
Visual Perception by Large Language Model’s Weights

Feipeng Ma1,2∗, Hongwei Xue1,2,3†, Yizhou Zhou2‡, Guangting Wang2, Fengyun Rao2
Shilin Yan4, Yueyi Zhang1‡, Siying Wu5, Mike Zheng Shou3, Xiaoyan Sun1,5‡

1University of Science and Technology of China 2WeChat, Tencent Inc.
3Show Lab, National University of Singapore 4Fudan University

5Institute of Artificial Intelligence, Hefei Comprehensive National Science Center
{mafp,xuehongwei}@mail.ustc.edu.cn

harryizzhou@tencent.com, {zhyuey,sunxiaoyan}@ustc.edu.cn

Abstract

Existing Multimodal Large Language Models (MLLMs) follow the paradigm that
perceives visual information by aligning visual features with the input space of
Large Language Models (LLMs) and concatenating visual tokens with text tokens
to form a unified sequence input for LLMs. These methods demonstrate promising
results on various vision-language tasks but are limited by the high computational
effort due to the extended input sequence resulting from the involvement of vi-
sual tokens. In this paper, instead of input space alignment, we propose a novel
parameter space alignment paradigm that represents visual information as model
weights. For each input image, we use a vision encoder to extract visual features,
convert features into perceptual weights, and merge the perceptual weights with
LLM’s weights. In this way, the input of LLM does not require visual tokens,
which reduces the length of the input sequence and greatly improves efficiency.
Following this paradigm, we propose VLoRA with the perceptual weights gen-
erator. The perceptual weights generator is designed to convert visual features
to perceptual weights with low-rank property, exhibiting a form similar to LoRA.
The experimental results show that our VLoRA achieves comparable performance
on various benchmarks for MLLMs, while significantly reducing the computa-
tional costs for both training and inference. Code and models are released at
https://github.com/FeipengMa6/VLoRA.

1 Introduction

Large language models (LLMs) [57, 65, 47] have achieved promising performance on most natural
language tasks and have shown great generalization ability in solving real-world problems. Derived
from LLMs, multimodal large language models (MLLMs) [36, 66, 4, 62, 55, 48] take a step toward
artificial general intelligence (AGI) by perceiving visual information from the real world. Therefore,
the way of perceiving visual information is the key to moving from LLM to MLLM.

To perceive visual information, recent MLLMs follow an input space alignment paradigm that aligns
visual features with the input space of LLM and concatenates visual tokens with text tokens to form
a unified sequence as input for LLM. For instance, LLaVA [36] uses CLIP-ViT-L-14 [50] as the
visual encoder and introduces a linear projector to align the visual tokens with the input space of
LLM. Monkey [31] divides input images into uniform patches and equips individual adapters for each

∗This work was performed while Feipeng Ma and Hongwei Xue were interns at WeChat, Tencent Inc.
†Project Leader.
‡Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/FeipengMa6/VLoRA

patch to handle high-resolution images. Recent work [56] also identifies the visual shortcomings of
CLIP for MLLMs as “CLIP-blind pairs” and integrates vision self-supervised learning features with
MLLM to address this issue. DeepSeek-VL [41] and Sphinx [32] also adopt hybrid vision encoders.
Vary [58] identifies that a fixed vision vocabulary limits the dense and fine-grained visual perception
and introduces a new vocabulary to address this issue.

Despite these efforts to advance MLLM in visual perception, the paradigm of input space alignment
remains unchanged, which can result in computational inefficiency for both training and inference.
The computational cost of MLLM is concentrated on the attention mechanism of LLM, which is O(n2)
when the length of the input sequence is n. Using ViT-L-14 as the vision encoder, a 224×224 low-
resolution image can result in 256 visual tokens, and the length increases to 576 when the resolution
slightly raises to 336×336. Considering high-resolution images, some works [32, 35, 31, 11] split
an image into multiple sub-images for capturing fine-grained information, leading to a significantly
higher number of visual tokens. For instance, Sphinx-2k [32] adopts 2,890 visual tokens, while
InternLM-Xcomposer2-4KHD [11] even uses up to 8,737 visual tokens. Concatenating such a long
sequence of visual tokens to text tokens results in a dramatic increase in computational overhead for
both training and inference. Specifically, current MLLMs are usually pre-trained on web-crawled
image-text pairs, which usually have very short texts, with an average word count of 10.95 for LAION-
2B [51] and 8.99 for LAION-COCO [1]. As a result, the number of visual tokens during the pre-
training stage is about 20 to 50 times the number of text tokens, which suggests that the involvement
of visual tokens seriously affects the efficiency of the pre-training. Some works [27, 9, 24] employ
resamplers to reduce the number of visual tokens to a fixed count but still follow the input space
alignment paradigm and introduce extra visual tokens for LLMs.

To address this issue, we explore a novel parameter space alignment paradigm where visual infor-
mation is represented as LLM’s weights. As shown in Fig. 1, for an input image, we use a vision
encoder to extract visual features. Then, the visual features are converted to perceptual weights, which
represent visual information as model weights. The perceptual weights can be directly merged with
LLM’s weights. Thus, the visual information is merged into LLM in the form of weights, eliminating
the need for visual tokens in the LLM’s input and significantly improving efficiency. Building on this
paradigm, we introduce VLoRA, which contains the perceptual weights generator. The perceptual
weight generator is designed to convert visual features to perceptual weights. LLMs usually contain a
large number of parameters, for feasibility and efficiency, perceptual weights are designed with a
low-rank property. Thus the generated perceptual weights are similar to the form of LoRA weights.

Our contributions are summarised as follows:

1. We explore a novel paradigm for MLLMs that aligns visual features with the parameter
space of LLMs, which highly improves the efficiency of MLLMs

2. Based on this paradigm, we propose VLoRA and design the perceptual weights generator
that generates low-rank perceptual weights.

3. Experimental results demonstrate the effectiveness and efficiency of our approach. We obtain
results comparable to those of state-of-the-art MLLMs on various benchmarks, including
MMBench, ScienceQA, HallusionBench, and MMMU.

2 Related Works

Multimodal Large Language Models. Current MLLMs are developed from LLMs by aligning
visual features into the input space of LLMs. Many efforts have been made to explore introducing
visual perception capability for LLMs. LLaVA [36] connects the visual encoder of CLIP to the
Vicuna [65] with a linear projector. Further research that follows this paradigm focuses on improving
MLLMs from the perspective of vision encoder and projector DeepSeek-VL [41] use SigLip [61]
to extract high-level semantic features and use SAM-B [22] to process low-level features. Tong et
al. [56] finds that visually distinct images can be encoded as similar due to the shortcoming of CLIP
and integrates vision self-supervised learning features with CLIP features. Sphinx [32] ensembles
various vision backbones that have different architectures, pre-training paradigms, and information
granularities. These works input the entire visual tokens sequence into the LLM, which can lead to
a high computational cost during training and inference. Specifically, LLaVA [34] and DeepSeek-
VL [41] utilize 576 visual tokens, Sphinx-2k [32] employs 2,890 visual tokens, and InternLM-
XComposer2-4KHD [11] uses up to 8,737 tokens. Some works consider adopting cross-attention

2

Perceptual
Weights

𝑊!

𝑊" 𝑊# 𝑊$

𝑊%&	𝑊&

Decoder Layer

Decoder Layer

Decoder Layer

...

Decoder Layer

Pe
rc

ep
tu

al
 W

ei
g

ht
s

G
en

er
at

or

How to make this dish?

Text
Tokens

LLM
Weights

Decoder Layer

Decoder Layer

...

Decoder Layer

How to make
this dish?

Vision Encoder

......
Projector

...

...
Visual
Tokens

LLM LLM

(a) Visual feature extractor (b) Input space alignment (c) VLoRA: Parameter space alignment

The addition of two weight matrices

Figure 1: Overview of the input space alignment and the parameter space alignment paradigms.
The input space alignment paradigm is aligning visual features with the input space of LLM and
concatenating visual tokens with text tokens as input for LLM. Our proposed VLoRA follows the
parameter space alignment paradigm that aligns visual features with the parameters of LLM and
merges perceptual weights generated by the perceptual weights generator with LLM’s weights.

architecture as the projector to improve efficiency. MiniGPT4-v1 [66] and BLIP series [27, 9]
adopt Q-Former as the projector, which reduces the length of visual tokens to a fixed number of 64.
Qwen-VL [5] uses a single-layer cross-attention module incorporated with 2D absolute positional
encodings to avoid the potential loss of positional details. However, these improvements still follow
the paradigm of aligning visual features to the input space of LLM, introducing extra computational
overhead on LLM inference. Different from previous work, our VLoRA aligns visual features with
the parameter space of LLM. The visual information can be represented as perceptual weights in
LoRA format and merged into LLM’s weights during inference.

Parameter-Efficient Fine-Tuning. Parameter-efficient fine-tuning (PEFT) is a key technique for fine-
tuning large pre-trained models, including LLMs and MLLMs. PEFT methods freeze the backbone
and only fine-tune a small number of parameters, which can be typically categorized into three classes:
adapters [17, 49, 54, 63], prefix-tuning [29, 26, 38], and Low-Rank Adaption (LoRA) [18, 37, 10].
Houlsby et al. [17] design bottleneck adapters and insert two adapters into the transformer layers,
one after the attention module and one after the feed-forward network. LLaMA-Adapter [63] inserts
learnable prompts into L of N decoder layers and uses zero-initialized attention for stable training.
Prefix-tuning [29] prepends a set of learnable prefix vectors at the query and key of the self-attention
module for every layer. Prompt-tuning proposes to only prepend learnable vectors to the input prompt
with no intermediate-layer prefixes. LoRA [18] uses learnable low-rank matrices to approximate
the backbone’s weight updates, and the low-rank matrices can be merged with the backbone during
inference without extra inference burden. Considering the pre-training stage, current MLLMs usually
freeze the unimodal backbones and project visual tokens through a learnable projector, then prepend
visual tokens into the input sequence of LLMs, which can be seen as prefix-tuning methods. Our
VLoRA is closer to the style of LoRA. Specifically, VLoRA generates low-rank perceptual weights,
which can be seen as a generated visual parameters matrix ∆WA ∈ Rh×r multiplied with a learnable
matrix ∆WB ∈ Rr×h. Similar to LoRA, the perceptual weights can be injected into LLMs’ weights
without introducing extra inference overhead.

HyperNetwork. HyperNetwork is a technique that employs one network to generate the weights
for another network. HyperNetworks [16] proposes static hypternetwork for CNN and dynamic
hypternetwork for RNN. HyperFormer [43] proposes hypterformer to generate adapter parameters for
all layers and multiple tasks using shared hypternetworks. The parameter generation of both methods
is designed on task-level for pre-defined tasks. HyperPELT [64] employs a shared hypernetwork
that generates weights for prefix-tuning and adapter-tuning modules. MemVP [20] concatenates
visual prompts with FFN weights to inject visual knowledge. In contrast to HyperNetworks and
HyperFormer, 1) VLoRA focuses on sample-level parameter generation, the generated LoRA weights
are conditioned on the input image without pre-defining tasks during training. Since the goal of
MLLMs is to address a wide range of tasks and problems that are difficult to fully define in advance,
task-level adaptation is unsuitable for MLLMs. 2) VLoRA utilizes the generated parameters in
LoRA way. Sample-level parameter generation can lead to significant changes in model parameters.

3

Self-attention

Feed-forward

Add & Norm

Add & Norm

𝑾𝑸 𝑾𝑲 𝑾𝑽

Scaled Dot-Product
Attention

𝑾𝑶

Concat

(b) Multihead Self-Attention(a) Decoder Block of LLM

𝑾𝟏

𝑾𝟐

(c) Feed-forward Network

Linear

Multi-head

Figure 2: Details of the LLM Decoder Block. (a) illustrates the details of the LLM decoder block,
including the multi-head self-attention module and the feed-forward network. (b) provides a detailed
view of the multi-head self-attention module, which incorporates four types of weights: WQ, WK ,
WV , and WO. (c) depicts the feed-forward network, which consists of the weights W1 and W2.

VLoRA, adopting the LoRA method, can better maintain the inherent capability of the pre-trained
LLM. Unlike HyperPELT and MemVP, 1) VLoRA can inject visual information at any linear module,
offering flexibility. 2) Unlike task-level PEFT methods, VLoRA is sample-level, generating weights
for individual input images. Our evaluations, mainly in zero-shot settings, demonstrate VLoRA’s
strong generalization ability.

3 Method

3.1 Preliminaries

In this subsection, we review the details of the decoder block in the current LLM. As shown in Fig. 2,
the decoder block of LLM contains a self-attention module and a feed-forward network.

Self-attention. As shown in Fig. 2 (b), the self-attention module contains four types of linear
layers: query WQ ∈ Rh×d, key WK ∈ Rh×d, value WV ∈ Rh×d, and output WO ∈ Rh×h. Here,
h represents the dimension of the hidden states of LLM, and d represents the dimension of each
attention head. For each input token xi ∈ Rh in the input sequence X = (x1, x2, ..., xN), it is
multiplied by linear layers WQ, WK , WV , obtaining Xq = XWQ, Xk = XWK and Xv = XWV .
Then, the attention operation is executed along the sequence dimension as follows:

Attention(Xq, Xk, Xv) = softmax(
XqXkT

√
d

)Xv. (1)

The self-attention mechanism is performed on each head, and the outputs from different heads are
concatenated and multiplied by output linear layer with weights WO.

Feed-forward Network. As shown in Fig. 2 (c), the feed-forward network is an MLP with two fully
connected layers and a non-linear activation function. The formulation can be written as follows:

FFN(xi) = ϕ(xiW1)W2, (2)

where xi is the input token, ϕ is the activation function, and W1 and W2 are the weights of two fully
connected layers. To summarize, the decoder block of LLM has five types of weights, including WQ,
WK , WV , WO from the self-attention module, and W1, W2 from the feed-forward network.

3.2 Visual Perception by LLM’s Weights

Previous MLLMs follow the paradigm of aligning the visual features with the input space of LLM
and require additional visual tokens as LLM’s input, which can lead to computational inefficiency.
This inefficiency becomes more pronounced when encountering high-resolution or multiple images as
the number of tokens increases drastically. To address this issue, we propose to align visual features
with LLM’s parameter space without introducing extra tokens into LLM’s input.

To achieve this goal, we represent the visual information of the input image as perceptual weights and
integrate them into the weights of LLM. This approach allows LLM to perceive visual information

4

V
isual

Enco
d

er

Perceptual
Weights

C
ro

ss-A
ttentio

nPerceptual Queries

(a) Perceptual Weights Generator

Self-A
ttentio

n

Feed
-Fo

rw
ard

Shared
 Linear

x N

Linear

Linear

Linear

(b) Equivalent form to LoRA,
where ∆𝑊! is learnable

𝑊! ∈ ℝ"×$ 𝑊% ∈ ℝ$×" ∆𝑊 ∈ℝ"×"

∆𝑊!

∆𝑊"

...

Linear

× =

LoRA:
Visual

Parameters

Figure 3: Perceptual Weights Generator. Figure (a) illustrates the pipeline of our perceptual weights
generator. We set k learnable perceptual queries, which interact with image features in N decoder
blocks, and obtain k visual parameters. Then, a shared linear layer and k independent linear layers
are used to convert these visual parameters to perceptual weights ∆W . Figure (b) demonstrates that
our approach is formally consistent with LoRA.

without introducing extra tokens into the input. As mentioned in Sect. 3.1, LLM’s decoder blocks have
five types of weights. We use W ∈ Rh×h to denote the weight matrix of LLM. For an input image
I , we first adopt a vision encoder f(·) to extract the visual features z = f(I), where z ∈ Rc×dv ,
c is the number of visual tokens, and dv is the dimension of visual features. Then, we design a
perceptual weights generator g(·) to convert the visual features to perceptual weights ∆W ∈ Rh×h.
It is worth noting that, given that we want LLM to perceive visual information while preserving its
language capabilities, ∆W is a low-rank matrix, which also helps to reduce the computation cost of
the perceptual weights generator. With the generated perceptual weights ∆W , we can directly merge
it into the LLM’s weights as:

Ŵ = W +∆W. (3)

By integrating the weights transferred from the visual features into the LLM’s weights, the visual
perception ability is naturally equipped. After merging the weights, no extra inference burden
will be introduced for LLM. For any weights in each decoder block of LLM, we can generate the
corresponding perceptual weights and integrate them into LLM’s weights.

3.3 Perceptual Weights Generator

To convert visual features to perceptual weights ∆W ∈ Rh×h, we propose the perceptual weights
generator. Since each layer and each type of weight in LLM focus on different visual information,
our perceptual weights generator needs to be able to generate weights corresponding to each of the
LLM weights flexibly.

Inspired by DETR [6] and BLIP-2 [27], we design the perceptual weights generator as a decoder-
only architecture with cross-attention layers to generate ∆W ∈ Rh×h. As shown in Fig. 3 (a),
the perceptual weights generator contains N blocks, each comprising a self-attention module, a
cross-attention module, and a feed-forward network. The hidden states dimension of the perceptual
weights generator is hp, where hp ≪ h · h. We set k learnable perceptual quires corresponding
to the number of decoder blocks where we want to insert perceptual weights. For each block, the
perceptual queries first pass through the self-attention module, then interact with visual features in the
cross-attention module, and finally go through a feed-forward network. After N blocks, we obtain
k features pv ∈ Rhp . The features pv should be mapped to the target shape of perceptual weights
∆W ∈ Rh×h. However, due to hp ≪ h · h, directly mapping the dimensions of the pv from hp

to h · h with a linear layer can introduce a large number of parameters, dramatically reducing the
feasibility. Therefore, we consider introducing the low-rank property in this process. We adopt a
shared linear layer Wshare ∈ Rhp×h·r to map all features pv from hp to h · r as follows:

Wv = pvWshare, (4)

where r is the rank for perceptual weights and Wv ∈ Rh·r is visual parameter.

5

0 500 1000 1500 2000 2500
Number of visual tokens

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

GF
LO

Ps

×104 GFLOPs with different number of input visual tokens
LLaVA (C=32)
VLoRA (C=32)
LLaVA (C=128)
VLoRA (C=128)
LLaVA (C=256)
VLoRA (C=256)

0 500 1000 1500 2000 2500
Number of visual tokens

0.2

0.4

0.6

0.8

FL
OP

s R
at

io

FLOPs ratio with different number of input visual tokens
C=32
C=128
C=256

Figure 4: Comparison of FLOPs. This figure shows the FLOPs of LLaVA and VLoRA with different
numbers of input visual tokens. The left subplot illustrates the change in GFLOPs, the right subplot
plots the ratio of GFLOPs for VLoRA to LLaVA, and C denotes the number of text tokens.

And we reshape the output Wv as h×r. When ascending to the target dimension h×h, k independent
linear layers Ws ∈ Rr×h are used for each visual parameter and obtain k perceptual weights ∆W ,
this process can be formulated as follows:

∆W = WvWs. (5)

Substituting Eq. (5) into Eq. (3), we get:

Ŵ = W +∆W = W +WvWs. (6)

Considering the low-rank property of Wv and Ws, we can observe that Eq. (6) and LoRA [18] are of
the same form, where Wv corresponds to ∆WA and Ws corresponds to ∆WB . As illustrated in Fig. 3
(b), our perceptual weights generator can be seen as “LoRA weights generator” from the perspective
of LoRA. This is because it generates ∆WA and ∆WB for weights of LLM. Our perceptual weights
generator generates one type of perceptual weights for k decoder blocks at a time. For generating
multiple types of weights, we employ multiple perceptual weights generators.

3.4 Analysis of the Computational Cost

By not introducing additional visual tokens in the input of the LLM, our VLoRA achieves higher
computational efficiency for both training and inference. We only consider the computational
cost of LLM, as the computational overhead of our perceptual weights generator is negligible
in comparison. We assume the LLM has d blocks and hidden states dimension of h, the input
text length is C, and the number of visual tokens is L. For convenience, we only consider the
computational cost of the self-attention module and feed-forward network in LLM. The FLOPs
of the self-attention module and the feed-forward network are 8Lh2 + 4L2h and 16Lh2. For
previous MLLMs that align visual features to the input space of LLM, the FLOPs of LLM are
24(L + C)dh2 + 4(L + C)2dh. For our VLoRA, the extra computational cost occurs in Eq. (6),
where ∆WA is multiplied with ∆WB . Assuming that we generate perceptual weights for all 5
types of weighs in k decoder blocks. During training, we do not merge the perceptual weights
with the LLM weights but use them as branches of the LLM weights. Therefore, the FLOPs are
24Cdh2 + 4C2dh + 24krh2 + 12Ckh2 + 14Ckh. For inference, the perceptual weights can be
merged into the LLM, and the FLOPs are 24Cdh2+4C2dh+24krh2+12kh2. Details of the FLOPs
calculation are in the Appendix A. There is a small increase in the overhead of training compared to
inference, and we compare by the training FLOPs. In Fig. 4, we compare the FLOPs of LLaVA and
VLoRA. Our approach does not introduce additional computation as the number of visual tokens
increases, and our FLOPs are only 8% of LLaVA-v1.5’s when the text length is 32.

4 Experiments

4.1 Implementation Details

Model Settings. We use Vicuna-7b-v1.5 [65] as our foundational LLM and CLIP-ViT-L-14 [50] as
vision encoder. The perceptual weights generator is initialized randomly. For the perceptual weights

6

generator, we set the hidden size hp as 512, and the number of blocks N as 8. The rank r of perceptual
weights is 64. The number of perceptual queries is 8, which means that we insert perceptual weights
∆W only on 8 blocks, and in the implementation, for Vicuna-7b-v1.5 with 32 blocks, we insert ∆W
every 4 blocks. For better visual perceptual ability, we insert ∆W for all five types of weights in LLM.
It is worth noting that the last k linear layers of the perceptual weights generator are zero-initialized as
they are equivalent to the ∆WB of LoRA weights, which are initialized as zero for training stability.

Pre-training Data. During pre-training, we use image-text pairs to train our model. Specifically, we
use a subset of CapsFusion-120M [59] with 30 million image-text pairs. CapsFusion-120M randomly
collects image-text pairs from LAION-COCO [1], which contains both web-crawled and synthetic
captions generated by BLIP [28]. Then, a fine-tuned LLM is used to integrate both types of captions.

Pre-training Configuration. We freeze the weights of LLM and visual encoder in the pre-training
stage, making only the perceptual weights generator trainable. We use the AdamW [40] optimizer
with a learning rate of 5e-5, which follows a linear warm-up and then a cosine decay schedule. The
pre-training is conducted with a total batch size of 768 for 40,000 iterations. The input images are
resized to a resolution of 336 × 336. The pre-training stage uses 24 NVIDIA H800 GPUs for 7 hours.

Fine-tuning Data. For supervised fine-tuning, we adopt the same data as LLaVA-v1.5. Specifi-
cally, the supervised fine-tuning data is constructed with VQAv2 [13], GQA [19], OKVQA [45],
OCRVQA [46], A-OKVQA [52], TextCaps [53], RefCOCO [44, 21], Visual Genome [23],
ShareGPT [2], and LLaVA-Insturct [36], with a total of 665K conversation data.

Fine-tuning Configuration. During the fine-tuning stage, we freeze the vision encoder and update
the weights of the perceptual weights generator and LLM. The learning rate is set to 5e-5 and the
learning rate schedule is the same as in the pre-training stage. The global batch size is 128. We train
for one epoch on 8 NVIDIA H800 GPUs, which takes 2 hours.

4.2 Benchmarks for Evaluation

MMBench & CCBench. MMBench [39] is a comprehensive multimodal benchmark designed to
evaluate the performance of MLLMs. It includes over 3,000 multiple-choice questions covering 20
ability categories. The evaluation is divided into perceptual and reasoning dimensions and subdivided
into 20 categories. CCBench [39], released by the MMBench team, is designed for evaluating
MLLMs in the domain of Chinese Culture.

MME. MME [12] also measures the advanced MLLMs in terms of perception and cognition, with a
total of 14 subtasks. To minimize the influence of prompt engineering on MLLMs, the instructions of
MME are designed as simple binary responses: “please answer yes or no".

ScienceQA. ScienceQA [42] is constructed from elementary and high school science curricula.
Questions of ScienceQA span three subjects: natural science, language science, and social science.
We use samples with images from the validation set to evaluate MLLMs.

HallusionBench. HallusionBench [14] is designed for evaluating image-context reasoning, including
346 images paired with 1129 questions crafted by human experts. Unlike other benchmarks [15, 30,
33] that focus on object hallucinations with limited topics and visual input types, HallusionBench
considers both language hallucinations and visual illusions across a diverse range of topics.

MMMU. MMMU [60] collects 11.5K multimodal questions from college exams, quizzes, and
textbooks, covering six core disciplines, spanning 30 subjects and 183 subfields, and comprising
30 heterogeneous image types. MMMU is more challenging than existing benchmarks due to the
demand for college-level domain-specific knowledge.

4.3 Comparison with State-of-the-arts

Tab. 1 compares our VLoRA with other state-of-the-art MLLMs on six MLLM benchmarks. The
results are obtained from OpenCompass [8]. Unlike other MLLMs, our VLoRA does not require any
visual tokens during LLM inference and has only 8% of the computational overhead of LLaVA-v1.5
when the text length is 32. On most benchmarks, VLoRA outperforms InstructBLIP, MiniGPT-
4, Idefics-instruct, and OpenFlamingo v2. Compared with Qwen-VL-Chat pre-trained on 1.4B
image-text pairs, VLoRA has a higher score of 3.7 on MMBench and 1.3 on ScienceQA. Compared
with LLaVA-v1.5, VLoRA can achieve comparable performance on MMBench, ScienceQA, and

7

Table 1: Comparisons on six MLLM benchmarks, including MMBench, MME, ScienceQA, Hallu-
sionBench, MMMU, and CCBench. vis. tok. denotes the number of visual tokens involved in the
LLM. Bolded numbers indicate the best results, and underlined numbers are the second-best results.

Model Size # vis. tok. MMBench MME ScienceQA HallusionBench MMMU CCBench

InstructBLIP [9] 8B 32 36.0 1137.1 54.7 31.2 30.6 12.7
MiniGPT-4-v1 [66] 7B 32 12.2 770.6 39.0 31.9 23.6 1.8
MiniGPT-4-v2 [7] 7B 256 24.3 708.4 54.1 30.0 25.0 1.4
Idefics-instruct [25] 9B 64 48.2 942 51.6 27.3 18.4 7.8
OpenFlamingo v2 [3, 4] 9B 64 6.6 535 45.7 29.4 28.2 6.3
Qwen-VL [5] 9.6B 256 38.2 334.1 57.7 29.9 29.6 6.1
Qwen-VL-Chat [5] 9.6B 256 60.6 1467.8 65.5 36.8 37.0 41.2
LLaVA-v1.5 [34] 7.2B 576 64.3 1510.7 66.8 27.6 35.7 27.5
VLoRA 7.8B 0 63.4 1311.3 66.4 26.4 33.7 28.6

Table 2: Comparison to LLaVA-v1.5 with various settings on six MLLM benchmarks, including
MMBench, MME, ScienceQA, HallusionBench, MMMU, and CCBench. PT data represents the
pre-training data. vis. tok. denotes the number of visual tokens involved in LLM.

Model PT data # vis. tok. MMBench MME ScienceQA HallusionBench MMMU CCBench

LLaVA-7b-v1.5 blip-558k 576 64.3 1510.7 66.8 27.6 35.7 27.5
LLaVA-7b-v1.5 CapsFus-30m 576 64.6 1470.0 67.7 27.4 33.8 25.3
LLaVA-7b-v1.5-QFormer CapsFus-30m 128 60.7 1241.5 67.3 26.7 33.8 25.3
VLoRA CapsFus-30m 0 63.4 1311.3 66.4 26.4 33.7 28.6

HallusionBench and even better performance on CCBench. However, the results on MME fall short
of LLaVA-v1.5 since our perceptual weights generator is randomly initialized and necessitates more
image-text pair data during the pre-training stage. To verify this, in Tab. 2, we reproduce LLaVA-v1.5
by replacing the projector with a randomly initialized Q-Former and achieve similar results on MME.
Our VLoRA achieves comparable performance to state-of-the-art MLLMs without introducing visual
tokens as LLM inputs, drastically reducing computational overhead.

5 Ablation Study

Currently, the performance of MLLMs is significantly affected by the foundational LLMs and the
training data, including pre-training data and supervised fine-tuning data. To explore the effectiveness
of our proposed paradigm and model, we perform a fair comparison with LLaVA-v1.5 [36] by
adopting the same foundation LLM and training data in this section. Then, with this setting, we also
explore the impact of different settings of each component on performance.

5.1 Comparison with LLaVA-v1.5

To ensure a fair comparison with LLaVA-v1.5, we reproduce LLaVA-v1.5 with the same setting as
our VLoRA, including the pre-training and supervised fine-tuning data. Furthermore, to eliminate
the influence of the difference in the projector, we replace the project of LLaVA-v1.5 as a randomly
initialized Q-Former, which has the same number of blocks and hidden size as our perceptual weights
generator. The training is conducted using the same pre-training and fine-tuning data as VLoRA.

In Tab. 2, the second row is the results of LLaVA-v1.5 pre-training on CapsFus-30m. With more
pre-training data, LLaVA-v1.5 doesn’t achieve significant improvement on MLLM benchmarks but
rather a drop on MME, HallusionBench, MMMU, and CCBench. Our VLoRA is still comparable
with the LLaVA-v1.5 training on the same data. The third row is the results of LLaVA-v1.5 with
Q-Former, which is pre-trained on CapsFus-30m. We set the number of learnable queries as 128, thus
the number of visual tokens is 128. Except for being slightly lower in ScienceQA and HallusionBench,
our VLoRA is significantly better on other MLLM benchmarks. These results demonstrate that our
approach is comparable to or even better than LLaVA-v1.5 with consistent settings.

8

Table 3: The impact of weights type that equipped perceptual weights. q, k, v, and o denote the query,
key, value, and output weights in the self-attention module, respectively. m denotes the weights of
the feed-forward network.

Weights type MMBench MME ScienceQA HallusionBench MMMU CCBench

qkvom 63.4 1311.3 66.4 26.4 33.7 28.6
qkvm 59.6 1227.5 64.6 23.4 33.2 24.9
qkv 59.4 1267.9 65.8 23.2 33.9 28.8
qko 57.2 1240.5 64.0 23.4 34.6 24.9
qk 53.3 1169.8 65.0 23.5 32.0 21.8

Table 4: The impact of perceptual weights’ rank. The rank of the generated perceptual weights
indicates the extent of visual information compression.

Rank MMBench MME ScienceQA HallusionBench MMMU CCBench

r = 16 59.4 1212.7 67.1 22.9 33.7 24.5
r = 32 60.7 1235.6 67.2 23.5 33.2 25.3
r = 64 63.4 1311.3 66.4 26.4 33.7 28.6
r = 128 61.0 1228.4 68.0 23.8 33.4 26.7

5.2 Analysis of each component

To further analyze VLoRA, we explore the impact of each component, including the type of weights
that equipped perceptual weights, the rank of perceptual weights, and the number of blocks of
perceptual weights generator.

The type of weights that equipped perceptual weights. As we mentioned in Sect. 3.1, there are
five types of weights in the decoder block of LLM, which are query, key, value, output, and mlp. We
explore the impact of inserting perceptual weights for different types of LLM weights. As shown
in Tab. 3, we compare different combinations, including qkvom, qkvm, qkv, qko, and qk. The model
that equipped perceptual weights for all types of weights can achieve the best performance on most
benchmarks. We notice that the performance of qkv is much better than qk. This suggests that the
value matrix is essential for visual perception since the output of the value matrix will be weighted
and summed, involving the results of the self-attention module.

The rank of perceptual weights. The rank of the generated perceptual weights represents the
degree of visual information compression. The smaller the rank, the more compressed the visual
information. We compare the performance of rank r from 16 to 128 in Tab. 4. When the r = 16, the
visual information is compressed severely in perceptual weights. However, LLM with such low-rank
perceptual weights can still perceive visual information. From r = 16 to r = 64, the performance
on MMBench, MME, HallusionBench, and CCBench improves with increasing rank. Specifically,
the score of MMBench increases from 57.6 to 63.4, and the score of MME increases from 1163.8 to
1311.3. When the rank reaches 128, VLoRA’s performance declines across these benchmarks. The
reason might be that the visual information becomes redundant, and a large rank may introduce noise
into the perceptual weights, which hurts LLM’s capability.

The number of blocks of perceptual weights generator. To explore the influence of the perceptual
weights generator, we perform experiments with different numbers of blocks in the perceptual weights
generator. In Tab. 5, we observe that the performance of the weights generator with 8 blocks is better
than with 4 blocks. However, when it comes to N = 12, the scores on ScienceQA and CCBench are
higher than with 8 blocks, but performance drops on other benchmarks. This suggests that while a
stronger perceptual weights generator can achieve better performance, there is no benefit to increasing
the number of blocks after the threshold is reached.

6 Conclusion

In this paper, instead of aligning visual features with the input space of LLM, we propose VLoRA
to align visual features with the parameter space of LLM. By not introducing visual tokens into

9

Table 5: The impact of different numbers of blocks of perceptual weights generator.

Blocks MMBench MME ScienceQA HallusionBench MMMU CCBench

N = 4 60.7 1289.3 63.9 24.4 32.0 26.7
N = 8 63.4 1311.3 66.4 26.4 33.7 28.6
N = 12 61.3 1289.3 67.1 25.5 33.8 30.2

LLM, our VLoRA can make LLM perceive visual information without extra computational overhead.
To convert visual features into perceptual weights, we propose the perceptual weights generator to
generate low-rank perceptual weights for any weights of LLM. Due to the low-rank property, the
perceptual weights can be seen as LoRA weights, while ∆WA is generated and ∆WB is learnable. We
perform comprehensive experiments on six MLLM benchmarks, and VLoRA can achieve comparable
performance to LLaVA-v1.5 in most benchmarks while only bringing 10% computational cost as
LLaVA’s. In the ablation study, we reproduce LLaVA-v1.5 under the same settings and show that our
method can achieve better performance.

7 Limitations

Despite VLoRA’s promising performance on various benchmarks, it still has some limitations. 1)
Representing images as model weights is a previously unexplored practice, and the extracted features
from existing CLIP models may not be suitable to be converted into model weights. It is necessary to
explore a vision encoder that is more suitable for this paradigm. 2) We use one perceptual weights
generator for one type of weight, which may lead to an insufficient correlation between different
types of generated perceptual weights. It may be better to use the same perceptual weights generator
to produce weights for all types at once.

Acknowledgments and Disclosure of Funding

This work was in part supported by the National Natural Science Foundation of China under grants
62032006 and 62021001, and by the Institute of Artificial Intelligence, Hefei Comprehensive National
Science Center under grants 21KT013 and 23YGXT001. Mike Shou does not receive any funding
for this work.

References
[1] Laion coco: 600m synthetic captions from laion2b-en. https://laion.ai/blog/laion-coco, 2022.

[2] Sharegpt. https://sharegpt.com, 2023.

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for
few-shot learning. NeurIPS, 35:23716–23736, 2022.

[4] Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-source framework for training
large autoregressive vision-language models. arXiv preprint arXiv:2308.01390, 2023.

[5] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and
Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv preprint
arXiv:2308.12966, 2023.

[6] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In ECCV, pages 213–229. Springer, 2020.

[7] Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Krish-
namoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large language model
as a unified interface for vision-language multi-task learning. arXiv preprint arXiv:2310.09478, 2023.

[8] OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

10

https://laion.ai/blog/laion-coco
https://sharegpt.com
https://github.com/open-compass/opencompass

[9] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang
Li, Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with
instruction tuning. NeurIPS, 36, 2024.

[10] Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Xilin Wei, Songyang
Zhang, Haodong Duan, Maosong Cao, Wenwei Zhang, Yining Li, Hang Yan, Yang Gao, Xinyue Zhang,
Wei Li, Jingwen Li, Kai Chen, Conghui He, Xingcheng Zhang, Yu Qiao, Dahua Lin, and Jiaqi Wang.
Internlm-xcomposer2: Mastering free-form text-image composition and comprehension in vision-language
large model. arXiv preprint arXiv:2401.16420, 2024.

[11] Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Songyang Zhang, Haodong
Duan, Wenwei Zhang, Yining Li, et al. Internlm-xcomposer2-4khd: A pioneering large vision-language
model handling resolutions from 336 pixels to 4k hd. arXiv preprint arXiv:2404.06512, 2024.

[12] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin,
Jinrui Yang, Xiawu Zheng, et al. Mme: A comprehensive evaluation benchmark for multimodal large
language models. arXiv preprint arXiv:2306.13394, 2023.

[13] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in VQA
matter: Elevating the role of image understanding in Visual Question Answering. In CVPR, 2017.

[14] Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen,
Furong Huang, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusionbench: An advanced diagnostic
suite for entangled language hallucination & visual illusion in large vision-language models, 2023.

[15] Anisha Gunjal, Jihan Yin, and Erhan Bas. Detecting and preventing hallucinations in large vision language
models. In AAAI, volume 38, pages 18135–18143, 2024.

[16] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In ICLR, 2017.

[17] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In ICML,
pages 2790–2799. PMLR, 2019.

[18] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al.
Lora: Low-rank adaptation of large language models. In ICLR, 2021.

[19] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and
compositional question answering. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6700–6709, 2019.

[20] Shibo Jie, Yehui Tang, Ning Ding, Zhi-Hong Deng, Kai Han, and Yunhe Wang. Memory-space visual
prompting for efficient vision-language fine-tuning. In ICML, 2024.

[21] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to objects
in photographs of natural scenes. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 787–798, 2014.

[22] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In ICCV, pages 4015–4026,
2023.

[23] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. International journal of computer vision, 123:32–73, 2017.

[24] Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building vision-
language models? arXiv preprint arXiv:2405.02246, 2024.

[25] Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas
Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, and Victor Sanh. Obelics:
An open web-scale filtered dataset of interleaved image-text documents, 2023.

[26] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages
3045–3059, 2021.

[27] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. In ICML, pages 19730–19742. PMLR, 2023.

11

[28] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. In ICML, pages 12888–12900. PMLR, 2022.

[29] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–
4597, 2021.

[30] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination
in large vision-language models. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

[31] Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
Xiang Bai. Monkey: Image resolution and text label are important things for large multi-modal models. In
proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2024.

[32] Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi Shao,
Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual embeddings for multi-modal
large language models. arXiv preprint arXiv:2311.07575, 2023.

[33] Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Aligning large
multi-modal model with robust instruction tuning. arXiv preprint arXiv:2306.14565, 2023.

[34] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2023.

[35] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next:
Improved reasoning, ocr, and world knowledge, January 2024.

[36] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS, 2023.

[37] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024.

[38] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt understands,
too. AI Open, 2023.

[39] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhnag, Wangbo Zhao, Yike Yuan, Jiaqi Wang,
Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal model an all-around
player? arXiv:2307.06281, 2023.

[40] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2018.

[41] Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Yaofeng Sun, et al. Deepseek-vl: towards real-world vision-language understanding. arXiv
preprint arXiv:2403.05525, 2024.

[42] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question
answering. In The 36th Conference on Neural Information Processing Systems (NeurIPS), 2022.

[43] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-efficient
multi-task fine-tuning for transformers via shared hypernetworks. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 565–576, 2021.

[44] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
Generation and comprehension of unambiguous object descriptions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 11–20, 2016.

[45] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question
answering benchmark requiring external knowledge. In Proceedings of the IEEE/cvf conference on
computer vision and pattern recognition, pages 3195–3204, 2019.

[46] Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa: Visual
question answering by reading text in images. In 2019 international conference on document analysis and
recognition (ICDAR), pages 947–952. IEEE, 2019.

12

[47] OpenAI. Gpt-4 technical report, 2023.

[48] OpenAI. Gpt-4v(ision) system card. 2023.

[49] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:
Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247, 2020.

[50] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In ICML, pages 8748–8763. PMLR, 2021.

[51] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. NeurIPS, 35:25278–25294, 2022.

[52] Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi. A-
okvqa: A benchmark for visual question answering using world knowledge. In European Conference on
Computer Vision, pages 146–162. Springer, 2022.

[53] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for image
captioning with reading comprehension. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pages 742–758. Springer, 2020.

[54] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter: Parameter-efficient transfer learning for vision-
and-language tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5227–5237, 2022.

[55] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[56] Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide shut?
exploring the visual shortcomings of multimodal llms, 2024.

[57] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[58] Haoran Wei, Lingyu Kong, Jinyue Chen, Liang Zhao, Zheng Ge, Jinrong Yang, Jianjian Sun, Chunrui
Han, and Xiangyu Zhang. Vary: Scaling up the vision vocabulary for large vision-language models. arXiv
preprint arXiv:2312.06109, 2023.

[59] Qiying Yu, Quan Sun, Xiaosong Zhang, Yufeng Cui, Fan Zhang, Xinlong Wang, and Jingjing Liu.
Capsfusion: Rethinking image-text data at scale. arXiv preprint arXiv:2310.20550, 2023.

[60] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding
and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

[61] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
pre-training. In ICCV, pages 11975–11986, 2023.

[62] Pan Zhang, Xiaoyi Dong Bin Wang, Yuhang Cao, Chao Xu, Linke Ouyang, Zhiyuan Zhao, Shuangrui
Ding, Songyang Zhang, Haodong Duan, Hang Yan, et al. Internlm-xcomposer: A vision-language large
model for advanced text-image comprehension and composition. arXiv preprint arXiv:2309.15112, 2023.

[63] Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
Hongsheng Li, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init
attention. arXiv preprint arXiv:2303.16199, 2023.

[64] Zhengkun Zhang, Wenya Guo, Xiaojun Meng, Yasheng Wang, Yadao Wang, Xin Jiang, Qun Liu, and
Zhenglu Yang. Hyperpelt: Unified parameter-efficient language model tuning for both language and
vision-and-language tasks. In Findings of the Association for Computational Linguistics: ACL 2023, pages
11442–11453, 2023.

[65] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging
llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

[66] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: Enhancing
vision-language understanding with advanced large language models. In ICLR, 2024.

13

A Analysis of VLoRA computational overhead

In this subsection, we give a detailed calculation of the computational overhead of VLoRA. Similar
to Sect. 3.4, we assume the LLM has d blocks and hidden states dimension of h, the input text length
is C, and the number of visual tokens is L. Therefore, the FLOPs of the self-attention module and the
feed-forward network are 8Lh2+4L2h and 16Lh2. Since visual tokens are not introduced, then LLM
has a computational overhead of 24Cdh2+4C2dh for text token sequence input. For training, we use
perceptual weights as branches of LLM weights. The extra computation comes from three parts: 1)
the matrix multiplication of the two perceptual weights with FLOPs of 24krh2. 2) The multiplication
of the text token and the perceptual weights with FLOPs of 12Ckh2. 3) The output coming out of the
perceptual weights is to be added to the output of the LLM weights with FLOPs of 14Ckh. Therefore,
the total FLOPs of VLoRA during training is 24Cdh2 +4C2dh+24krh2 +12Ckh2 +14Ckh. For
inference, we merge the perceptual weights with LLM’s weights. The extra computation comes from
two parts: 1) the matrix multiplication of the two perceptual weights with FLOPs of 24krh2, which
is the same as training. 2) Adding perceptual weights to LLM weights with FLOPs of 12kh2. The
total FLOPs during inference are 24Cdh2 + 4C2dh+ 24krh2 + 12kh2.

B Visualization Results

VLoRA can achieve promising results on various MLLM benchmarks, but these benchmarks are
either multiple choice or judgmental, and to demonstrate VLoRA’s capabilities even further, we show
some real-world samples in Fig. 5. The first figure suggests that our VLoRA can count the accurate
number of steaks in the image. The second figure shows that VLoRA has sufficient common sense.
In the third figure, VLoRA demonstrates the ability to reason and have long text conversations.

Q: How many steaks are in the image?
A: There are two steaks in the image?

Q: Why is the river golden
yellow?
A: The river appears golden
yellow due to the reflection of
the sunlight on the water. The
sunlight creates a warm and
vibrant glow on the surface of
the river, which is then
reflected onto the water's
surface. This phenomenon is
common in bodies of water,
especially during sunrise or
sunset, when the sunlight
creates a beautiful and
colorful atmosphere.

Q: Who is the director of this film?
A: James Cameron

Figure 5: Visualization results of VLoRA. This figure demonstrates the capabilities of our VLoRA
in real-world scenarios, including accurate counting and common sense reasoning.

C Broader Impacts

Our proposed new paradigm significantly improves the training and inference efficiency of multimodal
large models and reduces the computational overhead, which, in terms of research, can reduce the
resource threshold of multimodal large model research, which is conducive to the active exploration
of researchers in related fields, and, in terms of practical application, reduces the cost of large-scale
deployment for use and helps to reduce the consumption of resources.

D Comparisons on Fine-grained Benchmarks

We provide more results on fine-grained benchmarks for comprehensive comparisons, including
TextVQA, DocVQA, InfoVQA, and OCRBench. As shown in Tab. 6, on these fine-grained bench-
marks, VLoRA’s performance has a gap compared to LLaVA on TextVQA and DocVQA, but it
can achieve comparable results on InfoVQA. VLoRA converts CLIP’s visual features into model
weights, but CLIP’s visual features are aligned with text rather than model parameters. Therefore,
we need more diverse data to allow the weights generator to learn this transformation well. Since
our pre-training data is coarse-grained image captioning data and the amount of fine-tuning data
is limited, the performance of VLoRA trained on this dataset is not as good as LLaVA in some
fine-grained tasks.

14

Table 6: Comparisons between VLoRA and LLaVA-v1.5 on fine-grained benchmarks, including
TextVQA, DocVQA, InfoVQA, and OCRBench.

Model Size # vis. tok. TextVQA DocVQA InfoVQA OCRBench Avg.

LLaVA-v1.5 [34] 7.2B 576 58.2 18.4 20.4 31.8 28.0
VLoRA 7.8B 0 51.4 13.4 19.5 27.7 25.8

Table 7: Comparisons of Training Speed and GPU Memory Requirements between VLoRA and
LLaVA-v1.5

pre-training LLaVA pre-training VLoRA fine-tuning LLaVA fine-tuning VLoRA

Training Speed 106 samples/s 246 samples/s 46 samples/s 73 samples/s
GPU RAM 79G 58.6G 79G 79G

E Analysis of Training and Inference Efficiency

E.1 Training Efficiency Analysis

As shown in Tab. 7, in the pre-training stage, the training speed of VLoRA can be 2.3 times faster
than LLaVA. LLaVA’s peak memory usage is 79G, while VLoRA’s is significantly less at 58.6G. In
the fine-tuning phase, VLoRA maintains a considerable advantage in training speed and can train 73
samples per second, 1.6 times faster than LLaVA. The memory usage of both is similar, around 79G,
due to the learnable parameters of the LLM being the primary contributors to memory usage.

E.2 Inference Efficiency Analysis

During the prefilling stage, VLoRA saves time by not calculating the kv cache for visual tokens. In
the decoding stage, VLoRA decreases the time needed to calculate attention scores with visual tokens
for each new token. As a result, VLoRA maintains an advantage in inference efficiency, even when
generating long sentences.

Prefilling stage. Using a single A100 with flash attention, LLaVA takes 65 ms to produce the first
token, whereas VLoRA only takes 45 ms. The primary time consumption for VLoRA is in weight
generation, which has optimization potential, such as employing a single weight generator for all
weight types.

Decoding stage. With a generated sequence length set at 256, and using Flash Attention, KV Cache,
and Batch Inference to maximize speed on a single A100, the inference speed of LLaVA is 410
tokens per second. In contrast, VLoRA achieves 1078 tokens per second, which is 2.6 times faster
than LLaVA.

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

15

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations in the main text.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not deal with theory assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

16

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release the source code, training instructions, and model checkpoints.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper specifies all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper does not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This paper provides sufficient information on the computer resources needed
to reproduce the experiments.

18

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential societal impacts in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

19

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets we use are all open source academic datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

20

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

	Introduction
	Related Works
	Method
	Preliminaries
	Visual Perception by LLM's Weights
	Perceptual Weights Generator
	Analysis of the Computational Cost

	Experiments
	Implementation Details
	Benchmarks for Evaluation
	Comparison with State-of-the-arts

	Ablation Study
	Comparison with LLaVA-v1.5
	Analysis of each component

	Conclusion
	Limitations
	Analysis of VLoRA computational overhead
	Visualization Results
	Broader Impacts
	Comparisons on Fine-grained Benchmarks
	Analysis of Training and Inference Efficiency
	Training Efficiency Analysis
	Inference Efficiency Analysis

