:
(Li and Li, 2024); A: (Fu et al., 2024).

AoE-LLaMA-13B (91.45), while using only 0.66%
of its parameters, and PromptEOL+TP (91.42),
with 1.23% of its parameters, offering a vastly more
efficient alternative in resource-constrained scenar-
i0s.

These results highlight two key insights: Pool-
ing and aggregation significantly close the per-
formance gap between encoder-only models and
much larger LLMs in sentence encoding for classi-
fication tasks; and Large language models do not
inherently outperform optimized encoders unless
fine-tuned extensively or used with well-crafted
prompts and templates. While decoder-only LLMs
are increasingly adopted across NLP tasks, our
findings demonstrate that enhanced sentence em-
beddings from smaller, frozen encoders, leveraging
careful pooling and layer aggregation, can remain
competitive.
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