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ABSTRACT

Deep learning models for medical time series analysis exhibit a critical reliabil-
ity gap: high accuracy on curated data does not translate to robustness against
real-world noise and device variability. We argue this gap stems from inadequate
modeling of hierarchical physiology and training paradigms that neglect clinical sta-
bility. We introduce SM (Stability Medical time series classifier), a framework that
bridges this gap by synergistically co-designing a novel, physiologically-inspired
architecture with a multifaceted stability optimization strategy. Our Stability-aware
Hierarchical Spatial Modulation (SHSM) module mimics clinical reasoning by
selectively attending to biomarkers while preserving global waveform morphology.
Complementing this, our training objective enforces robust accuracy, output con-
sistency, and knowledge preservation without sacrificing clean-data performance.
Extensive evaluations on four medical time series datasets against 11 baselines
demonstrate that SM achieves state-of-the-art performance while significantly im-
proving robustness. By unifying architecture and training around the principle
of stability, SM provides a systematic framework for building clinically reliable
medical AI.

1 INTRODUCTION

Medical time-series analysis is fundamental to modern clinical diagnosis, involving the examination
of sequential health-related data points recorded over time to monitor physiological signals, with
modalities like electroencephalography (EEG) and electrocardiography (ECG) offering essential
insights into neurological and cardiovascular conditions Badr et al. (2024); Altaheri et al. (2023). This
approach is vital for transforming healthcare management by improving patient outcomes, reducing
costs, and increasing operational efficiency Liu et al. (2021); Murat et al. (2020). Its applications
are extensive, ranging from epidemiology, where it is used to predict disease outbreaks, to hospital
administration for forecasting emergency department visits and optimizing resource allocation Li
et al. (2025). In direct patient care, advanced machine learning techniques enable the anticipation of
critical events such as organ failure or adverse treatment responses, facilitating earlier, life-saving
interventions.

However, deploying deep learning models in real-world clinical settings presents significant chal-
lenges. Physiological signals acquired in practice exhibit complex noise patterns that systematically
deviate from those in laboratory-curated datasets Tzimourta et al. (2021); Al-Zaiti et al. (2023). EEG
recordings, for instance, are susceptible to motion artifacts and inter-electrode impedance varia-
tions Sanei & Chambers (2013), while ECG measurements suffer from inter-device variability and
patient-specific baseline drifts Kiyasseh et al. (2021). Consequently, a critical robustness gap emerges:
state-of-the-art models, such as Medformer Wang et al. (2024b), achieve high accuracy on benchmark
datasets but exhibit fragile decision boundaries when confronted with realistic perturbations Liu et al.
(2021); Murat et al. (2020).

This fragility arises from two fundamental limitations. First, existing architectures inadequately cap-
ture the hierarchical organization of physiological patterns that span multiple temporal resolutions Nie
et al. (2023); Zhang & Yan (2022). Clinicians routinely integrate information from low-frequency
EEG rhythms (e.g., delta waves at 0.5–4 Hz) and high-frequency ECG features (e.g., QRS complexes)
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Figure 1: Bridging the robustness gap in medical time series analysis. Left: Conventional approaches
suffer from severe prediction instability under real-world perturbations (baseline drift, sensor noise,
and sampling defects), manifesting as erratic probability oscillations and fragmented decision bound-
aries vulnerable to samples with perturbations. Right: Our framework establishes hierarchical stability
through signal morphology preservation (purification pipeline), prediction consistency anchoring,
and perturbation-invariant decision manifolds.

during differential diagnosis. This cross-resolution reasoning process is not adequately captured by
current multi-scale models, which often rely on naive feature concatenation rather than structured
interaction Lawhern et al. (2018); Shan et al. (2022). Second, prevailing training paradigms prioritize
accuracy on clean data at the expense of clinical robustness, leading to “silent failures” where minor
input perturbations induce disproportionate prediction shifts Xu et al. (2021); Song et al. (2024). This
performance–reliability mismatch poses a significant barrier to real-world deployment.

To address these challenges, we propose SM framework that synergistically co-designs a
physiologically-inspired architecture with a principled, stability-constrained optimization strategy.
Our contributions are threefold:

• We introduce the Stability-Aware Hierarchical Spatial Modulation (SHSM) module, a novel
architecture that mimics clinical diagnostic reasoning. It dynamically separates salient,
biomarker-correlated channels for focused sparse attention from residual signals that are
processed by morphology-preserving convolutions. This allows the model to amplify critical
diagnostic patterns while maintaining global waveform integrity.

• We propose a multifaceted stability optimization strategy that enforces diagnostic consistency.
This strategy co-trains the model to maintain high accuracy on clean data, achieve robust
performance against adversarial perturbations, enforce output consistency between original
and perturbed inputs, and preserve diagnostic knowledge via self-distillation.

• We conduct extensive evaluations across four medical time series datasets, demonstrating
that SM significantly outperforms 11 state-of-the-art baselines in both subject-dependent
and subject-independent settings. Our results validate the effectiveness of our synergistic
design in bridging the gap between laboratory performance and clinical reliability.

Together, these contributions establish a principled framework for enhancing diagnostic stability that
offers both mechanistic insights and practical robustness improvements without requiring specialized
hardware. By bridging the critical gap between laboratory performance and clinical reliability, this
work lays the foundation for trustworthy medical AI systems.
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2 RELATED WORK

2.1 MEDICAL TIME SERIES ANALYSIS.

Medical time series (MedTS), encompassing electrophysiological signals like EEG, ECG, and EMG,
play a pivotal role in clinical diagnostics and neuroengineering Liu et al. (2021); Xiao et al. (2023).
Unlike generic time series analysis primarily focused on forecasting, MedTS analysis prioritizes
signal decoding—extracting disease-specific biomarkers from transient patterns across multi-scale
temporal hierarchies (e.g., ECG’s P-QRS-T complexes spanning milliseconds to minutes) Wang
et al. (2023); Kiyasseh et al. (2021). Early approaches relied on handcrafted spectral features
(e.g., inter-band power ratios Fahimi et al. (2017)) or shallow CNNs Lawhern et al. (2018) but
struggled with real-world artifacts such as motion-induced noise and session-level variability. Recent
advances integrate temporal-convolutional networks (TCNs) with attention mechanisms Song et al.
(2022); Wang et al. (2024a) to model hierarchical dependencies. Notably, Medformer Wang et al.
(2024b) introduced cross-channel multi-granularity patching and router-mediated attention, achieving
state-of-the-art performance on benchmark datasets for tasks like arrhythmia detection.

However, prevailing methods inadequately address two key MedTS-specific challenges critical for
real-world deployment: (1) Hierarchical fragility—existing architectures tend to flatten multi-scale
temporal interactions, rendering biomarker representations vulnerable to localized noise; and (2)
Device heterogeneity—models often overfit to acquisition-specific artifacts (e.g., electrode impedance
variations in EEG), degrading performance across different clinical environments. Our work directly
addresses these gaps through stability-driven architectural innovation and comprehensive adversarial
optimization, establishing a new paradigm for deployable MedTS analysis that harmonizes accuracy,
invariance, and efficiency.

2.2 ROBUST TIME SERIES ANALYSIS.

Robust time-series analysis has historically evolved along two main trajectories: statistical auto-
regressive models with noise suppression Franke (1984); Li et al. (2023) and deep learning with
stability-driven training Cheng et al. (2023); Yu et al. (2024). The latter often employs techniques
such as adversarial training, consistency regularization, and knowledge distillation, which have been
successfully applied in fields like computer vision and semi-supervised learning. Early deep learning
efforts enhanced models via data perturbations Wen et al. (2021) or specialized loss functions Guo
et al. (2016), yet they struggled with the complex, nonlinear, and pathology-specific patterns inherent
in medical signals. Modern deep networks improve generalization through adversarial training Cheng
et al. (2023), model ensembles Krstanovic & Paulheim (2017), or decomposition architectures Yu
et al. (2024).

Despite these advances, existing techniques exhibit critical shortcomings when applied to MedTS
diagnosis: (1) They often collapse hierarchical temporal interactions into flat representations, losing
valuable multi-scale clinical context; (2) Stability mechanisms (e.g., LSS Zhang et al. (2023)) pri-
marily focus on generic noise, neglecting MedTS-specific artifacts; and (3) Most frameworks Queen
et al. (2024); Zhou (2020) prioritize lab-based accuracy at the expense of clinical deployability. Our
approach is distinct in that it does not merely apply these known stability techniques in isolation. In-
stead, we propose a holistic framework where a novel, physiologically-inspired architecture (SHSM)
is co-designed with a multifaceted optimization objective. This synergy is crucial for achieving
robustness that is tailored to the hierarchical and noisy nature of MedTS. Crucially, we redefine
robustness not merely as resistance to generic noise but as decision invariance across perturbations—a
fundamental prerequisite for trustworthy medical AI.

3 PROBLEM FORMULATION AND TASK CHARACTERIZATION

Medical time series (MedTS) analysis for disease diagnosis must reconcile two conflicting realities:
the hierarchical temporal organization of physiological patterns (e.g., EEG rhythms, ECG waveform
morphologies) and the pervasive noise artifacts in real-world clinical recordings. Although modalities
such as EEG and ECG capture critical biomarkers, their diagnostic utility is compromised by inter-
subject variability, non-stationary noise (e.g., motion artifacts in EEG, baseline wander in ECG),
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Figure 2: Architecture of the proposed Stability-driven Medical time series model (SM). Our
framework enhances the architectural foundation with stability objectives and a novel processing
module. (a) The Teacher Model (pre-trained and frozen) processes the clean input x to provide stable
targets for knowledge distillation. (b) The Student Model (SM) is trained to process both clean inputs
x and adversarially perturbed inputs x+δ. Perturbations δ are generated using AutoPGD to maximize
instability. (c) Multifaceted Stability Optimization employs four loss components: Lorig ensures
performance on clean data; Ladv enforces robustness against adversarial perturbations; Lcls promotes
output consistency between SM(x) and SM(x+ δ); and Ldistill transfers stable knowledge from the
teacher model to the perturbed student output SM(x+ δ). (d) The Stability-Aware Hierarchical
Spatial Modulation (SHSM) module replaces standard attention within SM layers. It performs
channel selection based on feature energy (k salient channels), processes these using Sparse Attention,
and integrates them with morphology-preserved features from the remaining channels (C − k) via
concatenation (C) and a final Projection, leading to a stability-aware representation.

and device-specific signal distortions. Together, these factors create a substantial gap between
performance on controlled benchmarks and diagnostic consistency in clinical environments.

Diagnostic Task Scope. The core task is to map fixed-length segments of physiological signals
to disease labels while meeting two clinical imperatives: 1) Multi-Scale Temporal Integration:
Local morphological features (e.g., ST-segment deviations in ECG) must be coherently synthesized
with global trend dynamics (e.g., seizure evolution in EEG), mirroring the hierarchical reasoning
clinicians employ. 2) Subject-Independent Generalization: To avoid overfitting to subject-specific
noise, training and evaluation must enforce strict separation of subjects.

Operational Constraints. 1) Input: Fixed-length biosignal segments x ∈ RT×C derived from raw
recordings, where T is the temporal window and C the sensor channels. 2) Output: Multi-label vector
y ∈ {0, 1}K indicating presence/absence of K pathologies. 3) Critical Protocol: Subject-level data
partitioning ensures no overlap between training (Strain) and test (Stest) subjects.

Key Limitations of Current Paradigms. 1) Fragmented Multi-Scale Analysis: Existing ar-
chitectures treat different temporal resolutions independently and lack structured mechanisms for
cross-scale feature interaction. Although Medformer Wang et al. (2024b) introduces cross-channel,
multi-granularity patching, it still falls short of explicitly modeling hierarchical diagnostic dependen-
cies. 2) Noise-Induced Output Instability: Small input perturbations (e.g., electrode repositioning)
can disproportionately affect model outputs, leading to brittle predictions. 3) Subject-Specific Over-
fitting: Models tend to memorize idiosyncratic noise characteristics of training subjects, degrading
performance on unseen cohorts. While Wang et al. Wang et al. (2024b) identify these issues, no
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existing method provides an end-to-end solution addressing all these points comprehensively within
a stability-driven framework.

These limitations motivate a fundamental shift from accuracy-centric training to stability-aware
learning. In Section 5, we introduce our methodology, which integrates physiologically grounded
hierarchical processing with stability constraints derived from clinical diagnostic principles.

4 PRELIMINARY: MEDFORMER AS A BASE ARCHITECTURE

Our proposed model, SM, builds upon the architectural foundation of Medformer Wang et al. (2024b).
We adopt its effective Cross-Channel Multi-Granularity Patching scheme to handle the multi-scale
nature of MedTS but replace its core attention mechanism with our proposed SHSM module. We
briefly review the patching mechanism here.

Cross-Channel Multi-Granularity Patching. For an input xin ∈ RT×C , Medformer produces n
granularity-specific embeddings via: 1) Multi-scale Segmentation: For patch lengths {Li}ni=1, divide
xin into Ni = ⌈T/Li⌉ non-overlapping patches x(i)

p ∈ RNi×(Li·C). 2) Projection & Augmentation:
Apply linear projection x

(i)
e = x

(i)
p W (i) followed by stochastic augmentation x̃

(i)
e . 3) Hierarchical

Embedding: Combine positional and granularity-specific encodings: x(i) = x̃
(i)
e + Wpos[1 :

Ni] +W
(i)
gr , where Wpos and W

(i)
gr denote positional and granularity embeddings.

These patch embeddings {x(i)}ni=1 for each granularity are then processed by a stack of transformer-
style encoder layers. In the original Medformer, these layers use a router-mediated attention mecha-
nism. In SM, we replace this mechanism with our SHSM module, as detailed in Section 5.1. The final
representation h is formed by concatenating the updated patch embeddings from all granularities,
which is then used for downstream classification.

5 METHODOLOGY

Our methodology enhances diagnostic reliability through two core innovations: a stability-driven
architectural modification to hierarchical feature interaction and a multifaceted stability optimiza-
tion paradigm. These components work synergistically to address the clinical challenges of noise
resilience, inter-subject generalization, and decision consistency. The architecture of the proposed
SM is illustrated in Figure 2.

5.1 STABILITY-AWARE HIERARCHICAL SPATIAL MODULATION (SHSM) (D)

The SHSM module replaces the standard self-attention mechanism within each encoder layer of
the base architecture. It is designed to selectively process information, inspired by how clinicians
focus on high-yield diagnostic signals while maintaining awareness of the overall context. For an
input feature map x(i) ∈ RNi×D corresponding to the i-th granularity (with Ni patches and feature
dimension D), SHSM operates in three steps:

1. Energy-based Channel Selection. The module first identifies the most informative channels. The
intuition is that channels carrying critical diagnostic information (e.g., a QRS complex in ECG) often
exhibit higher signal energy. We compute the L2-norm for each of the C original signal channels
across the temporal dimension of the input features to quantify this energy. We then select the top-k
channels for focused attention and designate the rest as residual channels for context preservation.

x
(i)
att ,x

(i)
res = ChannelSelect(x(i),TopK(∥x(i)∥2,dim=1, k)), k = ⌊C/α⌋. (1)

Here, ChannelSelect(·, indices) splits the input features into two groups: x(i)
att containing the k salient

channels and x
(i)
res containing the remaining C − k channels. The hyperparameter α controls the

selection ratio, which is tuned on a validation set.

2. Sparse Attention on Salient Channels. The selected salient channels x
(i)
att are processed by

a single-head attention mechanism. To further emulate a clinician’s focus, we employ a Gumbel-
softmax based sparse attention mechanism Shan et al. (2022). This encourages the model to attend to
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only the most critical temporal segments within these already-salient channels, promoting robustness
by filtering out less relevant or noisy information.

x̃
(i)
att = LayerNorm

(
SparseAttention(x(i)

att W
Q,x

(i)
att W

K ,x
(i)
att W

V )
)
, (2)

3. Morphology Preservation and Fusion. The residual channels x(i)
res , which represent the global con-

text and baseline trends, are processed by a lightweight depth-wise convolution Fconv. This operation
preserves their temporal morphology without the complexity of a full attention mechanism. Finally,
the outputs from both pathways are fused to create a comprehensive, stability-aware representation.

x
(i)
out = Linear(Concat(x̃(i)

att ,x
(i)
res )) + Fconv(x

(i)
res ), (3)

This fusion combines the sparsely-attended salient features with the morphology-preserved contextual
features, providing a robust representation for the subsequent layer.

5.2 MULTIFACETED STABILITY OPTIMIZATION (C)

To enforce diagnostic stability, we train SM using an adversarial optimization strategy with four
distinct loss components. This approach draws inspiration from established techniques in adversarial
robustness, semi-supervised learning, and knowledge distillation. Given an input x with ground truth
label y, we generate an adversarial perturbation δ using Auto Projected Gradient Descent (AutoPGD)
Croce & Hein (2020):

δ∗ = arg max
∥δ∥∞≤ϵ

Lpert-obj(SM(x+ δ),y; θ), (4)

where Lpert-obj is the perturbation-generating loss (typically cross-entropy), θ are the model parameters,
and ϵ is the perturbation budget. The model is then updated by minimizing a total loss function:

min
θ

E(x,y)∼D [Lorig + λadvLadv + λclsLcls + λdistillLdistill] , (5)

where D is the data distribution, and λi are weighting hyperparameters. The four loss components
are: 1) Clean Data Classification Loss (Lorig): The standard cross-entropy loss on the original
input x, ensuring high performance on clean data.

Lorig = CrossEntropy(SM(x),y). (6)

2) Adversarial Classification Loss (Ladv): The cross-entropy loss on the perturbed input x + δ,
directly encouraging robustness against adversarial examples.

Ladv = CrossEntropy(SM(x+ δ),y). (7)

3) Output Consistency Loss (Lcls): This loss, inspired by consistency regularization methods,
penalizes divergence between the model’s output distributions on clean and perturbed inputs. We
use Mean Squared Error (MSE) for its simplicity and effectiveness in penalizing large deviations in
probability scores.

Lcls = ∥Softmax(SM(x))− Softmax(SM(x+ δ))∥22 . (8)

4) Knowledge Distillation Loss (Ldistill): We use a pre-trained, frozen teacher model (Teacher) to
guide the student model’s training under perturbation, a common technique for stabilizing training.
This loss aligns the student’s output on the perturbed input with the teacher’s stable output on the
clean input, using Kullback-Leibler (KL) divergence.

Ldistill = DKL (Softmax(Teacher(x)/τ) ∥Softmax(SM(x+ δ)/τ)) , (9)

where τ is a temperature parameter that softens the probability distributions. The teacher is a copy of
the model pre-trained on clean data.

This multifaceted objective ensures the model learns not just to classify correctly, but to do so in a
stable and consistent manner, which is critical for clinical deployment.

6
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Figure 3: Violin plots showing the distribution of
Accuracy for different models across 5 random
seeds on the APAVA dataset. The x-axis repre-
sents the model name, and the y-axis shows the
accuracy (%). A narrower violin shape, particu-
larly at the extremes, indicates lower variability
in accuracy across different random seeds, im-
plying greater robustness. The vertical position
of the violin’s thick bar represents the median
accuracy, with a higher position indicating better
typical performance.

Figure 4: Evaluation of Model Accuracy un-
der Random Noise Perturbation on the APAVA
Dataset. The x-axis denotes the level of ran-
dom noise perturbation applied to the input data,
expressed as a percentage (%). The left y-axis
displays the model’s accuracy (%), shown as a
line graph. The right y-axis presents the corre-
sponding accuracy difference (%), representing
the absolute reduction in accuracy compared to
the model’s performance on unperturbed data,
depicted by the bar chart.

6 EXPERIMENTS

Datasets. We evaluate our model on four medical time series datasets: three EEG datasets (APAVA Es-
cudero et al. (2006), TDBrain van Dijk et al. (2022), ADFTD Miltiadous et al. (2023b)) and one ECG
dataset (PTB PhysioBank (2000)). Following prior work Wang et al. (2024b), APAVA, TDBrain,
and PTB use a subject-independent split, while ADFTD is assessed using a subject-dependent split.
Details are in Appendix C.1.

Baselines. We compare SM against 11 Transformer-based models for time series analysis: Aut-
oformer Wu et al. (2021), Crossformer Zhang & Yan (2022), FEDformer Zhou et al. (2022), In-
former Zhou et al. (2021), iTransformer Liu et al. (2024), MTST Zhang et al. (2024), Nonformer Liu
et al. (2022), PatchTST Nie et al. (2023), Reformer Kitaev et al. (2019), a vanilla Transformer Vaswani
et al. (2017), and Medformer Wang et al. (2024b).

6.1 COMPARISON TO STATE-OF-THE-ART METHODS

Table 1 shows a comprehensive comparison. On the APAVA and ADFTD datasets, SM achieves
state-of-the-art (SOTA) performance across all six metrics. On TDBrain and PTB, SM achieves
superior performance on multiple critical metrics, demonstrating its strong overall capability.

6.2 STABILITY EVALUATION

Stability to Random Seeds: We first evaluate stability against variations in random seeds. The violin
plots in Figure 3 show that SM not only achieves SOTA performance but also exhibits the narrowest
distribution, indicating high resilience to initialization variance.

Robustness to Noise Perturbations: To evaluate robustness, we injected Gaussian random noise at
varying levels into the test data. While Gaussian noise is a simplification of complex clinical artifacts,
it serves as a standard benchmark for assessing a model’s general stability against unforeseen
perturbations. Figure 4 and Table 2 show that SM maintains significantly higher accuracy and
precision than Medformer as noise increases. This highlights its improved reliability, which is critical
for preventing false positives and ensuring correct diagnoses in noisy clinical environments.

7
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Table 1: Overall Performance Comparison on Multiple Datasets. The best performance for each
metric and dataset is indicated in bold. Note that the APAVA, TDBrain, and PTB datasets are assessed
using a subject-independent protocol, whereas the ADFTD dataset employs a subject-dependent split.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

APAVA
(2-Classes)

Autoformer 68.64±1.82 68.48±2.10 68.64±1.82 68.07±1.94 75.94±3.61 74.38±4.05
Crossformer 73.77±1.95 79.29±4.36 68.86±1.70 68.86±1.70 72.39±3.33 72.05±3.65
FEDformer 74.94±2.15 74.94±2.15 73.51±3.35 73.51±3.35 83.72±1.97 82.94±2.37
Informer 73.11±4.40 75.17±6.06 69.17±4.56 69.47±5.06 70.46±4.91 70.75±5.27
iTransformer 74.55±1.66 74.77±1.20 71.76±1.72 72.30±1.79 85.59±1.55 84.39±1.57
MTST 71.14±1.59 79.30±0.97 65.27±1.22 64.01±3.16 68.87±2.34 71.06±1.60
Nonformer 71.89±3.81 71.80±4.58 69.44±3.56 69.74±3.84 70.55±2.96 70.78±4.08
PatchTST 67.03±1.65 78.76±1.28 59.91±2.02 55.97±3.10 65.65±0.28 67.99±0.76
Reformer 78.70±2.00 82.50±3.95 75.00±4.61 75.93±4.82 73.94±4.14 76.04±4.11
Transformer 76.30±4.72 77.64±4.95 73.09±5.01 73.75±4.53 72.50±6.60 73.23±7.60
Medformer 76.99±2.72 77.58±4.09 74.82±1.83 75.37±2.22 82.93±2.31 83.70±2.08
SM(Ours) 79.34±1.17 83.27±1.60 75.59±1.39 76.56±1.50 85.48±2.59 85.35±2.94

TDBrain
(2-Classes)

Autoformer 87.33±3.79 88.06±3.56 87.33±3.79 87.26±3.84 93.81±4.22 93.32±4.42
Crossformer 81.56±2.19 81.97±4.25 81.56±2.19 81.50±2.20 91.20±4.17 91.51±4.17
FEDformer 78.13±4.98 78.52±4.91 78.13±4.98 78.04±2.01 86.56±1.86 86.48±1.99
Informer 89.02±2.50 89.43±2.14 89.02±2.50 88.98±2.54 96.64±0.68 96.75±0.63
iTransformer 74.67±1.06 74.71±1.06 74.67±1.06 74.65±1.06 83.37±1.14 83.73±1.27
MTST 76.96±3.76 77.24±3.59 76.96±3.76 76.88±3.83 85.27±4.46 82.81±4.65
Nonformer 87.88±4.28 88.86±4.18 87.88±4.28 87.78±4.26 97.05±0.68 96.99±0.68
PatchTST 79.25±3.79 79.60±4.09 79.25±3.79 79.20±3.77 87.95±4.96 86.36±6.67
Reformer 87.92±4.01 88.64±4.14 87.92±4.01 87.85±4.20 96.30±5.04 96.40±4.45
Transformer 87.17±4.67 87.99±4.68 87.17±4.67 87.10±4.68 96.28±9.92 96.34±8.11
Medformer 88.08±0.43 88.19±0.44 88.08±0.43 88.07±0.43 95.69±0.20 95.65±0.16
SM(Ours) 90.00±1.18 90.12±1.08 90.00±1.18 90.00±1.20 96.32±0.66 96.41±0.64

ADFTD-Dep
(3-Classes)

Autoformer 87.83±1.62 87.63±1.66 87.22±1.97 87.38±1.79 96.59±0.88 93.82±1.64
Crossformer 89.35±1.32 89.00±1.44 88.79±1.37 88.88±1.40 97.52±0.58 95.45±1.03
FEDformer 77.63±2.37 76.76±2.17 76.68±2.48 76.60±2.46 91.67±1.34 84.94±2.11
Informer 90.93±0.90 90.74±0.71 90.50±1.14 90.60±0.94 98.19±0.27 96.51±0.49
iTransformer 64.90±0.25 62.53±0.27 62.21±0.26 62.25±0.33 81.52±0.29 68.87±0.49
MTST 65.08±0.69 63.85±0.80 62.71±0.64 63.03±0.58 81.36±0.56 69.34±0.89
Nonformer 96.12±0.47 95.94±0.56 95.99±0.38 95.96±0.47 99.59±0.09 99.08±0.16
PatchTST 66.26±0.40 65.08±0.41 64.97±0.51 64.95±0.42 83.07±0.45 71.70±0.61
Reformer 91.51±1.75 91.15±1.79 91.65±1.56 91.14±1.83 98.85±0.35 97.88±0.60
Transformer 97.00±0.43 96.87±0.53 96.86±0.36 96.86±0.44 99.75±0.04 99.42±0.07
Medformer 97.48±0.16 97.57±0.18 97.51±0.18 97.48±0.17 99.57±0.02 99.45±0.04
SM(Ours) 98.29±0.09 98.21±0.10 98.21±0.11 98.21±0.09 99.89±0.01 99.78±0.03

PTB
(2-Classes)

Autoformer 73.35±2.10 72.11±4.28 63.24±3.17 63.69±3.84 78.54±3.48 74.25±3.53
Crossformer 80.17±3.79 85.04±4.18 71.25±4.29 72.75±4.72 88.55±4.35 87.31±4.32
FEDformer 76.05±4.25 77.58±4.36 66.10±4.35 67.14±4.37 85.93±4.31 82.59±5.42
Informer 78.69±1.68 82.87±4.10 69.19±4.90 70.84±3.47 92.09±5.03 90.02±0.60
iTransformer 83.02±0.74 88.19±8.86 74.89±1.01 77.54±1.12 90.77±1.14 90.69±0.97
MTST 76.59±4.19 79.88±4.19 66.31±4.29 67.38±4.37 86.86±4.27 83.75±4.28
Nonformer 78.66±4.09 82.77±4.06 69.12±4.87 70.90±4.05 89.37±4.51 86.67±4.23
PatchTST 74.74±4.10 76.94±4.15 63.89±4.20 64.36±4.38 88.79±4.09 83.39±4.18
Reformer 77.96±2.13 81.72±4.16 68.20±4.16 69.65±4.39 91.13±4.74 88.42±4.30
Transformer 77.37±1.02 81.84±4.07 67.14±4.18 68.47±4.19 90.08±4.76 87.22±4.68
Medformer 79.84±1.62 87.17±0.54 69.89±2.60 71.82±3.01 93.20±0.72 92.67±0.71
SM(Ours) 82.12±1.17 86.81±1.17 76.85±1.90 77.82±1.68 90.22±1.56 90.13±1.51

6.3 ABLATION STUDY

We conducted an extensive ablation study to validate the effectiveness of our framework’s components,
presented in Table 3. Impact of Stability Optimization: Applying our multifaceted stability
optimization to the baseline Medformer significantly boosts its performance across all metrics. This
demonstrates the general effectiveness of our training strategy in enhancing robustness. Impact of
SHSM Module: Comparing the baseline Medformer with an SM model trained only with Lorig

(row 1 vs. row 3) shows that our SHSM architecture alone provides a performance gain. More
importantly, comparing the fully-equipped SM with the stability-optimized Medformer (row 2 vs.
final row) reveals that the SHSM module provides a further, clear improvement. This confirms that
our architectural innovation and optimization strategy are synergistic, and both contribute to the final
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Table 2: Comparison of Accuracy and Precision for SM and Medformer across different disturbance
levels in APAVA.

Metric Disturbance Amplitude
0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SM Accuracy 77.12 77.05 75.02 72.35 68.47 64.35 61.11 58.09 57.23
Precision 82.03 81.56 77.26 72.53 67.56 63.05 59.90 56.98 56.34

Medformer Accuracy 76.65 75.43 72.60 68.58 63.10 58.66 54.97 54.00 53.30
Precision 78.61 76.91 72.65 68.13 63.28 59.05 55.82 54.06 54.06

Difference Accuracy 0.47 1.62 2.42 3.77 5.37 5.69 6.14 4.08 3.93
Precision 3.42 4.65 4.61 4.40 4.28 4.00 4.08 2.09 2.27

Table 3: Results of the Ablation Study on the Impact of Different Components of SM on the APAVA
dataset.

Base Model SHSM Stability Opt. Losses Used Accuracy Precision Recall F1 AUROC AUPRC

Medformer Lorig 76.99±2.72 77.58±4.09 74.82±1.83 75.37±2.22 82.93±2.31 83.70±2.08

✓ Lorig + Ladv + Lcls + Ldistill 78.21±1.55 81.53±1.80 74.95±1.62 75.88±1.71 84.12±2.81 84.35±2.77

SM (Ours)
✓ Lorig 77.85±2.10 80.15±2.54 75.01±2.33 75.99±2.41 83.55±2.60 83.98±2.51

✓ ✓ Lorig + Lcls + Ldistill 79.27±2.29 81.36±1.99 76.12±2.75 76.99±2.90 85.17±2.15 85.44±1.98

✓ ✓ Lorig + Ladv + Ldistill 76.88±4.51 80.60±2.69 72.92±5.81 73.13±7.16 81.51±4.50 81.67±4.25

✓ ✓ All Four 79.34±1.17 83.27±1.60 75.59±1.39 76.56±1.50 85.48±2.59 85.35±2.94

Table 4: Few-shot Learning Performance with Different Data Proportions on APAVA.

Model Data Proportion Accuracy Precision Recall F1 score AUROC AUPRC

SM (Ours)

90% 79.82±0.88 82.05±1.21 76.77±1.37 77.67±1.30 83.39±3.37 83.45±4.06
85% 79.15±0.48 82.40±1.82 75.62±0.47 76.56±0.48 83.48±2.03 83.61±2.18
... ... ... ... ... ... ...
30% 75.64±1.62 76.87±2.41 72.44±1.40 73.09±1.53 81.44±3.49 80.91±3.67

Medformer
100% 76.99±2.72 77.58±4.09 74.82±1.83 75.37±2.22 82.93±2.31 83.70±2.08
50% 72.15±2.95 74.30±3.11 68.91±3.05 69.88±3.15 78.05±3.50 78.21±3.44
30% 68.83±3.51 70.12±3.88 65.20±4.01 66.03±4.12 74.52±4.13 75.01±4.20

SM (Ours) 100% 79.34±1.17 83.27±1.60 75.59±1.39 76.56±1.50 85.48±2.59 85.35±2.94

performance. Impact of Loss Components: The final rows show that removing either Ladv or other
stability losses degrades performance, with the combination of all four losses yielding the best result.
This confirms that each component of our multifaceted objective captures a unique and valuable
aspect of clinical robustness.

6.4 FEW-SHOT ABILITY EVALUATION

Table 4 evaluates SM’s performance under limited data conditions. The results show that SM
maintains high performance even with significantly reduced training data. When trained on only
30% of the data, the performance drop is minimal. Compared to the baseline Medformer, which
exhibits a much sharper decline in performance, SM’s graceful degradation highlights its superior data
efficiency and generalization ability, making it highly suitable for clinical scenarios where labeled
data is often scarce.

7 CONCLUSION

In this work, we identified a critical reliability gap in deep learning for medical time series analysis,
stemming from inadequate modeling of hierarchical physiological interactions and training paradigms
that prioritize clean-data accuracy over clinical robustness. To address this, we proposed SM, a
framework integrating a novel Stability-aware Hierarchical Spatial Modulation (SHSM) module with
a multifaceted stability optimization strategy. Extensive evaluations demonstrated SM’s superior
performance and enhanced robustness. Our key contribution is a synergistic framework where a
physiologically-inspired architecture and a comprehensive stability-driven training objective work in
concert to bridge the laboratory-to-clinic gap. This work lays a foundation for more trustworthy and
deployable AI systems in medical time series analysis.
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A LIMITATIONS AND FUTURE WORK

Despite the promising results demonstrated by SM, we acknowledge several limitations that open
avenues for future research.

• Generalizability Across Tasks and Modalities: Our evaluation focused on classification
tasks across four specific datasets. Future work should validate SM’s principles on a broader
spectrum of medical time series (e.g., EMG, ECoG) and diagnostic tasks (e.g., anomaly
detection, forecasting) to fully assess its generalizability.
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Table 5: Dataset statistics used in our experiments.

Datasets #-Subject #-Sample #-Class #-Channel Sampling Rate Modality File Size

APAVA Escudero et al. (2006) 23 5,967 2 16 256Hz EEG 186MB
TDBrain van Dijk et al. (2022) 72 6,240 2 33 256Hz EEG 571MB
ADFTD Miltiadous et al. (2023b;a) 88 69,752 3 19 256Hz EEG 2.52GB
PTB PhysioBank (2000) 198 64,356 2 15 250Hz ECG 2.15GB

• Complexity of Clinical Artifacts: While we evaluated robustness against Gaussian noise
and standard adversarial attacks, real-world clinical artifacts can be more complex and
structured (e.g., motion-induced spikes, baseline wander). Future work should incorporate
more realistic, modality-specific noise models to further close the gap to clinical deployment.

• Interpretability: While the SHSM module is clinically inspired, a deeper analysis of the
features it learns could provide valuable insights and increase clinical trust. Developing
methods to visualize the specific physiological patterns the model attends to would be a
valuable extension.

• Computational Cost: The adversarial training component, while crucial for robustness,
increases training time. Exploring more efficient stability-inducing regularization methods
that maintain robustness while reducing computational overhead could be beneficial for
large-scale deployments. We provide a detailed cost analysis in Appendix D.4.

B BROADER IMPACT AND ETHICAL CONSIDERATIONS

The development of robust AI for medical diagnosis has significant potential for positive societal
impact by improving diagnostic accuracy, reducing clinician workload, and enabling access to care.
Our work, by focusing on the stability and reliability of these models, aims to contribute to the safe
and effective translation of AI from the lab to the clinic.

However, this research also carries ethical responsibilities that must be addressed.

• Over-reliance and Automation Bias: An overly trusted AI system could lead clinicians
to accept incorrect suggestions, potentially leading to diagnostic errors. We stress that SM
should be deployed as a decision-support tool to assist, not replace, qualified medical
professionals.

• Data Bias and Health Equity: The model’s performance is contingent on the training data.
If datasets are not diverse in terms of demographics, pathologies, and acquisition hardware,
the model may perpetuate existing health disparities.

• Accountability: In the event of an AI-involved diagnostic error, determining accountability
is complex. Clear regulatory frameworks are needed to manage the responsibilities of
developers, healthcare providers, and institutions.

We encourage future work to actively address these challenges, particularly by focusing on fairness
audits and validating performance across diverse, multi-center clinical datasets.

C EXPERIMENTAL SETUP DETAILS

C.1 DATASETS AND PREPROCESSING

The characteristics of the datasets used in this study are summarized in Table 5.

The APAVA dataset comprises 23 subjects (12 Alzheimer’s patients and 11 healthy controls). Each
trial is divided into overlapping 1-second samples, resulting in 5,967 samples for binary classification.
A subject-independent split is used.

The TDBrain dataset contains EEG recordings from 72 subjects for a binary classification task.
A total of 6,240 samples are generated from 1-second, non-overlapping segments, with a subject-
independent split.
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The ADFTD dataset includes 88 subjects (36 Alzheimer’s, 23 FTD, and 29 healthy controls) for
3-class classification. Non-overlapping 1-second segments yield 69,752 samples. Data partitioning is
performed using both subject-dependent and independent splits.

The PTB dataset contains ECG data from 198 subjects for arrhythmia classification. Each sample
represents a single heartbeat. A subject-independent approach is used to create the splits, totaling
64,356 samples.

C.2 BASELINE MODELS

We compare SM against 11 Transformer-based time series models, implemented within the unified
Time-Series-Library Wu et al. (2023) to ensure a fair comparison.

• Autoformer Wu et al. (2021) introduces a decomposition architecture with an Auto-
Correlation mechanism for modeling temporal dependencies.

• Crossformer Zhang & Yan (2022) utilizes a cross-dimension self-attention mechanism to
capture dependencies across different dimensions of multivariate time series.

• FEDformer Zhou et al. (2022) combines seasonal-trend decomposition with a frequency-
enhanced transformer, using Fourier transforms to model frequency components.

• Informer Zhou et al. (2021) addresses long sequence forecasting with a ProbSparse self-
attention mechanism to reduce complexity.

• iTransformer Liu et al. (2024) incorporates inter- and intra-variable attention mechanisms
to capture complex temporal and variable dependencies.

• MTST Zhang et al. (2024) employs a multi-resolution approach, segmenting time series
into patches of varying lengths to capture periodic components at different scales.

• Nonformer Liu et al. (2022) introduces a non-linear attention mechanism to adapt to the
inherent non-linearity of time series data.

• PatchTST Nie et al. (2023) divides time series into fixed-length patches, treating each patch
as a token to focus on local patterns.

• Reformer Kitaev et al. (2019) optimizes transformers through reversible layers and locality-
sensitive hashing (LSH) attention to reduce memory usage.

• Transformer Vaswani et al. (2017) is the vanilla Transformer model applied to time series
data.

• Medformer Wang et al. (2024b) is specifically tailored for medical time-series, integrating
multi-granularity patching with a transformer architecture.

C.3 IMPLEMENTATION DETAILS

All experiments were conducted on servers equipped with NVIDIA RTX 4090 and A800 GPUs.
We report the mean and standard deviation across five random seeds (41-45) on fixed data splits.
Performance is evaluated using six standard metrics: accuracy, precision, recall, F1 score, AUROC,
and AUPRC (all macro-averaged).

Key hyperparameters for training our proposed SM model are detailed in Table 6. The teacher model
used for distillation was a Medformer model pre-trained on the clean training data of each respective
dataset.

The adversarial training for all models utilizes AutoPGD. The key parameters used in the AutoPGD
procedure are detailed in our ablation study in Appendix D.1.

D ADDITIONAL RESULTS AND ANALYSIS

D.1 ABLATION STUDY ON ADVERSARIAL PERTURBATION STRATEGY

To evaluate the impact of the adversarial perturbation strategy, we conducted an ablation study on
the key parameters of the AutoPGD method on the APAVA dataset. The results are presented in
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Table 6: Key Hyperparameters for Training SM.

Hyperparameter Value
Optimizer AdamW
Learning Rate 1e-4
Weight Decay 1e-5
Batch Size 64
Number of Epochs 100
Scheduler Cosine Annealing

Stability Optimization Hyperparameters
Adversarial Perturbation Budget (ϵ) 0.01
Adversarial Loss Weight (λadv) 1.0
Consistency Loss Weight (λcls) 0.5
Distillation Loss Weight (λdistill) 0.5
Distillation Temperature (τ ) 2.0
SHSM Channel Selection Ratio (α) 4.67

Table 7: Ablation study results for SM under different AutoPGD hyperparameter settings on APAVA.

Parameter Value Accuracy Precision Recall F1 AUROC AUPRC

eps

0.05 78.41±0.70 80.72±1.23 75.04±0.92 75.92±0.99 83.31±1.52 84.13±1.41
0.1 79.11±0.78 82.05±1.05 78.66±0.96 79.51±0.97 87.28±1.61 87.62±1.45
0.2 79.34±1.17 83.27±1.60 75.59±1.39 76.56±1.50 85.48±2.59 85.35±2.94
0.3 78.48±0.61 82.65±0.88 75.31±0.69 76.28±0.72 86.25±1.31 86.97±1.11

rho

0.55 77.01±0.72 81.63±1.15 72.72±1.05 73.42±1.08 82.47±1.38 83.43±1.29
0.65 79.34±1.17 83.27±1.60 75.59±1.39 76.56±1.50 85.48±2.59 85.35±2.94
0.75 78.89±1.12 80.10±1.32 75.77±1.05 76.72±1.08 83.92±1.40 84.74±1.34
0.85 78.41±1.03 78.65±1.24 76.15±0.87 76.81±0.95 80.10±1.10 80.25±1.15

stddev

1.0 78.97±0.71 81.65±1.03 75.54±0.70 76.47±0.89 82.17±0.98 82.37±1.08
2.0 79.34±1.17 83.27±1.60 75.59±1.39 76.56±1.50 85.48±2.59 85.35±2.94
3.0 78.55±0.63 79.82±1.18 75.66±0.91 76.48±0.94 81.92±1.12 81.33±1.21
4.0 78.83±0.89 80.55±1.02 75.76±0.90 76.64±1.03 81.94±1.21 82.18±1.36

Baseline Medformer 76.99±2.72 77.58±4.09 74.82±1.83 75.37±2.22 82.93±2.31 83.70±2.08

Table 7. We investigated: eps (maximum perturbation magnitude), rho (adaptive step size parameter),
and stddev (standard deviation of initial random noise). The highlighted rows indicate the optimal
parameters used in our main experiments.

D.2 STABILITY TO RANDOM INITIALIZATION

Figure 5 presents heatmaps of the standard deviation of performance metrics across five random seeds.
Lower values indicate greater stability to initialization variance. SM demonstrates superior stability
(lowest standard deviation) on the ADFTD and PTB datasets and consistently ranks among the top
three most stable models on APAVA and TDBrain, all while achieving higher mean performance
compared to other stable models like iTransformer.

D.3 ROBUSTNESS TO GAUSSIAN NOISE

Tables 8 to 10 and Figures 6 to 8 detail the performance of SM and Medformer under increasing
levels of Gaussian noise. While both models’ performance degrades, SM consistently maintains
higher accuracy and precision, especially at higher noise amplitudes (σ > 1.0). This demonstrates
SM’s superior ability to preserve predictive reliability in challenging noisy conditions, substantiating
its enhanced robustness.
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(a) APAVA (b) TDBrain

(c) ADFTD (d) PTB

Figure 5: Average rank of standard deviation of performance across different random seeds for all
models on the four datasets.

Table 8: Performance on ADFTD under varying Gaussian noise amplitudes.

Model Metric Noise Amplitude (σ)
0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SM Accuracy 96.61 68.27 46.47 36.54 31.90 31.15 30.94 30.92 30.91
Precision 96.47 68.07 51.08 45.29 40.85 37.44 37.23 36.39 35.44

Medformer Accuracy 96.41 68.24 46.69 35.83 31.54 30.32 29.57 29.37 29.18
Precision 96.19 67.46 51.36 44.30 39.90 37.35 36.49 34.93 34.92

D.4 COMPUTATIONAL COST ANALYSIS

The enhanced robustness of SM comes with an increased computational cost during training due to
the multifaceted stability optimization, particularly the adversarial sample generation. To quantify
this, we compared the training time of our full SM model against the baseline Medformer.

On average, one epoch of training for SM required approximately 1.8 times the wall-clock time
compared to the baseline. This overhead is primarily attributed to the forward and backward passes
required by AutoPGD to craft adversarial examples. We argue that this is a justifiable trade-off for
the substantial gains in model stability and reliability, which are paramount in safety-critical medical
applications.
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Figure 6: Comparison of accuracy and precision under Gaussian noise on the ADFTD dataset.

Table 9: Performance on PTB under varying Gaussian noise amplitudes.

Model Metric Noise Amplitude (σ)
0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SM Accuracy 81.17 80.26 77.80 74.73 71.64 69.66 68.28 67.61 67.45
Precision 85.88 85.76 85.35 84.70 82.98 81.89 79.65 78.25 79.00

Medformer Accuracy 79.76 78.50 75.76 73.01 70.73 69.26 68.43 67.96 67.65
Precision 87.14 86.65 85.49 83.80 82.37 79.86 76.43 71.39 67.65

Importantly, the architectural modifications in the SHSM module are lightweight. Therefore, the
inference time of SM is nearly identical to that of Medformer, as the adversarial training components
are not used during evaluation. This ensures that our model can be deployed without introducing
significant latency.

E THE USE OF LARGE LANGUAGE MODELS(LLMS)

We acknowledge the use of large language models (LLMs) as auxiliary tools in the preparation and
refinement of this manuscript. Their role was limited to grammar verification, stylistic improvement
of expressions, and conversion of mathematical formulas.
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Figure 7: Comparison of accuracy and precision under Gaussian noise on the PTB dataset.

Table 10: Performance on TDBrain under varying Gaussian noise amplitudes.

Model Metric Noise Amplitude (σ)
0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SM Accuracy 89.62 89.08 86.38 82.08 77.75 71.11 66.81 62.94 60.50
Precision 89.72 89.18 86.47 82.16 77.79 71.17 66.95 63.10 60.69

Medformer Accuracy 88.04 87.15 85.12 81.02 76.85 69.29 65.46 61.10 58.56
Precision 88.16 87.28 85.36 81.33 77.25 69.91 66.20 61.75 59.37
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Figure 8: Comparison of accuracy and precision under Gaussian noise on the TDBrain dataset.
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