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Abstract

Molecular synthetic space projecting is a critical technique in de novo molecular
design, which aims to rectify molecules without synthesizability guarantee by
converting them into synthetic postfix notations. However, the vast synthesizable
chemical space and the discrete data modalities involved pose significant chal-
lenges to postfix notation conversion benchmarking. In this paper, we exploit
conditional probability transitions in discrete state space and introduce MoleBridge,
a deep generative model built on the Markov bridge approach for designing postfix
notations of molecular synthesis pathways. MoleBridge consists of two iterative op-
timizations: 1) Autoregressive extending of notation tokens from molecular graphs,
and ii) generation of discrete reaction postfix notations through Markov bridge,
where noisy token blocks are progressively denoised over multi-step iterations. For
the challenging second iteration, which demands sensitivity to incorrect genera-
tive probability paths within intricate chemical spaces, we employ a thinking and
denoising separation approach to denoise. Empirically, we find that MoleBridge
is capable of accurately predicting synthesis pathways while exhibiting excellent
performance in a variety of application scenarios.

1 Introduction

De novo molecular design has garnered considerable attention across various research domains in
life sciences [77, 163} 12]. Among these developments, the majority of cutting-edge breakthroughs
are driven by deep generative approaches 48,42, [21]]. With the promise comes a challenge: unlike
traditional combinatorial optimization approaches [59, 9] constrained by virtual libraries, generative
models typically generate structures that lie outside the synthesizable chemical space [18]]. Of these,
only a vanishing small percentage will be experimentally realizable. Recently, the immense potential
of projecting synthetic space for the rectification of non-synthesizable molecules has given rise to
a milestone paradigm [46], where desired synthesizable molecules [31] from structurally similar
analogs are now made available. This paradigm is centered on generating synthetic pathways from
purchasable chemical building blocks and deriving designed molecules in postfix notations, which
can rival chemically expert-defined rules.

Despite their promising advancements, there are still significant gaps to fill before generative models
become practical for synthesizable pathway design. i) First, chemical space theory predicts that the
number of compounds synthesizable by humans could reach 10%3—an enormous space [5,27]. For
this purpose, it is essential that the model can explore, on a sequence-to-sequence basis, synthetic
pathways of arbitrary length. ii) Second, unlike natural language, molecular postfix notation sequences
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Figure 1: Overview of MoleBridge. MoleBridge sequentially extends postfix notation tokens from
molecular graphs conditioning on previous blocks. By performing Markov bridge, MoleBridge
retains scalable capability for the increasing synthetic space and supports higher-quality generation.

are composed of a limited number of building blocks, with minimal redundancy and a lack of
semantic coherence. Therefore, the model should pay attention to the deep-level connections between
postfix notations. iii) Third, early errors in pathway generation propagate irreversibly. In multi-
step synthesis, selecting an incompatible building block at a certain step constrains all subsequent
reactions, potentially invalidating the entire pathway. This necessitates a generation mechanism that
allows progressive refinement of pathway segments.

In this paper, we introduce MoleBridge, a novel Markov bridge generative model for designing postfix
notations of molecular synthesis pathways. Markov bridge models exhibit increased flexibility (the
noise addition and removal processes resemble powerful data augmentation, compelling the model to
form deeper relationships among features). However, constrained by the noise scheduling process,
they follow a fixed generation length [3,[73|152], making it difficult to explore synthetic pathways of
variable lengths. Thus, instead of adding Gaussian noise to an entire fixed-length synthesis pathway,
MoleBridge introduces probabilistic perturbations to notation token blocks at current autoregressive
steps. By approximately referencing the Markov bridge process [[17} 129, (78], MoleBridge learns
to progressively refine perturbed reaction sequences, thereby generating more rational designs. In
pursuit of stable pathways and semi-autoregressive error robustness, we identify errors introduced
in the sequence steps by thinking at each denoising time step and correct these errors based on the
selected positions in the current noisy sequence block. This innovation is more natural for molecular
synthesis pathways than for language data. Empirically, we demonstrate that MoleBridge excels in a
variety of scenarios.

Our contributions can be summarized as follows:

* We introduce MoleBridge, a novel generative approach for generating molecular postfix no-
tations based on the Markov bridge, which expands chemical space via a semi-autoregressive
process while applying iterative refinement to each block sequentially.

* We employ a thinking strategy, which performs denoising when an error occurs at a certain
step, ensuring the feasibility of the synthesis pathway.

» Through experiments, we demonstrate the effectiveness of MoleBridge in various scenarios,
such as bottom-up synthesis, structure-based drug design, and target-directed generation.

2 Related Work

Synthesizability of molecules. Synthesizable molecule design aims to generate novel molecular
structures that can be realized through practical chemical synthesis pathways. Early approaches
[60, 24] relied on proposing a large number of potential candidate molecules and screening them
using scoring functions to estimate energy and identify stable molecules. Groundbreaking deep



learning approaches [0, |19/ 7] have now been developed to predict reaction outcomes in a “template-
free” manner. For instance, MoleculeChef [6] encodes and decodes a set of initial reactants from
purchasable building blocks, enumerates possible one-step synthetic paths, and selects the best
molecule among the products as the output. It allows chemists to interrogate the properties of the
generated molecules. DoGs [[7]] employs a recurrent neural network to generate sequences of actions
from latent codes, achieving molecular generation through sampling in the latent space. It also
demonstrates strong capabilities to satisfy the feasibility of the synthesis paths. However, empirical
validation remains challenging, since they are generally less effective at producing convergent
synthesis paths and structurally complex molecules. The synthetic space projecting [46] aims to
generate structurally similar and synthesizable analogs by converting them into synthetic postfix
notations. It is capable of guaranteeing bottom-up synthesis planning and exploring the locally
synthesizable chemical space around hit molecules. Despite this progress, directly applying these
approaches to postfix-notation path generation remains challenging and requires further design.

Diffusion generative models. Diffusion models [[12,|64] are generative models achieving state-of-
the-art performance across various domains, including the generation of images [62} 44], video [66],
or molecular [[70,169]]. It achieves high-quality and diverse sampling from unknown data distributions
by approximating the simple density (i.e., Gaussian density) to the stochastic differential equation of
the unknown data density [25]]. A notable highlight of the success of diffusion models in the field of
molecular design is their potential to generate molecules that can serve as the foundation for novel
medicinal compounds previously unseen [32]. Multiple approaches have been explored to achieve
this. For instance, 3D diffusion methods such as MDM [28]], DiffLinker [30], and PIDiff [13]] can
generate candidate drug molecules relevant to chemistry. Most relevant to our work, diffusion models
have also achieved promising results in designing discrete DNA sequences [61] and optimizing stable
molecules [35] (76, 55]. Recently, some studies [43]145] propelled the development of molecular
design technologies by utilizing more reliable diffusion processes.

Schrodinger bridge. The Schrodinger Bridge (SB) problem [53| 4, 38]] arises from an intriguing
connection between statistical physics and probability theory. Its goal is to find the most probable
evolution between a given initial and final distribution relative to a specified reference stochastic
process [[72]]. A significant characteristic of the SB problem is the ability to choose any distribution
as the initial and terminal distributions [33]], which has advanced the resolution of various generative
model issues. Building upon the SB framework, diffusion bridge models have shown cutting-edge
results in various fields, including imaging [15} [36]], speech [37], and physical fields [41]. The
recently proposed Markov bridge models [78. |29, [17] extend these models into the discrete domain,
focusing on environments with categorical distributions. In this work, we apply the Markov bridge
for molecular postfix notation path synthesis.

3 Preliminary

3.1 Notations and Problem Formulation

The synthetic space is constructed by recursively applying reaction rules to all possible molecular com-
binations, starting from the initial building blocks [46]. Mathematically, a synthetic space S is repre-
sented as the closure of molecules generated by a set of n, building blocks B = {b',b2,...,b™} € S
and a set of n,. reaction rules R = {r!, 72 ... r" }, where each reaction rule 7 defines a mapping
function from the reactant space to the product: r* :== X x Y — S, (X,)Y)— Z.Here, X, Y €S
represents the sets of molecules applicable to the reaction %, and Z represents the main reaction
product. In the synthetic space construction process, synthesis pathways are represented as notation
sequences y = [t, 2, ... t"t], where each token ¢ € BUR indicates pushing a building block onto
the stack or calculating the product and pushing it back onto the stack, with n; indicating the length
of the tokens. The goal of the synthetic space projecting problem is to identify a structurally similar
and practically synthesizable analog y by projecting the designed molecule M into the synthesizable
chemical space S. Thus, an ideal model, parameterized by ¢, should be capable of learning the
mapping from any molecule M to its corresponding postfix notation distribution py(y | M).

3.2 Autoregressive Models

The success of large models in the natural language processing and computer vision domain demon-
strates their scalability and the universality of sequence data modeling [3} 68, |65, [75]]. Given a



postfix notation sequence y = [tl, ... ,t"t], where the subscript 1 < £ < n; specifies an order,
autoregressive models assume that the probability of observing the current token t* depends only on
its prefix [t!,¢2, ..., ¢/~!]. This unidirectional token dependency assumption allows the likelihood
of the sequence y to be factorized as:

ne

logpg(y) = Y _ logpy(t* | £=°), ¢))
=1

where pg (t¢ | t<*) is parameterized directly with a neural network. Therefore, autoregressive models
can be efficiently trained through “next token prediction” [54, 71, [74]. However, due to sequential
dependencies, autoregressive models require n; steps to generate n; tokens.

3.3 Discrete Markov Bridge

Markov bridge model fits a model 1 (+) to reverse the forward corruption process ¢ [[781[29,[17]]. This
process is pinned to specific data points in the beginning and in the end, modeling the dependencies
between the discrete spaces X and Y. For the sample pair (z,y) ~ px,y(x,y) and the time step

sequence 7 = 0, 1,...,7, it defines the Markov process as a sequence of random variables (¢,)7_,,
starting from to = «, and satisfying the Markov property:
p(tr [to,t1, .. tr—1,y) = p(t; [ tr-1,y). (2)
To ensure the process terminates at the data point £ = y, we introduce an additional requirement:
pltr =y |tr-1,y) =1 ©)
Suppose the distributions px and py are categorical distributions with a finite sample space 1, ..., K,

and we can represent the data points as K -dimensional one-hot vectors: x,y,t, € R, and define
the transition probabilities (Eq. (2)) as follows:

p(t'rJrl | tTa y) = Cat(tt+1; Q'rt'r)a (4)

where Cat(-; p) is a categorical distribution with probabilities given by p, and Q. is a transition
matrix parameterized as:

QT = QT(y) =a; Ik + (1 - Oé-,—)y]-;7 (5)

where I'x denotes a K x K identity matrix, and o, is a schedule parameter transitioning from ap = 1
to aup—1 = 0. Then, ¢, can be efficiently sampled from p(t,11 | to, tr) = Cat(t,+1; Q-to), where
Q,=Q:Q._1...Qo =&, Ik + (1 —a,)ylj acumulative product matrix, and &, = szo o
During training, the Markov bridge approximates y using the neural network ©y: § = 1y (t,, 7).

4 Methods

In this section, we introduce MoleBridge, a Markov bridge model for synthetic space projecting. We
first define how to interpolate between semi-autoregressive and Markov bridge models by defining
autoregressive distributions over tokens. Next, we provide an objective for maximum likelihood
estimation and efficient training and sampling algorithms. Finally, we describe the denoising network
architecture employed to approximate the Markov bridges.

4.1 Markov Bridge for Synthetic Space Projecting

Generally, molecular synthesis paths are highly discrete processes that strictly adhere to chemical
rules. A common scenario is to construct the pathway from simple building blocks to complex
target molecules through sequential decisions alone. In this work, we propose to introduce Markov
bridges into molecular synthesis pathways, modeling blocks of tokens autoregressively. We group the
postfix notation tokens into C notation blocks, each of length 7., where C = n; /7. (assuming C is an
integer). We denote each block ¢..;,, from token at positions 0 to c¢fi. for blocks ¢ € {1,...,C} as t©
for simplicity.

Interpolation process. As discussed in Section the matrix @ can efficiently model various
transition probabilities in the discrete state space, including masking, random token changes, and



related word substitutions. When considering the noise process modulated by the masking vector
[78,29], the interpolation process gradually transforms the data point ¢X into the initial molecular
state t5° ~ po(t), with the transition rate controlled by the masking vector. In this case, the noise
interpolation can be represented as:

gty | vr th,y) = vty + (1 — vy, (6)

where v, ~ Bernoulli( B-_1) is a masking latent vector and /3, denotes a scheduler. At 7 = 0, the
conditional marginal converges to the initial distribution t(l):, ie. B =1. Whent — T, 3, is set
close to 0 and the distribution is closer to the target distribution.

Reverse process. Accordingly, the reverse process in block c can be written as:

pﬂ(t$—+1 | Uz, t'crv t<c) = Z q(tiJrl | U7, tf—’ tc>p19(tc | Ur, tf—a t<c)’ (N
tC

where the denoising base model predicts clean token t© given the noisy sequence . Since masked
diffusion requires building a complete probability distribution p(¢¢ | t) over all possible values at
each position £ € {1,...,| ¢¢ |} rather than directly identifying corrupted locations {¢ | t&* # ¢},
it is difficult to achieve accurate denoising probability estimation [56, 47]]. As evidenced by recent
works [11} 156} 51], the core difficulty stems from denoising probability estimation py being the only
key component in the diffusion process that requires neural network approximation. Unfortunately,
while uniform diffusion [45] allows token values to be corrected throughout the sampling process, by
modeling the posterior ¢(t$_ | | v, 5, t¢) as shown in Eq. , its performance does not consistently
outperform masked diffusion, particularly in tasks like image or language modeling.

Indeed, the transition probability can be decomposed into scheduling probability, which assesses
whether the data has been corrupted, and a denoising probability that determines the new value [45].
Therefore, we first think the probability of each position in the sequence being corrupted by noise
[45], conditioned on the current state ¢S and time step 7, and define:

(t° | ° t<c) t7, ifvr =0 8)
p Ur, 1l = ; c c c c .
’ 15%7 " Po (ZT =1 | tr) : ((1 - 57) 1/)19(t7_,7’) + BTtT) , ifvr =1

where pg(z¢ = 1 | £) denotes the probability that each position is corrupted, and z¢ € {0, 1}"¢
is a latent variable to denote if a dimension is corrupted. If a position is likely to be corrupted
(po(2& =1 | tS) = 1), the transition probability will lean toward the output of the denoiser. On the
other hand, when a position is likely to be clean (pg(2S =1 | £$) = 0), the transition probability will
tend to preserve the current state. In mask diffusion case, this can be readily read out from the masked
token. But in the uniform diffusion case, we need to compute/approximate this probability instead.

Training. We obtain a principled learning objective for the model vy(-) by applying the variational
bound on negative log-likelihood log py(y | t) to each term, which has the following closed-form
expression:

C
—logpy(t) < L (#,0) := Y Eyaejeep=e ey [~0ry " log o (85, 7)] )

c=1

where y°© denotes the true tokens in block c. The derivation of £, (t,v) expresses the training loss as
a reweighted standard multiclass cross-entropy loss [[78, [26], which is computed on the labels that
have not yet been converted into the base truth y = ¢7. Compared to the simpler cross-entropy loss
computed over all labels, this new approach assigns greater weight to the labels that need refinement.
Since the model is conditioned on £<¢, the dependency between t<¢ and 1 is explicated in L.

The training of pg can be simplified to a binary classification task, aiming to estimate the probability
that each position is corrupted by noise. Specifically, the training objective is formulated as:

C 3 e
ﬁNﬂZZ&mmu1%&ZHEW%hﬂH%MW#¢m, (10)
c=1 =1

where z%* is a variable indicating whether the /-th position in block c is corrupted at time step 7, t&*

is the noisy token at that position, y** is the true value, I(-) is the indicator function, and BCE(-)
represents binary cross-entropy. The final loss function is the sum of the two terms: £ = L, + L,,.



Sampling. A postfix notation of synthesis vy is a sequence that contains four types of tokens: building
block tokens b’ € B, reaction tokens r* € R, a start token [START], and an end token [END]. Each
building block token b is associated with the fingerprint of the corresponding molecule, represented
as [BB, j1, where j€ {0,1}256 is the Morgan fingerprint of length 256 and radius 2 [46] 49]. A
reaction token 7%, denoted as [RXN,i], represents the index i of the reaction. During sampling,
we generate the pathway token-by-token, and each token is produced through a block-wise Markov
bridge refinement process. The conditional distribution py (S, | v,,tS,t<¢) is used to sample
from the model. Starting from the given t§ ~ po(t°), the process iterates to predict the data point
Y© = 1py(t$, 7) and then derive t& | ~ py(t5 ; | v,, 1S, <) while incrementing the time step 7
from 0 to T' — 1. Notably, our algorithm allows us to sample sequences of arbitrary lengths, whereas
traditional Markov bridge models are limited to fixed-length generation.

In the synthesis process, the postfix stack is initialized as empty and is progressively populated by the
generated tokens [46]. When a building block token b’ is generated, we retrieve the corresponding
molecule from the fingerprint and push it onto the stack. If a reaction token 7¢ is generated, we first
pop the required number of molecules from the stack, then use the reaction template with RDK:it 8]
to predict the product, which is subsequently pushed onto the stack. If there are insufficient molecules
on the stack or if the reaction cannot be applied, the inference process halts. Finally, the process
ends when the [END] token is generated, marking the completion of the synthesis. The most recent
product molecule is then considered as the input molecule for the synthetic space projecting.

4.2 Architecture Design

Molecular graph representation. Following [46], we represent a molecule M as a graph, where
nodes are connected based on chemical bonds. For atoms, we convert them into initial embedding

(0)

vectors hy’ € R? based on their atomic numbers; for chemical bonds, we capture bond type

information and incorporate it into the graph structure, represent as héo) € Rée,

Networks. We use a transformer [58]] as the backbone network to approximate the final state of
the Markov bridge process. Typically, a transformer only takes the synthesis path sequence as
input, but our task also requires integrating time steps and structural conditions into the model. The
time-step embedding network encodes temporal information using sinusoidal functions, converts it
into vector e, € RY, and integrates it into the cross-attention mechanisms. We use a L-layer graph
transformer [67]] to capture the molecular topology and inter-atomic interactions, with the final atomic

representations th) serving as structural information. Finally, using the customized transformer
decoder architecture, the network takes both sequence embeddings and molecular graph embeddings
as input. For the thinking network pg(z¢ = 1 | t¢), we use a multilayer perceptron with gelu(-)
activation and a sigmoid(-) output layer. The entire architecture is trained end-to-end, and the output
types include BB, RXN, and END, which together form the complete molecular synthesis pathway.

S Experiments

5.1 Experimental Setup

Datasets. We use the SynNet reaction template set [[19] for reaction templates R, which is based
on two publicly available template collections from Hartenfeller et al [24]. and Button et al [10].
After removing duplicates and rare reactions, a final set of 91 reaction templates is obtained. The set
includes 13 unimolecular and 78 bimolecular reactions. For building blocks 5, we use the Enamine
US Stock catalog [[1] as the data source. Entries containing multiple molecules (e.g., salts or hydrates)
are filtered by retaining the largest molecule and removing the rest. Any building blocks that fail
RDKit sanitization or do not match any reaction templates are excluded, as are duplicates. We use
K -means clustering based on Morgan fingerprints to group the blocks into 128 clusters, reserving
one structurally distinctive cluster for testing and using the remaining 127 clusters for training.
Additionally, we include a challenging test set: molecules extracted from the ChEMBL database [20],
which have been previously reported as “unreachable” target compounds [[19} 46].

Implementation details. In our experiments, we use Morgan fingerprints [49] to featurize molecular
structures, with a radius of 2 and a bit length of 256. At the data initialization stage, we randomly
initialize the reaction path stack using weighted sampling, assigning an initial weight of 0.90 to



Table 1: Performance comparison between MoleBridge and baseline methods. The evaluation is
performed on both the standard test set and the ChEMBL [20]. Best results are highlighted in bold.

Dataset Method Success (1) Recons. %(1) Sim.(Morgan) (1) Sim.(Scaffold) (1) Sim.(Gobbi) (1)
SynNet 0.4205 10.7% 0.4575 0.5109 0.3465
Test Set ChemProjector 0.4875 28.4% 0.7167 0.7791 0.7273
MoleBridge (Ours) 0.4915 43.5% 0.8455 0.8695 0.8287
SynNet 0.4250 5.4% 0.4270 0.4174 0.2678
ChEMBL  ChemProjector 0.4940 13.3% 0.5978 0.5869 0.5570
MoleBridge (Ours) 0.4970 14.6% 0.6159 0.6188 0.5789
Target: Target:
Celee(Ne2ee(C(F)(F)F)een2)ne(-c2cene(F)e2)cl CC1CCCONIC(=0)eleec2e(e1)0OCCCO2

Sim. (Scaffold): 0.909 [ [\ ]J‘ ‘
Sim. (Gobbi): 0.918 2
Sim. (Morgan): 0.905

Sim. (Scaffold): 1.000 OJ ﬂ — ‘

Sim. (Gobbi): 0.748
Sim. (Morgan): 0.859

Figure 2: Examples of molecules generated by Pocket2Mol and projected by MoleBridge into
analogs, demonstrating clear synthetic pathways and the preservation of high structural similarity.

building blocks. The model is trained on 4 NVIDIA 4090 GPUs with a batch size of 128 and 4
data loader workers. We use the Adam optimizer [34] with an initial learning rate of 3 x 10, and
momentum parameters 51 = 0.90, Sz = 0.999. A plateau-based learning rate scheduler is used,
reducing the learning rate by a factor of 0.6 when validation performance plateaus, with patience of 5
validation cycles and a minimum learning rate of 1 x 1072,

Metrics. We conduct a comprehensive evaluation of the MoleBridge model using multiple quanti-
tative metrics: i) Synthesis path success rate: the percentage of valid postfix notations and further
multiplied by 1/2. ii) Reconstruction rate: the percentage of proposed synthesis paths that result in
the same product as the input molecule. iii) In cases of partial success, we evaluate the molecular
similarity between the generated and target compounds; a similarity score of 0 is assigned to failed
(invalid) syntheses. The similarity score is calculated using three types of fingerprint representations:
Morgan fingerprints of length 4096 and radius 2 [49], Murcko scaffold-based fingerprints, and Gobbi
pharmacophore fingerprints [22]]. All three similarity scores are normalized to the [0, 1], reflecting
chemical similarity in terms of overall structure, scaffold structure, and pharmacophoric properties.

5.2 Bottom-Up Synthesis Planning

To validate the effectiveness of MoleBridge, we conduct a comparison with the existing generation
methods, SynNet [19]] and ChemProjector [46]. The results presented in Table[T|show that MoleBridge
outperforms the baseline methods significantly on all evaluation metrics. A particularly notable
result is the reconstruction rate on the test set, where MoleBridge achieved 43.5%, significantly
outperforming ChemProjector (28.4%) and SynNet (10.7%). Even on the challenging ChEMBL
dataset, MoleBridge retains its superior performance.

5.3 Projecting Molecules Generated by Structure-Based Drug Design Models

Synthetic space projecting has broad application prospects in the field of structure-based de novo
drug design. Due to limited constraints [23]], existing design models often generate chemically invalid
structures [46]). To assess the applicability of MoleBridge in drug optimization scenarios, we conduct
experiments based on the LIT-PCBA dataset [57]], which contains 15 drug targets. Following [46]],



Table 2: Similarity scores between molecules
generated by Pocket2Mol and their analogs.

Table 3: The analogs optimized by model
exhibit a significant increase in Vina scores.

Targets Sim. Sim. Sim. Targets Vina (kcal/mol)
(Morgan) (Scaffold) (Gobbi) Ref. Gen. Analog () A

ADRB2 0.5149 0.5834 0.4007 ADRB2 -8.70 -8.31 -10.90 -2.59
ALDH1 0.4434 0.3535 0.3304 ALDH1 -520 -8.14 -11.00 -2.86
ESR1 ago 0.4641 0.3690 0.2993 ESRlago -590 -8.23 -9.30 -1.07
ESR1 ant 0.5078 0.4903 0.4229 ESRlant -8.10 -8.77 -11.80 -3.03
FEN1 0.4397 0.4308 0.3408 FEN1 -5.80 -6.04 -6.60 -0.56
GBA 0.4267 0.2785 0.2572 GBA -8.40 -6.86 -6.96 -0.10
IDH1 0.4701 0.3642 0.3224 IDH1 -9.30 -8.62 -9.70 -1.08
KAT2A 0.5123 0.4927 0.4545 KAT2A  -8.00 -7.41 -11.40 -3.99
MAPK1 0.4990 0.3955 0.3917 MAPK1 -8.80 -8.20 -9.90 -1.70
MTORC1 0.5351 0.4384 0.3841 MTORC1 -8.80 -9.32 -12.10 -2.78
OPRK1 0.5170 0.5500 0.4560 OPRK1 -9.00 -7.88 -10.30 -2.42
PKM2 0.4874 0.4521 0.3927 PKM2 -9.20 -8.25 -11.60 -3.35
PPARG 0.4977 0.4904 0.4616 PPARG -7.70 -7.60 -9.10 -1.50
TP53 0.5289 0.5595 0.4979 TP53 -6.30 -6.83 -9.80 -2.97
VDR 0.5312 0.3990 0.3730 VDR -8.40 -9.27 -10.30 -1.03

we use Pocket2Mol [50] to generate candidate molecules for each target and select the top 300
candidates for each target based on QED and SA scores. Subsequently, MoleBridge is applied to
design 5 analogs for each candidate molecule, and the optimal analogs are selected based on Vina
scores [16]. Figure [2]shows examples of molecular synthesis pathways generated by MoleBridge,
illustrating the complete synthesis pathway design from Pocket2Mol to the target analog. Table[2]
presents the structural similarity metrics between the generated analogs and the original molecules.
Table [3| displays the estimated binding energies, with optimized analogs demonstrating improved

target binding strength.

5.4 Projecting Molecules to Explore Local Chemical Space for Hit Expansion

MoleBridge also demonstrates significant appli-
cation potential in hit expansion. Following the
experimental design of Levin et al. [39] and Luo
et al. [46l, we evaluate the development of c-Jun
N-terminal Kinases-3 (JNK3) inhibitors. Using
an molecule with a JNK3 score [40] of 0.68 as
the starting point, MoleBridge successfully gen-
erates several synthesizable structural analogs
as in Figure [3] Notably, the generated analogs
effectively preserve the JNK3 inhibitory activity
(0.67, 0.68, and 0.70) while maintaining the in-
tegrity of the core scaffold structure. Taking the
amino-substituted analog in the lower-left cor-
ner as an example, the introduction of an amino
functional group not only maintained almost the

Sim. (Scaffold): 0.867
Sim. (Morgan): 0.751
Sim. (Gobbi): 0.937
JNK3: 0.67

uNQ\Q“\

Sim. (Scaffold): 1.000

Hit Molecule
JNK3: 0.68

Sim. (Scaffold): 0.1.000
Sim. (Morgan): 0.535 Sim. (Morgan): 0.826
Sim. (Gobbi): 0.986 Sim. (Gobbi): 0.935

INK3: 0.68 /) INK3: 070 N@\Q
ﬂugﬁ ) O }

Figure 3: Analogs generated from the initial hit
expansion compound.

same JNK3 activity (0.68) but also potentially provided new modification sites for further structural

optimization.

5.5 Projecting Molecules Generated by Target-Directed Generative Models

Target-directed generative models generally suffer from insufficient synthesize-ability, with approxi-
mately 70% of generated molecules being labeled as non-synthesizable by the ASK-COS [14} 18]



Table 4: Assessment of property retention after projection of molecules generated by target-directed.

Property Sim. Sim. Sim. Avg(Objective) Max(Objective)
Morgan Scaffold Gobbi Gen.  Analog A Gen.  Analog A
Amlodipine MPO 0.55224 03734  0.4807 0.84384 0.7600 -0.0838 0.8894 0.8793 -0.0101
Deco Hop 0.52903  0.8650  0.8180  0.9712  0.8633 -0.1078 0.9992 0.9651 -0.0340

Fexofenadine MPO  0.45537 0.487 04736 094273 0.7813 -0.1613 1.0000 0.8545 -0.1454
Osimertinib MPO 0.43848 0.4830  0.6339 09148 0.8484 -0.0663 0.9508 0.9140 -0.0367
Perindopril MPO 0.43919 0.4344  0.5119 0.6832 0.6413 -0.0419 0.7733 0.7374 -0.0358
Ranolazine MPO 034952  0.4362 04460 0.8868 0.4506 -0.4361 09102 0.8310 -0.0792

Scaffold Hop 0.3958 0.5879  0.5646  0.9467 0.5401 -0.4065 1.0000 0.8345 -0.1654
Sitagliptin MPO 0.28301 0.2629  0.2825  0.5747 0.0848 -0.4898 0.8315 0.4909 -0.3406
Valsartan SMARTS  0.34513 0.3568  0.3060 0.8331 0.0452 -0.7878 0.9860 0.9283  -0.0577
Zaleplon MPO 0.522717  0.7238  0.62105 0.6384  0.4668 -0.1715 0.7150 0.7071  -0.0079

Next, we evaluate the application potential of MoleBridge in this scenario. We generate synthesizable
alternative structures for these molecules that were deemed non-synthesizable. As shown in Table 4}
the experimental results reveal that MoleBridge not only guarantees the synthesizability of generated
molecules but also strikes a balance in property degradation. For instance, in the Amlodipine MPO
task, the average objective function value decreased by only 0.0838, while the optimal molecular
property remained at 0.8793, nearly the same as the original value.

5.6 Ablation Studies

We conduct ablation experiments on

the test set to validate the key contribu- Taple 5: Ablation results of components. The cross-

tions of thinking and cross-attention in  attention mechanism is replaced by fully connected layers
MoleBridge’s performance, as shown hen disabled.

in Table[3l The cross-attention ensures

the effective transfer of information  Mechanism Network Al Sim

across different modalities, while the w/ thinking ~ w/ cross-attention ~ Success Recons. Morgan Scaffold  Gobbi

thinking mechanism optimizes the ex- x / 04840  40.1%  0.8266 08470  0.8068

ecution of the denoising process. To- v X 04820  41.1%  0.8367  0.8338  0.8168
v v 04915 435%  0.8455  0.8695  0.8287

gether, they collaborate to achieve op-
timal generation performance.

6 Conclusion and Limitations

In this paper, we introduce MoleBridge, a novel semi-autoregressive Markov bridge process for
synthetic space projecting. Experimental results demonstrate that MoleBridge excels in various
scenarios, such as bottom-up synthesis, structure-based drug design, target-directed generation,
and hit expansion. Despite significant progress, MoleBridge still has some limitations. First, the
optimization space is limited for molecular structures that contradict existing synthesis logic. Second,
for some synthetic paths with specific stereoselective requirements, the model’s control ability needs
improvement. Future work will expand the reaction template library to cover more types of chemical
transformations.

7 Broader impacts

Synthetic space projecting technology has a profound impact on the field of de novo molecular design
by converting molecules that lack synthetic pathways into structurally similar and synthesizable
analogs. This approach can significantly accelerate the process from virtual screening to clinical
candidates, reducing the high failure rate in traditional drug development due to synthesis barriers.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have indicated the contribution and scope of the paper in the abstract and
introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have written limitations in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions and proofs in the paper are cited.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper gives all the information about the experimental setup, which is
fully reproducible.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The paper will open up data and code access when permissions allow, and
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Full details of the experiment are given in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The thesis includes many experiments to avoid errors.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Each experiment provides sufficient information on the computer resources
required to reproduce the experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the thesis complies in all respects with the NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the possible positive and negative social impacts of the
work.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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from (intentional or unintentional) misuse of the technology.
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: All data models have safeguards in place.
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets have been noted.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: New assets introduced in the document are well documented.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: The paper does not touch on related issues.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: The paper does not touch on related issues.
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* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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