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Abstract

Data annotation is critical yet challenging, par-
ticularly for nuanced negative emotions in
resource-scarce and niche contexts like hate-
speech and incel discourse. We systematically
explore zero-, few-, and many-shot prompt-
ing strategies across three distinct prompting
types—base, chain-of-thought (CoT), and in-
context learning (ICL)—we uncover the lim-
itations of LLMs in handling nuanced and
domain-specific datasets, such as incel dis-
course. Our findings reveal persistent biases
in emotion perception, offering a roadmap to
enhance LLM performance in resource-scarce
contexts. Furthermore, we introduce and evalu-
ate a hybrid annotation framework, combining
LLM-generated annotations with human refine-
ments, which significantly improves accuracy,
inter-annotator agreement, and efficiency. This
work advances the understanding of NLP gen-
eralisation by demonstrating how LLMs can
support and complement human annotation ef-
forts, specifically in highly subjective challeng-
ing tasks.

1 Introduction

The classification of human emotions has been
widely researched (Tripathi et al., 2020; Lek and
Teo, 2023), with early studies identifying "anger",
"fear", "enjoyment", "sadness", "disgust", and "sur-
prise" as the basic emotions (Ekman, 1999). Emo-
tion mining, which involves the identification of
emotions in text based on linguistic features, has
become increasingly important in the context of
the rise of social media, where communication is
rapid and often emotionally charged (Min et al.,
2023). This task is critical in identifying key is-
sues in online speech, particularly in areas such
as hate-speech detection, which has significant im-
plications for mitigating online harms (Awal et al.,
2021; Plaza-del Arco et al., 2021; Rodriguez et al.,
2022; Paz et al., 2020; Warner and Hirschberg,
2012; MacAuvaney et al., 2019).

This gap motivates our research, aiming to eval-
uate LLMs in these challenging settings and pro-
vides a roadmap for improving their annotation
capabilities by evaluating various combinations of
annotation strategies for this task. While LLMs
have demonstrated remarkable success across a va-
riety of NLP tasks, their ability to generalise to
nuanced and domain-specific tasks, such as neg-
ative emotion mining in incel discourse, remains
underexplored. This study seeks to fill this gap by
examining how LLMs perform when tasked with
identifying subtle emotional nuances in resource-
scarce and challenging domains. We investigate
how generalisation capabilities vary under differ-
ent prompting strategies—base, chain-of-thought
(CoT), and in-context learning (ICL)—and across
zero-, few-, and many-shot settings. By focusing
on generalisation, we highlight the critical interplay
between model design, prompting strategies, and
domain complexity in advancing the robustness of
LLM:s.

In the domain of Natural Language Processing
(NLP), data annotation is a critical and multifaceted
process that transcends simple labelling (Yu et al.,
2023; Lin et al., 2022). This process typically en-
compasses multiple phases, including initial clas-
sification of raw data, integration of intermediate
markers for contextual depth, and evaluation of
the reliability of the annotator, often necessitating
several iterations (Ross et al., 2017; MacAvaney
et al., 2019; Shao et al., 2023; Zhang et al., 2022;
Efrat and Levy, 2020; Wei et al., 2021; Zhang et al.,
2022). The cognitive demands of annotating neg-
ative emotions are significantly heightened in do-
mains like hate-speech, where emotional subtleties
and data heterogeneity pose unique challenges.
This study is among the first to systematically eval-
uate how LLMs address these complexities, pro-
viding insights into their generalisation capabilities
and limitations (Zhang et al., 2023; Liu et al., 2024).
However, state-of-the-art large language models



(LLMs) such as GPT models (OpenAl et al., 2024)
and its successors, Claude-Opus (Anthropic, 2024),
and Gemma models (Team et al., 2024) present
promising avenues for revolutionising data anno-
tation (He et al., 2024). Automating this task can
ensure consistency across extensive datasets, which
can be subsequently leveraged for fine-tuning or,
as demonstrated in this study, through advanced
prompting techniques (Tan et al., 2024).

Negative emotions, such as "anger," "fear," and
"sadness," are well-documented in hateful or harm-
ful language. However, this work expands the
scope by incorporating underexplored emotions
like "loneliness" and "jealousy,"” which add critical
layers of nuance to emotion detection tasks. These
subtle emotions are often overlooked in NLP re-
search, making their detection vital for capturing
the full emotional complexity of hate-speech and
online hostility (Wang et al., 2023b). Although
emotions like "loneliness" and "jealousy" are chal-
lenging to detect due to subtle linguistic cues and
contextual overlaps, they are critical for understand-
ing the drivers of online hostility.

This is one of the first studies to assess LLM
generalisation for nuanced negative emotions in
underexplored niche domains. Our study lever-
ages state-of-the-art LLMs to tackle the underex-
plored challenge of annotating nuanced emotional
categories in hate-speech detection. By addressing
gaps in LLM generalisation and reducing reliance
on labour-intensive human annotation, our study
thus significantly contributes to the field of emotion
mining in NLP.

The contributions of this work are four-fold:

1 Cross-domain generalisation analysis: We
evaluate various state-of-the-art LLMs across
three datasets: a standard negative emotion
dataset, a hate-speech dataset and a domain-
specific incel dataset.

2 Prompting: We assess the impact of prompt
optimisation and generalisation by analysing
the effects of zero-, few- and many-shot
prompting on various LLM performances.

3 Misclassification: We examine model mis-
classification patterns and uncover systematic
biases in LLM output, specifically in distin-
guishing between similar emotions and assess-
ing emotion overlap.

4 Annotation system implications: We intro-

duce and evaluate a hybrid annotation frame-
work, where LLM-generated labels are refined
by human annotators. This work highlights
the practical utility of hybrid systems in re-
ducing annotator burden while maintaining
high-quality annotations in resource-scarce
and emotionally complex settings.

2 Related Work

Approaches to sentiment and emotion classifica-
tion have varied in their analysis (Ranganathan and
Tzacheva, 2019). Some approaches used a largely
linguistic focus with the extraction of features such
as n-grams, lexical, syntactic, semantic, and word
embeddings (Yassine and Hajj, 2010; Mishne and
Glance, 2006).

With the recent success of generative models,
most of the work in this area has focused on senti-
ment analysis using GANs (Peper and Wang, 2022;
Mahalakshmi et al., 2024), and LLMs, such as GPT
models (Brown et al., 2020a; Magdaleno et al.,
2024; Kheiri and Karimi, 2023; Suhaeni and Yong,
2024; Zhan et al., 2024). Several studies have ex-
amined the capacity of LLMs to identify more fine-
grained emotions. For instance Boitel et al., 2024
and Venkatakrishnan et al., 2023 compared the
performance of out-of-the-box GPT-3 with BERT-
and RoBERTa-based task-specific classifiers, show-
ing a performance advantage for the latter. Simi-
larly, Wang et al. (2023a) reported an unsatisfactory
performance of GPT-3.5 in detecting emotions in
memes. Nevertheless, GPT-3 has proven to be very
efficient for data augmentation and enhancing its
outputs with classifiers (Kok-Shun et al., 2023).
The newer GPT-4 (OpenAl et al., 2024) has been
reported to surpass 89% of human annotators in an-
notation quality for the task of emotion recognition
(Wang et al., 2023c).

The focus on uniquely negative emotions has
already been explored for various applications. For
example, AlSagri and Ykhlef (2016) used cluster-
ing to analyse and counteract negative emotional
contagion in online social networks. Kodati and
Dasari (2024) detected negative emotions related
to COVID-19 using auto-regressive transformers,
framing it as a classification task. Negative emo-
tions are particularly relevant for social media anal-
ysis tasks such as hate-speech and fake news detec-
tion. Schifer and Kistner (2023) showed a strong
correlation between negative emotions like disgust
and extreme forms of hate-speech. Additionally,
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Figure 1: Label Agreement Matrix between Models in
percentage. This matrix illustrates the percentage of
label agreement between different models for the base
prompt labels.

Min et al. (2023) demonstrated that capturing cor-
relations between hate-speech and negative emo-
tional states improved the performance of their hy-
brid system based on BERT. Negative emotions
have also been shown to play a crucial role in the
virality of fake news (Corbu et al., 2021), with neg-
atively biased fake news correlating with people’s
willingness to share it. According to Farhoudinia
et al. (2024), fear emerged as a significant differen-
tiator between fake and real news. However, there
has been no study focusing on the usage of LLMs
for negative emotion or hate-speech data annota-
tion.

2.1 LLMs for annotation
2.2 Prompting types

LLMs have shown impressive abilities to solve
complex reasoning tasks by breaking them down
into intermediate steps before providing a final an-
swer (Brown et al., 2020b; Thoppilan et al., 2022;
Rae et al., 2022; Chowdhery et al., 2022). This
stepwise reasoning process is induced by chain-of-
thought (CoT) prompting (Wei et al., 2023). CoT
prompting prompts LLMs to generate a sequence
of reasoning steps that lead to the final answer.
This has been achieved through zero-, few- and
many-shot prompting (Kojima et al., 2023; Wei
et al., 2023; Zhang et al., 2022). CoT prompt-
ing is closely related to in-context learning (ICL)
(Radford et al., 2019; Brown et al., 2020b). Here,
the models are guided to perform specific tasks by
including a few examples of inputs. ICL allows
models to generalise across tasks in both zero-, few-

and many-shot settings.

Although ICL has shown success, research has
highlighted that its performance can vary signif-
icantly depending on the choice of examples in
context (Liu et al., 2021; Lu et al., 2022). Fac-
tors such as the wording, or order of the examples
within the prompt can lead to notable variations
in performance (Webson and Pavlick, 2022; Zhao
et al., 2021). This emphasises the need for careful
design when using LLMs for complex reasoning
tasks. We apply CoT prompting and ICL in zero-,
few-, and many-shot settings to evaluate their im-
pact on negative emotion mining. Using a base
prompt as a baseline across these settings, we aim
to assess how CoT and ICL improve model per-
formance, particularly in tasks requiring nuanced
emotional understanding. This allows us to directly
compare their effectiveness and establish the ben-
efits of intermediate reasoning steps in enhancing
task accuracy.

3 Methodology
3.1 Data

In this paper, we utilise three datasets for our anal-
ysis. The datasets were obtained from Kaggle or
scraped from the website Incels.is. Due to ethical
constraints, we are unable to publish the labelled
incel corpora. The first corpus has been previously
labelled with the emotion labels "anger", "sadness",
and "fear", and is referred to as the Negative Emo-
tion dataset'. The second dataset is the hate-speech
detection dataset, where we reduce the labels to
"hate-speech” and "not hate-speech"?. The final
dataset is the incel corpus, annotated by human
evaluators. The labels for this corpus are "sadness",
"anger", "fear", "loneliness", "jealousy", and "not
sure". We compare these humanly annotated labels
across all three datasets to the automatically gener-
ated labels. Further details on the labelling process

can be found in Section 2.1.

3.2 Model selection

We utilised the current state-of-the-art models to
generate the negative emotion labels. We use three
OpenAl models (OpenAl, 2023) namely GPT-3.5,
GPT-4 and GPT-40. We also use Claude-Opus cre-
ated by Anthropic (Anthropic, 2024) and Gemma-

"Access: https://www.kaggle.com/datasets/
abdallahwagih/emotion-dataset

2Access: https://www.kaggle.com/datasets/
mrmorj/hate-speech-and-offensive-language-dataset
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2b created by Google (Team et al., 2024). These
models have been reported to have extremely com-
petitive performances across different tasks (Wu
et al., 2023).

Models Creator Size Access
GPT-3.5 OpenAl | 175B API
GPT-4 OpenAl - API
GPT-40 OpenAl - API
Claude-Opus | Anthropic | 137B API
Gemma-2b Google 2B | Hugging Face

Table 1: LLMs used in the annotation process, detailing
the model, creator, size, access type, and access method.

Reaching sufficient agreement levels is a difficult
task for human annotators, and yet it has not been
investigated in LLMs (Tan et al., 2024). There-
fore, we propose to analyse precisely this, together
with a breakdown of misclassifications in order to
understand how we can improve the emotional un-
derstanding capabilities of LLMs. As previously
mentioned, the dataset with negative emotion la-
bels had already been annotated and utilised in
other research. Therefore, this data did not require
additional human labelling. However, the incel
dataset necessitated human annotation. Initially,
the dataset was labelled using the LLMs employed
in this study. Subsequently, human annotators were
tasked with labelling a subset of the dataset (10%).
They were instructed to label the emotions present
in the subset of data they received. This subset was
then used to compare the LLM-generated labels
from various prompts and natural language genera-
tion (NLG) models. The different prompts can be
seen in Table 8 in Appendix.

For the automated labelling process, we ran-
domly extracted 1,000 rows from each dataset. This
limitation was due to constraints imposed by the
number of annotated examples that were available
for each dataset. We wanted to experiment with
the same number of rows for each dataset. We
were also constrained by API access, as the Ope-
nAl and Anthropic models are not open source. We
obtained access to the API for various models and
commenced the label-generation process. Various
prompt types were provided for all three corpora
and across all NLG models. Once the data was
labelled, agreement was measured between human
annotators using Fliess Kappa. Human and LLM
agreement was measured using automated metrics
such as accuracy, precision and Cohen’s Kappa.

We evaluated the impact of three prompting

strategies—Base, In-Context Learning (ICL), and
Chain-of-Thought (CoT)—on LLM performance.
The Base prompt represents a minimal directive
for emotion classification, while ICL provides ex-
amples and definitions to guide the model. CoT
introduces step-by-step reasoning for nuanced emo-
tion detection. These strategies were applied across
zero-, few-, and many-shot settings to assess their
influence on generalisation and model robustness
in resource-scarce contexts. We ran these prompts
in zero-, few- and many-shot settings. We designed
few- and many-shot experiments using 2% and 20%
of the data, respectively, to explore how varying
levels of contextual information alter LLMs’ abil-
ity to generalise to nuanced emotional categories.
This experimental setup thus provides novel lens
for evaluating prompt strategies in resource-scarce
scenarios.

3.3 Hybrid annotation framework

To enhance annotation quality, we developed a hy-
brid framework combining LLM-generated labels
with human refinement. First, datasets were an-
notated using the best-performing LLM configura-
tions, guided by tailored prompts. Human annota-
tors then validated and revised a subset of the LLM-
labelled data, addressing nuanced cases like over-
lapping emotional states. Feedback loops informed
prompt refinement and targeted consistent LLM
misclassifications. The final dataset aggregated
refined labels with LLM annotations, and perfor-
mance improvements were quantified using metrics
such as accuracy and Cohen’s Kappa. This frame-
work effectively combined LLM efficiency with
human contextual understanding, achieving no-
table gains in annotation quality and inter-annotator
agreement.

4 Human annotation

Two of the three datasets were public-domain and
pre-annotated. For the Incel dataset, six annota-
tors validated a 10% subset of labelled rows. The
team included four linguists and social scientists,
and two computational linguists with advanced de-
grees. Annotators followed guidelines aligned with
the zero-shot prompt, using NLG-generated labels
as references but could choose alternative labels
if needed. Inter-annotator agreement (IAA) was
measured with Fleiss Kappa (scaled 0-100).
Annotators initially reviewed 100 rows, with 50
random rows manually evaluated after each round.



Round | Kappa Description
R1 24.98 Base round with all annotators
R1 84.62 3 experienced annotators
R1 11.72 3 inexperienced annotators
R2 36.72 More specific prompt
R3 74.91 | Emotion definition and examples
R4 86.04 High-quality examples
RS 83.26 Final agreement among 6

Table 2: Inter-annotator agreement on a subset of the
Incel corpus. Rounds 2 to 4 were performed only with
the inexperienced conflicting annotators.

Three experienced annotators achieved high agree-
ment (80.26%) out-of-the-box, while three less ex-
perienced annotators had low agreement (11.72%).
Through two additional rounds, refinements were
made: clearer guidelines increased agreement by
12%, and 10 high-quality examples with emotion
definitions (similar to 2%-shot ICL prompting)
raised agreement to 74.91%. A final round us-
ing error-focused examples brought agreement to
86.26% among conflicting annotators and 83.26%
overall. The process, completed in four weeks,
demonstrated how LLM-generated examples and
definitions improved IAA from 24.98% to 86.26%
(Table 2), highlighting hybrid annotation systems’
potential to enhance quality and consistency in
complex tasks like emotion classification.

LLM:s provided an efficient baseline by resolv-
ing ambiguities, but their biases, such as over-
detecting negative language in the Hate-Speech
dataset, required human oversight. The proposed
hybrid framework combines LLM scalability with
human review to flag ambiguous cases, improving
annotation quality, reduce cognitive load, and main-
taining ethical alignment. These findings empha-
sise the effectiveness of hybrid systems in domain-
specific tasks. Figure 1 shows the label agreement
matrix, where GPT-3.5 and GPT-4 achieved high
agreement (86.04%), indicating similar predictions.
In contrast, Claude-Opus and Gemma-2b showed
lower agreement with GPT-3.5 and GPT-4, high-
lighting reduced consistency in smaller or less ro-
bust models (Liu et al., 2024).

5 Results and Discussion

Our evaluation of LLMs on the Hate-Speech, Neg-
ative Emotion, and Incel datasets highlights no-
table differences in performance across various
prompting techniques and models. For the Hate-
Speech dataset, GPT-4 demonstrates superior gen-

eralisation capabilities across prompting strategies,
achieving a Cohen’s Kappa score of 73.45% in the
zero-shot setting. This highlights its robustness in
handling complex classification tasks without ad-
ditional context, aligning with our contribution to
advancing cross-domain generalisation. However,
the variability in GPT-4’s performance across few-
and many-shot settings suggests the critical role
of prompt design. This underscores our second
contribution related to optimising prompting strate-
gies for nuanced annotation tasks. This is signifi-
cantly higher than GPT-3.5’s 59.10% and GPT-40’s
60.98%. These results suggest that GPT-4’s robust
training allows it to better handle the hate-speech
classification task without needing additional exam-
ples. The improvement in performance with GPT-4
in the few-shot settings (2%-shot and 20%-shot)
further reinforces its superior capability in lever-
aging context to enhance classification accuracy,
achieving a peak Cohen’s Kappa score of 73.59%
in the 2%-shot setting.

In contrast, GPT-40 and GPT-3.5 show more
variable results: GPT-4 achieves a high precision
score in some cases, such as 92.67% in the zero-
shot setting, compared to GPT-3.5’s 88.16% and
GPT-40’s at 88.55%. However, GPT-40’s perfor-
mance is less consistent, with Cohen’s Kappa drop-
ping in the 20%-shot setting to 63.92%. This vari-
ability indicates that while GPT-40 and GPT-3.5
can be competitive, their performance is less sta-
ble compared to the more consistently high results
from GPT-4. In the results for other models like
Claude-Opus and Gemma-2b, we observe lower
overall performance compared to GPT-4. For ex-
ample, Claude-Opus achieves a Cohen’s Kappa of
28.27% in the 20%-shot setting, whereas Gemma-
2b reaches 19.34%. Both models perform notice-
ably lower than GPT-4 and GPT-3.5, underscoring
the advantage of more advanced models in terms of
handling nuanced hate-speech classification tasks.
Specifically, Gemma-2b shows more variability in
performance, with its zero-shot Cohen’s Kappa at
16.15%, increasing only slightly to 23.17% in the
2%-shot setting. Due to the poor performance of
Claude-Opus and Gemma-2b in the zero-, few- and
many-shot setting when using the base prompt, we
do not further assess their capabilities in the CoT
and ICL scenarios.

For the Negative Emotion dataset, GPT-40

demonstrates superior Cohen’s Kappa scores com-
pared to GPT-3.5 and GPT-40. GPT-40 achieves



Claude-Opus Gemma-2b
Zero-shot | 2%-shot | 20%-shot | Zero-shot | 2%-shot | 20%-shot
Hate-speech Accuracy 47.38 52.93 58.61 42.00 52.03 48.26
Precision 63.94 67.21 66.47 61.74 69.84 56.14
Cohen’s Kappa 21.46 23.27 28.27 16.15 23.17 19.34
Negative Emotion | Accuracy 39.84 33.21 28.48 32.40 31.24 26.53
Precision 71.77 69.78 65.22 68.17 67.74 64.82
Cohen’s Kappa 58.23 63.33 58.88 61.23 62.59 57.28
Incel Accuracy 33.42 31.11 27.83 28.43 30.28 26.45
Precision 68.98 59.82 51.22 58.37 53.38 53.24
Cohen’s Kappa 58.66 62.23 53.78 59.23 60.03 56.14

Table 3: Accuracy, Precision, and Cohen’s Kappa Results from the Base Prompts in Zero, Few, and Many-Shot
Settings across all Corpora using Claude-Opus and Gemma-2b.

Zero-shot Base 2%-shot Base 20%-shot Base
3.5 4 40 3.5 4 40 3.5 4 4o
Hate-speech Accuracy 79.90 | 89.00 | 82.4 | 81.00 | 88.70 | 81.90 | 76.63 | 84.00 | 80.06

Precision 88.16 | 91.77 | 88.55 | 88.26 | 92.67 | 90.32 | 87.16 | 86.73 | 82.51
Cohen’s Kappa | 59.10 | 73.45 | 60.98 | 58.76 | 73.59 | 61.29 | 57.25 | 70.29 | 63.92
Negative Emotion Accuracy 7593 | 77.18 | 76.67 | 75.10 | 79.25 | 78.42 | 71.37 | 77.59 | 76.79

Precision 75.68 | 77.43 | 77.06 | 75.37 | 79.15 | 78.92 | 72.22 | 77.69 | 76.81
Cohen’s Kappa | 57.60 | 61.44 | 60.74 | 58.08 | 64.00 | 63.89 | 52.51 | 61.97 | 60.45
Incels Accuracy 60.21 | 52.85 | 47.64 | 35.92 | 59.27 | 63.12 | 58.23 | 53.23 | 57.43

Precision 53.33 | 48.83 | 44.79 | 42.47 | 54.55 | 56.38 | 56.44 | 52.51 | 55.42
Cohen’s Kappa | 29.64 | 22.93 | 20.44 | 15.36 | 32.34 | 30.01 | 33.76 | 31.64 | 32.36

Table 4: Accuracy, Precision, and Cohen’s Kappa Results from the Base Prompts in Zero, Few, and Many-Shot
Settings across all Corpora using GPT-3.5, 4 and 4o.

Zero-shot ICL 2%-shot ICL 20%-shot ICL.
3.5 4 40 3.5 4 40 3.5 4 40

Negative Emotion | Accuracy 77.52 | 76.76 | 74.27 | 62.39 | 64.79 | 60.52 | 72.61 | 68.60 | 72.98
Precision 75.38 | 77.67 | 75.15 | 70.14 | 71.42 | 68.03 | 72.99 | 71.00 | 73.17

Cohen’s Kappa | 57.64 | 61.55 | 56.91 | 48.38 | 49.28 | 46.97 | 55.17 | 42.39 | 54.37

Incels Accuracy 65.27 | 52.85 | 47.64 | 34.29 | 60.76 | 59.04 | 59.62 | 64.69 | 69.63
Precision 53.33 | 48.83 | 44.79 | 52.31 | 54.32 | 49.69 | 56.14 | 56.14 | 58.17

Cohen’s Kappa | 29.64 | 22.93 | 20.44 | 13.35 | 30.2 | 26.58 | 34.87 | 34.97 | 39.42

Table 5: Accuracy, Precision, and Cohen’s Kappa Results from In-Context Learning Prompts in Zero, Few, and
Many-Shot Settings for the Incel and Negative Emotion Corpora using GPT-3.5, 4 and 4o.

Zero-shot CoT 2%-shot CoT 20%-shot CoT
35 4 40 3.5 4 40 3.5 4 40

Negative Emotion | Accuracy 75.95 | 77.59 | 78.42 | 43.60 | 44.82 | 25.80 | 72.62 | 76.12 | 79.59
Precision 77.30 | 77.85 | 78.40 | 63.10 | 64.17 | 51.14 | 72.98 | 76.14 | 80.21

Cohen’s Kappa | 54.85 | 62.31 | 63.63 | 18.36 | 21.62 | 0.12 | 54.30 | 60.81 | 67.10

Incels Accuracy 63.11 | 20.34 | 36.54 | 60.80 | 56.60 | 41.41 | 60.02 | 54.69 | 59.96
Precision 51.55 | 47.27 | 41.94 | 57.62 | 53.21 | 43.14 | 54.40 | 49.14 | 54.07

Cohen’s Kappa | 31.86 | 14.91 | 13.54 | 39.40 | 30.28 | 17.54 | 30.72 | 34.87 | 36.25

Table 6: Accuracy, Precision, and Cohen’s Kappa Results from Chain-of-thought Learning Prompts in Zero, Few,
and Many-Shot Settings for the Incel and Negative Emotion Corpora using GPT-3.5, 4 and 4o.
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Figure 2: Misclassifications across corpora using different LLMs and prompting strategies. The confusion matrices
highlight the relationship between true and predicted labels for each model.

the highest Kappa score of 67.10% in the 20%-
shot CoT setting, surpassing GPT-3.5, which has
a Kappa score of 54.3% in the same setting. The
performance of GPT-40 in ICL settings reflects its
ability to leverage provided examples effectively,
while the CoT prompting yields higher variability,
with Cohen’s Kappa scores fluctuating in different
few-shot settings.

For the Incel dataset, GPT-40 shows notable ad-
vantages, with the highest Cohen’s Kappa score
of 39.42% in the 20%-shot ICL setting, compared
to GPT-3.5’s 34.87% and GPT-40’s 34.97%. In
contrast, GPT-4 and GPT-3.5 exhibit inconsistent
performance across different settings, with GPT-40
showing better results in the 2%-shot CoT settings
but lagging in the 20%-shot setting. These find-
ings underscore the GPT-4 model’s superiority in
cross-domain generalisation and multi-label classi-
fication tasks.

Our analysis reveals an interesting feature where
Cohen’s Kappa scores for the Negative Emotion
dataset (with fewer labels) are generally higher
compared to the Incel dataset (with relatively more
labels). This discrepancy can be explained given
the specific nature of the labels used in each dataset.
This disparity underscores the unique challenges
posed by domain-specific emotional nuances, and
hence the need for targeted adaptations to LLM
architectures. The Negative Emotion dataset is
characterized by labels such as "anger," "sadness,"
and "fear," which are relatively easier to distin-
guish compared to the broader range of six labels
in the Incel dataset, including "sadness," "anger,"
"fear," "loneliness," "jealousy," and "not sure." The
increased number of labels introduces a higher de-
gree of complexity and potential overlap between
categories (Li et al., 2024). For example, emotions
like "anger" and "fear" can often be contextually
intertwined, making it difficult to accurately dis-
tinguish them. The presence of overlapping or
similar emotional states makes it more difficult for

models to assign precise labels, resulting in lower
Cohen’s Kappa scores (Wang et al., 2023b, 2020).
The model’s performance is further affected by the
inherent ambiguity in classifying emotions that are
nuanced or context-dependent, such as "not sure,"
which introduces additional variability in predic-
tions (Rodriguez et al., 2022).

Models tend to exhibit greater agreement with
human annotators when dealing with fewer, more
distinct categories, as opposed to a broader, more
nuanced set of labels where distinctions can be sub-
tle and overlapping. Consequently, while Cohen’s
Kappa scores are a valuable metric for assessing
model performance, they also reflect the inherent
challenges posed by the nature of the classifica-
tion tasks and the granularity of the labels involved.
Overall, GPT-4’s superior performance in Cohen’s
Kappa scores across most datasets and prompting
settings demonstrates its robust capability in han-
dling complex classification tasks.

The results presented in Tables 5, 6, and Table
C in Appendix illustrate the challenges of nuanced
emotion classification in resource-scarce domains.
Misclassification patterns, such as anger being con-
fused with sadness or fear with sadness, highlight
the limitations of LLMs in distinguishing subtle
emotional signals. These errors, coupled with high
false positive rates for hate-speech classification,
point to systematic biases that hinder generalisation.
However, the iterative annotation process (Section
6) demonstrated how LLMs can complement hu-
man efforts, improving inter-annotator agreement
to over 86%. These findings collectively support
our third and fourth contributions, providing ac-
tionable insights into reducing emotional bias in
LLMs and the practical utility of hybrid annotation
systems.

The results for the hybrid annotation framework
are in Table 7. For the LLM-only results, we used
the best-performing configurations for each dataset.
Hate-Speech results were obtained using GPT-4



, Lim. | M
Data Metric Human Improvement
Only -
Refinement
Hate- Annotation Accuracy (%) | 89.10 96.30 +8.1
Speech v % ’ ’ ’
Inter-Annotator
Agreement (Kappa) 0.71 0.89 +25.4
Negative |\ 1 otation Accuracy (%) | 84.5 93.72 +10.9
Emotion
Inter-Annotator
Agreement (Kappa) 0.68 085 25
Incel Annotation Accuracy (%) | 78.2 92.4 +18.2
Inter-Annotator
Agreement (Kappa) 0.62 0.82 +32.3

Table 7: Comparison of LLM-only and LLM + Human
Refinement approaches across the Hate-Speech, Neg-
ative Emotion, and Incel datasets. Improvements (%)
indicate the relative increase in performance achieved
through the hybrid annotation framework, combining
LLM outputs with human refinements.

with a Base Prompt in a Few-Shot (2%-shot) set-
ting, achieving high annotation accuracy and inter-
annotator agreement. For the Negative Emotion
dataset, GPT-4 demonstrated its capabilities with a
Chain-of-Thought (CoT) Prompt in a Many-Shot
(20%-shot) setting, emphasising the importance of
step-by-step reasoning in nuanced emotional clas-
sification. The Incel dataset results were derived
using GPT-40 with an In-Context Learning (ICL)
Prompt in a Many-Shot (20%-shot) setting, show-
casing the utility of providing extensive context for
handling emotionally complex and domain-specific
data.

6 Analysing Misclassifications

We randomly sampled 100 rows to identify and
analyse the most common label misclassifications
across different models. All results are displayed
in Tables A - E in Appendix B, Figure 3. Across
all models, a consistent pattern emerged in the mis-
classification of emotions, particularly in the Incel
dataset, where anger was often mistaken for sad-
ness. This likely reflects challenges in understand-
ing emotional intensity and receiving contextual nu-
ances in environments characterised by pervasive
negative affect. Similarly, in the Negative Emo-
tion dataset, sadness was often confused with fear,
highlighting the difficulty in distinguishing emo-
tional distress when emotion indicators are subtle.
In the Hate-Speech dataset, all models exhibited
a tendency to misclassify not hate-speech as hate-
speech, likely due to over-sensitivity to offensive or
emotionally charged language and limited recogni-
tion of nuanced features like sarcasm or non-hateful
tones. A comparative analysis across GPT-4, GPT-

40, and GPT-3.5 reveals evolving patterns of error.
For example, GPT-4 misclassified anger as sadness
21 times, compared to 24 in GPT-40 and 33 in GPT-
3.5, indicating marginal improvement in newer iter-
ations. However, identify other emotions e.g., con-
fusion increased slightly in the newer GPT-40 (37
instances) compared to GPT-4 (33 instances) and
GPT-3.5 (29 instances). Misclassification of not
hate-speech as hate-speech rose from 43 instances
in GPT-4 to 53 in GPT-40, suggesting increased
sensitivity in newer models.

Despite these gradual improvements, all GPT
models struggled with fine-grained emotional nu-
ances and failed to accurately identify neutral lan-
guage. These biases present opportunities for im-
provement.

7 Conclusion

This study tackles the challenge of leveraging state-
of-the-art large language models (LLMs) for nu-
anced and domain-specific negative emotion classi-
fication, focusing on generalisation across datasets
and prompting strategies. Our findings highlight
GPT-4’s superior performance in resource-scarce
and emotionally complex datasets, such as incel dis-
course, though prompting strategies significantly
impact outcomes, with zero-shot and few-shot
settings often outperforming many-shot settings.
While Chain-of-Thought (CoT) prompting shows
potential, it requires further refinement for ambigu-
ous cases.

Our analysis reveals biases in LLM outputs, such
as frequent misclassifications of overlapping emo-
tions like anger and sadness, underscoring the need
for targeted training and advanced prompting tech-
niques. To address these limitations, we intro-
duced a hybrid annotation framework that com-
bines LLM efficiency with human expertise. This
framework significantly improves annotation qual-
ity, reduces biases, and enhances inter-annotator
agreement, particularly in nuanced or high-stakes
tasks. This work contributes benchmarks for LLM
performance, insights into prompting strategies,
and a practical framework for reducing the psycho-
logical and logistical burdens of annotation. Future
research should refine LLM generalisation, miti-
gate biases, and expand the ethical and effective
deployment of LLMs in sensitive real-world appli-
cations.



Limitations

We focus on single-label classification whereas it is
possible for one text to have multiple labels. In our
prompt analysis, we use the emotion label which
has the majority effect. However, texts can have
both anger and jealousy, but if the text depicts jeal-
ousy more dominantly, then the label of jealousy is
the one assigned. The training and deployment of
state-of-the-art LLMs for data annotation demand
substantial computational resources, which may
not be accessible to all researchers and organisa-
tions, thus limiting widespread adoption. As for
the widespread application of LLMs as data an-
notators for hate-speech or sentiment-related con-
texts, robust data privacy protocols are essential to
ensure confidentiality and consent in training and
annotation datasets. Human oversight should be
employed to review LLM-generated annotations,
ensuring accuracy, ethical compliance, and mitigat-
ing risks of error propagation or bias.

Ethics Statement

The data used are sensitive and may contain harm-
ful material; therefore, these data cannot be made
publicly available to align with the ethical policy
associated with the research project. All other data
used were publicly available. We understand the
sensitive nature of this work and hope that this
can contribute to future work in minimising online
harms. Ethical approval was gained by the relevant
institutions.

Acknowledgements

This work was supported by the [redacted] at [in-
stitution redacted for anonymous reasons]. We
are grateful to all the researchers involved in this
project.

References

Hatoon S. AlSagri and Mourad Ykhlef. 2016. A frame-
work for analyzing and detracting negative emotional
contagion in online social networks. In 2016 7th
International Conference on Information and Com-
munication Systems (ICICS), pages 115-120.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Preprint.

Md Rabiul Awal, Rui Cao, Roy Ka-Wei Lee, and Sandra
Mitrovié. 2021. Angrybert: Joint learning target and
emotion for hate speech detection. In Pacific-Asia
conference on knowledge discovery and data mining,
pages 701-713. Springer.

Enguerrand Boitel, Alaa Mohasseb, and Ella Haig. 2024.
A comparative analysis of gpt-3 and bert models for
text-based emotion recognition: Performance, effi-
ciency, and robustness. In Advances in Computa-
tional Intelligence Systems, pages 567-579, Cham.
Springer Nature Switzerland.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020a. Language models are few-shot learners.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020b. Language models are few-shot learners.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Nicoleta Corbu, Alina Bargaoanu, Flavia Durach, and
Georgiana Udrea. 2021. Fake news going viral: The
mediating effect of negative emotions. Media Liter-
acy and Academic Research, 4(2):58-69.

Avia Efrat and Omer Levy. 2020. The turking test: Can
language models understand instructions? — arXiv
preprint arXiv:2010.11982.


https://doi.org/10.1109/IACS.2016.7476096
https://doi.org/10.1109/IACS.2016.7476096
https://doi.org/10.1109/IACS.2016.7476096
https://doi.org/10.1109/IACS.2016.7476096
https://doi.org/10.1109/IACS.2016.7476096
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311

Paul Ekman. 1999. Basic emotions. In Tim Dalgleish
and Mick J. Power, editors, Handbook of Cognition
and Emotion, pages 45-60. John Wiley & Sons Ltd.

B. Farhoudinia, S. Ozturkcan, and N. Kasap. 2024.
Emotions unveiled: detecting covid-19 fake news
on social media. Humanities and Social Sciences
Communications, 11:640.

Xingwei He, Zhenghao Lin, Yeyun Gong, A-Long Jin,
Hang Zhang, Chen Lin, Jian Jiao, Siu Ming Yiu, Nan
Duan, and Weizhu Chen. 2024. Annollm: Making
large language models to be better crowdsourced
annotators.

Kiana Kheiri and Hamid Karimi. 2023. Sentimentgpt:
Exploiting gpt for advanced sentiment analysis and
its departure from current machine learning.

Dheeraj Kodati and Chandra Mohan Dasari. 2024. Neg-
ative emotion detection on social media during the
peak time of covid-19 through deep learning with an
auto-regressive transformer. Engineering Applica-
tions of Artificial Intelligence, 127:107361.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

B. Kok-Shun, J. Chan, G. Peko, and D. Sundaram. 2023.
Intertwining two artificial minds: Chaining gpt and
roberta for emotion detection. In 2023 IEEE Asia-
Pacific Conference on Computer Science and Data
Engineering (CSDE), pages 1-6, Los Alamitos, CA,
USA. IEEE Computer Society.

Jeniffer Xin-Ying Lek and Jason Teo. 2023. Academic
emotion classification using fer: A systematic re-
view. Human Behavior and Emerging Technologies,
2023(1):9790005.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and
Wenhu Chen. 2024. Long-context llms struggle with
long in-context learning.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Teaching models to express their uncertainty in
words.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3?

Yang Liu, Xichou Zhu, Zhou Shen, Yi Liu, Min Li,
Yujun Chen, Benzi John, Zhenzhen Ma, Tao Hu,
Zhiyang Xu, Wei Luo, and Junhui Wang. 2024. Do
large language models possess sensitive to sentiment?

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity.

Sean MacAvaney, Hao-Ren Yao, Eugene Yang, Katina
Russell, Nazli Goharian, and Ophir Frieder. 2019.
Hate speech detection: Challenges and solutions.
PloS one, 14(8):e0221152.

10

Diego Magdaleno, Martin Montes, Blanca Estrada, and
Alberto Ochoa-Zezzatti. 2024. A gpt-based approach
for sentiment analysis and bakery rating prediction.
In Advances in Computational Intelligence. MICAI
2023 International Workshops, pages 61-76, Cham.
Springer Nature Switzerland.

V. Mahalakshmi, P. Shenbagavalli, S. Raguvaran, V. Ra-
jakumareswaran, and E. Sivaraman. 2024. Twitter
sentiment analysis using conditional generative ad-
versarial network. International Journal of Cognitive
Computing in Engineering, 5:161-169.

Changrong Min, Hongfei Lin, Ximing Li, He Zhao,
Junyu Lu, Liang Yang, and Bo Xu. 2023. Finding
hate speech with auxiliary emotion detection from
self-training multi-label learning perspective. Infor-
mation Fusion, 96:214-223.

Gilad Mishne and Natalie Glance. 2006. Predicting
movie sales from blogger sentiment. In AAAI 2006
Spring Symposium on Computational Approaches
to Analysing Weblogs. Faculty of Science (FNWI),
Informatics Institute (IVI). Mish:pred06.

OpenAl. 2023. Gpt-4 technical report.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, and Ilge Akkaya et al. 2024. Gpt-4
technical report.

Maria  Antonia  Paz, Julio  Montero-Diaz,
and Alicia Moreno-Delgado. 2020. Hate
speech: A systematized review. Sage Open,
10(4):2158244020973022.

Joseph J. Peper and Lu Wang. 2022. Generative aspect-
based sentiment analysis with contrastive learning
and expressive structure.

Flor Miriam Plaza-del Arco, Sercan Halat, Sebastian
Pad6, and Roman Klinger. 2021. Multi-task learn-
ing with sentiment, emotion, and target detection to
recognize hate speech and offensive language. arXiv
preprint arXiv:2109.10255.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Anto-
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen,
Siddhant Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,


https://doi.org/10.1002/0470013494.ch3
https://doi.org/10.1057/s41599-024-03083-5
https://doi.org/10.1057/s41599-024-03083-5
https://doi.org/10.1057/s41599-024-03083-5
http://arxiv.org/abs/2303.16854
http://arxiv.org/abs/2303.16854
http://arxiv.org/abs/2303.16854
http://arxiv.org/abs/2303.16854
http://arxiv.org/abs/2303.16854
http://arxiv.org/abs/2307.10234
http://arxiv.org/abs/2307.10234
http://arxiv.org/abs/2307.10234
http://arxiv.org/abs/2307.10234
http://arxiv.org/abs/2307.10234
https://doi.org/https://doi.org/10.1016/j.engappai.2023.107361
https://doi.org/https://doi.org/10.1016/j.engappai.2023.107361
https://doi.org/https://doi.org/10.1016/j.engappai.2023.107361
https://doi.org/https://doi.org/10.1016/j.engappai.2023.107361
https://doi.org/https://doi.org/10.1016/j.engappai.2023.107361
https://doi.org/https://doi.org/10.1016/j.engappai.2023.107361
https://doi.org/https://doi.org/10.1016/j.engappai.2023.107361
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
https://doi.org/10.1109/CSDE59766.2023.10487718
https://doi.org/10.1109/CSDE59766.2023.10487718
https://doi.org/10.1109/CSDE59766.2023.10487718
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2205.14334
http://arxiv.org/abs/2205.14334
http://arxiv.org/abs/2205.14334
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2409.02370
http://arxiv.org/abs/2409.02370
http://arxiv.org/abs/2409.02370
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
https://doi.org/https://doi.org/10.1016/j.ijcce.2024.03.002
https://doi.org/https://doi.org/10.1016/j.ijcce.2024.03.002
https://doi.org/https://doi.org/10.1016/j.ijcce.2024.03.002
https://doi.org/https://doi.org/10.1016/j.ijcce.2024.03.002
https://doi.org/https://doi.org/10.1016/j.ijcce.2024.03.002
https://doi.org/https://doi.org/10.1016/j.inffus.2023.03.015
https://doi.org/https://doi.org/10.1016/j.inffus.2023.03.015
https://doi.org/https://doi.org/10.1016/j.inffus.2023.03.015
https://doi.org/https://doi.org/10.1016/j.inffus.2023.03.015
https://doi.org/https://doi.org/10.1016/j.inffus.2023.03.015
https://hdl.handle.net/11245/1.264645
https://hdl.handle.net/11245/1.264645
https://hdl.handle.net/11245/1.264645
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2211.07743
http://arxiv.org/abs/2211.07743
http://arxiv.org/abs/2211.07743
http://arxiv.org/abs/2211.07743
http://arxiv.org/abs/2211.07743
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533

Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’ Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy,
Chris Jones, James Bradbury, Matthew Johnson,
Blake Hechtman, Laura Weidinger, lason Gabriel,
William Isaac, Ed Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling
language models: Methods, analysis insights from
training gopher.

Jaishree Ranganathan and Angelina Tzacheva. 2019.
Emotion mining in social media data. Procedia Com-
puter Science, 159:58-66. Knowledge-Based and In-
telligent Information Engineering Systems: Proceed-
ings of the 23rd International Conference KES2019.

Axel Rodriguez, Yi-Ling Chen, and Carlos Argueta.
2022. Fadohs: framework for detection and integra-
tion of unstructured data of hate speech on facebook
using sentiment and emotion analysis. IEEE Access,
10:22400-22419.

Bjorn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wojatzki.
2017. Measuring the reliability of hate speech an-
notations: The case of the european refugee crisis.
arXiv preprint arXiv:1701.08118.

Johannes Schifer and Elina Kistner. 2023. Hs-emo:
Analyzing emotions in hate speech. In Proceedings
of the 19th Conference on Natural Language Pro-
cessing (KONVENS 2023), September 19-21, 2023,
Ingolstadt, Germany, pages 165—173. Association
for Computational Lingustics.

Zhihong Shao, Yeyun Gong, Yelong Shen, Min-
lie Huang, Nan Duan, and Weizhu Chen. 2023.
Synthetic prompting: Generating chain-of-thought
demonstrations for large language models. In Inter-
national Conference on Machine Learning, pages

30706-30775. PMLR.

Cici Suhaeni and Hwan-Seung Yong. 2024. Enhanc-
ing imbalanced sentiment analysis: A gpt-3-based
sentence-by-sentence generation approach. Applied
Sciences, 14(2).

Zhen Tan, Dawei Li, Song Wang, Alimohammad
Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
sooreh Karami, Jundong Li, Lu Cheng, and Huan
Liu. 2024. Large language models for data annota-
tion: A survey.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

11

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-
Ching Chang, Igor Krivokon, Will Rusch, Marc
Pickett, Pranesh Srinivasan, Laichee Man, Kathleen
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc
Le. 2022. Lamda: Language models for dialog appli-
cations.

Anjali Tripathi, Upasana Singh, Garima Bansal,
Rishabh Gupta, and Ashutosh Kumar Singh. 2020. A
review on emotion detection and classification using
speech. In Proceedings of the international confer-
ence on innovative computing & communications
(ICICC).

Radhakrishnan Venkatakrishnan, Mahsa Goodarzi, and
M. Abdullah Canbaz. 2023. Exploring large lan-
guage models’ emotion detection abilities: Use cases
from the middle east. In 2023 IEEE Conference on
Artificial Intelligence (CAI), pages 241-244.

Jingjing Wang, Joshua Luo, Grace Yang, Allen Hong,
and Feng Luo. 2023a. Is gpt powerful enough to
analyze the emotions of memes?

X. Wang, S. Zhao, Y. Pei, Z. Luo, L. Xie, Y. Yan, and
E. Yin. 2023b. The increasing instance of negative
emotion reduce the performance of emotion recogni-
tion. Frontiers in Human Neuroscience, 17.

Xuena Wang, Xueting Li, Zi Yin, Yue Wu, and Liu
Jia. 2023c. Emotional intelligence of large language
models.

Yifei Wang, Cheng Shangguan, Chenjie Gu, and Bin
Hu. 2020. Individual differences in negative emotion
differentiation predict resting-state spontaneous emo-
tional regulatory processes. Frontiers in Psychology,
11:576119.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the world wide web. In Proceedings
of the second workshop on language in social media,
pages 19-26.

Albert Webson and Ellie Pavlick. 2022. Do prompt-
based models really understand the meaning of their
prompts?

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-


http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
https://doi.org/https://doi.org/10.1016/j.procs.2019.09.160
https://aclanthology.org/2023.konvens-main.17
https://aclanthology.org/2023.konvens-main.17
https://aclanthology.org/2023.konvens-main.17
https://doi.org/10.3390/app14020622
https://doi.org/10.3390/app14020622
https://doi.org/10.3390/app14020622
https://doi.org/10.3390/app14020622
https://doi.org/10.3390/app14020622
http://arxiv.org/abs/2402.13446
http://arxiv.org/abs/2402.13446
http://arxiv.org/abs/2402.13446
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
https://doi.org/10.1109/CAI54212.2023.00110
https://doi.org/10.1109/CAI54212.2023.00110
https://doi.org/10.1109/CAI54212.2023.00110
https://doi.org/10.1109/CAI54212.2023.00110
https://doi.org/10.1109/CAI54212.2023.00110
http://arxiv.org/abs/2311.00223
http://arxiv.org/abs/2311.00223
http://arxiv.org/abs/2311.00223
https://doi.org/10.3389/fnhum.2023.1180533
https://doi.org/10.3389/fnhum.2023.1180533
https://doi.org/10.3389/fnhum.2023.1180533
https://doi.org/10.3389/fnhum.2023.1180533
https://doi.org/10.3389/fnhum.2023.1180533
http://arxiv.org/abs/2307.09042
http://arxiv.org/abs/2307.09042
http://arxiv.org/abs/2307.09042
https://doi.org/10.3389/fpsyg.2020.576119
https://doi.org/10.3389/fpsyg.2020.576119
https://doi.org/10.3389/fpsyg.2020.576119
https://doi.org/10.3389/fpsyg.2020.576119
https://doi.org/10.3389/fpsyg.2020.576119
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2109.01247

drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Sean Wu, Michael Koo, Lesley Blum, Andy Black, Liyo
Kao, Fabien Scalzo, and Ira Kurtz. 2023. A compar-
ative study of open-source large language models,
gpt-4 and claude 2: Multiple-choice test taking in
nephrology. arXiv preprint arXiv:2308.04709.

Mohamed Yassine and Hazem Hajj. 2010. A framework
for emotion mining from text in online social net-
works. In Data Mining Workshops (ICDMW), 2010
IEEE International Conference on, pages 1136-1142.
IEEE.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2023. Generate
rather than retrieve: Large language models are
strong context generators.

Tong Zhan, Chenxi Shi, Yadong Shi, Huixiang Li, and
Yiyu Lin. 2024. Optimization techniques for senti-
ment analysis based on llm (gpt-3).

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan,
and Lidong Bing. 2023. Sentiment analysis in the
era of large language models: A reality check.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models.

12


http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2209.10063
http://arxiv.org/abs/2209.10063
http://arxiv.org/abs/2209.10063
http://arxiv.org/abs/2209.10063
http://arxiv.org/abs/2209.10063
http://arxiv.org/abs/2405.09770
http://arxiv.org/abs/2405.09770
http://arxiv.org/abs/2405.09770
http://arxiv.org/abs/2305.15005
http://arxiv.org/abs/2305.15005
http://arxiv.org/abs/2305.15005
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2102.09690

Appendix A: Prompts

Prompt Type Prompt Example

Base Prompt Analyse the following text and determine the primary emotion expressed. Choose only one emotion from this list: sadness, anger,
loneliness, jealousy, fear, or not sure. Respond with only the chosen emotion word.

In-context Learning Prompt | You are an emotion classifier. The emotions can be one of the following: sadness, anger, loneliness, jealousy, fear, or not sure.
Below are the definitions of these emotions. Use these definitions to classify the emotion of the new text provided at the end. -
Sadness: Emotions such as grief, sorrow, or melancholy. - Anger: Emotions such as rage, frustration, or hostility. - Loneliness:
Emotions associated with feeling isolated, abandoned, or disconnected. - Jealousy: Emotions stemming from fear of loss or rivalry. -
Fear: Emotions characterized by apprehension, anxiety, or dread. Now classity the following text.

Chain-of-Thought Prompt | Classify the emotion in the following text by reasoning through the feelings step by step. Choose only one emotion from this
list: sadness, anger, loneliness, jealousy, fear, or not sure. - Sadness: Emotions such as grief, sorrow, or melancholy. - Anger:
Emotions such as rage, frustration, or hostility. - Loneliness: Emotions associated with feeling isolated, abandoned, or disconnected.
- Jealousy: Emotions stemming from fear of loss or rivalry. - Fear: Emotions characterized by apprehension, anxiety, or dread. Given
this framework, think step by step about the emotions conveyed by the text. First, describe the feelings you observe in the text, and
then identify the primary emotion based on those feelings.

Table 8: Prompt types and examples of the prompts used across all models. All prompt generations were conducted
with a temperature setting of 0.3.

Appendix B: Misclassifications

Corpora True Label Predicted Label | Count Corpora True Label Predicted Label | Count
Incel Anger Sadness 24 Incel Not sure Sadness 19
Incel Mot sure Sadness 13 Incel Fear Anger 17
Incel Loneliness Sadness 4 Incel Loneliness Sadness 9
Negative Emotion Sadness Fear 37 Negative Emotion Fear Sadness 29
Negative Emotion Anger Fear 11 Negative Emotion Anger Sadness 18
Hate-Speech Not hate-speech | Hate-speech 53 Hate-Speech Mot hate-speech | Hate-speech 49
(a) GPT-40 Misclassifications. (b) GPT-3.5 Misclassifications.
Corpora True Label Predicted Label | Count
Carpora True Label Predicted Label | Count Incel Anger Sadness 19
Incel Anger Sadness i3 Incel Anger Fear 17
Incel Jealousy Anger 17 Incel Jealousy Sadness 12
Incel Loneliness Sadness 12 Incel Loneliness Not sure 12
Incel Not sure Sadness 8 Incel Not sure Sadness 9
Negative Emotion Fear Sadness 54 Negative Emotion Fear Sadness 39
Megative Emotion Anger Sadness 21 Negative Emotion Anger Sadness 48
Hate-Speech Not hate-speech | Hate-speech 61 Hate-Speech Mot hate-speech | Hate-speech T0
(c) Claude-Opus Misclassifications. (d) Gemma-2b Misclassifications.
Corpora True Label Predicted Label | Count
Incel Anger Sadness 21
Incel Not sure Sadness 14 Corpora True Label | Predicted Label | Count
Incel Loneliness Sadness 6 Incel Not sure Fear 15
Negative Emotion Sadness Fear 33 Negative Emotion Sadness Anger 27
Negative Emotion Anger Fear 11 Negative Emotion Fear Sadness 38
Hate-Speech Not hate-speech | Hate-speech 43 Hate-Speech Hate-speech | Not hate-speech 18
(e) GPT-4 Misclassifications. (f) Combined Results.

Figure 3: Misclassifications across corpora using different LLMs and prompting strategies. Each subfigure represents
one model’s misclassification results for the Incel, Negative Emotion, and Hate-Speech datasets.
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