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Abstract

Cooperative Multi-Agent Reinforcement Learn-
ing (MARL) has become a critical tool for ad-
dressing complex real-world problems. How-
ever, off-policy MARL methods, which rely on
joint Q-functions, face significant scalability chal-
lenges due to the exponentially growing joint
action space. In this work, we highlight a crit-
ical yet often overlooked issue: erroneous Q-
target estimation, primarily caused by extrapo-
lation error. Our analysis reveals that this error
becomes increasingly severe as the number of
agents grows, leading to unique challenges in
MARL due to its expansive joint action space
and the decentralized execution paradigm. To
address these challenges, we propose a suite of
techniques tailored for off-policy MARL, includ-
ing annealed multi-step bootstrapping, averaged
Q-targets, and restricted action representation. Ex-
perimental results demonstrate that these methods
effectively mitigate erroneous estimations, yield-
ing substantial performance improvements in chal-
lenging benchmarks such as SMAC, SMACv2,
and Google Research Football.

1. Introduction
Cooperative Multi-Agent Reinforcement Learning (MARL)
has proven to be a powerful framework for tackling a di-
verse range of complex real-world challenges, including
autonomous driving (Zhou et al., 2020), traffic manage-
ment (Singh et al., 2020), and robot swarm coordination
(Hüttenrauch et al., 2019; Zhang et al., 2021a). However,
the inherent complexity of these scenarios introduces sig-
nificant challenges, particularly with scalability, as the joint
action space grows exponentially with the number of agents.
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Figure 1. Comparison between off-policy and on-policy MARL
methods

Off-policy MARL methods, which require the estimation of
joint Q-functions, are especially affected by this exponential
growth. As illustrated in Fig. 1 (left), the computational
complexity of off-policy methods increases substantially
with the number of agents, in contrast to on-policy meth-
ods, which estimate the joint state value function directly.
Although recent approaches, such as value factorization
methods (Son et al., 2019; Sunehag et al., 2018; Rashid
et al., 2020b; Wang et al., 2021b), have shown promise in
addressing this scalability issue, their performance often
deteriorates as the number of agents grows. This limitation
is evident in Fig. 1 (right), which compares popular off-
policy and on-policy MARL methods on the MPE (Lowe
et al., 2017) spread task. While both categories of methods
achieve comparable performance for smaller agent popula-
tions (N ≤ 3), off-policy methods experience a significant
performance drop as the number of agents increases. Even
value factorization techniques, though somewhat more scal-
able, fail to address this degradation fully.

In this paper, we investigate the root causes behind the limi-
tations of off-policy MARL methods. Our analysis identifies
a critical yet often overlooked issue: estimation errors in the
Temporal Difference (TD) target. These errors stem from
two MARL-specific challenges: (1) the exponentially ex-
panding joint action space amplifies extrapolation errors in
TD target estimation, and (2) addressing these errors neces-
sitates strict monotonicity in value factorization methods.

Building on these observations, we propose a suite of tech-
niques to mitigate estimation errors in off-policy MARL,
including annealed multi-step bootstrapping, averaged TD
targets, and restricted action representations. These tech-
niques improve performance by leveraging temporally ex-
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tended trajectories to reduce bias, averaging target values
to lower variance, and simplifying target estimation to al-
leviate extrapolation errors. When integrated into existing
off-policy MARL methods, these techniques yield substan-
tial performance gains across a variety of challenging tasks,
including SMAC (Samvelyan et al., 2019), SMACv2 (Ellis
et al., 2023), and Google Research Football (GRF) (Kurach
et al., 2020).

2. Background
2.1. Dec-POMDP and CTDE

We consider Decentralized Partially Observable Markov De-
cision Process (Dec-POMDP) (Oliehoek & Amato, 2016) in
modeling cooperative multi-agent tasks. The Dec-POMDP
is characterized by the tuple ⟨N ,S,A, r,P,O,Z, γ⟩,
where N is the set of agents, S is the set of states, A is
the set of actions, r is the reward function, P is the transi-
tion probability function, Z is the individual partial ob-
servation generated by the observation function O, and
γ is the discount factor. At each timestep, each agent
i ∈ N receives a partial observation oi ∈ Z according
to O(s; i) at state s ∈ S. Then, each agent selects an
action ai ∈ A according to its action-observation history
τi ∈ (Z ×A)∗, collectively forming a joint action denoted
as a. The state s undergoes a transition to the next state s′

in accordance with P(s′|s,a), and agents receive a shared
reward r. The joint action-value function is expressed as
Qπ(st, at) = Est+1:∞,at+1:∞

[∑∞
i=0 γ

irt+i

]
, where π de-

notes the joint policy.

This work adheres to the Centralized Training with Decen-
tralized Execution (CTDE) (Oliehoek et al., 2008; Krae-
mer & Banerjee, 2016) paradigm. In the training phase,
CTDE enables policy training to capitalize on globally avail-
able information and facilitates the exchange of information
among agents. Conversely, during the execution phase,
each agent is restricted to accessing solely its individual
action-observation history, thereby embodying decentral-
ized execution principles.

2.2. Value-Based RL

Value-based RL methods typically involve the iter-
ative adjustment of Q-functions based on the Bell-
man equation: Qk+1 = T πQk = r + γPπQk,
where T π denotes the Bellman operator and PπQ =∑

s′ P(s′|s,a)
∑

a′ π(a′|s)Q(s,a′). Restricting the pol-
icy to be greedy w.r.t the current Q-function, i.e., π ∈ G(Q),
where G(Q) is the set of all greedy policies w.r.t Q, trans-
forms the operator into the Bellman optimality operator T ,
resulting in the Q-learning update Qk+1 = T Qk.

In scenarios with a large state space, the value is of-
ten estimated using a differentiable function approximator

Q(s,a; θ) parameterized by θ. Within the framework of
deep Q-learning, updates depend on a batch of transitions
(s,a, r, s′) derived from the replay bufferD. The training of
the value function aims to minimize the mean square error:

L(θ) = E(s,a,r,s′)∼D
[
(Q(s,a; θ)− y)2

]
, (1)

where y = r + γmaxa′ Q(s′,a′; θ′) represents the TD tar-
get. The function Q(·; θ′) corresponds to the target network
parameterized by θ′. The periodically updated θ′ ensures a
consistent target across multiple iterations.

2.3. Value Factorization

Value factorization methods involve learning a factorized
value function that encompasses per-agent utilities, denoted
as [Qi(τi, ai)]

n
i=1, and is rooted in the principles of Q-

learning. A prominently discussed concept in this context is
Individual-Global-Max (IGM) (Son et al., 2019), designed
to ensure that the locally greedily selected action aligns with
the jointly optimal action. Adhering to this constraint, vari-
ous value factorization methods have been proposed, with
some notable examples being VDN (Sunehag et al., 2018),
QMIX (Rashid et al., 2020b), QTRAN (Son et al., 2019),
and QPLEX (Wang et al., 2021b). In the representation of
the joint Q-function, VDN employs an additive assumption:
Q(s,a) =

∑n
i=1Qi(τi, ai). On the other hand, QMIX

utilizes a monotonic mixing function

Q(s,a) = f(s,Q1(τ1, a1), ..., Qn(τn, an)) with
∂f

∂Qi
≥ 0,

(2)
where the function f is approximated using a hypernetwork
that takes the global state s as input and produces non-
negative weights, ensuring monotonicity. QPLEX extends
the factorization to enable greater representational capacity
via a duplex advantage-weighted formulation:

Q(s,a) =
∑
i

(λi(τ,a)−1)Ai(τ, ai)+
∑
i

Qi(τ, ai), (3)

where Ai(τ, ai) = Qi(τ, ai) −maxa′
i
Qi(τ, a

′
i).. The key

to QPLEX’s full expressiveness lies in the weight parameter
λi(τ,a) > 0, which is conditioned on the joint action space.

For consistency throughout the remainder of this paper, we
denote individual Q-functions as Qi(s, ai), even though
some methods use τi or τ as inputs.

3. Analysis on Off-Policy MARL
In this section, we investigate the challenges that hinder the
performance of off-policy MARL algorithms. We begin
with an error decomposition of the Q-function, followed by
identifying two MARL-specific issues related to the estima-
tion errors of the TD target.
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3.1. Error Decomposition of Q-function

In practical deep Q-learning with function approximation,
the learning of Q-functions may encounter various errors.
Following the definition from Anschel et al. (2017), the
error ∆ between the current value and the optimal value can
be decomposed into three terms:

∆ = Q(s,a; θ)−Q∗(s,a)

= Q(s,a; θ)− ys,a︸ ︷︷ ︸
TAE

+ ys,a − ŷs,a︸ ︷︷ ︸
TEE

+ ŷs,a −Q∗(s,a)︸ ︷︷ ︸
OD

,

(4)
where ys,a = ED

[
r+γmaxa′ Q(s′,a′; θ)

]
is the estimated

target and ŷs,a = ED
[
r + γmaxa′ Q(s′,a′; θ̂)

]
represents

the true target with θ̂ = argminθ Eπ[(Q(s,a; θ)− ys,a)2].

Target Approximation Error (TAE) captures the discrep-
ancy between the learnedQ(s,a; θ) and its target ys,a. This
error can be attributed to factors such as the inexact min-
imization of θ through gradient descent and the limited
representational capacity of neural networks. Target Esti-
mation Error (TEE) measures the difference between the
estimated target ys,a and the true target ŷs,a, which can be
influenced by issues such as overestimation and extrapo-
lation errors. It is important to note that prior work often
refers to this term as “overestimation error”. However, over-
estimation assumes that the error on the Q-target follows
a uniform distribution. In this paper, we use the term TEE
to more accurately reflect that the error originates from the
Q-target itself, which is typically not uniformly distributed
and may be dominated by extrapolation errors in MARL
(see Sec. 3.2). Optimality Difference (OD) quantifies the
gap between the value function of the current policy and
that of the optimal policy. Unlike TAE and TEE, which
depend on the current Q-function approximation with θ,
OD pertains solely to how well the value function fits the
Bellman optimality equation.

Previous research in MARL has often focused on TAE, ex-
ploring ways to improve target fitting. For example, in
transitioning from a centralized Q-function to a factorized
Q-function, the function Q(s,a; θ) is simplified as a func-
tion of Qi(s, ai; θi), which facilitates target approximation
and reduces TAE. However, early value factorization meth-
ods were found to be insufficiently expressive, meaning that
they could not minimize TAE to zero. As a result, much
of the research on value factorization has concentrated on
improving the representational capacity of the Q-function.
Nevertheless, recent empirical studies (Yu et al., 2022; Ellis
et al., 2023; Hu et al., 2023) suggest that improving represen-
tational capacity alone does not always lead to performance
gains, particularly in complex domains.

The core issue lies in the tendency of prior research to
simplify Q-function learning as a regression problem or to
focus solely on theoretical properties in single-step matrix

games (Mahajan et al., 2019; Son et al., 2019; Wang et al.,
2021b;c; Rashid et al., 2020a). This simplification turns the
problem into one of Q-function updating toward the true
target, which mainly involves TAE, while overlooking the
impact of TEE, the second term in Eq. (4).

In this paper, we identify that TEE is a crucial issue for
the performance of off-policy MARL algorithms, primar-
ily driven by extrapolation error. While both TAE and
TEE capture Q-function estimation errors, TEE specifically
reflects the accuracy of predictions for Q(s′,a′), whereas
TAE pertains to Q(s,a). This distinction is critical because
a′ may not be observed in past trajectories, which can lead
to significant extrapolation errors when predicting its value.

3.2. Extrapolation Error in MARL

Extrapolation error arises in RL when the value function
inaccurately estimates the value of actions that are unseen
or rare (?). If a state-action pair (s,a) is absent from the
dataset, the Q-function, Q(s,a; θ), produces an uncertain
prediction due to the neural network’s inability to generalize
accurately for unseen combinations. Specifically, in the Q-
function update, while the transition (s,a, r, s′) is sampled
from the dataset, the next action a′ generated by the Q-
function or policy may be unseen or rare. This can lead to
significant errors in estimating Q(s′,a′), propagating poor
estimates to subsequent values.

Extrapolation error is most commonly associated with of-
fline RL (Fujimoto et al., 2019; Levine et al., 2020), where
the agent operates on a fixed dataset and cannot interact
further with the environment, increasing the likelihood that
the policy will sample actions not present in the dataset. In
contrast, online RL allows the policy to interact with the
environment and collect new data for the actions it gener-
ates, enabling self-correction and reducing extrapolation
error. However, in MARL, extrapolation error remains a
significant issue even in online settings. There are two main
reasons for this. First, the exponentially growing joint ac-
tion space makes the network increasingly susceptible to
erroneous extrapolations, even in online RL (Fujimoto et al.,
2023). Second, value factorization has a different property
related to extrapolation error, which we will discuss in the
next subsection.

For example, consider 5 agents with 10 possible actions
each. The joint action space would then contain 105 possi-
ble action combinations. To cover all possible joint actions
for a specific state using uniform sampling, over 106 sam-
ples would be required. In practice, this is rarely achievable
with limited samples, meaning the Q-target Q(s′,a′) must
often be estimated via extrapolation. It is noteworthy that
extrapolation error is more severe for actions than for states.
States tend to have more similarity in Euclidean space, mak-
ing it easier for neural networks to extrapolate. In contrast,
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discrete actions, often represented as one-hot vectors, lack
such Euclidean similarity, which makes extrapolation diffi-
cult. This issue is especially pronounced in MARL, where
the joint action space grows exponentially, increasing the
challenge of accurately estimating Q-values.
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Figure 2. (left) Proportion of extrapolated values for tasks with
different numbers of agents. (right) TEE/TAE comparison for
centralized Q-function and QMIX.

To illustrate this issue, we present experimental results on
the MPE and SMAC environments. Fig. 2(left) shows the
proportion of extrapolated values in tasks with varying num-
bers of agents. The proportion is calculated based on the
fraction of (s′,a′) pairs in each update that are absent from
the replay buffer. As shown, in the single-agent case, ex-
trapolation is not a significant issue, as the proportion of
extrapolated values quickly decreases to zero. However, as
the number of agents increases, the exponentially growing
joint action space leads to a substantial reliance on extrap-
olated Q-targets. Fig. 2(right) compares TEE and TAE for
a centralized Q-function and QMIX. As observed, TEE is
larger than TAE and does not decrease significantly over
time, as the large joint action space requires an impractically
high number of samples to cover all possible actions. More-
over, although factorized Q-functions like QMIX demon-
strate improved scalability over centralized Q-functions (as
shown in Fig. 1), they do not resolve the TEE issue. This
indicates that extrapolation error is a common challenge for
all existing off-policy MARL algorithms.

3.3. Error Propagation of TEE

Another challenge in online MARL is that the joint Q-
function does not directly dictate the behavior of individual
policies in value factorization methods, distinguishing it
from single-agent RL.

As discussed earlier, online RL can mitigate extrapolation er-
rors by increasing the frequency of executing unseen actions
in the environment. However, in online MARL, individ-
ual policies are derived from individual utilities rather than
directly from the joint Q-function. Specifically, overestima-
tion of the joint Q-function does not necessarily increase
the probability of selecting the corresponding actions for

individual agents, rendering it ineffective at addressing ex-
trapolation error. To tackle this, we introduce the concept of
Error Propagation Consistency (EPC):

Definition 3.1 (EPC). In value factorization methods, for a
joint value function Q(s,a), if its corresponding individual
utilities [Qi(s, ai)]

n
i=1 satisfy that, overestimation ofQ(s,a)

will result in the overestimation of all Qi(s, ai), we say that
the factorization structure adheres to EPC.

EPC is critical for mitigating TEE in value factorization
methods. More importantly, if techniques are applied to
reduce the error in the joint Q-function, EPC ensures that
these improvements propagate to the individual utilities.
This principle forms the basis for addressing TEE in the
next section.

In essence, factorization structures adhering to EPC must
exhibit monotonicity, as stated in the following proposition:

Proposition 3.2. Monotonicity, expressed as ∂Q(s,a)
∂Qi(s,ai)

≥ 0,
stands as a sufficient and necessary condition for EPC.

To illustrate, consider gradient descent on the objective
function minE[(y − f(Q1, ..., Qn))

2], where y represents
the TD target andQ = f(Q1, ..., Qn) denotes the factorized
joint value function. The update rule of individual utility on
(s,a) is given by:

Qi(s, ai)← Qi(s, ai)+

2α[y − f(s,Q1(s, a1), ..., Qn(s, an))]
∂f

∂Qi
|s,a,

where α is the learning rate. For a monotonic f with ∂f
∂Qi
≥

0, if the target y exceeds the current value function, i.e.,
y > f(Q1, . . . , Qn), the individual utility Qi will increase
for (s, ai). This means that overestimation of the target
Q-function leads to overestimation of all individual utilities
Qi(s, ai). Since actions are selected individually based on
Qi(s, ai), this overestimation increases the probability of
selecting ai for each i, thereby making the joint action a =
[a1, . . . , an] under state s more likely. This results in the
corresponding trajectory with poor estimates being revisited
more frequently, correcting the erroneous estimation.

Conversely, for a non-monotonic function, a larger target
y may lead to smaller values for some Qi. Consequently,
the likelihood of selecting the joint action a may decrease
because underestimation of Qi(s, ai) lowers the probabil-
ity of selecting ai. In such cases, the erroneous estimation
cannot be corrected, and consistently using this erroneous
value as the target exacerbates error accumulation. Simi-
lar observations are reported in Peng et al. (2021) and Hu
et al. (2023), where non-monotonic factorization, despite its
better expressiveness, tends to underperform compared to
monotonic counterparts, particularly in complex tasks.
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4. Addressing TEE
In this section, we introduce several techniques to mitigate
TEE. As discussed previously, TEE arises primarily from
extrapolation over the large joint action space in Q(s′,a′).
EPC provides a mechanism to directly control the joint Q-
function error in value factorization methods. Consequently,
we propose the following approaches to address TEE: 1) Re-
duce reliance on approximated Q(s′,a′) by employing its
Monte Carlo estimation instead. 2) Mitigate uncertainty in
rarely observed inputs by learning multiple Q(s′,a′) func-
tions and averaging them. 3) Restrict the representation
of joint actions to reduce their impact. These techniques
are generally applicable across existing off-policy MARL
methods. In the following subsections, we elaborate on the
methods inspired by these strategies.

4.1. Annealed Multi-Step Bootstrapping

To reduce reliance on Q(s′,a′) in TD targets, we propose
replacing it with multi-step returns (Sutton & Barto, 2018).
Multi-step targets derived from unbiased samples can off-
set the effects of an undertrained value network, thereby
reducing estimation error.

A prominent multi-step method for Q-learning is Peng’s
Q(λ) (PQL) (Peng & Williams, 1994). The PQL operator,
N µ,π

λ applicable to any policies µ and π, is defined as:

N µ,π
λ Q = (1− λ)

∞∑
n=1

(λT µ)(n−1)T πQ, (5)

where λ ∈ [0, 1]. PQL is widely adopted in existing MARL
algorithms (Peng et al., 2021; Zhang et al., 2021b; Hu et al.,
2023), yet its properties remain underexplored and merit
further examination.

Considering the error at iteration k is ek, we consider the
following update with error propagation:

πk ∈ G(Qk) and Qk+1 := N µ,πk

λ (Qk + ek), (6)

where µ is maintained as a fixed behavior policy (discussed
later). The following proposition illustrates PQL’s error-
reducing properties:

Proposition 4.1. The target estimation error for each up-
date step k satisfies:

∥Qk+1 −N µ,πk

λ Qk∥∞ ≤ βϵ, (7)

where ϵ = ∥ek∥∞ and β = γ(1−λ)
1−γλ . The accumulated error

related to ϵ is O(γ(1−λ)
(1−γ)2 ϵ).

Proof. The proof follows from Kozuno et al. (2021); full
details are provided in Appendix B.
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Figure 3. QMIX’S performance on SMACv2 with different λ.

This proposition establishes that TEE and its propagation
depend on λ. A larger λ reduces error, consistent with the
intuition that λ balances collected returns and learned value
functions in target estimation.

However, a larger λ is not always beneficial. With a fixed
behavior policy µ, the PQL operator converges to a biased
policy (Harutyunyan et al., 2016). While convergence to the
optimal policy is possible as µ approaches π (Kozuno et al.,
2021), this requires extensive timesteps and may not hold in
practice. As shown in Fig. 3, while larger λ values improve
initial training efficiency, their performance may degrade
over time, ultimately lagging behind smaller λ values.

To capitalize on PQL’s initial efficiency while avoiding bi-
ased final performance, we propose a λ annealing strategy.
This approach leverages PQL’s error-reducing properties at
the start of training with a large initial λ, then gradually
anneals λ to prevent policy bias. Specifically, we anneal
λ from 1 to λ∗ over the course of training, where λ∗ is a
hyperparameter. The detailed annealing scheme is provided
in Appendix D.1.

4.2. Averaged TD Target

To directly reduce TEE, a common approach involves using
multiple independent Q-function estimators and applying
ensemble methods. Ensemble techniques are well-known
for reducing variance and improving robustness (Ganaie
et al., 2022).

Consider M independently estimated Q-functions:
Q(s,a;θj) = Q∗(s,a) + ej(s,a), with ej representing
the error term, assumed to be i.i.d across j for each fixed
state-action pair. By averaging these Q-functions, the
variance of the target estimation is reduced proportionally
to 1/M :

Var[
1

M

M∑
j=1

Q(s,a; θj)] =
1

M
Var[ej(s,a)]. (8)

This reduction leverages the i.i.d. nature of the error ej .

Unlike prior works that impose additional assumptions on
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error properties (Anschel et al., 2017; Chen et al., 2021), we
do not make such assumptions. Instead, we acknowledge
that the limited expressiveness of value factorization meth-
ods can introduce model bias into ej , stemming from TAE,
as discussed in Section 3. Additionally, due to these biases,
we avoid using conservative methods like those employed in
offline RL (An et al., 2021; Bai et al., 2022). Further details
are provided in Appendix D.2.

In this approach, we propose directly averaging Q-functions
within the TD target, incorporating the action space. Specif-
ically: for methods that only utilize joint Q-functions, we
utilizeM joint Q-function: Q(s,a; θ̄) =

∑M
j=1Q(s,a; θj);

for value factorization methods, we utilizeM individual util-
ity: Q(s,a; θ̄, ψ) =

∑M
j=1Q(s, [Qi(s, ai; θ

j
i )];ψ), where

ψ represents the parameter of the mixing network. The
corresponding loss function can be written as:

L(θ, ψ) =

M∑
j=1

ED
[
(Q(s,a;θj , ψ)− ys,a)2

]
, (9)

where ys,a is the PQL target using averaged Q-function.

For value factorization methods like QMIX, it is worth
noting that there is no need to average multiple mixing
networks, as they do not depend on the action space. Further
details are provided in Appendix D.2. Another critical point
is that the theoretical guarantees underlying these results
implicitly assume that the factorization satisfies the EPC
condition, i.e., monotonicity. This requirement is essential
because both PQL and ensemble methods aim to control
the error of the joint Q-function, and only a monotonic
factorization can propagate this control to individual utilities
effectively.

4.3. Restricted Action Representation

Since different methods utilize the joint action space in
varying ways, we illustrate the application of the Restricted
Action Representation (RAR) technique using MADDPG
and QPLEX as examples. While the specific methods differ,
they share the common objective of reducing the influence
of joint actions in the TD target.
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For methods that directly use the joint Q-function, such as
MADDPG, we apply a function g to map the joint action
space to a smaller, more manageable space. The g(a) is
modeled as a neural network that takes the joint action a as
input and outputs a vector of categorical variables. This net-
work is optimized using straight-through gradients (Bengio
et al., 2013). For example, in MPE with 4 agents, the joint
action space has a size of 54. By using the mapping function
g(a), we reduce this space to 24 through a 10-dimension
vector. This vector is comprised of 5 categorical distribu-
tions, each with 2 possible classes. We then sample from
g(a) and convert the result into a one-hot vector. The target
Q-function is then given by: Q(s′, onehot(draw(g(a′)))).
This ensures that, instead of having 54 Q-values at each state
s′, we only have 24 values, thus reducing the extrapolation
in the target Q-function.

The corresponding results are shown in Fig. 4(left), where
the ”MADDPG-abl” curve represents the ablation of using
Q(s′, g(a′)), highlighting that simply mapping the joint ac-
tion to g(a) does not lead to performance improvement. The
key reason is that mapping the action space to categorical
g(a) restricts the representation of the joint action while
continuous g(a) cannot.

For methods like QPLEX, which utilize joint actions as
an individual component, we apply a simpler technique to
restrict the influence of joint actions. QPLEX relies on a
weight parameter λi(s,a), which can become erroneous
due to the vast size of the joint action space. As shown in
Fig. 4(right), the dashed line and the right y-axis display the
mean, std and maximum values of QPLEX’s λi during train-
ing. We observe that while the mean and std of λi remain
small and stable, the maximum value grows significantly
over time. This indicates the presence of outliers in λi likely
due to error accumulation during training. This error accu-
mulation leads to instability around the 5M training step,
causing a significant drop in QPLEX’s performance.

The reason for this issue is straightforward: as λi grows
large at rarely encountered state-action pairs (s,a), erro-
neous values accumulate over time. This error persists be-
cause the probability of selecting action a does not increase
with λi(s,a). This is similar to the issue discussed in Sec-
tion 3.3. To mitigate this, we propose directly restricting
λi in QPLEX. Specifically, we bound it by applying the
Sigmoid function: λ∗i (s,a) = Sigmoid(λi(s,a)), which
ensures that λ∗i ∈ [0, 1]. The results in Fig. 4(right) show
that QPLEX-RAR significantly improves the stability of
QPLEX, demonstrating that RAR effectively reduces the
negative impact of the joint action space.
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Figure 6. Mean test win rate of AEQMIX and QMIX on SMACv2.

5. Experiments
In this section, we evaluate the performance of the proposed
approach across several popular domains, including SMAC
(Samvelyan et al., 2019) and SMACv2 (Ellis et al., 2023).
Due to space limitations, we primarily focus on QMIX
(Rashid et al., 2020b) in SMACv2, and FACMAC (Peng
et al., 2021) and MADDPG (Lowe et al., 2017) in SMAC,
as they represent value-based and policy-based off-policy
MARL methods, respectively. We refer to the algorithms
with annealed multi-step bootstrapping and averaged TD-
target as Annealed Ensemble QMIX (AEQMIX), AEFAC-
MAC, and AEMADDPG-RAR. Further results, including
AEQMIX and QMIX on SMAC and GRF (Kurach et al.,
2020), AEVDN, AEQPLEX-RAR, VDN (Sunehag et al.,
2018), and QPLEX-RAR on SMACv2, as well as details
regarding hyperparameters and experimental settings, can
be found in Appendix D.

5.1. Main Results

SMAC. We evaluate on four maps from the FACMAC paper
(Peng et al., 2021), including one Easy map, one Hard map,

and two Super Hard maps. The codebases for FACMAC and
MADDPG are adopted from Peng et al. (2021). The results
are shown in Fig. 5, where we observe that AEFACMAC
and AEMADDPG-RAR significantly improve performance
over their base algorithms. The performance gain is par-
ticularly notable in the two Super Hard maps with larger
joint action spaces, indicating that our methods effectively
address the challenges posed by the increased joint action
space. Despite MADDPG’s generally poor performance in
SMAC, our approach allows it to perform well on the Easy
and Hard maps and even enables learning on the Super Hard
maps, where MADDPG typically struggles.

SMACv2. SMACv2 was introduced to overcome some
of the limitations of SMAC, such as the lack of stochas-
ticity and partial observability (Ellis et al., 2023). Unlike
SMAC, SMACv2 incorporates randomly generated units
and initial positions, which introduce more stochasticity
and create challenging scenarios. We evaluate QMIX on
SMACv2, as it is the SOTA method for this domain but
still requires improvement, especially for tasks with large
agent numbers. The codebase is from Pymarl2 (Hu et al.,
2023). As shown in Fig. 6, we test the algorithms on 15
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Figure 7. Ablations of QMIX with different λ, M and hidden size.
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maps of SMACv2. QMIX struggles to achieve high win
rates across several tasks, particularly in the 10 vs 11 and
20 vs 23 scenarios. However, AEQMIX exhibits signifi-
cant improvements across all maps, especially on the more
challenging tasks where QMIX’s win rate is notably low.
These results demonstrate the effectiveness of our proposed
method in improving existing SOTA algorithms and tackling
challenging environments.

5.2. Ablation Studies and Discussions

In this subsection, we conduct further experiments to ana-
lyze the impact of the techniques introduced in our paper.
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Figure 9. TEE and its variance with different λ and M .

Figure 9 shows the impact of varying λ and ensemble size
M on TEE. As expected, a larger λ results in lower TEE.
Our λ annealing approach keeps TEE low throughout train-
ing, promoting efficient learning in the early stages while
mitigating bias in the later stages. Additionally, increas-
ing the ensemble size M reduces the variance, consistent

with the well-established property of ensemble methods to
decrease variance by a factor of 1/M .

Figure 7 (left) illustrates the effects of ensemble size and
annealing on performance, where AQMIX represents QMIX
with annealing, and EQMIX represents AEQMIX without
annealing but with ensemble size M . First, we observe that
larger ensemble sizes consistently improve performance,
demonstrating the benefits of variance reduction through av-
eraged targets. Second, comparing AEQMIX with EQMIX
under the same M shows that annealing generally enhances
performance. Finally, the combined approach of annealing
and averaging results in a mutually beneficial effect, leading
to significant performance improvements. It is worth noting
that simply increasing the number of parameters does not
guarantee better performance. For example, Figure 7 (right)
shows the performance of QMIX with varying hidden size
of its networks. Here, performance worsens as the network
size increases, suggesting that larger networks are more
prone to extrapolation errors. This implies that performance
gains arise not from an increase in model parameters, but
from more accurate target estimation.

Figure 8 shows the effect of RAR on QPLEX and MADDPG.
By restricting the action representation, the performance of
QPLEX stabilizes, and MADDPG’s performance improves.
While this technique limits the expressive power of the
action space, it highlights that full expressiveness is not
always necessary, especially when the joint action space is
large. In such cases, overly expressive models may suffer
from estimation errors, negatively impacting performance.
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6. Conclusion
This paper highlights the often-overlooked issue of TEE in
off-policy MARL. We identify that TEE primarily arises
from extrapolation errors in the large joint action space of
the joint Q-function and provide a detailed analysis of its
propagation and reduction. We propose three techniques to
mitigate TEE from different perspectives, which are broadly
applicable to a wide range of off-policy MARL methods.
Our experimental results demonstrate that the proposed
methods can significantly improve the performance of both
policy-based and value-based off-policy MARL algorithms,
including factorized and non-factorized approaches. We
believe that our findings open up new avenues for future
research and offer a fresh perspective on addressing the
challenges of TEE in off-policy MARL.
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A. Related Works
Value factorization. In addition to the previously discussed methods, various approaches address the challenge of value
factorization. For value-based methods, Qatten (Yang et al., 2020) employs an attention mechanism to augment the
expressive capacity of linear factorization. WQMIX (Rashid et al., 2020a) improves QMIX’s expressive ability through
the incorporation of a weighted operator and a true value network. QTRAN++ (Son et al., 2020) refines the constraints of
QTRAN to improve efficiency. For policy-based methods, VMIX (Su et al., 2021) applies QMIX’s factorization to the value
function of A2C (Mnih et al., 2016). DOP (Wang et al., 2021c) utilizes linear factorization on the Q-function of COMA
(Foerster et al., 2018), while FOP (Zhang et al., 2021b) extend QPLEX’s factorization to soft actor-critic (Haarnoja et al.,
2018) framework. FACMAC (Peng et al., 2021) combines QMIX’s factorization with MADDPG (Lowe et al., 2017). These
approaches primarily concentrate on enhancing factorization itself, specifically addressing the TAE problem introduced in
this paper, without delving into the underlying reasons for the success of value factorization. While theoretical papers such
as (Wang et al., 2021a) take steps to unveil the efficiency and credit assignment of value factorization, they lack substantial
support for subsequent improvements. Recent examinations of these methods (Yu et al., 2022; Ellis et al., 2023; Hu et al.,
2023), along with more comprehensive experiments, highlight QMIX as the most popular and robust value-based MARL
algorithm. Therefore, distinct from previous approaches, our work approaches value factorization from a novel perspective,
introducing further enhancements to existing methods.

Ensemble RL and MARL. Our analysis is similar to Averaged-DQN (Anschel et al., 2017), which ensembles the Q-
functions from the past M steps. Despite proving effective in variance reduction, Averaged-DQN relies on assumptions
that may not always hold in practice. Other ensemble methods (Lee et al., 2021) incorporating the standard deviation of
Q-functions were not discussed here due to limited observed improvements and their divergence from the main focus of
this paper. REDQ (Chen et al., 2021) employs in-target minimization across a random subset of Q-functions from the
ensemble. However, this approach proves unsuitable for value factorization, possibly due to the presence of model bias
(See Appendix D.2). In MARL, EMAX (Schäfer et al., 2023) applied a similar ensemble method on VDN and QMIX with
UCB and majority vote to improve exploration. MMD-MIX (Xu et al., 2021) introduce REM (Agarwal et al., 2020) into a
distributional view of QMIX to be more robust in randomness. These methods do not explicitly consider the extrapolation
error.

Offline RL. The in-target average ensemble employed in our paper bears resemblance to the approach used in offline RL
(Agarwal et al., 2020; Fujimoto et al., 2019; Levine et al., 2020). Additionally, the out-of-distribution (OOD) action studied
in offline RL aligns with the extrapolation error addressed in this paper. As a result, similar methods may yield comparable
effects. However, different from An et al. (2021); Bai et al. (2022), our paper does not require a more conservative/pessimistic
estimation of the target, as the monotonic constraint enables self-correction in online RL. Moreover, we found that any
degree of pessimism negatively impacts performance, as detailed in the Appendix D.2.

B. Proof of Proposition 4.1
Lemma B.1 ((Harutyunyan et al., 2016)). The PQL operator can be rewritten in the following forms:

N µ,π
λ Q = (I − γλPµ)−1(r + γ(1− λ)PπQ). (10)

Using this lemma, we have:

N µ,π
λ (Qk + ek) = (I − γλPµ)−1[r + γ(1− λ)Pπ(Qk + ek)]

= N µ,π
λ Qk + γ(1− λ)(I − γλPµ)−1Pπek.

As a result,

∥Qk+1 −N µ,π
λ Qk∥∞ = γ(1− λ)∥(I − γλPµ)−1Pπek∥∞

≤ γ(1− λ)
1− γλ

∥ek∥∞ = βϵ.

This shows the propagation of TEE relative to λ on each step.

For the algorithm:

πk ∈ G(Qk) and Qk+1 = N µ,πk

λ Qk + εk,
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Algorithm 1 AEQMIX

1: Initialize M action-value networks for all agents {[Qi(τi, ai; θ
j
i )]

M
j=1}ni=1 with parameter θ and a mixing hypernetwork

H with parameter ψ
2: Initialize target networks: ψ′ = ψ, θ′ = θ
3: Initialize replay buffer D = {}
4: while k ≤ episode max do
5: set trajectory buffer T = [ ]
6: for t = 1 to max epsode length do
7: Explore using ε− greedy with Q̄i(τi, ·) =

∑M
j=1Qi(τi, ·; θji )

8: Store transition (st, τt,at, rt, st+1, τt+1) into T
9: end for

10: Store trajectory into D and sample a mini-batch b
11: for each trajectory T in b do
12: for each transition (s, τ ,a, r, s′, τ ′) in T do
13: Form joint action a′ by a′i = argmax Q̄i(τi, ·)
14: Compute target joint value Q̄′(s′,a′) using (??)
15: end for
16: Compute PQL target ys,a with λ using Q̄′(s′,a′)
17: Compute joint value Q(s,a;θj , ψ)
18: end for
19: Compute loss through (9)
20: Adam updates θ, ψ with the computed loss
21: if k mod d = 0 then
22: Update target networks: ψ′ = ψ, θ′ = θ
23: Update λ through (13)
24: end if
25: k = k + 1
26: end while

(Kozuno et al., 2021) introduced the following lemma:

Lemma B.2 ((Kozuno et al., 2021)). For any K the following holds:

∥V ρ† − V ρK∥ ≤ O(βK) +
2

1− γ

K−1∑
k=0

βK−k−1∥εk∥∞ (11)

where ρK = λµ+ (1− λ)πk, ρ† = λµ+ (1− λ)π† and π† ∈ G(Qρ†).

Therefore, in this paper, we have

∥V ρ† − V ρK∥ ≤ O(βK) +
2

1− γ

K−1∑
k=0

βK−k−1 · βϵ (12)

The second term represents the error dependence which can be futher written as:

2

1− γ

K−1∑
k=0

βK−kϵ =
2β

1− γ
1− βK

1− β
ϵ = O(γ(1− λ)

(1− γ)2
ϵ).

This completes the proof.

C. Pseudo code
The pseudo code of AEQMIX is summarized in Algorithm 1.

13
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D. Experimental Details
D.1. Hyperparameters

Our implementation of VDN, QMIX and QPLEX is based on the pymarl2 (Hu et al., 2023) code base. All hyper-parameters
used in our algorithm is consistent with QMIX except for the additional λ∗ and ensemble size M , as presented in Table 1.
For stability, λk is updated alongside the fixed target network as follows:

λk = λ∗ +
1− λ∗

1 + αk
, (13)

where α = 10/T , and T is the total number of environmental steps for training. While this scheme is heuristic, the algorithm
is not sensitive to the specific annealing schedule, as long as λ converges to λ∗. The implementation of MADDPG and
FACMAC is directly taken from Peng et al. (2021), without any parameter adjustment.

Table 1. Hyperparameters used for SMAC, SMACv2 and GRF.

hyperparameters SMAC SMACv2 GRF

Action Selector epsilon greedy epsilon greedy epsilon greedy
ϵ start 1.0 1.0 1.0
ϵ finish 0.05 0.05 0.05

ϵ Anneal Time 100000 100000 100000
Runner parallel parallel parallel

Batch Size Run 8 4 32
Buffer Size 5000 5000 2000
Batch Size 128 128 128
Optimizer Adam Adam Adam

Target Update Interval 200 200 200
Mixing Embed Dimension 32 32 32

Hypernet Embed Dimension 64 64 64
Learning Rate 0.001 0.001 0.0005

λ 0.6 0.4 0.8
λ∗ {0.0, 0.4} {0.0, 0.2} 0.8

Ensemble Size 8 8 2
Gamma 0.99 0.99 0.999

RNN Hidden Dim 64 64 256

D.2. Additional Discussion on Averaged Target

In this section, we provide further discussion on the averaged Q-target.

First, we examine the effect of using multiple mixing networks to compute the ensembled target:

Q(s,a;θ, ψ̄) =

M∑
j=1

Hj(s,Q1(s, a1; θ1), ..., Qn(s, an; θn);ψ
j). (14)

As shown in Fig. 10(a), using more than one mixing network (M > 1) does not improve performance. This is because the
error predominantly arises from the action space, while the mixing network only takes the state as input, which does not
effectively address the action-related errors.

Next, we explore whether using a more conservative TD target could improve performance, similar to the approaches used
to address extrapolation error in offline RL (An et al., 2021; Bai et al., 2022). To this end, we implement a target similar to
REDQ (Chen et al., 2021):

y = r + γmin
j∈M

Q(s,a;θj , ψ) (15)

whereM is a set of M distinct indices from the ensemble 1, 2, . . . , 10. The results, shown in Fig. 10(b), represent the
win rates averaged across zerg 5 vs 5, protoss 5 vs 5 and terran 5 vs 5 on SMACv2 at 3M time steps. As the level of
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Figure 10. (a) Performance of QMIX with different number of mixing network. (b) Comparison of the performance with different
pessimism of the TD target.

pessimism increases along the x-axis, we observe that using a more pessimistic TD target does not improve performance and,
in fact, has a negative impact. This is in contrast to offline RL settings, where pessimism has proven useful for mitigating
extrapolation errors. However, in our online RL setting, this approach introduces unnecessary conservatism, which hinders
learning and leads to suboptimal performance.

D.3. Additional Results on SMAC, SMACv2 and GRF

0 2M0.0
0.2
0.4
0.6
0.8
1.0

1c3s5z

0 2M

2s3z

0 2M

2s_vs_1sc

0 2M

8m

0 2M

MMM

0 5M0.0
0.2
0.4
0.6
0.8
1.0

2c_vs_64zg

0 5M

3s5z

0 5M

3s_vs_5z

0 5M

8m_vs_9m

0 5M

10m_vs_11m

0 10M0.0
0.2
0.4
0.6
0.8
1.0

3s5z_vs_3s6z

0 10M

5m_vs_6m

0 10M

6h_vs_8z

0 10M

corridor

0 10M

MMM2M
ea

n 
Te

st
 W

in
 R

at
e

Step

AEQMIX QMIX

Figure 11. Mean Test Win Rate of AEQMIX and QMIX on SMAC.

Fig. 11 shows the performance of AEQMIX and QMIX on SMAC. Fig. 12 shows the performance of AEQPLEX-RAR,
QPLEX-RAR, AEVDN and VDN on SMACv2. Fig. 13 shows the performance of AEQMIX and QMIX on GRF.
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Figure 12. Mean Test Win Rate of AEQPLEX-RAR, QPLEX-RAR, AEVDN and VDN on SMACv2.
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Figure 13. Mean Test Score of AEQMIX and QMIX on GRF.
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