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Abstract

The choice of pooling strategies and layer selec-001
tion and aggregation plays a crucial role in the002
quality of sentence embeddings in Transformer-003
based models for classification. While the004
[CLS] token is commonly used for sentence005
representation, research suggests that alterna-006
tive pooling methods, such as token averag-007
ing, often yield better results. In this work,008
we systematically study various pooling tech-009
niques, including average, sum, and max pool-010
ing, as well as novel combinations, alongside011
layer aggregation strategies for sentence and012
document embeddings in Transformer encoder-013
only models. Additionally, we propose to014
the concatenation of multiple pooling methods015
to represent a single document. Our experi-016
ments, conducted on multiple text classification017
benchmarks, demonstrate that carefully select-018
ing pooling methods and layer combinations019
can improve classification accuracy by up to020
9% compared to standard approaches. These021
findings emphasize the importance of exploring022
diverse strategies for sentence representation023
and offer valuable insights for optimizing em-024
bedding extraction in NLP tasks.025

1 Introduction026

The Transformer architecture (Vaswani et al., 2017)027

has revolutionized NLP through contextual word028

representations (Lin et al., 2022). Models like029

BERT (Devlin et al., 2018), GPT and its successors030

(Radford et al., 2018, 2019; Brown et al., 2020;031

Achiam et al., 2023) have driven a paradigm shift,032

significantly improving NLP tasks (Wolf et al.,033

2020). Despite their success, these models pro-034

duce token-level outputs, and using special tokens035

(e.g., [CLS] in BERT) for sentence embeddings036

often yields suboptimal results. Research therefore037

favors aggregation techniques like pooling (Li and038

Li, 2024; Stankevičius and Lukoševičius, 2024).039

Pooling aggregates token vectors into a single040

sentence embedding (Xue et al., 2024), typically041

using mean or sum operations to retain key seman- 042

tics. Performance also depends on the selected 043

model layers (Dubey et al., 2023; Hosseini et al., 044

2023). However, pooling methods struggle with 045

token order and long documents, often degrading 046

representations. Though solutions exist, like us- 047

ing intermediate layers or diverse pooling, most 048

are applied ad hoc, without systematic evaluation. 049

This gap is critical given the variety of encoders 050

used today, such as RoBERTa (Liu et al., 2019), 051

DeBERTaV3 (He et al., 2021), SBERT (Reimers 052

and Gurevych, 2019), SimCSE (Gao et al., 2021), 053

and HNCSE (Liu et al., 2024b). 054

While decoder-only models dominate recent AI 055

trends, encoder-based architectures like BERT re- 056

main the standard for embedding generation in 057

tasks such as classification, RAG, duplicate detec- 058

tion, sentiment analysis, and similarity measure- 059

ment. Although some studies (Fu et al., 2024) use 060

large autoregressive LLMs for sentence encoding, 061

their high computational cost hinders scalability. 062

Recent work (Patil et al., 2023; Hongliu, 2024) 063

continues to explore ways to improve text repre- 064

sentations in encoder-only models. We argue that 065

advancing pooling strategies and context-aware em- 066

bedding training is essential to enhance sentence 067

and document representations. 068

In this context, this work proposes a comprehen- 069

sive systematic study of approaches for generating 070

representative embeddings for sentences and docu- 071

ments based on Transfomer encoder-only models 072

for classification tasks, focusing on four main as- 073

pects: 074

• Extraction of individual token information 075

and pooling: Investigating ways to combine 076

token embeddings into a single vector repre- 077

sentation. We evaluated the use of the [CLS] 078

token to represent sentences as well as aver- 079

age, sum and max pooling of token embed- 080

dings. We also study the impact of excluding 081

special tokens, such as [CLS] and [SEP], and 082
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stopwords from the pooling. The stopwords083

used were extracted from the standard English084

list provided by the Natural Language Toolkit085

- NLTK1), a commonly used tool in NLP re-086

search.087

• Impact of extraction layer selection and ag-088

gregation: Analyzing the performance vari-089

ations in downstream tasks when extracting090

embeddings from different model layers. We091

also conducted experiments with various layer092

aggregation strategies, including sum aggrega-093

tion (SUM), average aggregation (AVG), and094

individual layers preceding the final layer.095

• Generalization across encoders: Evaluating096

whether the observed trends hold when using097

different encoding models.098

• Combinations of representations: Evaluate099

whether combining multiple pooling strate-100

gies along with layer aggregation via concate-101

nation can produce better results.102

In addition to reviewing existing pooling meth-103

ods, we propose novel strategies for pooling and104

aggregating encoder layers to better capture token-105

level information. We also introduce techniques for106

combining multiple pooling and layer aggregation107

methods into a single representation.108

Using the SentEval toolkit (Conneau and Kiela,109

2018), we evaluate these strategies across stan-110

dard text classification benchmarks. Our approach111

yields substantial improvements: SBERT average112

accuracy increased by 4.31% (85.27% to 89.58%),113

and DeBERTaV3 by 8%. Compared to state-of-114

the-art methods, our technique achieved superior115

average accuracy, gaining 0.9% against the best116

encoder-only baseline, while simply selecting spe-117

cific pooling and layer aggregation options.118

The remainder of this paper is organized as fol-119

lows: Section 2 discusses related work; Section 3120

introduces our pooling and aggregation strategies;121

Section 4 presents the experiments and results; and122

Section 5 concludes the paper.123

2 Related Works124

Sentence embeddings, which represent the mean-125

ing of a sentence as a dense vector, have been exten-126

sively studied as a fundamental task in natural lan-127

guage processing (NLP). Recently, leveraging pre-128

trained language models for sentence embedding129

has become a dominant approach (Cha and Lee,130

2024). Various techniques have been proposed to131

1https://www.nltk.org/

improve both feature extraction and computational 132

efficiency, including Transformer-based architec- 133

tures, pooling strategies, and contrastive learning 134

methods. 135

A crucial aspect of sentence representation learn- 136

ing is the pooling strategy, which determines how 137

token embeddings are aggregated to obtain a single 138

vector representing the entire sentence. Traditional 139

methods include mean pooling, which averages 140

the embeddings of all tokens, and [CLS] pooling, 141

which uses the [CLS] token’s embedding as the 142

sentence representation. 143

BERT (Bidirectional Encoder Representations 144

from Transformers) introduced bidirectional pre- 145

training and Masked Language Modeling (MLM), 146

enabling the capture of rich contextual represen- 147

tations. Sentence embeddings in BERT are typi- 148

cally derived from the [CLS] token (Devlin et al., 149

2018). RoBERTa improved upon BERT by remov- 150

ing the Next Sentence Prediction (NSP) objective 151

and adopting a more robust training strategy, en- 152

hancing token embeddings’ generalization. These 153

embeddings can be aggregated using either [CLS] 154

pooling or mean pooling (averaging token embed- 155

dings) (Liu et al., 2019). 156

To further improve sentence representations, sev- 157

eral model adaptations have been proposed. De- 158

BERTaV3 introduced Replaced Token Detection 159

(RTD) as a pretraining objective, refining contex- 160

tual representations while maintaining computa- 161

tional efficiency. However, it still primarily relies 162

on [CLS] and mean pooling for sentence embed- 163

ding generation (He et al., 2021). 164

Contrastive learning has emerged as a promis- 165

ing approach for producing more discriminative 166

sentence representations. SimCSE introduced a 167

simple yet effective contrastive learning framework 168

in which different forward passes of the same sen- 169

tence, with dropout applied, serve as positive pairs, 170

while other sentences in the batch act as negative 171

samples (Gao et al., 2021). This approach opti- 172

mizes sentence representations by encouraging se- 173

mantically similar sentences to have closer embed- 174

dings in vector space. Building upon this idea, 175

HNCSE incorporated hard negative mining, where 176

semantically similar sentences belonging to differ- 177

ent classes are used as negative samples to refine 178

class separation and improve sentence-level dis- 179

criminability (Liu et al., 2024b). 180

Previous works predominantly relied on the 181

[CLS] token or the average of tokens from the last 182

layer for sentence representation. While widely 183
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adopted, recent studies suggest that alternative184

strategies can yield substantial improvements. For185

instance, BERT-LC (BERT Layers Combination)186

proposed aggregating multiple Transformer layers187

to capture hierarchical semantic information, out-188

performing methods that rely solely on the final189

layer (Hosseini et al., 2023). However, it aggre-190

gated layers solely by averaging them, and our191

experiments show that summing layers achieve su-192

perior results. Similarly, AoE (Angle-optimized193

Embeddings) introduced an optimization method194

to reduce gradient saturation and enhance class195

separation by refining angular differences in the196

embedding space (Li and Li, 2024), evaluating sen-197

tence embeddings using [CLS], average, and max198

pooling.199

The integration of layer aggregation, pooling200

strategies, and contrastive learning has proven to201

be effective in generating high-quality sentence em-202

beddings. In this work, we explore these techniques203

by combining multiple pooling methods and layer204

aggregation strategies to enhance the quality and205

expressiveness of sentence representations. The206

next section details our proposed approach.207

3 Proposed Approach208

Given an input sentence, the goal of a sentence em-209

bedding model is to generate a vector that captures210

its semantic and/or syntactic information. To obtain211

a sentence embedding, we first pass the sentence212

through a Transformer model, which outputs the213

tensor H , then apply a pooling function p, which214

can be max, mean, etc (Hosseini et al., 2023).215

Our approach to studying pooling involves ex-216

perimenting with various vector pooling techniques217

combined with different hidden layer aggrega-218

tion methods in Transformer encoder-only models219

(specifically BERT-based models). These pooling220

techniques have been widely explored in the litera-221

ture (Hosseini et al., 2023; Reimers and Gurevych,222

2019; Liu et al., 2024b), and, in this work, we in-223

troduce novel combinations of pooling strategies224

and layer aggregation methods.225

Our work focuses on four key aspects: identify-226

ing the most effective pooling strategy, determining227

the best layers to use for pooling, determining the228

best layer combination, and evaluating the interplay229

between different pooling methods and layer ag-230

gregation techniques as well as their combinations.231

First, we assess four BERT based encoder models232

in our initial experiments to establish a baseline:233

BERT, RoBERTa, DeBERTaV3 and SBERT (in our 234

case, using the allmpnet model2). 235

Second, we evaluate simple pooling methods ap- 236

plied to the last layer to identify the most effective 237

strategies, including a proposed variation that ex- 238

cludes special tokens and stopwords. Third, we ex- 239

amine the impact of selecting different Transformer 240

layers for pooling and explore layer aggregation 241

techniques to assess their effect on sentence embed- 242

dings. Finally, we investigate the combination of 243

pooling techniques through concatenation (using 244

two or three token vectors) alongside layer aggre- 245

gation to determine the optimal configuration for 246

producing high-quality sentence embeddings. 247

Below we describe the pooling techniques and 248

aggregation strategies used in our study. 249

3.1 Pooling Techniques 250

3.1.1 Classification Token 251

Our first approach to sentence embedding is to 252

simply use the [CLS] token. Encoder-only mod- 253

els such as BERT and its derivatives generate this 254

token as a common method for representing a sen- 255

tence as a single vector, as demonstrated in studies 256

like (Devlin et al., 2018), among others. 257

3.1.2 Simple Pooling and Simple-NS Pooling 258

Next, we propose studying the application of basic 259

pooling techniques from the literature to conduct 260

initial experiments. These pooling methods are 261

listed below: 262

• AVG: Simple average of the token embed- 263

dings of a given layer from a given input text; 264

• SUM: Simple sum of the token embeddings 265

of a given layer from a given input text; 266

• MAX: Embedding generated by selecting the 267

maximum value across each dimension from 268

the token embeddings of a given layer of a 269

given input text. 270

All pooling methods exclude the [PAD] token. Ad- 271

ditionally, we conducted experiments excluding 272

special tokens [CLS] and [SEP] and stopwords to 273

assess their impact on pooling. To evaluate this ef- 274

fect, we created three variations by removing these 275

tokens: AVG-NS, SUM-NS, and MAX-NS. 276

3.1.3 Pooling Concatenation 277

We also evaluated whether combining two differ- 278

ent pooling methods could impact classification 279

2https://huggingface.co/sentence-transformers/all-mpnet-
base-v2
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performance by concatenating their vectors into a280

single representation. Since there are six pooling281

methods plus the [CLS] token (treated as another282

pooling technique for simplicity), pairwise combi-283

nations resulted in 21 new pooling strategies. These284

combinations are denoted by a plus sign, such as285

CLS+SUM, which represents the concatenation of286

the [CLS] vector and the SUM pooling vector.287

We also explored concatenating three pooling288

vectors, generating 35 additional pooling configu-289

rations. These are denoted by two plus signs, such290

as CLS+AVG+AVG-NS.291

All concatenation techniques produce a single292

vector with increased dimensionality, potentially293

improving classification performance. Preliminary294

experiments with four-vector concatenation, with295

35 additional pooling configurations, showed infe-296

rior results, so they were omitted for clarity and297

space.298

3.2 Hidden Layers Selection and Aggregation299

3.2.1 Single Hidden Layers300

We evaluated applying the pooling to the nth en-301

coding layer to assess the impact of extracting em-302

beddings from different hidden layers rather than303

exclusively from the last layer, as commonly done304

in (Devlin et al., 2018) and most prior works.305

This hypothesis has been explored in studies306

such as (Liu et al., 2024c) and (Jin et al., 2024).307

In this paper, we denote this technique using the308

suffix LYR-X, where X is the layer number.309

3.2.2 Sum of Hidden Layers310

Instead of applying pooling to a single layer, we311

apply it to the sum of token embeddings across312

X hidden layers from the input model. The goal313

is to evaluate whether different layers contribute314

distinct information about each token. Additionally,315

summing layers amplifies consistently larger values316

with the same sign while dampening values closer317

to zero or those with varying signs.318

In (Devlin et al., 2018), layer summation was ex-319

plored, but only for token-based tasks, not for sen-320

tence representation. We conducted experiments321

summing between 2 and 12 consecutive layers. In322

our notation, summed layers are denoted by the323

prefix SUM, followed by the layer range. For ex-324

ample, SUM-7-10 represents the sum of hidden325

layers 7, 8, 9, and 10.326

3.2.3 Average of Hidden Layers 327

Similar to summing hidden layers, we also propose 328

aggregating layers by averaging their hidden repre- 329

sentations. In our experiments, averaged layers are 330

denoted by the prefix AVG, followed by the layer 331

range. 332

4 Experiments and Results 333

In our experiments, we analyze the impact of differ- 334

ent pooling and layer selection/aggregation strate- 335

gies on text classification tasks. The goal is to 336

identify pooling techniques that enhance represen- 337

tations and improve performance without modify- 338

ing the encoding network structure or requiring 339

retraining/fine-tuning. Given the numerous varia- 340

tions in pooling methods, we systematically eval- 341

uate different approaches based on their nature. 342

We begin with commonly used pooling techniques 343

from the literature, then assess their effectiveness 344

when extracting information from different Trans- 345

former layers, followed by the impact of layer ag- 346

gregation, and finally, the effects of concatenating 347

multiple pooling methods. In our experiments, we 348

evaluate: 349

• 4 different base encoder models: BERT (De- 350

vlin et al., 2018), RoBERTa (Liu et al., 2019), 351

DeBERTa (He et al., 2021), Sentence BERT 352

(SBERT) (Reimers and Gurevych, 2019); 353

• 63 differents poolings: 7 simple poolings 354

(CLS, AVG, AVG-NS, SUM, SUM-NS, MAX 355

and MAX-NS), 21 poolings generated by two- 356

vector concatenation and 35 poolings generate 357

by three-vector concatenations; 358

• 144 differents layers (selected or aggrega- 359

tions): 12 hidden layers (because we use only 360

base models), 66 aggregates by SUM and 66 361

aggregates by AVG. 362

The total number of variations is: 4 x 63 x 144 = 363

36,288 variation results (9,072 per encoder model). 364

We present a subset of the results during this anal- 365

ysis due to the sheer amount of variations, while 366

making considerations regarding the full set where 367

relevant. 368

4.1 Datasets and Evaluation Setup 369

For text classification (i.e, transfer tasks), we used 370

seven benchmark datasets from the popular SentE- 371

val toolkit: MR, CR, SUBJ, MPQA, SST2, TREC 372

and MRPC. These datasets are used primarily to 373

assess the classification performance of text embed- 374

dings and have been used in several previous works, 375
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such as (Liu et al., 2024b), (Gao et al., 2021), (Li376

and Li, 2024), (Hosseini et al., 2023), and (Fu et al.,377

2024). To ensure a fair comparison, we follow the378

setup of our baselines and use the default SentE-379

val parameters, primarily relying on the average380

accuracy score of test datasets for evaluation.381

We generate sentence embeddings using the pro-382

posed approach (combinations of pooling tech-383

niques and selected/aggregated layers) and employ384

them as input vectors for a logistic regression clas-385

sifier. The classifier is configured in the SentEval386

Toolkit (Conneau and Kiela, 2018) with the fol-387

lowing parameters: 10-fold validation, Adam opti-388

mizer, batch size of 1,024, one training epoch and389

tenacity=5. We adopt this method as it is a widely390

used embedding evaluation strategy, also employed391

by most of our baselines.392

4.2 Basic Pooling Methods393

To begin our analysis, we first identify which basic394

pooling methods yield the best results when applied395

to the last embedding layer of the Transformer en-396

coder. We focus on this layer configuration as it is397

the most commonly used in recent methods from398

the literature, with averaging token embeddings be-399

ing the most popular pooling approach (Liu et al.,400

2024a). The results for these pooling configura-401

tions are shown in Figure 1, which presents the av-402

erage performance across all SentEval benchmarks403

for each pooling method across the evaluated en-404

coders.405

Figure 1: Average accuracy of tasks per model using
basic pooling methods. The average accuracy is the
mean accuracy of all eight benchmarks.

Several conclusions can be drawn from this anal-406

ysis: (1) Although originally proposed for sentence-407

level representations, the [CLS] token consistently408

yielded the worst results across all encoders ex-409

cluding the original BERT. This aligns with recent410

text embedding studies (Liu et al., 2024a), where411

pooling methods such as AVG generally perform412

better. (2) MAX pooling also performed worse413

than AVG and SUM, which were consistently the414

best choices across benchmark datasets. (3) Ex- 415

cluding special tokens during pooling had mixed 416

results, improving DeBERTa slightly while having 417

worse results for SBERT and RoBERTa. (4) SUM 418

achieved the best results for all encoders except 419

BERT, with SUM-NS achieving the best results for 420

DeBERTa only. These findings were also observed 421

in the validation set. 422

Based on the results from pooling embeddings 423

in the last layer, we conclude that [CLS] and MAX- 424

based pooling methods are not the most effective, 425

a finding consistent with previous studies. Con- 426

versely, SUM aggregation produced surprisingly 427

strong results despite being less commonly used in 428

prior works compared to AVG. 429

4.3 Pooling Layer Selection Impact 430

Next, we evaluate the impact of pooling layer se- 431

lection on classification tasks. Due to space con- 432

straints and for clarity in the figures, we focus on 433

AVG and SUM pooling, both with and without spe- 434

cial tokens/stopwords, as they produced the best 435

results in layer 12 across all encoders. Although 436

not presented, the advantage of AVG and SUM 437

over [CLS] and MAX observed in the last layer 438

persists in the earlier layers. 439

As shown in Figure 2, using the last layer (layer 440

12 in BERT-base-based encoders) resulted in worse 441

performance compared to layers 7 to 10. This 442

aligns with (Liu et al., 2024c), which suggests 443

that the last-layer embeddings are primarily op- 444

timized for token prediction and contain weaker 445

semantic information. Conversely, layers below 7 446

yielded consistently lower performance across all 447

pooling methods. For both DeBERTa and SBERT, 448

the best results were achieved in layers 7 through 449

11, with SUM pooling performing best. Regarding 450

encoders, while SBERT kept the strongest results 451

overall, DeBERTa had a overally superior perfor- 452

mance when compared to RoBERTa and BERT- 453

based encoders when considering other layers, re- 454

gardless of the pooling method, with occasional ties 455

or competitive results in some of the earlier layers, 456

unlike when pooling from the last layer. All trends 457

in Figure 2 were also observed in the validation set. 458

The best results were mostly obtained using 459

SUM pooling from the third to forth-to-last layer 460

(layers 9 and 10). With SBERT, SUM pooling 461

achieved an average benchmark score of 88.02 462

(85.99 with SUM-NS). DeBERTa with SUM ag- 463

gregation reached 87.9. For comparison, the best 464

result using layer 12 was 86.61 (SBERT + SUM). 465
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Figure 2: Average accuracy of tasks per model using the best basic pooling methods. The layers range from 1 to 12
because BERT-base models are used.

These results indicate that pooling from layers near466

the end, but not the last, consistently improves clas-467

sification performance, differing from the standard468

approach in most prior studies. Given this behav-469

ior, we further explore and evaluate methods for470

aggregating multiple layers before pooling.471

4.4 Aggregating Layers472

Figure 3 shows results for layer aggregation prior473

to pooling in SBERT and DeBERTa. Since aggre-474

gation occurs at the token level, pooling is still re-475

quired to obtain sentence or document embeddings.476

We report results for four pooling methods: AVG,477

AVG-NS, SUM, and SUM-NS. For each pooling478

method, only the best-performing aggregation size479

is shown, i.e., the optimal number of layers N for480

that method, resulting in 44 lines per encoder-layer481

aggregation pair (11 per pooling method). Due to482

space constraints and the inferior performance of483

average aggregation, we present results for sum484

aggregation in SBERT (Figure 2(a)) and DeBERTa485

(Figure 2(b)), and average aggregation results for486

both models in Figure 2(c).487

Summing layers combined with AVG pooling488

consistently outperformed other strategies by a489

large margin. On the other hand, averaging layers490

lead to inferior overall results, with SUM pooling491

having the best performance in this scenario. This492

advantage may stem from signal amplification: di-493

mensions with consistently high absolute values494

across layers are reinforced, while inconsistent or495

low-variance dimensions are diminished. To our496

knowledge, summing layers followed by AVG pool-497

ing has not been previously explored in sentence498

encoding. Interestingly, using the same method for499

both aggregation and pooling (e.g., averaging lay-500

ers with AVG pooling) reduced performance. This501

is notable, as prior works that applied layer aggre-502

gation (e.g., (Hosseini et al., 2023)) used average 503

aggregation with average pooling. 504

For SBERT, aggregating layers 6–12 yielded the 505

best performance, with 5–12 a close second. This 506

aligns with the individual layer results in Figure 2, 507

where layers 1–4 underperformed. For DeBERTa, 508

the best results came from aggregating layers 8–11, 509

closely followed by 7–11. The absence of layer 510

12, which is typically used for pooling, is notable 511

and consistent with Figure 2, where it performed 512

poorly for this model. 513

4.5 Two and Three vector concatenation 514

In addition to traditional single-token represen- 515

tations, we explore concatenating two or three 516

pooled tokens to represent a document. Figure 4 517

presents results for these concatenation strategies. 518

For each layer aggregation size, we report the best- 519

performing pooling combination for DeBERTa and 520

SBERT using two- and three-token concatenations. 521

Four-token representations were also evaluated 522

but consistently underperformed, and are omitted 523

for brevity. Concatenations involving SUM and 524

MAX pooling, as well as average layer aggrega- 525

tion, yielded poor results across all settings and are 526

likewise excluded from Figure 4. 527

When concatenating two tokens, including the 528

[CLS] token generally underperformed compared 529

to combining AVG and AVG-NS, across both en- 530

coders. The best two-token configuration was 531

DeBERTa-AVG+AVG-NS with sum aggregation 532

over layers 8–10, achieving an average accuracy 533

of 89.4. This performance was nearly tied with 534

the best three-token setup—CLS+AVG+AVG-NS 535

using layers 6–11 for SBERT and 8–10 for De- 536

BERTa, both reaching 89.65. These multi-token 537

results surpass the best single-token configuration 538

(SBERT-AVG/SUM, layers 6–12) which achieved 539
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(a) SBERT-sum (b) DeBERTaV3-sum (c) SBERT/DeBERTaV3-avg

Figure 3: Average accuracy of DeBERTa and SBERT across different layer aggregation strategies (sum and average
of embeddings) and pooling methods (AVG, AVG-NS, SUM, SUM-NS). The x-axis indicates the layers being
aggregated, and the y-axis shows the corresponding average accuracy. For each combination of aggregation size and
pooling method, only the highest-performing result is shown.

Figure 4: Average task accuracy for concatenating two and three pooling vectors. Results for DeBERTa and SBERT,
with the best result for each size of layer aggregations for both two and three vectors presented.

89.43. In contrast, SBERT’s best two-token con-540

figuration reached only 89.41, slightly below the541

single-token result.542

The layer aggregation trends observed for con-543

catenation align with those in Figure 3, with544

top-performing single-token aggregations also ex-545

celling in multi-token settings. These findings sug-546

gest that combining multiple pooling methods is a547

promising strategy for enhancing document repre-548

sentations.549

4.6 Comparison with baselines550

To compare the impact of pooling and layer ag-551

gregation relative to existing embedding methods,552

Table 1 presents the results of previously proposed553

methods. It also presents our best pooling and layer554

aggregation strategies for 1, 2, and 3 tokens when555

considering the validation set average task accu-556

racy. We used the validation set for choosing the557

configurations to ensure a fair comparison with the558

baselines, as these choises function as hyperparam- 559

eters. 560

As shown in Table 1, careful selection of pooling 561

and aggregation strategies significantly improves 562

performance, even with a single-token represen- 563

tation. Our best result—DeBERTa with concate- 564

nated [CLS], AVG, and AVG-NS pooled from the 565

sum of layers 8–11 achieved an average accuracy 566

of 89.49, surpassing the strongest baseline, su- 567

SupSimCSE-RB-LC (Hosseini et al., 2023), which 568

reached 88.66 after 3 epochs of training. 569

To isolate the effect of pooling and aggregation, 570

we compare original encoder results with their op- 571

timized single-token configurations. SBERT’s av- 572

erage accuracy increased from 85.27 to 89.42 by 573

summing layers 5–12 and applying AVG pooling, 574

a nearly 5% improvement. DeBERTa showed even 575

greater gains, from 81.51 to 88.88, marking a 9% 576

increase. These improvements underscore the sub- 577

stantial, often overlooked, impact of pooling and 578
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Model MR CR SUBJ MPQA SST2 TREC MRPC Average
RoBERTaAVG/Last Layer 80.46 72.24 93.01 80.60 87.48 74.80 66.49 79.30
DeBERTaAVG/Last Layer 83.71 73.40 92.46 83.01 90.55 78.20 69.22 81.51
BERTAVG/Last Layer ⋆ 78.66 86.25 94.37 88.66 84.40 92.80 69.45 84.94
SBERT ∆ 80.10 86.25 94.61 88.78 84.90 89.00 73.25 85.27
su-HNCSE-PM ⊙ [1ep] 81.94 86.99 95.20 89.77 86.81 85.31 75.49 85.93
su-AoE-BERT∆ [1ep] 83.00 89.38 94.72 89.87 87.20 89.00 75.54 86.96
su-CLTC-RoBERTa† [5ep] 86.86 92.35 94.31 89.91 91.36 87.73 77.14 88.52
su-SRoBERTa-B-LC♢ [200iter] 85.76 91.75 94.80 90.51 90.78 87.95 78.92 88.64
su-SimCSE-RoBERTa-MLM△ [3ep] 85.08 91.76 94.02 89.72 92.31 91.20 76.52 88.66
SBERTAVG / SUM-5-12 85.93 90.36 95.30 90.56 91.65 96.00 76.23 89.43
DeBERTaAVG / SUM-7-10 86.50 88.77 95.10 90.27 92.42 93.80 75.30 88.88
SBERTAVG+AVG-NS / SUM-8-12 85.99 89.72 94.81 90.42 90.94 95.20 77.04 89.16
DeBERTaAVG+AVG-NS / SUM-6-10 86.89 90.23 95.67 90.73 92.15 94.40 71.19 88.75
SBERTCLS+AVG+AVG-NS / SUM-7-12 86.19 91.02 95.77 90.76 91.93 96.00 74.90 89.48
DeBERTaCLS+AVG+AVG-NS / SUM-8-11 87.47 90.12 95.39 90.43 92.59 95.20 75.25 89.49

Table 1: Results of sentence embeddings on classification tasks for the baselines and the best 1,2, and three token
alternatives for SBERT and DEBERTA on the validation set. The reported metric is accuracy. ⋆: (Reimers and
Gurevych, 2019); ∆: (Li and Li, 2024); ⊙: (Liu et al., 2024b); †: (Liu et al., 2024a); △: (Gao et al., 2021); ♢:
(Hosseini et al., 2023).

aggregation choices in sentence representation.579

On individual tasks, our best pooling and aggre-580

gation strategies, combined with token concatena-581

tion, achieved top results on five of the seven tasks582

(MR, SUBJ, MPQA, SST2, and TREC). In MRPC,583

while not leading, our methods outperformed the584

vanilla encoders (BERT, DeBERTa, SBERT, and585

RoBERTa with last-layer AVG pooling). Across586

the full range of configurations tested, our results587

remained consistently strong, demonstrating that588

pooling and aggregation are critical factors in opti-589

mizing transformer-based embeddings for classifi-590

cation tasks.591

5 Conclusion592

In this work, we systematically studied the impact593

of different pooling strategies and layer aggrega-594

tion techniques in Transformer encoder-only mod-595

els for text classification. Our analysis covered596

widely used pooling methods, including [CLS],597

mean, sum, and max pooling, along with novel598

combinations of these techniques. We also ex-599

amined the effects of extracting embeddings from600

different model layers and proposed aggregation601

strategies to enhance sentence representations. Ad-602

ditionally, we introduced the concatenation of mul-603

tiple pooling vectors as a way to further improve604

performance.605

Our experimental results show that pooling se-606

lection and layer aggregation significantly affect607

text classification accuracy. By carefully choosing608

the pooling method and combining multiple layers,609

we achieved improvements of up to 9% over tradi-610

tional approaches using the same encoder. Notably, 611

our study show that standard practices, such as re- 612

lying solely on the [CLS] token, using only the last 613

layer’s embeddings, or averaging tokens based on 614

a single layer, often yield suboptimal results. In- 615

stead, combining multiple pooling techniques and 616

leveraging intermediate layers leads to more robust 617

representations, especially when summing layers 618

and averaging tokens. We believe our findings may 619

provide a roadmap for optimizing Transformer en- 620

coders in text classification tasks. 621

These results highlight the untapped potential in 622

Transformer-encoded sentence and document repre- 623

sentations, opening several venues for future work. 624

A key next step is developing a method to automat- 625

ically select pooling and aggregation parameters, 626

better adapting to the encoder’s characteristics and 627

the task at hand. We are actively working on this 628

automatic selection process. 629

Furthermore, we believe that integrating layer ag- 630

gregation and pooling into encoder training could 631

further enhance classification performance, and we 632

plan to explore strategies for retraining existing 633

encoders with optimized pooling/aggregation con- 634

figurations. Finally, we aim to extend our analy- 635

sis to large Transformer encoders (24 layers) and 636

similarity tasks, as well as investigate additional 637

aggregation techniques, such as weighted averages 638

and concatenating poolings from non-consecutive 639

layers. 640
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Limitations641

While we believe this work is an important first step642

in demonstrating the impact of pooling, layer aggre-643

gation, and pooling concatenation in classification644

tasks, there are several scenarios and limitations645

that could not be addressed within the scope of a646

single paper. In this section, we highlight what we647

consider the most important aspects not tackled in648

this work.649

• A systemized approach to automatically650

choose pooling and layer aggregations. In651

this paper, we are interested in showing the652

full potential of pooling and layer aggregation653

that is mostly not being used by Transformer654

encoder-based methods. We did not focus,655

however, in how to automatically select the656

best configurations.While we offer general in-657

sights and recurring patterns across encoders,658

the optimal settings remain model-specific, as659

can be seen in the fact that in SBERT using660

both the last and deeper layers (5 and 6) lead661

to the best results overall, unlike DeBERTa.662

We believe that defining heuristics and, more663

importantly, developing automatic methods to664

select pooling strategies is essential to fully665

realize the potential demonstrated here. We666

are currently investigating such approaches.667

• Comparison with autoregressive LLM668

models. Our baselines focus on Transformer669

encoder-based models, as our contributions,670

pooling, aggregation, and token concatena-671

tion, are designed to improve this class of672

models. We exclude autoregressive LLMs673

such as (Li and Li, 2024) from the main com-674

parison due to their fundamentally different675

architecture (e.g., using prompts to compress676

information into a single token) and signifi-677

cantly larger scale (7–13 billion parameters678

versus 110–140 million in BERT-base mod-679

els). Nonetheless, we include a comparison in680

Appendix B.681

• Similarity tasks. Our primary focus is on682

classification tasks, while much of the existing683

literature emphasizes similarity tasks for both684

training and evaluation. We recognize the rel-685

evance of similarity tasks, particularly in ap-686

plications like RAG, and have conducted ex-687

periments in this setting using our pooling and688

aggregation strategies. However, we chose to689

center our analysis on classification to provide 690

a clearer directional evaluation. Results for 691

similarity tasks using our best classification 692

configurations are presented in Appendix A. 693

• More sophisticated layer aggregations. In 694

this paper, we explored summing and aver- 695

aging consecutive layers. While this lead to 696

good results, obviously more sophisticated ap- 697

proaches, such as weighting different layers, 698

choosing non consecutive layers, and using 699

machine learning to determine the aggregation 700

are possible and must be further evaluated. 701
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textual similarity (STS) tasks, which are widely 828

adopted for benchmarking sentence embeddings. 829
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SentEval suite: STS12–STS16, STS-Benchmark 831

(STS-B), and SICK-Relatedness (SICK-R). These 832

benchmarks compute the Spearman correlation be- 833

tween the cosine similarity of sentence embeddings 834

and human-labeled similarity scores. 835

Table 2 presents the results for baseline models 836

and our best-performing configurations. As ex- 837

pected, SBERT significantly outperforms vanilla 838

transformer models (e.g., BERT and RoBERTa) 839

when used with average pooling on the last layer. 840

This is due to the fact that SBERT was specifi- 841

cally trained to capture semantic similarity rela- 842

tionships between sentences, using a siamese archi- 843
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Average
RoBERTaAVG/Last Layer 39.47 17.49 24.41 31.96 45.55 69.61 76.80 43.61
DeBERTaAVG/Last Layer 38.08 27.46 34.52 38.82 36.90 48.74 66.06 41.51
BERTAVG/Last Layer ⋆ 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81
SBERT ∆ 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
su-AoE-BERT ∆ 75.26 85.61 80.64 86.36 82.51 85.64 80.99 82.43
su-HNCSE-PM ⊙ 71.02 83.92 75.52 82.93 81.03 81.45 72.76 78.38
su-CLTC-RoBERTa † 77.85 88.96 81.72 86.63 83.98 84.27 82.12 83.65
su-SimCSE-RoBERTa-MLM △ 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
su-SRoBERTa-B-LC ♢ 72.94 76.14 72.83 82.29 77.13 78.99 76.90 76.75
SBERTAVG / SUM-5-12 68.04 68.85 70.64 80.25 80.10 77.08 81.65 75.23
DeBERTaAVG / SUM-7-10 52.64 47.21 54.93 67.67 63.38 62.00 75.09 60.42
SBERTAVG+AVG-NS / SUM-8-12 69.46 72.38 72.43 81.46 81.02 78.18 82.44 76.77
DeBERTaAVG+AVG-NS / SUM-6-10 54.57 51.28 57.16 69.37 64.09 54.87 65.51 59.55
SBERTCLS+AVG+AVG-NS / SUM-7-12 66.88 68.86 69.66 78.03 80.22 65.91 82.45 73.14
DeBERTaCLS+AVG+AVG-NS / SUM-8-11 51.67 43.32 53.31 65.73 60.82 60.51 75.38 58.68

Table 2: Spearman’s correlation scores across seven STS benchmarks for various models. ⋆: (Reimers and Gurevych,
2019); ∆: (Li and Li, 2024); ⊙: (Liu et al., 2024b); †: (Liu et al., 2024a); △: (Gao et al., 2021); ♢: (Hosseini et al.,
2023). The remaining lines are the best pooling and layer aggregation configurations in the classification validation
set.

tecture and supervised objectives aimed at bring-844

ing semantically equivalent sentences closer to-845

gether. This focus naturally makes it more suitable846

for STS benchmarks, where the evaluation metric847

is precisely the semantic closeness between sen-848

tence pairs. Among baselines, SimCSE and CLTC-849

RoBERTa deliver the highest correlation scores850

across all tasks, demonstrating the effectiveness of851

contrastive learning for similarity.852

Our pooling and aggregation methods, despite853

being developed without supervision or fine-tuning,854

show competitive results. The best-performing855

configuration for similarity was the combination856

AVG+AVG-NS applied over the sum of layers 8857

to 12 of SBERT, which achieved an average Spear-858

man correlation of 76.77, surpassing the original859

SBERT baseline (74.89). This indicates that care-860

fully selecting intermediate layers and combining861

pooling strategies can yield improvements even in862

tasks the models were not directly optimized for.863

Interestingly, while our configurations show864

solid results with SBERT, DeBERTa’s performance865

lags behind on similarity tasks despite excelling866

in classification. For instance, DeBERTa with867

AVG+AVG-NS over layers 6–10 reached only868

59.55 on average. This suggests that while pooling869

and aggregation improve classification, similarity870

tasks may benefit more from supervised fine-tuning871

or contrastive training, particularly for encoders872

like DeBERTa that were not originally designed for873

sentence-level semantics.874

These findings reinforce our hypothesis: pooling875

and aggregation are key factors in sentence rep-876

resentation, but optimal configurations may differ 877

between classification and similarity tasks. Future 878

work will further explore strategies that unify both 879

objectives under a shared representation framework. 880

Also, in future work, it will be important to perform 881

fine-tuning of the encoders themselves to further 882

optimize their performance for similarity tasks and 883

potentially align them better with pooling and ag- 884

gregation strategies. 885

B Comparison with decoder-only LLMs 886

We also present a comparison our best results with 887

recent decoder-only large language models (LLMs) 888

to contextualize their relative performance and re- 889

source requirements. 890

Table 3 presents the classification accuracy of 891

several LLM-based methods, such AoE-LLaMA 892

and PromptEOL, alongside our best pooling and ag- 893

gregation configurations for SBERT and DeBERTa. 894

Notably, LLM-based approaches typically rely on 895

prompt-based encoding, where the input sentence 896

is embedded into a fixed position within a prompt 897

and the final token embedding is extracted to rep- 898

resent the full sentence. While effective, these 899

methods depend heavily on prompt engineering 900

and incur substantial computational costs, often in- 901

volving models with 7 to 13 billion parameters or 902

even much larger. 903

Despite this, our encoder-only methods, par- 904

ticularly those using DeBERTa (86M parame- 905

ters) with optimized pooling and aggregation (e.g., 906

CLS+AVG+AVG-NS over SUM-8-11), achieved 907

an average accuracy of 89,49, 1.93 smaller than 908
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Model MR CR SUBJ MPQA SST2 TREC MRPC Average
AoE-Llama7B 90.54 93.06 96.14 91.61 95.00 95.80 74.90 91.01
AoE-Llama13B ♢ 90.77 93.01 96.15 91.83 94.95 96.60 76.87 91.45
PromptEOL (Lllama2-7B) 90.63 92.87 96.32 91.19 95.00 95.40 75.19 90.94
PromptEOL + TP (Ours) (Lllama2-7B) △ 90.90 93.35 96.58 91.51 95.50 96.00 76.12 91.42
Pretended CoT (Lllama2-7B) 90.10 92.24 96.32 91.54 95.11 94.20 75.77 90.75
Pretended CoT + TP (Ours) (Lllama2-7B) 90.45 92.61 96.52 91.59 95.77 96.00 76.81 91.39
Knowledge (Lllama2-7B) 89.84 93.03 96.21 91.54 94.78 97.20 73.91 90.93
Knowledge + TP (Ours) (Lllama2-7B) 90.39 93.32 96.31 91.56 94.51 97.60 76.06 91.39
SBERTAVG / SUM-5-12 85.93 90.36 95.30 90.56 91.65 96.00 76.23 89.43
DeBERTaAVG / SUM-7-10 86.50 88.77 95.10 90.27 92.42 93.80 75.30 88.88
SBERTAVG+AVG-NS / SUM-8-12 85.99 89.72 94.81 90.42 90.94 95.20 77.04 89.16
DeBERTaAVG+AVG-NS / SUM-6-10 86.89 90.23 95.67 90.73 92.15 94.40 71.19 88.75
SBERTCLS+AVG+AVG-NS / SUM-7-12 86.19 91.02 95.77 90.76 91.93 96.00 74.90 89.48
DeBERTaCLS+AVG+AVG-NS / SUM-8-11 87.47 90.12 95.39 90.43 92.59 95.20 75.25 89.49
⋆ DeBERTa 86M versus Llama 7B △ -3.42 -3.23 -1.19 -1.08 -2.91 -0.8 -0.87 -1.93
⋆ DeBERTa 86M versus Llama 13B ♢ -3,3 -2,89 -0.76 -6.4 -2.36 -1.4 -1.62 -1.96

Table 3: Results of sentence embeddings on classification tasks for decoder-only LLM baselines and the best 1,2,
and three token alternatives for SBERT and DeBERTa on the validation set. The reported metrics is accuracy. ♢:
(Li and Li, 2024); △: (Fu et al., 2024).

AoE-LLaMA-13B (91.45), while using only 0.66%909

of its parameters, and PromptEOL+TP (91.42),910

with 1.23% of its parameters, offering a vastly more911

efficient alternative in resource-constrained scenar-912

ios.913

These results highlight two key insights: Pool-914

ing and aggregation significantly close the per-915

formance gap between encoder-only models and916

much larger LLMs in sentence encoding for classi-917

fication tasks; and Large language models do not918

inherently outperform optimized encoders unless919

fine-tuned extensively or used with well-crafted920

prompts and templates. While decoder-only LLMs921

are increasingly adopted across NLP tasks, our922

findings demonstrate that enhanced sentence em-923

beddings from smaller, frozen encoders, leveraging924

careful pooling and layer aggregation, can remain925

competitive.926
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