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Abstract

Recent studies have demonstrated that fine-tuning language models with brain
data can improve their semantic understanding, although these findings have so
far been limited to English. Interestingly, similar to the shared multilingual em-
bedding space of pretrained multilingual language models, human studies provide
strong evidence for a shared semantic system in bilingual individuals. Here, we
investigate whether fine-tuning language models with bilingual brain data changes
model representations in a way that improves them across multiple languages. To
test this, we fine-tune monolingual and multilingual language models using brain
activity recorded while bilingual participants read stories in English and Chinese.
We then evaluate how well these representations generalize to the bilingual partici-
pants’ first language, their second language, and several other languages that the
participants are not fluent in. We assess the fine-tuned language models on brain
encoding performance and downstream NLP tasks. Our results show that bilingual
brain-informed fine-tuned language models outperform their vanilla (pretrained)
counterparts in both brain encoding performance and most downstream NLP tasks
across multiple languages. These findings suggest that brain-informed fine-tuning
improves multilingual understanding in language models, offering a bridge between
cognitive neuroscience and NLP research. We make our code publicly available.E]

1 Introduction

Recent research has demonstrated that representations extracted from text-based Transformer lan-
guage models can be used to accurately predict human brain activity evoked during language
processing, suggesting parallels between artificial and brain language representations (Wehbe et al.|
2014bj Jain & Huth, [2018; [Toneva & Wehbe, [2019; Schrimpf et al.| 2021} |(Caucheteux & King,
2022} |Goldstein et al., 2022} [Karamolegkou et al.,|2023; [Oota et al., [2025). Although these mod-
els accurately predict patterns of brain activity, they have not been originally pretrained to do so.
Several previous studies hypothesized that fine-tuning language models with brain data can lead
to representations that are better aligned with brain activity (Schwartz et al., 2019; Moussa et al.|
2025; Vattikonda et al., 2025). However, these efforts have largely focused on monolingual language
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Figure 1: Brain-informed fine-tuning pipeline. Participants read naturalistic stories in English
or Chinese while fMRI responses were recorded. The corresponding transcripts were fed into a
pretrained language model. Representations from the final token of the last hidden layer were
downsampled and temporally delayed to align with the fMRI acquisition. These were then projected
to voxel space via a linear layer to predict brain activity. The loss between predicted and recorded
responses was backpropagated through all layers for full model fine-tuning.

models and monolingual brain data, usually trained and evaluated only in English. This overlooks
the widespread prevalence of bilingualism and multilingualism in the human population (Grosjean,
2024). The limitation is particularly significant given recent neuroscientific evidence revealing that
bilingual individuals have shared semantic representations across languages (Chen et al., |2024b;
Francis|, 2005)), hinting at a shared component for the processing of different languages in the human
brain (de Varda et al.}2025). Complementary NLP research has shown that multilingual language
models operate in a shared, language-agnostic conceptual space (Wendler et al.,[2024} Schut et al.|
20235)). This raises the question of whether fine-tuning language models with bilingual brain data can
elicit multilingual capabilities in language models.

In this study, we use brain recordings of bilingual participants reading the same naturalistic stories in
English and Chinese, from (Chen et al.,2024b)), and investigate whether fine-tuning language models
with brain data from bilingual participants can elicit multilingual capabilities in language models. We
first introduce a novel, end-to-end brain-informed fine-tuning pipeline (as shown in Fig.[T)), which can
be trained using data from the whole-brain, or from language- or semantically-selective brain regions.
Second, we use brain recordings of bilingual participants to fine-tune two monolingual language
models (BERT for English and Chinese (Devlin et al.l 2019)) and four multilingual language models
(mBERT (Devlin et al., 2019), XLM-R (Conneau et al.| 2020), XGLM (Lin et al., 2022), LLaMA-3.2
(Touvron et al.| 2023))). Third, we investigate how monolingual and multilingual language models
change after fine-tuning with bilingual brain data. We evaluate this along two axes: brain encoding
and downstream NLP task performance. To assess generalization across languages, we evaluate the
brain-informed fine-tuned language models on downstream NLP benchmarks not only in the models’
fine-tuned language but also in the bilingual participants’ other language (cross-language transfer
between known languages) and several other languages that the participant is not fluent in (and also
not used in fine-tuning; referred to as ‘unseen languages’), e.g., German and French. Fine-tuning
is done separately for each participant, and we assess encoding performance both within the same
participant and across the other participants.

Brain-informed fine-tuning with bilingual brain data reveals several key conclusions: (1) Brain
encoding performance improves after fine-tuning, even when evaluated on participants not used in
the training set. This suggests that the brain bias introduced is not specific to a particular participant
but rather reflects a shared component of bilingual representations. (2) Both monolingual and
multilingual language models show improved performance on downstream NLP tasks in the fine-
tuned language, the participant’s other language, and in several other unseen languages, indicating that
brain-informed fine-tuning elicits generalizable semantic structure not tied to any one language. (3)



To ascertain whether our results are specific to fine-tuning with bilingual brain data, and not a general
outcome of fine-tuning language models with brain data, we performed the same analyses using
brain data from monolingual individuals. Results suggest that the observed effects are indeed driven
by bilingual brain representations. These findings suggest that bilingual brain-informed fine-tuning
improves multilingual understanding in text-based language models. Our results contribute to the
alignment between brain and artificial multilingual language representations, offering insights into
the development of brain-inspired multilingual NLP systems.

We make the following contributions: (1) To the best of our knowledge, this is the first study to
perform brain-informed fine-tuning using bilingual brain data, applying it to both monolingual and
multilingual language models. (2) We introduce a novel brain-informed fine-tuning pipeline that
explicitly models the temporal component of brain activity. This contrasts with previous brain-based
fine-tuning studies, where these are implemented as preprocessing steps before fine-tuning the model.
(3) We evaluate the performance of brain-informed fine-tuned monolingual and multilingual language
models on downstream NLP tasks in both English and Chinese. The code is publicly available 2

2 Related Work

Fine-tuning of language models with naturalistic brain data. Our work builds on the brain-
tuning approach introduced by Schwartz et al.|(2019); | Moussa et al.| (2025); |Vattikonda et al.| (2025),
which fine-tunes pretrained Transformer-based language models using brain data to integrate brain-
relevant information. [Schwartz et al.| (2019) demonstrated improved brain encoding and NLP
task performance using brain data from monolingual English readers, while|Moussa et al.| (2025));
Vattikonda et al.[(2025)) extended this to speech-based models to enhance semantic representations.
Our study complements these by exploring bilingual brain-informed fine-tuning and analyzing how
monolingual and multilingual models change when trained with bilingual brain data.

Multilingual language models and brain alignment. Our work aligns with a growing body of
research examining the alignment between human brain activity and language models. Several studies
have shown that text-based models can predict brain responses to written and spoken stimuli with
high accuracy (Wehbe et al.| 20144} |Jain & Huth, [2018};[Toneva & Wehbe, [2019;|Deniz et al.| [2019;
Abdou et al., 2021 Toneva et al.| |2022; |Antonello et al.| 2021 |Oota et al.l [2022; [Aw & Toneva, 2023}
Oota et al., 2024b; |[Lamarre et al., 2022; |Chen et al., 20244a)). Recent efforts have extended this to
multilingual Transformer-based models using brain data from tasks in multiple languages (de Varda
et al.| 2025)), though most studies remain monolingual in design, with the exception of |Chen et al.
(2024a)), who explored bilingual processing using similar English and Chinese stimuli. Our study
supplements this by investigating bilingual brain alignment through brain-informed fine-tuning and
its impact on downstream NLP tasks in both languages. Detailed related work is in Appendix [A]

3 Methodology

3.1 Naturalistic Brain Imaging Dataset

Bilingual fMRI dataset. Blood oxygen level-dependent (BOLD) responses were collected using
fMRI from six bilingual participants (three males, three females), all native speakers of Mandarin
Chinese and fluent in English as a second language. Participants read 11 narrative stories from The
Moth Radio Hour (Huth et al., 2016), presented word-by-word in separate scanning sessions for
English (en) and Chinese (zh). This dataset is taken from Chen et al.|(2024b). Each story is 10-15
minutes long. Of the 11 stories, seven were used for fine-tuning the language models (covering
2756 TRs Eb, three were used for training voxelwise encoding models (1117 TRs), and one story
was reserved for testing (291 TRs). The same set of stories were used in each language to ensure
comparability across languages.

Monolingual fMRI dataset. To test whether the effects of brain-informed fine-tuning are specific
to bilingual brains, we compare models fine-tuned with fMRI data from three English-monolingual
participants (all male; one from |Deniz et al.| (2019) and two from |LeBel et al.| (2023)). The
participants read or listened to the same English narrative stories under similar experimental designs.

3"TR” stands for repetition time, which is the acquisition time for each fMRI volume; in our case, the TR
was 2.0045 seconds.



This allows direct comparison between models fine-tuned with bilingual and monolingual brain data.
If similar improvements are seen with monolingual brain fine-tuning, it would suggest that the effects
are driven by general brain representations rather than shared semantic representations in bilinguals.
More details about datasets and preprocessing are in Appendix [B]

3.2 Text-based Language Models

We fine-tuned monolingual and multilingual text-based Transformer language models to investigate
the effects of brain-informed fine-tuning. All pretrained model checkpoints were obtained from
Hugging Face (Wolf et al., [2020)).

Monolingual pretrained language models. We fine-tuned two monolingual models: English
BERT (BERT-en) and Chinese BERT (BERT-zh) (Devlin et al., [2019). Both models share the same
architecture, comprising 12 Transformer layers with a hidden dimension size of 768, differing only in
the language of their pretraining corpora.

Multilingual pretrained language models. We fine-tuned four multilingual Transformer-based
models: mBERT (Devlin et al., [2019), XLLM-R (Conneau et al., [2020), XGLM (Lin et al., [2022)),
and LLaMA-3.2 (Touvron et al., 2023)). These models represent three distinct architecture types:
encoder-based (mBERT, XLM-R), cross-lingual pretrained (XGLM), and decoder-based (LLaMA-
3.2). Representations were extracted from the base versions of mBERT, XLM-R, and XGLM, and
from the 1B parameter version of LLaMA-3.2. mBERT and XILLM-R consist of 12 layers with a
hidden dimension size of 768, XGLM has 24 layers with a hidden dimension size of 1024, and
LLaMA-3.2 has 16 layers with a hidden dimension size of 2048. Results and analyses using XLM-R,
XGLM and LLaMA-3.2 are reported in the Supplementary sections 2 and 3.

3.3 Brain-informed Fine-Tuning

We performed supervised full fine-tuning of pretrained language models using fMRI BOLD responses
as targets. We employ a small-N design, where a language model is fine-tuned and evaluated
independently for each participant, enabling robust within-participant inference (Smith & Little|
2018). An overview of the fine-tuning pipeline is shown in Fig. [I| We fine-tune language models
using fMRI responses from either the whole-brain, language-selective (from |Fedorenko et al.|(2010)),
or semantically-selective brain regions (see Appendix [C|Fig. [3). Details on fine-tuning with language-
selective and semantically-selective brain regions are described in Appendix

Model architecture. Text transcripts of the narrative stimuli were provided as inputs to the pretrained
language model, using a sequence length of 20 tokens. We then extract the representations of the last
token from the last hidden layer for each word. This representation is given as input to a dropout layer
(adropout of 0.2 is used to mitigate overfitting on limited brain data). This is followed by differentiable
3-lobe Lanczos (Huth et al.,|2016) interpolation to downsample the text to the fMRI sampling rate.
To model the temporal hemodynamic response, we learn a finite impulse response (FIR) filter by
concatenating representations delayed by 2, 4, 6, and 8 seconds. The resulting representations are then
passed through a linear projection layer to predict voxelwise BOLD responses. Previous brain-based
fine-tuning studies (Moussa et al., 2025} |Vattikonda et al., 2025) typically treated downsampling
and temporal-delay modeling as separate preprocessing steps before model fine-tuning. In contrast,
our method integrates these components directly into the model architecture, enabling end-to-end
optimization. This design supports flexibility in handling variable-length inputs (as word timing per
TR can vary) and allows for broader generalization across modalities and tasks. Comparison with a
previously proposed fine-tuning pipeline is provided in the Supplementary section 4.

Training protocol. We fine-tuned the models using the AdamW optimizer (Loshchilov & Hutter,
2017) with a learning rate of le-4 and weight decay of 1e-3 for 30 epochs with a batch size of 32. A
ReduceLLROnPlateau scheduler was used to adjust the learning rate based on validation loss. We used
mixed-precision training for computational efficiency and applied early stopping with a patience of 5
epochs based on validation performance. Implementation details are in Appendix

Training objective. Our training objective minimized the NT-Xent (Normalized Temperature-Scaled
Cross-entropy) loss (Sohn, [2016) between the predicted and actual BOLD responses. We also
experimented with alternative loss functions such as MSE, ridge loss, spatial loss, and a combination
of all (referred to as hybrid), and found NT-Xent to perform best across models and experiments.



Results from other losses are reported in Supplementary section 1. We fine-tuned all layers of the
language models and propagated the loss backward to update both the projection and transformer
layers.

In addition to comparing our brain-informed fine-tuned models to their pretrained counterparts in both
monolingual and multilingual settings, we include several baselines for a comprehensive comparison:
TR-shuffled fMRI, multilingual model representations, and monolingual brain data as fine-tuning
targets. This experiment was done to clarify the specific impact of bilingual brain data on the resulting
fine-tuned model representations. Details about the baselines are reported in Appendix [C.3]

3.4 YVoxelwise Encoding Modeling

To evaluate whether brain-informed fine-tuning alters the alignment between language model repre-
sentations and brain activity, we assess voxelwise encoding performance before and after fine-tuning.
Voxelwise encoding models (VEM) estimate, for each voxel, a linear mapping from an embedding
to the observed fMRI responses (Huth et al.||2016} Deniz et al.,2019). If fine-tuning with bilingual
brain data improves encoding performance, we interpret this as evidence that the language model’s
internal representations have become more brain-like, indicating successful alignment. If encoding
performance remains unchanged, this suggests that fine-tuning preserves the existing brain alignment
of the representations without introducing degradation. A decrease in performance would imply that
fine-tuning introduces distortions that reduce the language model’s ability to predict brain responses,
thus reducing its alignment with the brain.

We used representations extracted from layer 7 (found to yield the highest encoding performance
based on validation data) as the embedding. Embeddings and brain responses were z-scored across
time separately for each of the three stories not used for fine-tuning. Embeddings were downsampled
to match the fMRI acquisition rate using 3-lobe Lanczos interpolation. Next, to account for the
delayed hemodynamic response, each embedding was passed through a finite impulse response
(FIR) filter with four delays. Specifically, delayed copies of each feature at 1, 2, 3, and 4 TRs
(2, 4, 6, and 8 seconds) were concatenated. Ridge regression was used to determine how the
embedding is represented in each voxel (Wu et al.| 2006} Naselaris et al., 2011). We performed 5-fold
cross-validation to find optimal regularization parameters. Encoding performance was quantified by
calculating the Pearson correlation coefficient (r) between predicted and recorded BOLD responses
using a held-out story. A separate VEM was fit for each voxel, participant, and language model
variant (before and after brain-informed fine-tuning). No sample size calculations were performed, as
each participant serves as a full replication of the results.

Cross-participant transfer of encoding performance. We evaluated whether brain-informed fine-
tuned model representations generalize across participants. We fine-tuned the language model using
brain data from one bilingual participant and evaluated its encoding performance using VEMs on
other participants. Improved transfer would suggest that changes introduced by brain-informed
fine-tuning are not participant-specific but reflect shared representations across bilingual individuals.

3.5 Downstream NLP tasks

To evaluate how brain-informed fine-tuning changes language model representations, we assessed
its performance on standard NLP benchmarks before and after fine-tuning. For English, we used 9
tasks from the GLUE benchmark (Wang et al.l [2018), and for Chinese, we used 7 tasks from the
CLUE benchmark (Xu et al., 2020). Both monolingual and multilingual models were evaluated on
these benchmarks. To investigate cross-linguistic generalization to unseen languages, we additionally
evaluated multilingual models on 3 tasks from the XGLUE benchmark (Liang et al., 2020) and 3
tasks from the XTREME benchmark (Hu et al., [2020). Details about these benchmarks and task
metrics are in Appendix [E]

Fine-tuning and evaluation in the same language. To assess how brain-informed fine-tuning of
language models affects performance on NLP tasks within the same language, we fine-tuned language
models using fMRI data in English or Chinese. We then evaluated these language models on NLP
benchmarks in the corresponding language. English and Chinese brain data are used to fine-tune
monolingual (BERT-en, BERT-zh) and multilingual (mBERT) language models, which are then
evaluated on GLUE and CLUE, respectively. Any performance increase observed in this setting
would imply that brain-informed fine-tuning not only changes language model representations to
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Figure 2: Brain encoding performance before and after brain-informed fine-tuning. We
evaluated the effect of bilingual brain-informed fine-tuning using voxelwise encoding models (VEMs;
see Methods). VEMs were trained using representations from both the vanilla (pretrained) model
and their bilingual brain-informed fine-tuned variants (using whole-brain or using language, or
semantically-selective brain regions). Flattened cortical surface for one participant is shown. Each
voxel on the cortical surface is colored according to which model variant achieved the best encoding
performance (r) for (a) BERT and (b) mBERT with English (left) and Chinese (right) brain data,
respectively. Each point corresponds to a voxel that was consistently well predicted (>0.1) across
models. Voxel colors reflect the best-performing model: black for vanilla, blue for fine-tuned with
whole-brain, magenta for fine-tuned with language, and yellow for semantically-selective brain
regions. Across both languages and model types, bilingual brain-informed fine-tuning consistently
yields better encoding performance than its vanilla counterpart. Results for other participants are in

Appendix [F2]

better align with the brain, but that these modified representations are better for NLP tasks within the
trained language.

Cross-language transfer between known languages. To test whether brain-informed fine-tuning
transfers to a bilingual participant’s other language, we evaluate models on the participant’s other
language after fine-tuning on the first. For example, weights from BERT-en fine-tuned with English
brain data are transferred to BERT-zh and evaluated on Chinese tasks, and vice versa. Improved
performance in this setting would suggest that brain-informed fine-tuning introduces the bilingual
brain’s shared semantic representations into the model, enabling cross-language transfer.

Zero-shot transfer to unseen languages. To evaluate the broader generalizability of brain-informed
fine-tuned models, we tested multilingual models on five additional languages (German, French,
Spanish, Japanese, and Korean) that were neither used for fine-tuning nor known to the participant.
Specifically, we fine-tuned mBERT on English brain data and evaluated its performance on the
XGLUE (Liang et al, 2020) and XTREME benchmarks. This setup allows us
to assess whether brain-informed fine-tuning can introduce language-agnostic representations that
support broader cross-linguistic transfer.

4 Results

4.1 Effects on Brain Encoding Performance and Generalization

We tested whether brain-informed fine-tuning improves brain encoding performance and if these
possible improvements are generalizable across participants. We compared the VEM performance



of the vanilla language model against the three fine-tuned variants, trained using whole-brain or
language-selective, or participant-specific semantically-selective voxels. Fig. 2] shows flattened
cortical surfaces for participant 1, visualizing which language model variant achieved the best
encoding performance across well-predicted voxels (Pearson correlation r>0.1) for (a) monolingual
and (b) multilingual models within the same language. Across both languages and model types, we
found that fine-tuned language models outperform their vanilla counterparts, with the best-performing
variant explaining more variance in a majority of voxels (76-84% of well-predicted voxels). This
was consistent across all six participants (see Fig. [ in Appendix [F2] for VEM results on other
participants). Our results suggest that a language model’s ability to predict brain activity benefits
from brain-informed fine-tuning. Further, as shown in Appendix [F.1] brain-informed fine-tuning
outperforms control baselines (like TR-shuffled fMRI responses and mBERT representations as
fine-tuning targets).

We do not observe any regional preference for any particular fine-tuning approach. No specific brain
region consistently preferred one fine-tuned variant over the others across participants. Although
fine-tuning improved encoding performance, the overall increase was modest (maximum Ar = 0.15),
which aligns with prior studies. For example, previous work has shown that current representations
from language models already serve as one of the best predictors of brain responses (Schrimpf et al.|
2021), and even in speech models that lack brain-relevant semantics (Oota et al., 2024a), fine-tuning
yielded small improvements (Ar ~ 0.1) (Vattikonda et al. 2025)).

To test whether these improvements were participant-specific, we checked for cross-participant
generalization. We fine-tuned a BERT-en model on one participant’s English brain data and evaluated
its VEM performance on the other participants. As shown in Fig. [fin Appendix [F.3] we observe
small but consistent improvements (Ar =~ 0.03 — 0.05) in high-level semantic areas. These findings
suggest that the improvements from brain-informed fine-tuning of language model representations are
not specific to individual participants but reflect shared representations across bilingual individuals.

4.2 Performance on Downstream NLP tasks

We tested the effect of brain-informed fine-tuning (with semantically-selective brain regions) on
language models by evaluating model performance on standard NLP benchmarks. We assess this in
three settings:

Fine-tuning and evaluation in the same language. We show in Table[I|(a) performance on down-
stream NLP tasks when brain-informed fine-tuning (with semantically-selective brain regions) and
evaluation are computed in the same language. For English, models were fine-tuned using English
brain data and evaluated on the GLUE benchmark. We observe that the monolingual model (BERT-
ft-en) outperforms its vanilla counterpart (BERT-en) on 7/9 tasks, with an average improvement of
+0.80 percentage points, and a maximum gain of +3.57 on the WNLI task. The multilingual model
(mBERT-ft-en) improves on 7/9 tasks, with an average gain of +0.89 percentage points, and max
gain of +3.12 also on WNLI. For Chinese, models were fine-tuned using Chinese brain data and
evaluated on the CLUE benchmark. Here, BERT-ft-zh achieves slight improvements on 5/7 tasks
relative to BERT-zh, with an average gain of +0.65 percentage point and max gain of +1.23 on the
CSL task. The multilingual model (mBERT-ft-zh) also improves on 6/7 tasks, achieving an average
improvement of +0.53 percentage point, with the largest improvement of +1.02 observed on the
C? task. These results indicate that brain-informed fine-tuning consistently improves downstream
task performance for both monolingual and multilingual models when the fine-tuning and evaluation
languages match.

Cross-language transfer between known languages. Table [I[b) reports performance when brain-
informed fine-tuning (with semantically-selective brain regions) is done in one language and eval-
uation is performed in the participant’s other language. On the GLUE benchmark, we evaluated
BERT-zh and mBERT models fine-tuned using Chinese brain data. We observe that the monolingual
model (BERT-ft-zh) outperforms its vanilla counterpart (BERT-zh) on 8/9 tasks, with an average
improvement of +1.01 percentage points, and a maximum gain of +2.82 on the WNLI task. The
multilingual model (mBERT-ft-zh) improves on all tasks, with an average gain of +1.61 percentage
points, and max gain of +2.96 on MRPC (Acc.). On the CLUE benchmark, we evaluated BERT-en
and mBERT models fine-tuned using English brain data. BERT-ft-en shows improvement on 4/7 tasks,
with a mean improvement of +0.44 points overall (max gain: +0.63 on TNEWS (F1)). mBERT-ft-en



Table 1: Downstream task performance before and after bilingual brain-informed fine-tuning
(with semantically-selective brain regions). We compared vanilla (pretrained) models, English
BERT (BERT-en), Chinese BERT (BERT-zh), and mBERT, with their bilingual brain-informed fine-
tuned counterparts (e.g., BERT-ft-en: BERT-en fine-tuned using English brain data from semantically-
selective brain regions). For each task, the average performance and standard deviation across
the six bilingual participants are reported. To assess whether brain-informed fine-tuning elicits
multilingual capabilities, we evaluate downstream task performance in three settings: (a) Fine-tuning
and evaluation in the same language: models are fine-tuned with brain data in one language (en or zh)
and evaluated on NLP tasks in the same language (GLUE benchmark for en, CLUE benchmark for
zh). This tests within-language improvements due to brain-informed fine-tuning. (b) Cross-language
transfer between known languages: model is fine-tuned on brain data in one language and evaluated
on tasks in the participants’ second (not used in fine-tuning) language (e.g., fine-tuned with en brain
data and evaluated on CLUE (zh benchmark) tasks). This tests whether bilingual brain-informed
fine-tuning elicits the participants’ shared semantic representations. (c) Zero-shot transfer to unseen
languages: to assess broader multilingual transfer, mBERT-ft-en is evaluated on downstream tasks in
additional languages not seen during fine-tuning (German, French, Spanish, Japanese, and Korean)
using XGLUE and XTREME benchmarks. Bolded values indicate performance equal to or better
than the corresponding vanilla model. We observe that bilingual brain-informed fine-tuning improves
performance on several NLP tasks, with mBERT showing greater benefits than BERT across all three
settings. Results for fine-tuning using whole-brain and language-selective regions are reported in

Appendix [G.T} see Tables[9]and [10}
a) Fine-tuning and Evaluation in the Same Language

GLUE Task |BERT-en| BERT-ft-en |mBERT |[mBERT-ft-en
CoLA (MCC) 53.38 [55.25 £ 0.86| 42.68 |41.89 +0.74

SST-2 (Acc.) | 92.08 [92.62 = 0.10| 89.68 | 91.06 == 0.44 CTLUE Tosk—PERTE BERTF i mBERT mBERTFE

MRPC (Acc.) | 79.41 [81.43+0.79| 84.80 |85.96 + 0.59
AFQMC (Acc.) | 75.25 [73.76 £ 0.39| 69.74 |70.37 £ 0.38

MRPC (F1) 86.27 |87.47 +0.49| 88.56 |89.22 + 0.66
CMNLI (Acc.) | 80.50 [80.93 +0.20 78.66 |79.22 + 0.25

STS-B (Pears.) | 88.06 [87.70 & 0.19| 88.06 |88.31 = 0.77
CSL (F1) 80.18 |81.41 4+ 0.36| 81.10 |81.36 % 0.59

STS-B (Spear.) | 87.65 [87.540.20| 87.76 |88.27 = 0.69
IFLYTEK (Acc.)| 60.25 |60.37 & 0.50| 56.52 |56.66 % 0.19

QQP (Acc.) 90.84 [90.88 = 0.03| 90.22 |90.47 & 0.04
TNEWS (Acc.) | 56.24 |56.50 & 0.14| 54.77 |55.02 +0.17

QQP (F1) 87.70 [87.79 £ 0.02| 86.70 |87.15 % 0.07
TNEWS (F1) | 55.17 |55.95-+0.27| 53.69 |54.07 + 0.24

MNLI-m (Acc.) | 84.38 [84.29 +0.26| 82.09 |82.10 & 0.19
ChID (Acc.) | 10.66 |10.66 & 0.00| 10.66 |10.66 % 0.00
MNLI-mm (Acc.)| 84.64 |84.60 +0.31| 82.38 |82.52 +0.34 5 (Aco) 1074 14979 + 0.42| 4942 |50.44 = 0.96

QNLI (Acc.) 91.45 [91.53 +0.06| 91.14 |91.18 + 0.16 ce. : : - : - -

RTE (Acc.) 67.15 |67.47 +0.46| 67.15 |66.78 & 1.15
WNLI (Acc.) | 4930 |52.87 & 0.64| 53.52 |56.64 + 0.62

b) Cross-Language Transfer Between Known Languages

GLUE Task |BERT-zh| BERT-ft-zh |mBERT |mBERT-ft-zh
CoLA (MCC) 5113 [52.73 £0.56| 40.96 |41.18 £+ 0.41

SST2 (Acc) | 9226 (9259 =0.13| 8827 |90.51+0.33| —crOE Tock BERT-on| BERTTien [mBERT mBERT o

MRPC (Acc) | 7696 |78.90+ 0.45| 8284 |85.80 + 0.23
AFQMC (Acc) | 69.00 |69.31 £ 0.38] 69.74 | 7112 £ 0.54

MRPC (FI) | 8338 |85.08+0.71| 87.15 |89.45+ 0.47
CMNLI (Acc) | 6834 [68.63 +0.21| 78.66 |79.09 + 0.14

STS-B (Pears.) | 87.21 |88.37 + 0.18| 87.09 |88.09 + 0.44
CSL(F1) | 7120 |71.63 + 1.55 81.10 |81.34 + 0.49

STS-B (Spear) | 86.73 |88.16 + 0.13| 86.97 |87.99 + 0.48
IFLYTEK (Acc.)| 47.86 |47.53+027| 5652 |57.21 + 0.51

QQP (Acc) | 90.65 [91.03+0.36| 89.91 |90.45 + 0.08
TNEWS (Acc.) | 5092 |51.48 + 0.49| 5477 |54.93 + 0.72

QQP (F1) 87.53 |87.92 4+ 0.20| 8627 |87.08 = 0.10
TNEWS (FI) | 50.15 |50.78 & 0.92| 53.69 |53.97 + 0.26

MNLI-m (Acc.) | 84.00 |84.59 & 0.42| 8152 |82.07 + 0.09
ChID (Acc) | 10.66 |10.66 % 0.00 10.66 |10.66 + 0.00
MNLI-mm (Acc.)| 8391 |84.25+ 0.46| 81.94 |82.74 + 0.12 N 264 |aros s eatl 404> 50331 043

ONLI (Acc.) | 91.27 |91.35 + 0.05| 90.55 |91.04 + 0.10 (Acc,) - : : - - -

RTE (Acc) | 67.15 |66.79 + 0.65| 66.06 | 68.71 + 0.95
WNLI (Acc) | 5352 |56.34 & 0.00| 5493 |56.34 + 0.00

¢) Zero-Shot Transfer to Unseen Languages

Task German (de) French (fr) Spanish (es) Japanese (ja) Korean (ko)
mBERT| mBERT-ft-en|mBERT | mBERT-ft-en | mBERT | mBERT-ft-en | mBERT | nBERT-ft-en| mBERT | nBERT-ft-en
XGLUE

PAWS-X (Acc.)| 84.00 [84.90 + 0.54| 88.10 [88.48 + 0.44| 87.05 |87.44 4+ 0.48| 78.70 [78.70 £ 0.17| 78.75 |78.36 £ 1.43
XNLI (Acc.) 70.60 |71.04 £ 0.83| 72.69 |73.38 £ 0.91| 74.10 |74.96 £ 0.54 | 86.00 |88.53 &+ 0.15| 86.00 [88.25 £ 0.12
NER (Acc.) 10.67 |11.89 £ 0.77| 06.67 |11.78 £ 1.68| 07.33 |12.40 + 1.82 | 13.00 |10.89 = 0.51| 12.00 |11.13 £ 1.48
XTREME
PAWS-X (Acc.)| 85.65 [84.51 +0.01| 88.95 [88.25 £ 0.01| 87.90 |87.18 £ 0.01| 79.55 [78.98 £ 0.01| 79.35 |78.71 £ 0.01
XNLI (Acc.) 70.06 |71.32 £ 0.86| 72.97 |73.53 + 0.25| 74.50 |74.73 £0.13| 86.00 |87.13 & 0.10| 86.00 [87.21 £ 0.51
NER (Acc.) 12.33 |12.94 £ 0.83| 09.33 |11.91 & 1.03| 10.33 |[11.89 £ 0.46 | 08.67 |11.09 & 0.92| 12.33 |11.87 £ 0.77

improves across 6/7 tasks, with an average gain of +0.68 points and a maximum improvement of
+1.38 on the AFQMC task.



Overall, bilingual brain-informed fine-tuning enables cross-lingual generalization in language models,
improving downstream task performance even when the fine-tuning and evaluation languages differ.
This suggests that bilingual brain-informed fine-tuning of language models introduces changes that
reflect the bilingual brain’s shared semantic representations, enabling cross-language transfer.

Zero-shot transfer to unseen languages. Table [[{c) reports performance on downstream NLP
tasks when brain-informed fine-tuning (with semantically-selective brain regions) is performed with
English brain data and evaluated on five unseen languages (German, French, Spanish, Japanese,
and Korean), that were neither used for fine-tuning nor known to the participant. We evaluate the
multilingual model (mBERT-ft-en) using tasks from the XGLUE and XTREME benchmarks. On
the XGLUE benchmark, mBERT-ft-en improves performance on 3/3 tasks in German, French, and
Spanish, and 1/3 tasks in Japanese and Korean, with average gains of +0.85, +2.06, +2.11, +0.14,
and +0.33 percentage points, respectively. On the XTREME benchmark, mBERT-ft-en improves
performance on 2/3 tasks in German, French, Spanish, and Japanese and 1/3 tasks in Korean, with
average gains of +0.24, +0.81, +0.36, +0.99, and +0.04 percentage points, respectively. These results
demonstrate that bilingual brain-informed fine-tuning improves language-agnostic representations in
multilingual models, enabling generalization beyond the language of the brain data to entirely unseen
languages (zero-shot).

Performance on downstream tasks with whole-brain or language-selective voxels. We evaluated
downstream task performance before and after brain-informed fine-tuning using either whole-brain
or language-selective voxels. Results averaged across all participants (mean = std) for these two
settings are reported in Appendix [G.1] Tables [9)and[I0] respectively. Table [8]in Appendix [G]further
compares mBERT-en (fine-tuned with English brain data) and mBERT-zh (fine-tuned with Chinese
brain data) when using either whole-brain, language-selective, or semantically-selective regions
for fine-tuning. Fine-tuning with either variant improves performance across all downstream tasks
compared to vanilla models.

Detailed results for individual participants, including fine-tuning with whole-brain, language-selective,
and semantically-selective regions, are provided in the Supplementary (Tables 4-6). Results and
analyses for other multilingual language models (XLM-R, XGLM, and LLaMA) are also reported in
the Supplementary.

4.3 Monolingual Brain data as Fine-Tuning Targets

Table [2] compares downstream task performance after brain-informed fine-tuning (with semantically-
selective brain regions) with English brain data from either bilingual or monolingual participants.
Monolingual brain-informed fine-tuning improves downstream performance relative to the baseline
across several tasks. However, bilingual fine-tuning yields even greater gains. On the GLUE bench-
mark (within-language evaluation), bilingual brain-informed fine-tuning outperforms monolingual
tuning on 7/9 tasks, especially in all inference-related tasks (MNLI, QNLI, and WNLI). On the
CLUE benchmark (cross-language evaluation), bilingual brain-informed fine-tuning leads to higher
performance on 5/7 tasks. These results suggest that while monolingual brain-informed fine-tuning
also improves downstream tasks within-language, fine-tuning with bilingual brain data enhances
cross-linguistic generalization. Results for fine-tuning using whole-brain brain data are reported in
Appendix Table[T1]

5 Discussion and Conclusion

In this work, we perform brain-informed fine-tuning of monolingual and multilingual language
models using brain data from bilingual participants reading the same naturalistic stories in English
and Chinese. We show that bilingual brain-informed fine-tuned language models outperform their
vanilla (pretrained) counterparts in both brain encoding performance and most downstream NLP
tasks. Our analysis of brain-informed fine-tuning reveals several key conclusions.

First, representations from brain-informed fine-tuned language models are shared across bilingual in-
dividuals. Both monolingual and multilingual language models show improved encoding performance
after brain-informed fine-tuning, in both English and Chinese (Fig[2). These models outperform
baseline controls (Appendix Fig[) and generalize across participants (Appendix Fig[6). This high-
lights the potential of bilingual brain data as a rich supervisory signal for grounding language model



Table 2: Downstream task performance before and after bilingual or monolingual brain-
informed fine-tuning (with semantically-selective brain regions). We perform brain-informed
fine-tuning of mBERT with English brain data (mBERT-ft-en) from semantically-selective brain
regions, from either bilingual or monolingual participants. For each task, the average performance and
standard deviation across the participants are reported. We evaluate downstream task performance in
two settings: (a) Fine-tuning and evaluation in the same language: the model is evaluated in English
with GLUE tasks. (b) Cross-language transfer between known languages: the model is evaluated in
Chinese with CLUE tasks.

a) Fine-tuning and Evaluation in the Same b) Cross-Language Transfer Between Known
Language Languages
mBERT-ft-en mBERT-ft-en

Task mBERT Bilingual | Monolingual CLUE Task mBERT | Bilingual Monolingual
CoLA (MCC) 42.68 [41.89 £0.74 | 42.16 + 5.94 AFQMC (Acc) | 69.74 |70.37 & 0.38 | 70.87 £ 1.42
SST-2 (Acc.) 89.68 | 91.06 == 0.44 | 90.54 == 0.57 CMNLI (Ace.) | 78.66 |[79.22 4+ 0.2579.02 & 0.12
MRPC (Acc.) 84.80 | 85.96 + 0.59 | 84.68 4 1.22 CSL (F1) 81.10 |81.36 + 0.59 | 81.07 + 0.28
MRPC (F1) 88.56 | 89.22 + 0.66 | 83.90 + 0.62 IFLYTEK (Acc.) | 46.79 |56.66 & 0.19 | 56.56 =+ 0.65
STS-B (Pearson) 88.06 |88.31 + 0.77 | 83.05 & 0.99 TNEWS (Acc.) 54.77 |55.02 & 0.17 | 54.90 & 0.36
STS-B (Spearman) | 87.76 | 88.27 + 0.69 | 87.94 + 0.91 TNEWS (F1) 53.69 |54.07 +0.24 | 53.54 £ 0.15
QQP (Acc.) 90.22 | 90.47 £ 0.04 | 90.38 == 0.06 ChID (Acc.) 10.66 | 10.66 + 0.00 | 10.66 & 0.00
QQP (F1) 86.70 | 87.15 £ 0.07 | 86.94 + 0.15 C? (Acc.) 49.42 |50.44 + 0.96 | 50.36 & 0.26
MNLI-m (Acc.) 82.09 |82.10 & 0.19 | 82.04 £ 0.19

MNLI-mm (Acc.) | 82.38 |82.52+0.34|82.64+0.11

QNLI (Acc.) 91.14 | 91.18 + 0.16 | 91.18 & 0.05

RTE (Acc.) 67.15 | 66.78 + 1.15 | 66.96 + 1.28

WNLI (Acc.) 53.52 | 56.64 % 0.62 | 56.34 & 0.00

representations with biologically meaningful representations. Second, brain-informed fine-tuning
enables cross-language transfer in language models. Downstream performance improves across
within-language, cross-language, and unseen language settings (Table[T). This holds for fine-tuning
with whole-brain or language-selective or semantically-selective regions (Appendix Tables[9]and [§).
This effect is likely driven by shared semantic representations in bilingual individuals (Chen et al.,
2024b)). This highlights the potential of leveraging bilingual brain representations for developing
language-agnostic language models. Lastly, the observed improvements are driven specifically by
brain-informed fine-tuning with bilingual brain data, not brain data in general. Fine-tuning with
monolingual brain data does not yield similar cross-linguistic transfer (Table [2).

Our results contribute to a growing body of work exploring the representational alignment between
brain and artificial language models. We demonstrate that bilingual brain-informed fine-tuning
improves multilingual understanding in language models. To the best of our knowledge, this is the
first work to do so. This study offers a bridge between neuroscience research on cross-linguistic
semantic representation and NLP efforts to interpret and improve multilingual language models.

6 Limitations and Future Work

A key limitation of this study is the relatively small number of data samples per participant, due to
limited bilingual brain recordings with naturalistic stimuli. This constrains the observed performance
gains. Additionally, our analysis is restricted to only two languages (English and Chinese). Expanding
to larger and more diverse multilingual brain datasets would allow a broader evaluation of cross-
linguistic transfer. Future work could also examine what linguistic properties are captured by
brain-informed fine-tuning (such as syntax, morphology, or discourse-level structure). This can
potentially be tested by targeting functionally selective brain regions and analyzing fine-tuned model
representations across layers.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have ensured that the main claims made in the abstract and introduction
are directly correlating to the research findings and the methods we have employed.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the main limitations of the work performed by the authors
in the discussion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper does not require any explicit theorems and proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has delineated all the information related to the experimental setup
in the experimental setup section and model parameters details in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general, releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide a GitHub repository in the abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the training and test details in the experimental setup (See
Section [3.3] 3.4] and [3.3).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conducted our experiments multiple times across 6 participants and took
the average results for baseline settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included the specifications of the hardware and software environments
to ensure the reproducibility of our results (See Appendix [D).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper could benefit society by advancing the development of NLP systems
to be more human-like.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our research does not pose any risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have explicitly cited the NLP benchmark datasets, code, and models used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the code, model weights, and complete documentation in the
GitHub repository linked in the abstract.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: fMRI data was recorded from human subjects. All ethical regulations relevant
to human research participants were followed, and all procedures were approved by the
Committee for the Protection of Human Subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: All subjects signed a consent form where risks were disclosed, and IRB
approval was obtained for this experiment. Further details can be found in Appendix [B.2]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We have used LLM only for grammar correction.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Overview of Appendices

« Section[Al Detailed Related Work

* Section B} Naturalistic Brain Imaging Dataset and Preprocessing
* Section [C} Brain-Informed Fine-tuning with Subsets of Cortex

* Section D} Implementation details for reproducibility

e Section[El Details of Downstream NLP Tasks

* Section[F} Additional results for Voxelwise encoding performance
* Section|G|Models fine-tuned with different training objectives

* Section [H|Bilingual vs. Monolingual with English whole-brain data

A Detailed Related Work

Fine-tuning of language models with naturalistic brain data. Our work is most closely related
to that of Schwartz et al.| (2019); Moussa et al.| (2025)); |Vattikonda et al.[(2025)), who proposed the
brain-tuning approach to fine-tune pretrained Transformer-based language models using brain data.
This approach integrates brain-relevant information into the language models and examines whether
and how brain-informed language models effect brain encoding performance and downstream task
performance. Specifically,|Schwartz et al.|(2019) introduced brain-tuning using brain data recorded
during naturalistic reading tasks in monolingual English speakers, observing improved brain encoding
performance after fine-tuning along with enhanced performance on downstream NLP tasks. More
recently, [Moussa et al.| (2025)); |Vattikonda et al.|(2025)) applied a similar approach to explore whether
brain-tuning of speech-based language models could enhance brain-relevant semantic representations,
thus improving encoding performance and speech-task performance. Our study complements these
previous studies by investigating bilingual brain-informed fine-tuning and exploring how monolingual
and multilingual language models change when trained with bilingual brain data.

Multilingual language models and brain alignment. Our work also relates to a growing body
of literature investigating alignment between human brain activity and language models. Several
studies have successfully used text-based language models to predict brain activity evoked by both
written and spoken stimuli, achieving impressive levels of alignment between language models and
brain activity (Wehbe et al., 2014a; Jain & Huth} 2018} [Toneva & Wehbel 2019; |Deniz et al., 2019;
Abdou et al.| 2021} [Toneva et al.l [2022; |Antonello et al., 20215 |Oota et al., [2022; |Aw & Toneva,
2023} |Oota et al., [2024b; |Lamarre et al., 2022} |Chen et al., [2024a). More recently, research has
focused on multilingual Transformer-based language models using brain data from reading and
listening tasks across multiple languages to evaluate their brain encoding performance (de Varda
et al.,|2025)). However, previous multilingual studies have generally remained monolingual in their
experimental design, with participants exposed exclusively to stimuli in one language. A notable
exception is the recent work by (Chen et al.[(2024a)), which examined bilingual language processing in
participants who read identical stories in both English and Chinese, and find that bilingual individuals
have shared semantic representations across languages. Our approach complements this research
by further exploring bilingual brain alignment through brain-informed fine-tuning of language
models, particularly analyzing how different brain regions respond to bilingual stimuli and fine-tuning
strategies, evaluating their impact on downstream NLP tasks in both English and Chinese.

B Naturalistic Brain Imaging Dataset and Preprocessing

B.1 MRI data collection of the bilingual dataset

MRI data were collected on a 3T Siemens TIM Trio scanner using a 32-channel volume coil.
Functional scans used a gradient-echo EPI sequence (TR =2.0045 s, TE = 35 ms, flip angle = 74°,
voxel size = 2.24 x 2.24 x 4.1 mm, 30 interleaved axial slices). Motion correction and alignment
were performed using the FMRIB Linear Image Registration Tool (FLIRT) from FSL. Please refer to
Chen et al.|(2024b) for more details.
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B.2 Participants

Functional data from six healthy bilingual (in English and Chinese) participants from
[2024b) with normal hearing and vision was used. All participants were right-handed or ambidextrous.
All potential risks and/or discomforts from MRI were disclosed to participants: 1) loud beeping and
hammering sounds while the scanner is collecting measurements; 2) claustrophobia while inside the
scanner; 3) nerve stimulation; 4) risk of injury from metal objects affected by the scanner (highly
unlikely); 5) compromised confidentiality (highly unlikely). All participants signed a consent form
where these risks were disclosed. All ethical regulations relevant to human research participants
were followed, and all procedures were approved by the Committee for the Protection of Human
Participants. For anonymity, detailed information about the ethics committee has been omitted
and will be included in the camera-ready version. Voxelwise encoding models and brain-informed
fine-tuning are done separately for each participant, with results reported per participant. No sample
size calculations were performed, as each participant serves as a full replication of the results.

B.3 Monolingual participants from LeBel et al.| (2023) and |Deniz et al.| (2019)

Functional data were collected from three healthy, monolingual English participants with normal
hearing: two participants (UTSO7: male, age 25; UTS08: male, age 24) from [LeBel et al.| (2023)
and one participant (male) from 2019). Participants listened to several narrative stories
from The Moth podcast. For the monolingual analysis, we used a subset of the data from
(2023) and |Deniz et al.|(2019)), specifically the same stories that are included in the bilingual dataset.

For more details, please refer to the original publications (Deniz et al.l 2019} [LeBel et al.,[2023).

C Brain-Informed Fine-tuning with Subsets of Cortex

a) Language-selective regions b) Semantically-selective regions

<7

Figure 3: Cortical regions used for brain-informed fine-tuning. Flattened cortical surfaces for: (a)
Language-selective regions displayed on the ‘fsaverage’ surface, used as the mask for all participants.
and (b) semantically-selective regions for English for Participant 1. This mask is computed separately
for each participant and language. Only fMRI responses from the dark red regions were used for
fine-tuning in their respective variants.

C.1 Fine-tuning with Language-Selective Regions

Voxels were extracted from regions of interest (ROIs) known to support language comprehen-
sion (Fedorenko et all 2010). To apply these ROIs to individual participants, we first mapped each
participant’s cortical surface to the fsaverage template using surface-based registration. The group-
level language mask was then projected onto each participant’s brain to extract participant-specific
language ROIs. The ROI mask used is shown in Appendix Fig. 3.

C.2 Fine-tuning with Semantically-Selective Regions

To identify voxels selective for semantics, we applied a two-stage regression procedure to isolate
semantic signals while controlling for low-level sensory confounds. Semantic features were extracted
using fastText (Bojanowski et al} [2017) embeddings of the narrative text. This procedure was
performed separately for each participant and language. First, we trained VEMs for response to seven
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low-level sensory feature spaces: word count, letter/character count, single phonemes, diphones,
triphones, visual motion energy, and pixel-based orthographic similarity. These models were trained
on the training data and used to predict responses for both train and test sets. Predicted low-level
responses were subtracted from the actual BOLD signals to obtain residuals. These residual responses
were then z-scored per voxel to have unit variance. Next, we trained VEMs using the semantic
features on the residual signals. Voxels that showed significant (one-sided permutation test, p < 0.05,
FDR-corrected) prediction accuracy based on semantic features were labeled as semantically-selective.
The semantically-selective voxel mask for participant 1 is shown in Appendix Fig. 3p.

C.3 Baseline Models for Fine-tuning

TR-shuffled fMRI as fine-tuning target. We tested how fine-tuning language models with temporally
misaligned data affects model representation. This TR-shuffled approach allows us to verify that
the improvements from brain-informed fine-tuning are driven by meaningful stimulus-response
alignment, rather than random brain data. Here, we randomly shuffled the brain responses, permuted
in blocks of 10 contiguous TRs. This breaks the correspondence between stimulus and brain response.

Multilingual model features as fine-tuning target. We tested how fine-tuning monolingual language
models with multilingual model representations affects model representations. The goal of this test is
to compare the results between pure-language model fine-tuning with brain-informed language model
fine-tuning. Here, we replaced the fMRI data associated with input stimuli with representations
obtained from a multilingual language model. We then fine-tuned monolingual language models
(BERT-en and BERT-zh) using these multilingual model representations (from mBERT) as targets.

Monolingual brain data as fine-tuning target. We tested how tuning language models with brain
data from individuals who know only one language differs from tuning language models with
bilingual brain data. This test is used to clarify the impact of bilingualism on the resulting model
representations.

D Implementation details for reproducibility

All brain-informed fine-tuning experiments were conducted on a machine equipped with an NVIDIA
TITAN RTX GPU (24 GB RAM), and NVIDIA RTX A6000 GPU (40GB RAM). The downstream
NLP tasks were evaluated on machines with the same GPU configuration. Voxelwise encoding
models were trained on the TITAN RTX GPU using banded ridge regression, with the following
hyperparameters: MSE loss, L2 regularization ()\) values logarithmically spaced from 1071 to 1017,
target batch size of 1000, and 20 X values per batch.

For downstream NLP task fine-tuning, we used a batch size of 64, learning rate of 2e-5, weight decay
of 0.01, per-device evaluation batch size of 128, and trained for 3 epochs.

E Details of Downstream NLP Tasks

Detailed description of the downstream NLP tasks in GLUE and CLUE benchmarks is provided in
Table 3] Detailed description of the downstream NLP tasks in XGLUE and XTREME benchmarks
is provided in Tabled] The metric ranges and the scaling for each task are provided in Tables 5] [61
and[7]

F Additional results for Voxelwise Encoding Performance

Please note that the bilingual dataset is from a reading experiment, where variations in visual brain
areas is correlated with stimulus presentation, especially in naturalistic settings. Moreover, semantic
features from language models are known to spuriously predict brain activity in visual areas even
after regressing out low-level visual information (Deniz et al., [2019; |Oota et al.l [2024b). In our
analyses, we used embeddings extracted from the language model layer for fitting the VEMs, without
including any low-level sensory features. Consequently, well-predicted voxels in the reported figures
do not necessarily correspond to language-selective brain regions. This distinction is important to
avoid overinterpreting encoding performance in non-linguistic areas such as the early visual cortex.
Importantly, our analyses using semantically selective voxels (which explicitly exclude visual regions)
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Table 3: Descriptions of tasks in the GLUE and CLUE benchmarks.

Task [ Description [ Task Type
GLUE Benchmark
CoLA Determine linguistic acceptability of a sentence Single-sentence classification
SST-2 Sentiment analysis on movie reviews Single-sentence classification
MRPC Determine if two sentences are semantically equivalent Sentence-pair classification
STS-B Measure semantic similarity (0-5) between two sentences Sentence-pair regression
QQP Identify if two questions are duplicates Sentence-pair classification
MNLI Determine if a premise entails, contradicts, or is neutral to a hypothesis | Sentence-pair classification (multi-class)
QNLI Determine if a sentence contains the answer to a question Sentence-pair classification
RTE Determine textual entailment between two sentences Sentence-pair classification (binary)
WNLI Coreference resolution: determine if a hypothesis is true given a sentence | Sentence-pair classification
with a replaced pronoun
CLUE Benchmark
AFQMC Determine if two Chinese sentences are semantically equivalent Sentence-pair classification
CMNLI Multilingual version of MNLI for Chinese Sentence-pair classification
CSL Determine whether a keyword list matches a given abstract Sentence-pair classification
IFLYTEK | Classify app descriptions into predefined categories Multi-class classification
TNEWS Classify news headlines into categories Multi-class classification
ChID Fill-in-the-blank multiple-choice cloze test from Chinese literature Cloze-style multiple-choice
c3 Reading comprehension with multiple-choice answers Multi-turn QA / Multiple-choice

show consistent performance gains from brain-informed fine-tuning, indicating that the observed
improvements are not driven by visual areas but reflect genuine alignment with higher-level semantic
processing.

Table 4: Summary of XGLUE and XTREME tasks used in this study.

Benchmark | Task Name | Task Type Languages Evaluated | Evaluation Metric
PAWS-X Paraphrase Identification de, fr, es, ja, ko Accuracy
XGLUE XNLI Natural Language Inference | de, fr, es, ja, ko Accuracy
NER Named Entity Recognition | de, fr, es, ja, ko F1 Score
PAWS-X Paraphrase Identification de, fr, es, ja, ko Accuracy
XTREME XNLI Natural Language Inference | de, fr, es, ja, ko Accuracy
NER Named Entity Recognition | de, fT, es, ja, ko F1 Score

Table 5: GLUE tasks, metrics, reference ranges, and scaling.

GLUE Task Metric Reference Range Scaled
CoLA Matthews Correlation -1, 1] %100
SST-2 Accuracy [0, 1] %100
MRPC F1 Score / Accuracy [0, 1] x100
STS-B Pearson / Spearman Correlation [—1, 1] X100
QQP F1 Score / Accuracy [0, 1] x100
MNLI Accuracy [0, 1] x 100
QNLI Accuracy [0, 1] %100
RTE Accuracy [0, 1] x100
WNLI Accuracy [0, 1] X100

Table 6: CLUE tasks, metrics, reference ranges, and scaling.

CLUE Task Metric Reference Range Scaled
AFQMC Accuracy [0, 1] %100
CMNLI Accuracy [0, 1] X100
CSL F1 Score [0, 1] %100
IFLYTEK Accuracy [0, 1] X100
TNEWS Accuracy / F1 Score [0, 1] %100
ChID Accuracy [0, 1] %100
c? Exact Match / Accuracy [0, 1] %100

Table 7: XGLUE tasks, metrics, reference ranges, and scaling.

XGLUE Task Metric Reference Range Scaled
NER F1 Score 0,1 X100
PAWS-X Accuracy 0,1 X100
XNLI Accuracy 0,1 %100

F.1 Baseline Models

Appendix Fig. ] shows results from baseline experiments where brain-informed fine-tuning was
performed using (a) TR-shuffled fMRI responses and (b) mBERT representations as fine-tuning
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targets. For BERT-en across participants (considering well-predicted voxels with > 0.1), the average
difference in encoding performance was ATyanilia—TRshuffle = 0.133 and ATyanitia—mBERT =
0.136. In both cases, we observe that VEM predictions are limited to some sensory regions and
scattered across the cortex, with no systematic predictions in higher-level semantic areas. This
confirms that the observed improvements in our main experiments are not driven by spurious
correlations but rather due to biologically plausible representations in bilingual brains.

a) TR-shuffled fMRI as fine-tuning target b) MBERT representations as fine-tuning
target
C
P
=
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Figure 4: Encoding performance of baseline fine-tuned models. Voxelwise encoding performance
is visualised for two fine-tuning baselines: (a) using TR-shuffled fMRI data, and (b) using mBERT
representations as fine-tuning target. Flattened cortical surfaces with encoding performance are shown
for Participant 1, with BERT-en (on top) and BERT-zh (on the bottom) fine-tuned with the baseline
targets. In both baselines, the well predicted voxels do not correspond to semantically regions and
appear scattered or in low-level sensory regions.

F.2 Results on Participants 2-6

Fig. 5| shows brain encoding performance before and after brain-informed fine-tuning for all partici-
pants. This figure shows voxelwise encoding model performance for the best-performing fine-tuned
variants across the cortex for all participants, using (a) BERT-en, (b) BERT-zh, and (c—d) mBERT
models. This replicates the format of Fig.[2] and reports it for all participants. For details on voxel
color coding, refer to the caption of Fig.[2| Across participants, model types, and languages, brain-
informed fine-tuning consistently improves encoding performance relative to it’s vanilla counterpart.

F.3 Cross-participant Transfer

To examine whether brain-informed fine-tuning generalizes encoding performance across partici-
pants, we evaluated brain-informed fine-tuned models on one participant’s brain data and test it on
the brain recordings of other participants. Fig. [6] presents the encoding performance comparisons
between vanilla and brain-tuned models in this cross-participant setting. Across participants (con-
sidering well-predicted voxels with » > 0.1), the average difference in encoding performance was
Afvanillafparticipanttransfer = —0.00055 + 0.00029.

We observe that there is also no difference in overall encoding performance between the vanilla and
brain-tuned models when tested on unseen participants. This pattern holds consistently across all
participants, for both English and Chinese brain data, and for both monolingual and multilingual
BERT models. These findings suggest that the representational changes introduced by brain-specific
fine-tuning are not participant-specific but reflect some shared representations across bilingual
individuals.
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(a) BERT-en with en brain data (b) BERT-zh with zh brain data (c) MBERT with en brain data (d) mMBERT with zh brain data

Participant 5 Participant 4 Participant 3 Participant 2

Participant 6

0.5

Fine-tuned
Vanilla with whole brain
Fine-tuned with
language regions

0.5 0.5

Encoding
Performance (r)

Figure 5: Brain encoding performance before and after brain-informed fine-tuning for all
participants. This figure shows voxelwise encoding model performance for the best-performing
fine-tuned variants across the cortex for all participants, using (a) BERT-en, (b) BERT-zh, and
(c—d) mBERT models. This replicates the format of Fig. |2 and reports it for all participants. For
details on voxel color coding, refer to the caption of Fig.% Across participants, model types, and
languages, brain-informed fine-tuning consistently improves encoding performance relative to it’s
vanilla counterpart.

Participant 2

Participant 3 Participant 4

Difference in
Vanillamodel __Encoding Performance  joqe fine-tuned with

is better s oo, mmmm Participant1is better

Figure 6: Cross-participant generalization of brain-informed fine-tuned language models. Flat-
tened cortical surfaces show changes in encoding performance for Participants 2—6 when comparing
BERT-en (vanilla) with BERT-ft-en fine-tuned using English brain data from Participant 1. Each
point represents a voxel that was consistently well-predicted (r>0.1) across both models. Across
participants, encoding performance in higher-level semantic regions shows either no degradation or
slight improvements with the fine-tuned model.
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G Additional results on Downstream NLP Tasks Performance

G.1 Vanilla vs. Fine-tuned with Whole-brain/Language-selective
regions/Semantically-selective voxels

Table 8] shows downstream task performance before and after bilingual brain-informed fine-tuning
(with whole-brain, language-selective, and semantically-selective voxels). We compared vanilla
(pretrained) models and mBERT, with their bilingual brain-informed fine-tuned counterparts (e.g.,
mBERT-ft-en and mBERT-ft-zh). To assess whether brain-informed fine-tuning elicit multilingual
capabilities, we evaluate downstream task performance in two settings: (a) Fine-tuning and Evaluation
in the Same Language: models are fine-tuned with brain data in one language (English (en) or Chinese
(zh)) and evaluated on NLP tasks in the same language (GLUE benchmark for en, CLUE benchmark
for zh). This tests within-language improvements due to brain-informed fine-tuning. (b) Cross-
Language Transfer Between Known Languages: model is fine-tuned on brain data in one language
and evaluated on tasks in the participants’s second (not used in fine-tuning) language (e.g., fine-
tuned with en brain data and evaluated on CLUE (zh benchmark) task. This tests whether bilingual
brain-informed fine-tuning elicits the participants’ shared semantic representations. Bolded values
indicate equal or the best performance. We observe that bilingual brain-informed fine-tuning improves
performance on several NLP tasks, with either language- or semantically-selective region variants
showing more improvement than their vanilla counterpart.

Table 8: Downstream task performance before and after bilingual brain-informed fine-tuning (with
whole-brain, or language-selective, or semantically-selective regions).

a) Fine-tuning and Evaluation in the Same Language

Task mBERT-en | Whole-Brain | Language |Semantic| |CLUE Task mBERT-zh | Whole-Brain | Language | Semantic
CoLA (MCC) 42.68 40.05 41.80 42.81 AFQMC (Acc.) 69.74 70.55 72.03 71.11
SST-2 (Acc.) 89.68 90.14 90.25 90.60 CMNLI (Acc.) 78.66 79.02 78.75 79.01
MRPC (Acc.) 84.80 84.80 86.76 86.03 CSL (F1) 81.10 80.71 82.27 81.24
MRPC (F1) 88.56 89.01 90.49 89.73 IFLYTEK (Acc.)| 56.52 56.83 56.79 56.91
STS-B (Pearson) 88.06 88.42 88.46 88.42 TNEWS (Acc.) 54.77 55.12 55.27 54.91
STS-B (Spearman)|  87.76 88.22 88.38 88.34 TNEWS (F1) 53.69 53.74 53.82 53.98
QQP (Acc.) 90.22 90.47 90.43 90.48 ChID (Acc.) 10.66 10.66 10.66 10.66
QQP (F1) 86.70 87.07 87.02 87.11 C3 (Acc.) 49.42 50.21 49.76 49.95
MNLI-m (Acc.) 82.09 82.66 82.27 82.07

MNLI-mm (Acc.) 82.38 82.97 82.92 82.68

QNLI (Acc.) 91.14 91.18 91.10 91.31

WNLI (Acc.) 53.52 56.34 56.34 56.34

RTE (Acc.) 67.15 65.70 68.95 67.87

(b) Cross-Language Transfer Between Known Languages

Task mBERT-zh | Whole-Brain | Language |S tic| |CLUE Task mBERT-en| Whole-Brain | Language | Semantic
CoLA (MCC) 40.96 41.22 40.82 41.60 AFQMC (Acc.) 69.74 70.62 71.29 70.76
SST-2 (Acc.) 88.27 89.25 91.17 90.37 CMNLI (Acc.) 78.66 78.83 78.92 79.09
MRPC (Acc.) 82.84 83.82 85.05 87.01 CSL (F1) 81.10 81.30 81.53 81.57
MRPC (F1) 87.15 87.88 89.09 90.62 IFLYTEK (Acc.)| 46.79 56.52 56.60 56.33
STS-B (Pearson) 87.09 88.11 87.00 88.54 TNEWS (Acc.) 54.77 54.81 54.95 53.47
STS-B (Spearman)|  86.97 87.83 87.27 88.43 TNEWS (F1) 53.69 53.84 54.01 53.75
QQP (Acc.) 89.91 90.16 90.46 90.42 ChID (Acc.) 10.66 10.66 10.66 10.66
QQP (F1) 86.27 86.89 87.06 87.00 C3 (Acc.) 49.42 49.48 49.84 49.76
MNLI-m (Acc.) 81.52 82.13 82.54 82.94

MNLI-mm (Acc.) 81.94 82.36 82.74 83.12

QNLI (Acc.) 90.55 90.92 91.27 91.38

WNLI (Acc.) 54.93 56.34 56.34 56.34

RTE (Acc.) 66.06 66.43 68.59 66.06
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Table 9: Downstream task performance before and after bilingual brain-informed fine-tuning
(with whole-brain). We compared vanilla (pretrained) models, English BERT (BERT-en), Chinese
BERT (BERT-zh), and mBERT, with their bilingual brain-informed fine-tuned counterparts (e.g.,
BERT-ft-en: BERT-en fine-tuned using English brain data). For each task, the average performance
and standard deviation across the six bilingual participants are reported. To assess whether brain-
informed fine-tuning elicits multilingual capabilities, we evaluate downstream task performance in
three settings: (a) Fine-tuning and evaluation in the same language: models are fine-tuned with brain
data in one language (en or zh) and evaluated on NLP tasks in the same language (GLUE benchmark
for en, CLUE benchmark for zh). This tests within-language improvements due to brain-informed
fine-tuning. (b) Cross-language transfer between known languages: model is fine-tuned on brain data
in one language and evaluated on tasks in the participants’s second (not used in fine-tuning) language
(e.g., fine-tuned with en brain data and evaluated on CLUE (zh benchmark) tasks). This tests whether
bilingual brain-informed fine-tuning elicits the participants’ shared semantic representations. (c)
Zero-shot transfer to unseen languages: to assess broader multilingual transfer, mBERT-ft-en is
evaluated on downstream tasks in additional languages not seen during fine-tuning (German, French,
Spanish, Japanese, and Korean) using XGLUE and XTREME benchmarks. Bolded values indicate
performance equal to or better than the corresponding vanilla model. We observe that bilingual
brain-informed fine-tuning improves performance on several NLP tasks, with mBERT showing
greater benefits than BERT across all three settings. Results for fine-tuning using whole-brain data
for individual participants are reported in the Supplementary (see Table 4).

a) Fine-tuning and Evaluation in the Same Language

GLUE Task |BERT-en| BERT-ft-en |mBERT |[mBERT-ft-en
CoLA (MCC) 53.38 |55.11 £ 0.75| 42.68 |39.58 £ 1.82

SST-2 (Acc) | 92.08 [92.58+ 0.39| 89.68 |90.64 + 0.54 LR Tosk BERTh BERTToh mBERT mEERTTh

MRPC (Acc) | 79.41 |80.55+ 1.01| 84.80 |85.39 + 0.51
AFQMC (Acc) | 75.25 [74.30 £ 048] 69.74 |70.70 £ 0.99

MRPC (FI) | 8627 |86.91+0.75| 88.56 |89.20 + 0.27
CMNLI (Acc.) | 80.50 [80.87 & 0.04| 78.66 |78.99 + 0.14

STS-B (Pears.) | 83.06 |88.10 + 0.07| 83.06 |88.47 + 0.09
CSL (F1) 80.18 |80.82 + 0.42| 81.10 |81.60 + 0.56

STS-B (Spear.) | 87.65 |87.55+ 0.18] 87.76 |88.28 = 0.12
o0p n sosa loooe T oosl soas o0 Cooal [TPLYTEK (Ace)| 60.25 [60.48 +0.25 5652 |56.92 +0.17
(Acc.) - : : : - - TNEWS (Acc.) | 5624 |56.48 + 0.08| 54.77 |55.08 + 0.16

v I\%(I?P (F/L) gz;g 21‘13 i 3.{1}3 gggg g‘gg i g'gg TNEWS (F1) | 55.17 |55.39 & 0.08| 53.69 |53.81 % 0.20
-m (Acc) | 84, 40 £ 0. : 26 £ 0. ChID (Acc.) | 10.66 |10.66 = 0.00| 10.66 |10.66 = 0.00

MNLLmm (Acc.)| 84.64 [8455+0.20| 8238 |82.73 + 0.14 I
QNLI(Acc.) | 9145 [91.49 +0.09| 91.14 |91.24 + 0.06 C”(Acc) | 4974 |49.83 £ 0.39] 4942 |50.25 & 0.27
RTE (Acc) | 67.15 |67.32+0.17| 6715 |65.63 + 051
WNLI(Acc) | 4930 |55.59+ 1.31) 5352 |56.34 + 0.00

b) Cross-Language Transfer Between Known Languages

GLUE Task |BERT-zh| BERT-ft-zh |mBERT |mBERT-ft-zh
CoLA (MCC) 51.13 [53.82 £ 1.18| 40.96 |40.99 + 1.08

e | T S | aean 096 | [ CLUE Task [BERT-en| BERT-fi-en [mBERT[mBERT-i-en
(Acc.) : S3£0. : 20 £0. AFQMC (Acc) | 69.00 [69.02 £ 0.03| 69.74 |71.25 L 0.97

MRPC (F1) | 8338 |84.39 £ 0.17) 87.15 |89.16 £ 0.78 | | o\iNyyace) | 6834 |68.78 + 0.13] 78.66 |78.87 + 0.07
STS-B (Pears.) | 8721 |87.96 + 0.12| 87.09 |88.30 + 0.17
CSL(F1) | 7120 |72.33 +0.66| 81.10 | 8151 + 0.20
STS-B (Spear) | 86.73 |87.67 + 0.18| 86.97 | 88.16 + 0.23
cor O e | B0 =023 | |IFLYTEK (Acc)| 47.86 [47.2740.56| 5652 |56.92 +0.31
(Acc.) : - - - - - TNEWS (Acc.) | 50.92 |51.42 4 0.16| 54.77 |54.99 + 0.20

y I\%?P (F/L) gzgg gz‘zg i g-g: g?g; g?gs i g"l’z TNEWS (FI) | 50.15 |50.68 & 0.07| 53.69 |53.76 + 0.04
-m (Acc) | 84, 16 £ 0. : 97+ 0. ChID (Acc.) | 10.66 |10.66 = 0.00| 10.66 |10.66 = 0.00

MNLI-mm (Acc.)| 83.91 |84.16 + 0.10| 81.94 |82.78 + 0.28 !
QNLI (Acc.) | 91.27 |91.42 + 0.05| 90.55 |91.23 + 0.26 C”(Acc) | 4264 [42.99 £ 1.49] 4942 [49.72 + 0.35
RTE (Acc) | 67.15 |67.91 + 0.08| 66.06 |67.21 + 0.67
WNLI (Acc.) | 53.52 |56.34 + 0.00| 54.93 |55.25+ 0.84

¢) Zero-Shot Transfer to Unseen Languages

Task German (de) French (fr) Spanish (es) Japanese (ja) Korean (ko)

mBERT | mBERT-ft-en| mBERT | mBERT-ft-en | mBERT | mBERT-ft-en|mBERT | mBERT-ft-en| mBERT | mBERT-ft-en
XGLUE

PAWS-X (Acc.)| 84.00 [83.62 + 1.10| 88.10 (87.17 4+ 0.81| 87.05 |86.50 £ 0.42| 78.70 |76.55 £+ 2.12| 78.75 [76.90 + 0.35

XNLI (Acc.) 70.60 |70.94 + 0.14| 72.69 |73.30 + 0.80| 74.10 |74.62 4 0.05| 86.00 (87.97 £ 0.05| 86.00 |87.82 + 0.25

NER (F1) 10.67 [12.85 +2.02| 6.67 |[11.09 &= 1.09| 7.33 |12.11 £ 0.67| 13.00 |11.34 £2.11| 12.00 [12.25 + 1.71

XTREME

PAWS-X 85.65 [84.85 + 1.34| 88.95 (88.00 - 0.99| 87.90 |87.80 £ 0.39| 79.55 |78.55 £ 0.85| 79.35 [78.70 + 0.64

XNLI 70.06 |71.75 £+ 0.94| 72.97 |73.48 + 1.73| 74.50 |74.85 4 0.35| 86.00 |87.61 £ 0.86| 86.00 |87.24 + 0.33

NER 12.33 [12.17 £ 1.18| 09.33 (13.02 £ 1.39| 10.33 (11.12 £ 0.30| 08.67 [13.00 £ 0.00| 12.33 [11.17 £ 1.18

28



Table 10: Downstream task performance before and after bilingual brain-informed fine-tuning
(with language-selective). We compared vanilla (pretrained) models, English BERT (BERT-en),
Chinese BERT (BERT-zh), and mBERT, with their bilingual brain-informed fine-tuned counterparts
(e.g., BERT-ft-en: BERT-en fine-tuned using English brain data). For each task, the average perfor-
mance and standard deviation across the six bilingual participants is reported. To assess whether
brain-informed fine-tuning elicits multilingual capabilities, we evaluate downstream task performance
in two settings: (a) Fine-tuning and evaluation in the same language: models are fine-tuned with brain
data in one language (en or zh) and evaluated on NLP tasks in the same language (GLUE benchmark
for en, CLUE benchmark for zh). This tests within-language improvements due to brain-informed
fine-tuning. (b) Cross-language transfer between known languages: model is fine-tuned on brain
data in one language and evaluated on tasks in the participants’s second (not used in fine-tuning)
language (e.g., fine-tuned with en brain data and evaluated on CLUE (zh benchmark) tasks). This tests
whether bilingual brain-informed fine-tuning elicits the participants’ shared semantic representations.
Bolded values indicate performance equal to or better than the corresponding vanilla model. We
observe that bilingual brain-informed fine-tuning improves performance on several NLP tasks, with
mBERT showing greater benefits than BERT across all two settings. Results for fine-tuning using
language-selective regions for individual participants are reported in Supplementary (see Table 5)

a) Fine-tuning and Evaluation in the Same Language

GLUE Task |BERT-en| BERT-ft-en | mBERT |[mBERT-ft-en
CoLA (Acc.) 53.38 [55.25 £ 0.85| 42.68 |41.71 £0.76
SST-2 (Acc.) 92.08 [92.62 + 0.10| 89.68 |91.15 + 0.48
MRPC (Acc.) 79.41 |81.43 £ 0.80| 84.80 |85.76 & 0.59
MRPC (F1) 86.27 [87.47 + 0.57| 88.56 |89.28 + 0.46
STS-B (Pearson) | 88.06 |87.70 +0.19| 83.06 |88.14 4+ 0.91
STS-B (Spearman)| 87.65 |87.54 +0.19| 87.76 |87.86 + 0.78
QQP (Acc.) 90.84 |90.88 £ 0.03| 90.22 |90.47 £ 0.05
QQP (F1) 87.70 [87.79 + 0.02| 86.70 |87.11 + 0.08
MNLI-m (Acc.) 84.38 [84.29 +£0.23| 82.09 |82.10 £ 0.18
MNLI-mm (Acc.) | 84.64 [84.60 + 0.30| 82.38 |82.49 + 0.29
QNLI (Acc.) 91.45 |91.33 £0.05| 91.14 [91.04 £0.11
RTE (Acc.) 67.15 |67.47 £0.45| 67.15 |67.75 £ 1.15
WNLI (Acc.) 49.30 |52.87 4+ 0.62| 53.52 |56.62 & 0.63

b) Cross-Language Transfer Between Known Languages

GLUE Task  |BERT-zh| BERT-ft-zh |mBERT |mBERT-ft-zh
CoLA (MCC)T 51.13 |51.95 £ 0.56| 40.96 |42.50 & 0.50

SST-2 (Acc) | 9226 (92.39+0.13| 8827 9089+ 0.19 | —CrUE Task [BERT-en BERTfizen mBERT mBERT en
MRPC (Acc) | 76.96 |77.74 4 051| 82.84 |85.55+023| rrovc(ace) | 69.00 (6931 % 0.47 69.74 7078 £ 0.67
MRPC (F1) 83.38 184.42 - 0.89| 87.15 |89.35£0.24| | c\inpy(Ace) | 6834 |68.34 + 0.63| 78.66 |78.88 + 0.09
STS-B (Pearson) | 87.21 |87.63 + 0.74| 87.09 |88.11 + 0.41 CSL 1) 7190 17146 = 043 8110 |81.25 % 0.29
STS-B (Spearman)|  86.73 |87.88 = 0.38] 86.97 | 88.11 £ 042 | |1p vTEK (Acc)| 47.86 |48.05 + 1.44| 5652 |57.02 + 0.29

QQPP(/’;CICJ Zggg g;-g(l)ig-;} Zzg; gg-g‘;ig'gg TNEWS (Acc.) | 5092 |50.69 & 0.18| 54.77 |55.23 + 0.24
QQP (F1) : . - : . - TNEWS (F1) | 50.15 |50.48 £ 0.18| 53.69 |54.11 + 0.11

MNLI-m (Acc.) | 84.00 \84.19 £ 0.42| 81.52 |\ 8209 £ 017 | |\ iy ace) | 10.66 |10.66 4 0.00| 10.66 |10.66 + 0.00
MNLI-mm (Acc.) | 83.91 |84.17 + 0.47| 81.94 |82.47 + 0.34 3 (acoy | 4264 |55.18 L 0.61| 49.42 | 5024 L 0.33
QNLI(Acc) | 9127 [91.33+0.10| 9055 |9112+ 0.19 ' ' - - - - -
RTE (Acc.) 67.15 |66.81 + 0.67| 66.06 |66.63 + 1.28
WNLI (Acc) | 5352 |54.38 + 1.88| 54.93 |55.49 + 1.26

CLUE Task |BERT-zh| BERT-ft-zh |mBERT |mBERT-ft-zh
AFQMC (Acc.) | 7525 |73.92 +0.46] 69.74 |70.38 £ 0.50
CMNLI (Acc.) | 80.50 [80.85 + 0.19| 78.66 |78.99 £ 0.26

CSL (F1) 80.18 |81.22 £ 0.40| 81.10 |81.84 4 0.27
IFLYTEK (Acc.)| 60.25 [60.41 + 0.33| 56.52 |56.59 £ 0.68
TNEWS (Acc.) | 5624 [56.49 + 0.17| 54.77 |55.12 £0.18
TNEWS (F1) 5517 |55.12 +£0.33| 53.69 |54.14 £ 0.19
ChID (Acc.) 10.66 [10.66 + 0.00| 10.66 |10.66 + 0.00
C3 (Acc.) 49.74 |49.77 £+ 0.33| 49.42 |50.15 + 0.59
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H Bilingual vs. Monolingual with English whole-brain data

Table 11: Downstream task performance before and after bilingual or monolingual brain-
informed fine-tuning. We perform brain-informed fine-tuning of mBERT with English whole-brain
brain data (mBERT-ft-en) from either a bilingual (participant 1) or a monolingual participant. We
evaluate downstream task performance in two settings: (a) Fine-tuning and evaluation in the same
language: the model is evaluated in English with GLUE tasks. (b) Cross-language transfer between
known languages: the model is evaluated in Chinese with CLUE tasks.

a) Fine-tuning and Evaluation in the Same b) Cross-Language Transfer Between Known

Language Languages
mBERT-ft-en mBERT-ft-en

Task mBERT |Bilingual | Monolingual CLUE Task mBERT |Bilingual | Monoli 1
CoLA (MCC) 42.68 | 40.05 35.74 AFQMC (Acc.) | 69.74 | 70.62 70.64
SST-2 (Acc.) 89.68 | 90.14 90.48 CMNLI (Acc.) | 78.66 | 78.83 78.48
MRPC (Acc.) 84.80 | 84.80 78.85 CSL (F1) 81.10 | 81.30 81.18
MRPC (F1) 88.56 | 89.01 85.78 IFLYTEK (Acc.)| 46.79 | 56.52 57.06
STS-B (Pearson) 88.06 88.42 88.42 TNEWS (Acc.) | 54.77 54.81 54.80
STS-B (Spearman)| 87.76 | 88.22 88.34 TNEWS (F1) 53.69 | 53.84 53.50
QQP (Acc.) 90.22 | 90.47 90.54 ChID (Acc.) 10.66 | 10.66 10.66
QQP (F1) 86.70 | 87.07 87.19 C? (Acc.) 4942 | 49.48 49.46
MNLI-m (Acc.) 82.09 | 82.66 82.41

MNLI-mm (Acc.) | 82.38 82.97 82.78

QNLI (Acc.) 91.14 | 91.18 91.12

RTE (Acc.) 67.15 | 65.70 65.34

WNLI (Acc.) 5352 | 56.34 56.34
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