
Under review as submission to TMLR

Decentralized Federated Learning
with Function Space Regularization

Anonymous authors
Paper under double-blind review

Abstract

In this work we propose FedFun, a novel framework for decentralized federated learning that
enforces consensus across clients in function space rather than parameter space. By framing
agreement as a regularization penalty in a Hilbert space of hypotheses, our method allows
optimization using proximal gradient updates that encourage similarity between neighboring
models while supporting both parametric and non-parametric learners. This function space
perspective yields theoretical advantages, including broad convergence guarantees even when
individual client objectives are non-convex in parameter space, and improved robustness to
client heterogeneity. We provide convergence analysis under mild assumptions, demonstrate
compatibility with models like neural networks and decision trees, and empirically evaluate
implementations of FedFun on various sample datasets.

1 Introduction

Federated Learning (FL) trains models across a network of devices or silos, called clients, which may include
smartphones, edge servers, IoT devices, or institutional data centers. Unlike traditional centralized ap-
proaches, where data are collected and processed on a central server, FL assumes that the data must remain
on the clients without being transmitted or shared. This addresses a wide range of real-world limitations
that would otherwise prevent the application of machine learning or render it difficult, such as prohibitions
on data sharing, privacy concerns, or data storage and transfer limitations.

Broadly speaking, FL methods are either centralized or decentralized. Centralized methods make use of
a central server that does not need to contribute any data but aggregates information from clients, often
in the form of model updates, to coordinate the learning process. For example, the most prominent FL
algorithm, Federated Averaging (FedAvg) from McMahan et al. (2017), averages the weights of client models
on the central server and then sends the average model back to the clients to continue training. Centralized
approaches are simple, relatively easy to implement and analyze, and widely used. However, relying on a
central server can be detrimental in some situations. It is a bottleneck for communication and computation;
as a single point of failure, it is a vulnerability in the system; and it may be impractical or infeasible in cases
involving unreliable networks, ad-hoc field communications, or particular privacy concerns.

In contrast, Decentralized Federated Learning (DFL) methods, such as decentralized federated averaging
(DFedAvg) introduced by Sun et al. (2022), do not depend on a central server and instead rely on peer-to-
peer communication. Such approaches can alleviate the bottleneck, improve robustness to system failures,
and improve practicality in resource-limited settings. Comparison and optimization of various frameworks
for decentralized FL, each with unique features and trade-offs involving privacy, fairness, convergence rates,
and robustness, is an ongoing area of research (Beltrán et al., 2023).

Contributions: In this work we lay the foundations for a new approach to federated learning, FedFun, that
views the optimization and enforcement of consensus of client models in function space. In particular, our
approach is an iterative process in which clients exchange models with their neighbors and then learn a model
on their data with Function Space Regularization (FSR), which penalizes disagreement between client and
neighboring models. This update can be analyzed as a proximal gradient method, a popular algorithm for
convex optimization. The regularization requires computing inner products and norms of functions, which

1

Under review as submission to TMLR

is expensive in general. However, where it can be efficiently applied, it unlocks a few advantages and useful
capabilities not available when optimizing from a strictly parametric perspective:

• Broadly applicable theoretical convergence. In parametric machine learning, the objective function
is commonly non-convex in the parameters, making convergence analysis challenging. However,
the analogous learning objective is often convex in function space, guaranteeing convergence of the
federated learning iteration so long as the local learning problems are solved near-optimally.

• Support for non-parametric models. Non-parametric models may offer advantages such as lower bur-
den of architecture design and hyperparameter choice, efficient optimization with no special hardware
requirements, small memory footprint, or reliable performance on certain problems. Existing FL
methods often aggregate models or enforce agreement by some operation on their parameters, and
are therefore incompatible with non-parametric models.

• Robustness to client heterogeneity. A key limitation of many FL algorithms is their vulnerability
to client heterogeneity (Zhang et al., 2021; Wen et al., 2023; Beltrán et al., 2023; Ye et al., 2023),
in particular due to differences in model designs or local data distributions. The negative effect of
the latter on FedAvg convergence is well studied both theoretically and empirically, and is sensitive
to longer local training between communication rounds (Li et al., 2019; Wang et al., 2019; Li et al.,
2020; Karimireddy et al., 2020; Dhawan et al., 2024). In addition to supporting a broad class of
model designs, our function space approach is relatively robust to data heterogeneity, requiring
relatively few communication rounds and performing even when clients have data split by class.

2 Related Work

Beltrán et al. (2023) offer a recent review of decentralized FL, including an in-depth comparison between cen-
tralized and decentralized approaches. Among others, they highlight client data heterogeneity and efficiency
of computation, storage, and communication as open challenges. The prominent FedAvg algorithm has a
decentralized variant called decentralized federated averaging with momentum (DFedAvgM) that removes
the need for a centralized server (Sun et al., 2022). Each client performs a fixed number of gradient updates
with momentum, then broadcasts its model. Clients then average the model parameters they receive from
their neighbors and begin a new round of gradient updates.

Similarly to ours, other prior methods are based on a regularization that penalizes disagreement between
neighboring models. Vanhaesebrouck et al. (2017) propose a method of asynchronous model propagating and
updates with convergence in expectation to the optimal solution for convex quadratic objectives. For more
general convex objectives, they propose a similar method based on the alternating-direction method of mul-
tipliers (ADMM) (Boyd et al., 2011), a popular method for distributed convex optimization. This approach
additionally communicates a set of dual variables with the same structure as the model parameters. Almeida
& Xavier (2018) propose the decentralized Jacobi asynchronous method (DJAM), which similarly has clients
asynchronously update and communicate models, but is based on a block-coordinate descent paradigm.
They obtain convergence with probability 1 for strongly convex objectives and empirically demonstrate a
similar convergence rate to the ADMM variant in Vanhaesebrouck et al. (2017) without the need to tune a
hyperparameter. These methods are presented as learning personalized models since the regularization en-
courages similarity of neighbor models, but does not require exact consensus, with the tradeoff of agreement
and personalization determined by a hyperparameter. We employ our approach similarly, although we also
show how increasing regularization yields convergence to the optimal consensus model.

Among penalty-based methods, the most similar to ours, Bastianello & Dall’Anese (2021) uses the distributed
proximal gradient method (DPGM) for synchronous distributed optimization of the sum of strongly convex
smooth functions and possibly non-smooth convex functions of the scalar input. They frame the penalized
objective as a relaxation of the consensus-constrained objective and show convergence to a neighborhood of
the constrained optimum, including for an inexact variant where the updates are assumed to be subject to
error with limited expected magnitude.

2

Under review as submission to TMLR

If our method is used in parameter space instead of function space, it is much like a synchronous variant of
DJAM, or a special case of a multidimensional DPGM. We make similar assumptions with similar convergence
guarantees; however, ours is applicable to a much wider range of realistic learning problems since most
learning objectives are convex in function space, even if they are non-convex in parameter space.

Note that aforementioned work all relies on a parametric perspective, in contrast to our function space
approach. This approach (outside the federated learning setting) is suggested by Benjamin et al. (2019),
who empirically explore a method for FSR, motivated by observed differences in optimization trajectories
when viewed in function vs. parameter space. Subsequently, Dhawan et al. (2024) explore the benefits of
applying this approach to federated learning, empirically showcasing the skill of a centralized algorithm
FedFish that implements FSR using a parametric approximation of KL divergence. They cite advantages
including robustness to long local training times, where FedAvg is known to struggle. Our algorithm also
provides this benefit, allowing clients to fully optimize models before requiring communication.

In parallel, other related approaches motivated by model heterogeneity rely on knowledge distillation (Ye
et al., 2023). Common of these approaches, Li & Wang (2019) explore a centralized approach where clients
iteratively do local learning on private data, followed by knowledge distillation using the average of client
models on some public data, computed by a central server. Fang & Ye (2022) learn client models for image
classification iteratively doing decentralized local learning with knowledge distillation and client confidence
scores. Perhaps the closest in this line of work to our approach, Lin et al. (2020) demonstrate a centralized
algorithm FedDF iteratively applying local learning and distillation without relying on shared public data.
This is the only approach we are aware of with a convergence analysis, which considers binary classification
with a specified loss function, and bounds the risk attainable by the consensus in terms of the risk attainable
learning from the global data distribution. While the interlaced local learning and distillation steps in these
approaches differ from the FSR formulation in FedFun, it is worth highlighting that both strategies are
designed for non-parametric model alignment: For positive densities the L2 distance, used in both Benjamin
et al. (2019) and our implementations, and KL-divergence, used in knowledge distillation and FedFish, just
amount to different ways of quantifying the distance between distributions.

3 Method

We first formalize our notion of learning viewed in function space, then describe the proposed framework for
decentralized federated learning, its convergence properties, and its application to a few model classes.

3.1 Proximal Gradient Method in Function Space

A hypothesis h : X → Y is a function that maps input values to a prediction. The goal of a learning algorithm
is to select an optimal hypothesis h∗ from a hypothesis space H that minimizes an objective function or risk
R : H → R. The term risk is used to describe an expected loss, usually estimated empirically using the
training data. Here, for convenience, we use the term risk and the symbol R to encompass the entire learning
objective, including both empirical risk and other components such as regularization.

We assume that the hypothesis space H is a (real, separable) Hilbert space equipped with an inner product
⟨·, ·⟩H : H × H → R and associated norm ∥h∥2

H = ⟨h, h⟩H. A useful example is the space L2(X) obtained
by considering square-integrable functions from X ⊆ Rp to Y ⊆ Rq, where the commonly associated inner
product is

⟨h, g⟩H =
∫

X
⟨h(x), g(x)⟩Y dx (1)

and ⟨·, ·⟩Y is the usual vector inner product on Rq. When h is a model, this inner product may be difficult
to compute exactly or even approximate efficiently; we discuss this challenge in Section 5.

This is by no means the only possible Hilbert space or inner product, but it is simple and practical for machine
learning applications. Although most model classes do not exactly form a Hilbert space, many are reasonable
to analyze as such. For instance, neural networks and decision trees have a universal approximator property;

3

Under review as submission to TMLR

informally, sufficiently large models in these families can approximate any function in L2 with arbitrary
precision. Other classes, such as linear models, define pragmatically useful subspaces of L2.

In a decentralized federated learning setting, each client i ∈ [n] has a sample of training data that define its
local risk Ri, which it can use to learn a local model hi. As a starting point, consider consensus learning
where the goal is to select a consensus model h∗ that minimizes the aggregate risk

R̄[h] =
∑

i

Ri[h]. (2)

It is assumed that the clients may not communicate data, so each risk Ri may only be evaluated at client i,
and clients communicate by exchanging models. Thus we write an equivalent optimization problem in terms
of local models with an agreement constraint:

H∗ = arg min
h∈Hn

∑
i∈[n]

Ri[hi]

s.t. hi = hj ∀i, j

(3)

where H∗ ⊆ Hn is a nonempty set of optimal consensus models and h∗ = (h∗, . . . , h∗) ∈ H∗.

Let L ∈ Rn×n be a symmetric Laplacian of the communication graph with Li,j = −1 if i and j are neighbors
that may directly communicate and Li,i = −

∑
j ̸=i Li,j . To facilitate optimization and enable some degree

of personalization to client-specific data, we relax the agreement constraint in (3) to a disagreement penalty
1
2 λ

∑
i ̸=j −Li,j∥hi − hj∥2 for some penalty coefficient λ > 0. The relaxed optimization problem can then be

written:
H̃ = arg min

h∈Hn

∑
i∈[n]

Ri[hi] + 1
2λ⟨h, Lh⟩Hn (4)

where L is a positive operator (Lh)i =
∑

j Lijhj on Hn, which is itself a Hilbert space with inner product
⟨h, g⟩Hn =

∑
i⟨hi, gi⟩H, and H̃ is the solution set.

To solve this, we use an iterative process initialized by each client minimizing its local risk: h
(0)
i =

arg minh Ri[h]. Then the clients exchange models with their neighbors on the network and the proximal
gradient method, a convex optimization algorithm to minimize the sum of a smooth, differentiable function
and a possibly nonsmooth function, yields the separable iterative update:

hk+1
i = arg min

hi∈H
Ri[hi] + 1

2γ
∥hi − hk

i ∥2 + λ
∑

j∈[n]

Li,j⟨hi, hk
j ⟩H (5)

for proximal gradient parameter γ, which is analogous to a learning rate in generic machine learning algo-
rithms. This depends only on the information available to the client i in iteration k and is solved using a
local learning algorithm augmented with a function space regularization.

4 Convergence

We analyze the convergence of iteration (5) and the proximity of its solution set H̃ to the consensus solution
set H∗. We then discuss some practical considerations related to the theoretical convergence. See Appendix A
for the proofs omitted here.

Notation.

• On a vector in Hilbert space such as H or Hn, ∥·∥ denotes the norm induced by the corresponding
inner product. On a matrix or linear operator, ∥·∥ denotes its spectral norm.

• Given v and nonempty set S, d(v, S) = infs∈S∥v − s∥ is the shortest distance from v to S. For sets
S and T , d(S, T) = infs∈S,t∈T ∥s − t∥ is the shortest distance between them.

4

Under review as submission to TMLR

• E is the operator such that (Eh)i = 1
n

∑
j hj for all i, projecting h ∈ Hn to consensus.

• Given a linear operator L, σ(L) denotes the spectrum of L. We say L has a spectral gap when there
exists ν > 0 s.t. σ(L) ∩ (0, ν) = ∅.

• Given a linear operator L, we say that L is positive if L is positive semidefinite and self-adjoint.
Assumption 1. The client risks Ri are convex and have a minimum on H.

Although convexity is a strong assumption in parameter space, virtually all commonly used loss functions
are convex in function space, making this broadly applicable.
Assumption 2. The communication graph represented by L is connected.

The smallest eigenvalue of a graph Laplacian is always zero. Let ν be the second-smallest eigenvalue of L;
ν is known as the algebraic connectivity of the communication graph and Assumption 2 implies that ν > 0.
Moreover, it is straightforward to show that σ(L) consists of the eigenvalues of L, so L has a spectral gap
and ∥L∥ = ∥L∥.
Assumption 3. The proximal gradient parameter γ satisfies 0 < γ < 1

λ∥L∥ .

Then the proximal gradient method converges weakly to a solution of the relaxed optimization problem (4)
(Combettes & Wajs, 2005, Theorem 3.4 (i)). However, under stronger assumptions, we can show fast
convergence to a neighborhood of the solution set of the original constrained optimization problem (3).
Assumption 4. For each i, Ri is convex quadratic; in particular, there exist positive operators Ai : H → H,
ai ∈ H, and αi ∈ R such that Ri[h] = 1

2 ⟨h, Aih⟩ + ⟨ai, h⟩ + αi. Moreover, Ai have a spectral gap of at least
µ > 0 and commute with each other.

Assumption 4 implies that R is quadratic, in particular R[h] = 1
2 ⟨h, Ah⟩ + ⟨a, h⟩ + α with (self-adjoint) A

satisfying (Ah)i = Aihi, ai = ai, and α =
∑

i αi. Thus R is differentiable and ∇R is Lipschitz continuous
with constant ∥A∥, and σ(A) =

⋃
i σ(Ai), so σ(A) ∩ (0, µ) = ∅. The commutativity of Ai, Aj further implies

σ(
∑

i Ai) ∩ (0, µ) = ∅. The lemma 1 shows that these gaps in the spectra establish a growth rate of the
respective quadratic functions.
Lemma 1. Let φ be a quadratic function φ(h) = 1

2 ⟨h, Ah⟩+ ⟨a, h⟩+α on a Hilbert space H with a minimum
value φ∗. If A is positive with spectral gap σ(A) ∩ (0, c) = ∅, then

∥∇φ[h]∥ ≥ cd(h, arg min φ) (6)

φ[h] ≥ φ∗ + 1
2cd2(h, arg min φ) (7)

for any h ∈ H.

Next, Theorem 1 establishes the existence of spectral gap in the operator defining the quadratic objective of
the relaxed optimization problem (4).
Theorem 1. There exists some c > 0 such that σ(A + λL) ∩ (0, c) = ∅.

With these, Theorem 2 establishes linear convergence of iteration (5).
Theorem 2. The distance of the clients’ local hypotheses to the relaxed solution set is bounded by

d(hk+1, H̃) ≤ 1√
1 + γc

d(hk, H̃). (8)

Proof. Let φ[h] = R[h] + 1
2 λ⟨h, Lh⟩ denote the minimization objective of the relaxation (4) and φ∗ =

minh∈Hn φ[h]. By (Beck & Teboulle, 2009, Lemma 2.3, Remark 2.1), we have the following bound for any
h̃ ∈ H̃.

φ[hk+1] − φ∗ ≤ − 1
2γ

∥hk+1 − hk∥2 − 1
γ

⟨hk − h̃, hk+1 − hk⟩

= 1
2γ

(
∥hk − h̃∥2 − ∥(hk+1 − hk) + (hk − h̃)∥2)

= 1
2γ

(
∥hk − h̃∥2 − ∥hk+1 − h̃∥2)

.

5

Under review as submission to TMLR

Next Lemma 1 and Theorem 1 imply that φ[hk+1] ≥ φ∗ + 1
2 cd2(hk+1, H̃). Applying this to the above

inequality,

1
2cd2(hk+1, H̃) ≤ 1

2γ

(
∥hk − h̃∥2 − ∥hk+1 − h̃∥2)

.

Since d2(hk, H̃) = infh∈H̃∥hk − h∥2, for any ϵ > 0, there exists h̃ ∈ H̃ such that ∥hk − h̃∥2 ≤ d2(hk, H̃) + ϵ.
Then

1
2cd2(hk+1, H̃) ≤ 1

2γ

(
d2(hk, H̃) + ϵ − d2(hk+1, H̃)

)
for any ϵ > 0, and the claim follows.

Now Theorem 3 shows that this solution is within O(1/λ) of the consensus optimal solution set H∗.
Theorem 3. For a given λ, for any h̃ ∈ H̃,

d(h̃, H∗) ≤ ∥A∥
λν

√
∥A∥

µ

(
1 + n∥A∥

µ

)
d(H∗, arg min R) ∈ O(1/λ). (9)

Together, these theorems tell us that iterations converge quickly to the relaxed optimum and, moreover,
that as we increase the penalty coefficient λ, the relaxed optimum approaches the consensus optimum, that
is, the solution to the original problem (3) of finding a globally optimal hypothesis. Further, we lastly note
that exact solutions to our subproblems are not required: Suppose update (5) is carried out with additive
error ek ∈ Hn as

hk+1
i = ek

i + arg min
hi∈H

Ri[hi] + 1
2γ

∥hi − hk
i ∥2 + λ

∑
j∈[n]

Li,j⟨hi, hk
j ⟩. (10)

This error can account for imperfect learning algorithms, hypothesis spaces that are not Hilbert spaces but
are a ε-cover of one, etc. Incorporating this into Equation (8) via the triangle inequality, we have

d(hk+1, H̃) ≤ 1√
1 + γc

d(hk, H̃) + ∥ek∥ (11)

and, if ∥ek∥ is bounded by a constant for all k, then the accumulation of error is bounded by a convergent
geometric series. This means that we can expect convergence close to the optimum even if the learning
algorithm cannot solve (5) perfectly, which is the case for both neural networks and trees of bounded size.

5 Examples

We next discuss how the optimization problem in iteration (5) can be solved by incorporating function
space regularization with learning algorithms. We suggest risks satisfying Assumption 4, a model-agnostic
strategy using a Monte Carlo method to approximately compute the inner product (1), as well as better
model-specific methods for a couple of model classes.

5.1 Smoothed Squared Error

While quadratic loss functions are common, the use of a quadratic loss is not sufficient to satisfy Assumption 4
(quadratic risk) because typical point-wise empirical risk cannot be expressed as quadratic using the inner
product (1). However, a risk smoothed over a kernel k : X × X → R≥0 combined with a quadratic loss, does
satisfy Assumption 4 when the kernel has a minimum non-zero value.

In particular, suppose that each client i has data xj ∈ Rp, yj ∈ Rq, j ∈ [Ni], and let k : Rp × Rp be a
symmetric smoothing kernel that integrates to 1 over the domain. Then define risks as the smoothed sum

6

Under review as submission to TMLR

squared error

Ri[hi] =
∑

j

EXj∼k(·,xj)∥hi(Xj) − yj∥2

=
∑

j

∫
z

k(z, xj)∥hi(z) − yj∥2 dz

=
∑

j

∫
z

k(z, xj)(hi(z)⊤hi(z) + y⊤
j yj − 2hi(z)⊤yj)dz

= 1
2

〈
hi, 2

∑
j

k(·, xj)hi

〉
+

〈
−2

∑
j

k(·, xj)yj , hi

〉
+

∑
j

y⊤
j yj

where the spectrum of the positive linear operator hi 7→
(∑

j k(·, xj)
)

hi(·) is the essential range of∑
j k(·, xj). Then µ ≥ 2 minj,z|k(z,xj)>0 k(z, xj) and ∥Ai∥ is bounded by ∥Ai∥ ≤ 2

∑
j maxz k(z, xj); if

we assume k(·, xj) is the same at each j, then bounds for µ and ∥A∥ are simply twice its minimum nonzero
value and up to 2 maxi Ni times its maximum respectively, suggesting the use of uniform kernels.

Here, we have intentionally defined the risk as the sum, rather than the mean, of loss values at the training
samples so that, when the risks are summed over the clients as in the objective (4), all samples are equally
weighted. This also prevents µ from depending on the total number of samples.

This error smoothing is often important to achieve good performance. Without it, it is possible that, as
optimization proceeds, both local risk and disagreement approach zero, but average global accuracy, that is,
the accuracy on the union of all training sets, averaged over client models, does not improve. We sometimes
observe this in practice when not using error smoothing, especially for moderate to high dimensional data
where the coverage of the data over the domain is poor.

5.2 Model-agnostic Approximations

The inner product (1) and associated norm can be estimated by a Monte Carlo method arising naturally
from the equalities

⟨h, g⟩H = m(X)Ex∼UX [⟨h(x), g(x)⟩Y] (12)
∥h∥H = m(X)Ex∼UX [∥h(x)∥Y] (13)

where UX is the uniform distribution on X and m(X) is the Lebesgue measure, or p-volume, of X ⊆ Rp.
This, of course, demands that m(X) is finite, but this is of little practical consequence. A similar strategy
can be employed for other inner products. If the risk is based on mean squared error, as is recommended by
our convergence theory, then this strategy applied to (5) can be reduced to simply incorporating a number
of appropriately weighted random samples from UX into the training set with labels the outputs from other
models.

Although this is simple and general, it is the least desirable approach overall. The quality of the approx-
imation depends on the number of samples, and as the dimension of X increases, so does the number of
samples required to achieve reasonable coverage. Depending on the type and complexity of the model, it
can be expensive to compute the output of several model instances on very many data, and some learning
algorithms may not handle very large training sets efficiently. This motivates future work to improve sample
efficiency, either by modifying the inner product or using a more efficient sampling strategy.

5.3 Neural Networks

Neural networks are typically trained using a minibatch gradient-based optimization algorithm. This moti-
vates a variation of the above model-agnostic concept where new samples are taken at each batch. Recall
that we recommend a smoothed squared error loss and defining local risk as the sum, rather than mean, of

7

Under review as submission to TMLR

loss on local data. Then at client i, the normalized loss for a batch (x1, y1), . . . , (xb, yb) is

1
bq

b∑
i=1

∥h(xi + ϵi) − yi∥2

+ m(X)
Nb′q

b′∑
i=1

 1
2γ

∥h(zi) − hk
i (zi)∥2 + λ

∑
j ̸=i

−Li,j∥h(zi) − hk
j (zi)∥2

 (14)

where b is the batch size, b′ is the penalty batch size, N is the local training set size, each ϵi is sampled from
k(·, xi), and each zi is sampled from UX . For classification, where Y = [0, 1]q, this scaling places the first
(risk) term in [0, 1] and the second (penalty) term in [0, m(X)

N (1
2γ + λLi,i)].

5.4 Decision Trees

Decision trees are an ideal model class for showcasing the application of this framework. Not only are they
non-parametric, making them compatible with function space but not parametric FL methods, but there
exists an efficient, exact method for learning trees with both smoothed loss and function space agreement
regularization.

For trees, we assume the domain X is a hyperrectangle, for example, a bounding box of the data. Then a
tree can be represented as a collection of nodes Ni ⊆ X and associated values vi ∈ Y. The leaf nodes form
a partition of X , and the tree as a function is written

h(x) =
∑

i∈leaves(h)

1{x ∈ Ni}vi (15)

and, for a second tree g with nodes Mj and values wj , the inner product (1) is

⟨h, g⟩ =
∑

i∈leaves(h)

∑
j∈leaves(g)

m(Ni ∩ Mj)⟨vi, wj⟩ (16)

with m the Lebesgue measure, which is easy to compute for the intersection of hyperrectangles. By traversing
one tree and tracking the intersecting subtrees of the other, one can avoid computing the zero-measure terms,
which are the majority if h and g are similar trees; if h and g are identical, then the number of nonzero
terms is just the number of leaves. Since our algorithm penalizes disagreement, the trees are usually similar
in practice. However, in the worst possible case, every term may be nonzero, and the cost is proportional to
the size of h times the size of g.

Next, we need an algorithm for fitting decision trees with smoothed squared error and function space reg-
ularization to other trees. Such an algorithm already exists in prior work. Kernel Density Decision Trees
(KDDTs) introduced by Good et al. (2022) generalize the classic CART algorithm of Breiman et al. (1984)
for decision tree induction with kernel-smoothed impurity; in particular, with the Gini impurity, KDDT con-
struction minimizes the smoothed squared error we describe in Section 5.1. Splits can be chosen efficiently
and optimally as long as the kernel is isotropic, that is, equivalent to the product of its marginal distribu-
tions, and those marginal distributions are piecewise-constant. A good example is a box kernel. KDDTs also
optionally apply the same smoothing to predictions. For the purpose of function space regularization, we
consider the unsmoothed tree, though smoothing can still be used for prediction in practice, and Good et al.
(2022) shows that it is usually beneficial to performance. Next, regularization to other trees is accomplished
simply by observing that, because each leaf of the other trees contributes squared error uniformly on a hy-
perrectangle, it can be input directly to the KDDT fitting algorithm as a weighted data point with uniform
hyperrectangular kernel and label equal to the corresponding leaf value. Much like the efficient computation
of (15), a leaf is tracked only when it intersects the current subtree during construction, so it is efficient
when the trees are similar, but can become expensive if they are both large and very dissimilar.

If using unsmoothed squared error with regularization to other trees, tree fitting is more complicated. By
an obvious generalization of Theorem 1 of Good et al. (2022), during the search for an optimal split, for

8

Under review as submission to TMLR

each training index i and feature index f ∈ [p], both zf < xi,f and zf ≤ xi,f , where z is an input to the
tree, are candidates for the optimal decision rule. This is achievable with a straightforward alteration of
the KDDT fitting algorithm, but it introduces the strange phenomenon of leaves that have zero measure,
which are completely absent in the computation of function inner products. Thus, two trees may have
zero disagreement, being equivalent in function space, but make completely different predictions on the
data. Although this can be circumvented by setting a stopping condition for tree fitting that prevents zero-
measure leaves, simply using smoothed error offers a preferably explicit strategy for enforcing continuity
around relevant data. Furthermore, regardless of the needs of our federated framework, Good et al. (2022)
show that the regularizing effect of smoothed error can greatly increase the performance of single-tree models.

It should also be noted that the KDDT algorithm is only useful when the choice of inner product and
smoothing are compatible with its assumptions. If not, we would need a more general fitting algorithm, or
lacking that, revert to model-agnostic approximations.

6 Experiments

To demonstrate the proposed algorithm, we benchmark our method applied to KDDTs and a small MLP on
12 popular data sets from the UCI Machine Learning Repository (Dua & Graff, 2017) summarized in Table 1
in Appendix B. To compare against the most similar parametric method, we use as a baseline a synchronous
variant of DJAM which we call Parameter Space Regularization (PSR). We initially included DFedAvgM
as a baseline, but since it trains only for a handful of updates per communication iteration, whereas the
other methods fully train a model, it was not able to achieve meaningful performance in the 20 iterations in
our experiments, so we omit it from the results. The evaluation is designed as a proof-of-concept; it is left
to future work to benchmark the approach against more complex state-of-the-art methods for a variety of
learning tasks.

For each data set, we randomly split it into 50% train, 50% test, then split the training data into clients by
using k-means to group the features into two clusters. This is a split with high client heterogeneity. We also
split the data by class, that is, such that there is one client per class, and each client sees only one class.
This is an extreme case of client heterogeneity. To define the communication graph, we sample a random
ring (2-regular) graph. Additional experiment details are in Appendix B.

For our FSR methods, we use smoothed squared error with a box kernel with radius δ, that is, k(z, x) ∝
1{∥z − x∥∞ ≤ δ}. For simplicity, we select λ and δ by training models with a range of values for each and
selecting the ones that result in the highest final average global training accuracy.

The results for the cluster-based data split are shown in Figure 1. On most data sets, we see that the
FSR-based methods learn faster than PSR, sometimes reaching their best accuracy in just one or two
rounds of communication. They also often outperform PSR in final accuracy. The FSR KDDT and FSR
MLP predictably perform differently, with each outperforming the other about half the time. In these
experiments, the tree size is not tuned by cross-validation, and the other hyperparameters are selected by
training accuracy, so the trees sometimes overfit more than the MLPs.

On a few data sets, the FSR-based methods fall short in performance. The worst cases are optdigits and
pendigits, image data where the number of informative features is likely to be high; this is consistent with
our expectations for the limitations of the method in its current form, but ongoing efforts show promise
towards improving the resilience of the method to higher-dimensional data.

The results for the class-based data split are shown in Figure 1. This is the most extreme possible hetero-
geneous split and, unsurprisingly, the PSR method is unable to learn anything in these experiments. For
FSR, the results vary, but it is clearly learning in all cases, which is a significant feat for this kind of data
split, especially in so few iterations. In most cases, convergence is slower compared to the cluster-based split.
This is due in part to the fact that, for data sets with more than two classes, the ring graph implies that
it takes longer for information to propagate across all clients. It is also due to to the inherent challenge of
the class-based split itself. In simple, low-dimensional examples such as Iris, our methods perform very well,
still reaching good performance in few iterations. In the more challenging cases, learning is slower and the
accuracy is sometimes unstable across iterations.

9

Under review as submission to TMLR

Figure 1: Results for FL experiments with data split by clustering.

10

Under review as submission to TMLR

Figure 2: Results for FL experiments with data split by class.

11

Under review as submission to TMLR

It is interesting to note that, despite the simple Monte Carlo method used to apply our FSR method when
training the MLP (we use 1000 uniformly random samples for regularization per minibatch, which is very
reasonable), stable learning is possible even on moderately-dimensional data where sampling random noise
would seem not to cover the domain well. In these cases, the (randomized) error smoothing is crucial:
there are cases where, without error smoothing, the disagreement penalty does nothing to improve accuracy
compared to local learning alone; however, with it, performance is very good.

7 Discussion

This work lays the theoretical foundation and gives an empirical illustration of the proposed method FedFun;
below we outline some important limitations and directions for future development.

Not present in this work is a more comprehensive evaluation of FedFun’s performance along dimensions such
as cost and privacy. While our approach is promising for reducing the total communication iterations needed
to learn a consensus model, the need to compute or approximate a function inner product can significantly
increase the cost of the local learning problem at each iteration, depending on the model design, inner
product, connectivity of the network, and other factors. Moreover, our method, like DJAM, fully solves
a local optimization problem at each iteration, and therefore has higher computational cost per iteration
compared to methods like DFedAvgM that only perform a fixed number of updates at each iteration. A careful
exploration of this tradeoff, between inter- and intra-client costs, would be of interest. Similarly, privacy
concerns, i.e. the protection of client data from leakage, are a primary motivation for using FL in many
applications. Privacy depends partially on the model, partially on the distributed learning algorithm, and
partially on the method of communication. It is left to future investigation to study the privacy implications
of the proposed algorithm, as well as the models it introduces as candidates for federated learning, such as
decision trees.

Additionally, several developments would enhance usability of FedFun. The model-agnostic Monte Carlo
method proposed in Section 5.2 for computing function space inner products and norms is simple to imple-
ment, but suffers from poor sample efficiency as the dimensionality of the domain grows large. Exploring
inner products and sampling strategies better aligned with risk for different problems and model classes has
the potential to improve performance and sample efficiency for high-dimensional data of various modalities.
Our algorithm also introduces hyperparameters in the form of the regularization coefficient λ and, if using
smoothed error, the size and shape of the kernel. While the convergence theory suggests setting λ based on
µ, µ may be very large; for instance, with box kernel with radius δ in p dimensions, µ is proportional to
(2δ)p. Learning algorithms are not likely to work well with extremely strong penalties like this. Further work
is needed to explore how to tune these values, particularly given our distributed setting where computing
global performance metrics without exchanging data may not be straightforward.

Lastly, there are various ways in which a network of learning agents may be unstable or evolve over time,
ranging from the introduction of new clients and data, to shifting network connections, to the varying
availability of clients to participate, to the permanent loss of some clients. For example, Beltrán et al. (2023)
highlight military and vehicular applications as a domain where these challenges are especially prevalent.
Extensions handling asynchronicity or possible client dropout would increase utility. Many existing works
address these challenges for other distributed optimization algorithms, and it is likely that many can be
adapted for use with ours.

References

Inês Almeida and Joao Xavier. Djam: Distributed jacobi asynchronous method for learning personal models.
IEEE Signal Processing Letters, 25(9):1389–1392, 2018.

Nicola Bastianello and Emiliano Dall’Anese. Distributed and inexact proximal gradient method for online
convex optimization. In 2021 European Control Conference (ECC), pp. 2432–2437, 2021. doi: 10.23919/
ECC54610.2021.9654953.

12

Under review as submission to TMLR

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009. doi: 10.1137/080716542. URL https://doi.
org/10.1137/080716542.

Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez Sánchez, Sergio López Bernal,
Gérôme Bovet, Manuel Gil Pérez, Gregorio Martínez Pérez, and Alberto Huertas Celdrán. Decentralized
federated learning: Fundamentals, state of the art, frameworks, trends, and challenges. IEEE Communi-
cations Surveys & Tutorials, 2023.

Ari Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing networks in function space.
In International Conference on Learning Representations, 2019.

Michael Birman and Michael Z Solomjak. Spectral theory of self-adjoint operators in Hilbert space, volume 5.
Springer Science & Business Media, 2012.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in
Machine Learning, 3(1):1–122, 2011. ISSN 1935-8237. doi: 10.1561/2200000016. URL http://dx.doi.
org/10.1561/2200000016.

L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regression Trees. Taylor &
Francis, 1984. ISBN 9780412048418.

Patrick L. Combettes and Valérie R. Wajs. Signal recovery by proximal forward-backward splitting. Mul-
tiscale Modeling & Simulation, 4(4):1168–1200, 2005. doi: 10.1137/050626090. URL https://doi.org/
10.1137/050626090.

Nikita Dhawan, Nicole Elyse Mitchell, Zachary Charles, Zachary Garrett, and Gintare Karolina Dziugaite.
Leveraging function space aggregation for federated learning at scale. Transactions on Machine Learning
Research, 2024.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
ml.

Xiuwen Fang and Mang Ye. Robust federated learning with noisy and heterogeneous clients. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10072–10081, 2022.

Joel Feldman. UBC Math 511, Lecture Notes: The Spectral Theorem for Commuting, Bounded, Normal
Operators. URL: https://personal.math.ubc.ca/~feldman/m511/. Retrieved on 10/13/2024.

Jack H. Good, Kyle Miller, and Artur Dubrawski. Kernel density decision trees. In Proceedings of the AAAI
Spring Symposium on AI Engineering. Curran Associates, Inc., 2022. URL https://insights.sei.cmu.
edu/library/kernel-density-decision-trees/.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In International
conference on machine learning, pp. 5132–5143. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation. arXiv preprint
arXiv:1910.03581, 2019.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg
on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

13

https://doi.org/10.1137/080716542
https://doi.org/10.1137/080716542
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
https://doi.org/10.1137/050626090
https://doi.org/10.1137/050626090
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://personal.math.ubc.ca/~feldman/m511/
https://insights.sei.cmu.edu/library/kernel-density-decision-trees/
https://insights.sei.cmu.edu/library/kernel-density-decision-trees/

Under review as submission to TMLR

Elliott H Lieb and Michael Loss. Analysis, volume 14. American Mathematical Soc., 2001.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model fusion
in federated learning. Advances in neural information processing systems, 33:2351–2363, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pp. 1273–1282. PMLR, 2017.

Michael Reed and Barry Simon. I: Functional analysis, volume 1. Academic press, 1981.

Tao Sun, Dongsheng Li, and Bao Wang. Decentralized federated averaging. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(4):4289–4301, 2022.

Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. Decentralized collaborative learning of person-
alized models over networks. In Artificial Intelligence and Statistics, pp. 509–517. PMLR, 2017.

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya, Ting He, and Kevin
Chan. Adaptive federated learning in resource constrained edge computing systems. IEEE Journal on
Selected Areas in Communications, 37(6):1205–1221, 2019. doi: 10.1109/JSAC.2019.2904348.

Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui Cai, and Wensheng Zhang. A survey on federated
learning: challenges and applications. International Journal of Machine Learning and Cybernetics, 14(2):
513–535, 2023.

Mang Ye, Xiuwen Fang, Bo Du, Pong C. Yuen, and Dacheng Tao. Heterogeneous federated learning: State-
of-the-art and research challenges. ACM Comput. Surv., 56(3), October 2023. ISSN 0360-0300. doi:
10.1145/3625558. URL https://doi.org/10.1145/3625558.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021. ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.
2021.106775. URL https://www.sciencedirect.com/science/article/pii/S0950705121000381.

A Proofs

This section contains proofs omitted from the main text.
Lemma 1. Let φ be a quadratic function φ(h) = 1

2 ⟨h, Ah⟩+ ⟨a, h⟩+α on a Hilbert space H with a minimum
value φ∗. If A is positive with spectral gap σ(A) ∩ (0, c) = ∅, then

∥∇φ[h]∥ ≥ cd(h, arg min φ) (6)

φ[h] ≥ φ∗ + 1
2cd2(h, arg min φ) (7)

for any h ∈ H.

Proof. Since a and α only shift φ, we may assume a = 0 and α = 0 without loss of generality.

By the spectral theorem for bounded operators (Reed & Simon, 1981, Theorem VII.3), A is unitarily equiv-
alent to a multiplication operator: there exists a finite measure space (X , Σ, µ), a bounded measurable
f : X → R, and a unitary U : H → L2(X , µ) satisfying U−1Tf U = A where Tf is the multiplication operator
[Tf g](x) = f(x)g(x). The spectrum of Tf is the essential range of f .

14

https://doi.org/10.1145/3625558
https://www.sciencedirect.com/science/article/pii/S0950705121000381

Under review as submission to TMLR

We first show (6). For a given h ∈ H, let g = Uh. Denote the projection of g onto the kernel of Tf by
g∗ = PTf

g with h∗ = U−1g∗. Denoting the zero set of f by Of , and since U is unitary,

∥∇φ[h]∥2 = ∥Ah∥2

= ∥U−1Tf Uh∥2

= ∥Tf g∥2

=
∫

X
|f(x)g(x)|2dµ(x)

=
∫

X \Of

|f(x)g(x)|2dµ(x)

Since unitary equivalence implies equal spectrum, the essential range of f is nonnegative and takes no positive
value less than c. Thus we have

∥∇φ[h]∥2 ≥ c2
∫

X \Of

|g(x)|2 dµ(x)

= c2∥g − g∗∥2

= c2∥h − h∗∥2.

Moreover, ∇φ[h∗] = Ah∗ = U−1Tf UU−1g∗ = U−1Tf g∗ = 0, so h∗ ∈ arg min φ and (6) follows.

Next we show (7). Define g, g∗, and h∗ as above. Again since U unitary,

φ[h] = 1
2 ⟨h, Ah⟩

= 1
2 ⟨h, U−1Tf Uh⟩

= 1
2 ⟨Uh, Tf Uh⟩

= 1
2 ⟨g, Tf g⟩

= 1
2

∫
X

f(x)g(x)g(x) dµ(x)

= 1
2

∫
X

f(x)|g(x)|2dµ(x).

Proceeding as in the proof of (6),

φ[h] ≥ c

2∥h − h∗∥2

and the claim follows since φ∗ = 0 and h∗ ∈ arg min φ.

Theorem 1. There exists some c > 0 such that σ(A + λL) ∩ (0, c) = ∅.

Proof. Let h ⊥ ker(A + λL) with ||h|| = 1. By Courant-Fisher (Lieb & Loss, 2001, Theorem 12.1), it is
enough to show that h satisfies ⟨(A + λL)h, h⟩ ≥ c > 0. Recall from assumptions 2 and 4 that both A
and λL have spectral gaps. Letting PA, PL, P ⊥

A , P ⊥
L denote the projections onto ker A, ker λL, and their

orthogonal complements, self-adjointness and spectral gaps imply

⟨(A + λL)h, h⟩ = (17)
⟨A(PAh + P ⊥

A h), (PAh + P ⊥
A h)⟩ + λ⟨L(PLh + P ⊥

L h), (PLh + P ⊥
L h)⟩ = (18)

⟨AP ⊥
A h, P ⊥

A h⟩ + λ⟨LP ⊥
L h, P ⊥

L h⟩ ≥ cA||P ⊥
A h||2 + λcL||P ⊥

L h||2. (19)

15

Under review as submission to TMLR

Consider Hn the quotient of Hn by ker(A + λL), with norm ||h||K = infg∈ker(A+λL) ||h − g|| for h ∈ Hn.
Recalling that A, λL are positive, note that ker(A+λL) = ker(A)∩ker(L). Define µ(h) =

(
1
n

∑n
j=1 hj

)
∈ H

and consider k in Hn with all elements equal to P0µ(h) for P0 the projection onto ∩n
j=1 ker(Aj). Clearly k ∈

ker(A)∩ker(L) so that ||h − k||K = ||h−0||K = 1. Then by definition ||h−k||2 =
∑n

j=1 ||hj −P0µ(h)||2 ≥ 1,
implying

∑n
j=1 ||hj − P0µ(h)|| ≥ 1 by norm equivalence. Thus by the triangle inequality n∑
j=1

||hj − µ(h)|| + ||µ(h) − P0µ(h)||

 =

n||µ(h) − P0µ(h)|| +
n∑

j=1
||hj − µ(h)||

 ≥ 1.

By Lemma 2, there must exist j such that n3/2||µ(h) − PAj µ(h)|| +
∑

j ||hj − µ(h)|| ≥ 1. Thus, again
employing norm equivalence, we have that

n3/2
∑

j

||µ(h) − PAj
µ(h)|| +

∑
j

||hj − µ(h)|| ≥ 1 =⇒ n2||P ⊥
A PLh|| +

√
n||P ⊥

L h|| ≥ 1.

If ||P ⊥
L h|| ≥ 1

n then we have that cA||P ⊥
A h||2+λcL||P ⊥

L h||2 ≥ λcL

n2 . Otherwise we must have that ||P ⊥
A PLh|| ≥

1−
√

n||P ⊥
L h||

n2 > 1−(1/
√

n)
n2 . Then it follows that

||PAh − PLh||2 =
n∑

j=1
||PAj

hj − µ(h)||2 =
n∑

j=1
||PAj

(hj − µ(h))||2 + ||P ⊥
Aj

µ(h)||2

= ||PAP ⊥
L h||2 + ||P ⊥

A PLh||2 ≥
(

1 − (1/
√

n)
n2

)2

.

Again by the triangle inequality

||P ⊥
A h|| + ||P ⊥

L h|| ≥ ||P ⊥
A h − P ⊥

L h|| = ||(h − P ⊥
A h) − (h − P ⊥

L h)|| = ||PAh − PLh||

so that ||P ⊥
A h|| + ||P ⊥

L h|| ≥ 1 − (1/
√

n)
n2

and ||P ⊥
A h||2 + ||P ⊥

L h||2 ≥ 1
2

(
||P ⊥

A h|| + ||P ⊥
L h||

)2 ≥ 1
2

(
1 − (1/

√
n)

n2

)2

yielding cA||P ⊥
A h||2 + λcL||P ⊥

L h||2 ≥ min(cA, λcL)
2

(
1 − (1/

√
n)

n2

)2

.

Lemma 2. Assume Ai, Aj commute for all i, j and let PAj
and PA denote the projection operators from H

onto ker(Aj) and ∩n
j=1 ker(Aj) respectively. Then ||f − PAj

f || < ϵ for all j implies ||f − PAf || < ϵ
√

n.

Proof. Since Ai, Aj are self-adjoint and commute we must have that they are simultaneously diagonalizable
(Birman & Solomjak, 2012, Theorem 6.5.1) (see also Feldman): There exists a finite measure space (X , Σ, µ),
bounded measurable ai, and unitary U : H → L2(X , µ) satisfying U−1Taj

U = Ai for all j where Taj
is the

multiplication operator [Taj
g](x) = aj(x)g(x). Letting PTaj

and PT denote the projection operators from
L2(X , µ) to ker(Taj

) and ∩n
j=1 ker(Taj

), and using surjectivity of U ,

||f − PAj
f || = inf

{g∈H | U−1Taj
Ug=0}

||f − g||

= inf
{h∈L2(X ,µ) | Taj

h=0}
||f − U−1h||

= inf
{h∈L2(X ,µ) | Taj

h=0}
||Uf − h|| = ||Uf − PTaj

Uf ||.

16

Under review as submission to TMLR

Similarly, we have ||f − PAf || = ||Uf − PT Uf ||. Thus we see that it is enough to show h ∈ L2(X, µ) satisfy
||h − PTaj

h|| < ϵ implies ||h − PT h|| < ϵ
√

n.

Consider the zero sets Oj = {x |aj(x) = 0}. Note that the projections have the effect of zeroing out h on
these sets:

||h − PTaj
h||2 = inf

{g∈L2(X ,µ) | g·aj=0}
||h − g||2

= inf
{g∈L2(X ,µ) | g·aj=0}

∫
X

|h(x) − g(x)|2dµ(x)

= inf
{g∈L2(X ,µ) | g·aj=0}

∫
Oj

|h(x) − g(x)|2dµ(x) +
∫

Oc
j

|h(x) − g(x)|2dµ(x)

=
∫

Oc
j

|h(x)|2dµ(x).

Similarly, we can show ||h − PT h||2 =
∫

(∩jOj)c |h(x)|2dµ(x) =
∫

∪jOc
j

|h(x)|2dµ(x). Thus ||h − PT h|| <
√

n||h − PTaj
h|| follows by induction since∫

Oc
i

∪Oc
j

|h(x)|2dµ(x) ≤
∫

Oc
i

|h(x)|2dµ(x) +
∫

Oc
j

|h(x)|2dµ(x).

Lemma 3. For a given λ, for any h̃ ∈ H̃,

∥h̃ − h̄∥ ≤ 1
λ

∥A∥
ν

√
∥A∥

µ
d(H∗, arg min R) ∈ O(1/λ) (20)

where h̄ = Eh̃ is the projection of h̃ into consensus.

Proof. Since h̄ is the projection of h̃ onto the the minimizers of h 7→ ⟨h, Lh⟩, by Lemma 1, we have the
following.

∥h̃ − h̄∥ ≤ 1
ν

∥Lh̃∥

By optimality of (4), ∇R[h̃] + λLh̃ = 0.

= 1
λν

∥∇R[h̃]∥

Recall that ∇R is ∥A∥-Lipschitz and ∇R[h] = 0 for h ∈ arg min R.

≤ ∥A∥
λν

d(h̃, arg min R)

= ∥A∥
λν

√
2
µ

(
1
2µd2(h̃, arg min R)

)

Let R∗ = min R and apply Lemma 1.

≤ ∥A∥
λν

√
2
µ

(R[h̃] − R∗)

17

Under review as submission to TMLR

Let h∗ ∈ H∗. Since ⟨h∗, Lh∗⟩ = 0 and h̃ minimizes (4), we have R[h̃] ≤ R[h∗].

≤ ∥A∥
λν

√
2
µ

(R[h∗] − R∗)

Again apply the ∥A∥-Lipschitzness of ∇R.

≤ ∥A∥
λν

√
2
µ

(
1
2∥A∥d2(h∗, arg min R)

)
The claim follows by a simple manipulation.

Theorem 3. For a given λ, for any h̃ ∈ H̃,

d(h̃, H∗) ≤ ∥A∥
λν

√
∥A∥

µ

(
1 + n∥A∥

µ

)
d(H∗, arg min R) ∈ O(1/λ). (9)

Proof. Let h̃ ∈ H̃, h̄ the projection of h̃ into consensus, and h∗ the projection of h̄ into H∗.

∥h̃ − h∗∥ ≤ ∥h̃ − h̄∥ + ∥h̄ − h∗∥

Since both h̄ and h∗ are in consensus, their elements are equal.

= ∥h̃ − h̄∥ +
√

n∥h̄0 − h∗
0∥

By assumptions 1 and 4 with Lemma 1, since Ai commuting and having spectral gap µ implies
∑

i Ai has
spectral gap µ, the consensus risk functional R̄[h] = R[(h, . . . , h)] =

∑
i Ri[h] is also convex quadratic with

minimum growth rate µ away from its minimizers, of which h∗
0 is one.

≤ ∥h̃ − h̄∥ +
√

n

µ
∥∇R̄[h̄0]∥

= ∥h̃ − h̄∥ + n

µ
∥E∇R[h̄]∥

By optimality of (4), ∇R[h̃] + λLh̃ = 0. Since L is a symmetric graph Laplacian, its rows and columns sum
to zero, so EL = LE = 0. Then E(∇R[h̃] + λLh̃) = E∇R[h̃] = 0.

= ∥h̃ − h̄∥ + n

µ
∥E∇R[h̄] − E∇R[h̃]∥

≤ ∥h̃ − h̄∥ + n

µ
∥∇R[h̄] − ∇R[h̃]∥

≤ ∥h̃ − h̄∥ + n∥A∥
µ

∥h̄ − h̃∥

=
(

1 + n∥A∥
µ

)
∥h̃ − h̄∥

From here the result is proven by application of Theorem 3.

B Experiment Details

These are additional details for the federated learning experiments covered in Section 6. The datasets used
are described in the following table.

18

Under review as submission to TMLR

Table 1: Information about data sets.
full name short name labels features samples
Iris iris 3 4 150
Wine wine 3 13 178
Glass Identification glass 6 9 214
Optical Recognition of Handwritten Digits optdigits 10 64 5620
Ionosphere ionosphere 2 34 351
Pen-Based Recognition of Handwritten Digits pendigits 10 16 10992
Image Segmentation segmentation 7 19 2310
Letter Recognition letter-recognition 26 16 20000
Yeast yeast 10 8 1484
Spambase spambase 2 57 4601
Connectionist Bench (Sonar, Mines vs. Rocks) sonar 2 60 208
Statlog (Landsat Satellite) satimage 6 36 6435

The MLP, which is used for both PSR and FSR experiments, consists of two hidden layers of size 50 with
ReLU activations. We use batch size 200 and learning rate 0.001 with the Adam optimizer (Kingma &
Ba, 2014). We train for 10000 iterations (batches) locally, then after each round of communication, train
for another 1000 iterations with disagreement penalty. For PSR, we use cross-entropy loss and penalize
disagreement as the sum of squared difference in parameters and use coefficient λ = 0.1, which we observe
to work well across data sets. For FSR, we use mean squared error loss and penalize disagreement at 1000
inputs sampled uniformly at random from the domain at each batch. Error smoothing is accomplished by,
at each batch, adding random noise sampled from the kernel to the training inputs.

The KDDT uses as growth stopping condition a maximum number of leaves equal to the number of training
samples summed over clients or 1000, whichever is smaller.

For FSR methods, λ and the box kernel radius δ are chosen to maximize average global training accuracy.
For MLPs, we select from λ ∈ [10, 100, . . . , 107] and δ ∈ [0.0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]. For KDDTs, we
select from λ ∈ [10, 100, . . . , 105] and δ ∈ [0.05, 0.1, 0.2, 0.5]. These values for λ may seem large, but the
convergence theory suggests that sometimes they should actually be even higher. The best λ is often based
more on the local learning algorithm than the convergence of the federated optimization.

In all FSR training, we scale the data such that its bounding box, including smoothing, is [0, 1]p. Though
we do this up-front for simplicity, it is also straightforward to accomplish this dynamically on a network
by communicating data bounding boxes along with models. This scaling is not theoretically necessary, but
it makes the choice of hyperparameters more consistent across data sets and prevents the measure of the
domain, which scales the disagreement penalty, from taking on extreme values that may be computationally
unfavorable.

19

	Introduction
	Related Work
	Method
	Proximal Gradient Method in Function Space

	Convergence
	Examples
	Smoothed Squared Error
	Model-agnostic Approximations
	Neural Networks
	Decision Trees

	Experiments
	Discussion
	Proofs
	Experiment Details

