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Abstract

Data annotation is critical yet challenging, par-001
ticularly for nuanced negative emotions in002
resource-scarce and niche contexts like hate-003
speech and incel discourse. We systematically004
explore zero-, few-, and many-shot prompt-005
ing strategies across three distinct prompting006
types—base, chain-of-thought (CoT), and in-007
context learning (ICL)—we uncover the lim-008
itations of LLMs in handling nuanced and009
domain-specific datasets, such as incel dis-010
course. Our findings reveal persistent biases011
in emotion perception, offering a roadmap to012
enhance LLM performance in resource-scarce013
contexts. Furthermore, we introduce and evalu-014
ate a hybrid annotation framework, combining015
LLM-generated annotations with human refine-016
ments, which significantly improves accuracy,017
inter-annotator agreement, and efficiency. This018
work advances the understanding of NLP gen-019
eralisation by demonstrating how LLMs can020
support and complement human annotation ef-021
forts, specifically in highly subjective challeng-022
ing tasks.023

1 Introduction024

The classification of human emotions has been025

widely researched (Tripathi et al., 2020; Lek and026

Teo, 2023), with early studies identifying "anger",027

"fear", "enjoyment", "sadness", "disgust", and "sur-028

prise" as the basic emotions (Ekman, 1999). Emo-029

tion mining, which involves the identification of030

emotions in text based on linguistic features, has031

become increasingly important in the context of032

the rise of social media, where communication is033

rapid and often emotionally charged (Min et al.,034

2023). This task is critical in identifying key is-035

sues in online speech, particularly in areas such036

as hate-speech detection, which has significant im-037

plications for mitigating online harms (Awal et al.,038

2021; Plaza-del Arco et al., 2021; Rodriguez et al.,039

2022; Paz et al., 2020; Warner and Hirschberg,040

2012; MacAvaney et al., 2019).041

This gap motivates our research, aiming to eval- 042

uate LLMs in these challenging settings and pro- 043

vides a roadmap for improving their annotation 044

capabilities by evaluating various combinations of 045

annotation strategies for this task. While LLMs 046

have demonstrated remarkable success across a va- 047

riety of NLP tasks, their ability to generalise to 048

nuanced and domain-specific tasks, such as neg- 049

ative emotion mining in incel discourse, remains 050

underexplored. This study seeks to fill this gap by 051

examining how LLMs perform when tasked with 052

identifying subtle emotional nuances in resource- 053

scarce and challenging domains. We investigate 054

how generalisation capabilities vary under differ- 055

ent prompting strategies—base, chain-of-thought 056

(CoT), and in-context learning (ICL)—and across 057

zero-, few-, and many-shot settings. By focusing 058

on generalisation, we highlight the critical interplay 059

between model design, prompting strategies, and 060

domain complexity in advancing the robustness of 061

LLMs. 062

In the domain of Natural Language Processing 063

(NLP), data annotation is a critical and multifaceted 064

process that transcends simple labelling (Yu et al., 065

2023; Lin et al., 2022). This process typically en- 066

compasses multiple phases, including initial clas- 067

sification of raw data, integration of intermediate 068

markers for contextual depth, and evaluation of 069

the reliability of the annotator, often necessitating 070

several iterations (Ross et al., 2017; MacAvaney 071

et al., 2019; Shao et al., 2023; Zhang et al., 2022; 072

Efrat and Levy, 2020; Wei et al., 2021; Zhang et al., 073

2022). The cognitive demands of annotating neg- 074

ative emotions are significantly heightened in do- 075

mains like hate-speech, where emotional subtleties 076

and data heterogeneity pose unique challenges. 077

This study is among the first to systematically eval- 078

uate how LLMs address these complexities, pro- 079

viding insights into their generalisation capabilities 080

and limitations (Zhang et al., 2023; Liu et al., 2024). 081

However, state-of-the-art large language models 082
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(LLMs) such as GPT models (OpenAI et al., 2024)083

and its successors, Claude-Opus (Anthropic, 2024),084

and Gemma models (Team et al., 2024) present085

promising avenues for revolutionising data anno-086

tation (He et al., 2024). Automating this task can087

ensure consistency across extensive datasets, which088

can be subsequently leveraged for fine-tuning or,089

as demonstrated in this study, through advanced090

prompting techniques (Tan et al., 2024).091

Negative emotions, such as "anger," "fear," and092

"sadness," are well-documented in hateful or harm-093

ful language. However, this work expands the094

scope by incorporating underexplored emotions095

like "loneliness" and "jealousy," which add critical096

layers of nuance to emotion detection tasks. These097

subtle emotions are often overlooked in NLP re-098

search, making their detection vital for capturing099

the full emotional complexity of hate-speech and100

online hostility (Wang et al., 2023b). Although101

emotions like "loneliness" and "jealousy" are chal-102

lenging to detect due to subtle linguistic cues and103

contextual overlaps, they are critical for understand-104

ing the drivers of online hostility.105

This is one of the first studies to assess LLM106

generalisation for nuanced negative emotions in107

underexplored niche domains. Our study lever-108

ages state-of-the-art LLMs to tackle the underex-109

plored challenge of annotating nuanced emotional110

categories in hate-speech detection. By addressing111

gaps in LLM generalisation and reducing reliance112

on labour-intensive human annotation, our study113

thus significantly contributes to the field of emotion114

mining in NLP.115

The contributions of this work are four-fold:116

1 Cross-domain generalisation analysis: We117

evaluate various state-of-the-art LLMs across118

three datasets: a standard negative emotion119

dataset, a hate-speech dataset and a domain-120

specific incel dataset.121

2 Prompting: We assess the impact of prompt122

optimisation and generalisation by analysing123

the effects of zero-, few- and many-shot124

prompting on various LLM performances.125

3 Misclassification: We examine model mis-126

classification patterns and uncover systematic127

biases in LLM output, specifically in distin-128

guishing between similar emotions and assess-129

ing emotion overlap.130

4 Annotation system implications: We intro-131

duce and evaluate a hybrid annotation frame- 132

work, where LLM-generated labels are refined 133

by human annotators. This work highlights 134

the practical utility of hybrid systems in re- 135

ducing annotator burden while maintaining 136

high-quality annotations in resource-scarce 137

and emotionally complex settings. 138

2 Related Work 139

Approaches to sentiment and emotion classifica- 140

tion have varied in their analysis (Ranganathan and 141

Tzacheva, 2019). Some approaches used a largely 142

linguistic focus with the extraction of features such 143

as n-grams, lexical, syntactic, semantic, and word 144

embeddings (Yassine and Hajj, 2010; Mishne and 145

Glance, 2006). 146

With the recent success of generative models, 147

most of the work in this area has focused on senti- 148

ment analysis using GANs (Peper and Wang, 2022; 149

Mahalakshmi et al., 2024), and LLMs, such as GPT 150

models (Brown et al., 2020a; Magdaleno et al., 151

2024; Kheiri and Karimi, 2023; Suhaeni and Yong, 152

2024; Zhan et al., 2024). Several studies have ex- 153

amined the capacity of LLMs to identify more fine- 154

grained emotions. For instance Boitel et al., 2024 155

and Venkatakrishnan et al., 2023 compared the 156

performance of out-of-the-box GPT-3 with BERT- 157

and RoBERTa-based task-specific classifiers, show- 158

ing a performance advantage for the latter. Simi- 159

larly, Wang et al. (2023a) reported an unsatisfactory 160

performance of GPT-3.5 in detecting emotions in 161

memes. Nevertheless, GPT-3 has proven to be very 162

efficient for data augmentation and enhancing its 163

outputs with classifiers (Kok-Shun et al., 2023). 164

The newer GPT-4 (OpenAI et al., 2024) has been 165

reported to surpass 89% of human annotators in an- 166

notation quality for the task of emotion recognition 167

(Wang et al., 2023c). 168

The focus on uniquely negative emotions has 169

already been explored for various applications. For 170

example, AlSagri and Ykhlef (2016) used cluster- 171

ing to analyse and counteract negative emotional 172

contagion in online social networks. Kodati and 173

Dasari (2024) detected negative emotions related 174

to COVID-19 using auto-regressive transformers, 175

framing it as a classification task. Negative emo- 176

tions are particularly relevant for social media anal- 177

ysis tasks such as hate-speech and fake news detec- 178

tion. Schäfer and Kistner (2023) showed a strong 179

correlation between negative emotions like disgust 180

and extreme forms of hate-speech. Additionally, 181
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Figure 1: Label Agreement Matrix between Models in
percentage. This matrix illustrates the percentage of
label agreement between different models for the base
prompt labels.

Min et al. (2023) demonstrated that capturing cor-182

relations between hate-speech and negative emo-183

tional states improved the performance of their hy-184

brid system based on BERT. Negative emotions185

have also been shown to play a crucial role in the186

virality of fake news (Corbu et al., 2021), with neg-187

atively biased fake news correlating with people’s188

willingness to share it. According to Farhoudinia189

et al. (2024), fear emerged as a significant differen-190

tiator between fake and real news. However, there191

has been no study focusing on the usage of LLMs192

for negative emotion or hate-speech data annota-193

tion.194

2.1 LLMs for annotation195

2.2 Prompting types196

LLMs have shown impressive abilities to solve197

complex reasoning tasks by breaking them down198

into intermediate steps before providing a final an-199

swer (Brown et al., 2020b; Thoppilan et al., 2022;200

Rae et al., 2022; Chowdhery et al., 2022). This201

stepwise reasoning process is induced by chain-of-202

thought (CoT) prompting (Wei et al., 2023). CoT203

prompting prompts LLMs to generate a sequence204

of reasoning steps that lead to the final answer.205

This has been achieved through zero-, few- and206

many-shot prompting (Kojima et al., 2023; Wei207

et al., 2023; Zhang et al., 2022). CoT prompt-208

ing is closely related to in-context learning (ICL)209

(Radford et al., 2019; Brown et al., 2020b). Here,210

the models are guided to perform specific tasks by211

including a few examples of inputs. ICL allows212

models to generalise across tasks in both zero-, few-213

and many-shot settings. 214

Although ICL has shown success, research has 215

highlighted that its performance can vary signif- 216

icantly depending on the choice of examples in 217

context (Liu et al., 2021; Lu et al., 2022). Fac- 218

tors such as the wording, or order of the examples 219

within the prompt can lead to notable variations 220

in performance (Webson and Pavlick, 2022; Zhao 221

et al., 2021). This emphasises the need for careful 222

design when using LLMs for complex reasoning 223

tasks. We apply CoT prompting and ICL in zero-, 224

few-, and many-shot settings to evaluate their im- 225

pact on negative emotion mining. Using a base 226

prompt as a baseline across these settings, we aim 227

to assess how CoT and ICL improve model per- 228

formance, particularly in tasks requiring nuanced 229

emotional understanding. This allows us to directly 230

compare their effectiveness and establish the ben- 231

efits of intermediate reasoning steps in enhancing 232

task accuracy. 233

3 Methodology 234

3.1 Data 235

In this paper, we utilise three datasets for our anal- 236

ysis. The datasets were obtained from Kaggle or 237

scraped from the website Incels.is. Due to ethical 238

constraints, we are unable to publish the labelled 239

incel corpora. The first corpus has been previously 240

labelled with the emotion labels "anger", "sadness", 241

and "fear", and is referred to as the Negative Emo- 242

tion dataset1. The second dataset is the hate-speech 243

detection dataset, where we reduce the labels to 244

"hate-speech" and "not hate-speech"2. The final 245

dataset is the incel corpus, annotated by human 246

evaluators. The labels for this corpus are "sadness", 247

"anger", "fear", "loneliness", "jealousy", and "not 248

sure". We compare these humanly annotated labels 249

across all three datasets to the automatically gener- 250

ated labels. Further details on the labelling process 251

can be found in Section 2.1. 252

3.2 Model selection 253

We utilised the current state-of-the-art models to 254

generate the negative emotion labels. We use three 255

OpenAI models (OpenAI, 2023) namely GPT-3.5, 256

GPT-4 and GPT-4o. We also use Claude-Opus cre- 257

ated by Anthropic (Anthropic, 2024) and Gemma- 258

1Access: https://www.kaggle.com/datasets/
abdallahwagih/emotion-dataset

2Access: https://www.kaggle.com/datasets/
mrmorj/hate-speech-and-offensive-language-dataset
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2b created by Google (Team et al., 2024). These259

models have been reported to have extremely com-260

petitive performances across different tasks (Wu261

et al., 2023).262

Models Creator Size Access
GPT-3.5 OpenAI 175B API
GPT-4 OpenAI - API
GPT-4o OpenAI - API

Claude-Opus Anthropic 137B API
Gemma-2b Google 2B Hugging Face

Table 1: LLMs used in the annotation process, detailing
the model, creator, size, access type, and access method.

Reaching sufficient agreement levels is a difficult263

task for human annotators, and yet it has not been264

investigated in LLMs (Tan et al., 2024). There-265

fore, we propose to analyse precisely this, together266

with a breakdown of misclassifications in order to267

understand how we can improve the emotional un-268

derstanding capabilities of LLMs. As previously269

mentioned, the dataset with negative emotion la-270

bels had already been annotated and utilised in271

other research. Therefore, this data did not require272

additional human labelling. However, the incel273

dataset necessitated human annotation. Initially,274

the dataset was labelled using the LLMs employed275

in this study. Subsequently, human annotators were276

tasked with labelling a subset of the dataset (10%).277

They were instructed to label the emotions present278

in the subset of data they received. This subset was279

then used to compare the LLM-generated labels280

from various prompts and natural language genera-281

tion (NLG) models. The different prompts can be282

seen in Table 8 in Appendix.283

For the automated labelling process, we ran-284

domly extracted 1,000 rows from each dataset. This285

limitation was due to constraints imposed by the286

number of annotated examples that were available287

for each dataset. We wanted to experiment with288

the same number of rows for each dataset. We289

were also constrained by API access, as the Ope-290

nAI and Anthropic models are not open source. We291

obtained access to the API for various models and292

commenced the label-generation process. Various293

prompt types were provided for all three corpora294

and across all NLG models. Once the data was295

labelled, agreement was measured between human296

annotators using Fliess Kappa. Human and LLM297

agreement was measured using automated metrics298

such as accuracy, precision and Cohen’s Kappa.299

We evaluated the impact of three prompting300

strategies—Base, In-Context Learning (ICL), and 301

Chain-of-Thought (CoT)—on LLM performance. 302

The Base prompt represents a minimal directive 303

for emotion classification, while ICL provides ex- 304

amples and definitions to guide the model. CoT 305

introduces step-by-step reasoning for nuanced emo- 306

tion detection. These strategies were applied across 307

zero-, few-, and many-shot settings to assess their 308

influence on generalisation and model robustness 309

in resource-scarce contexts. We ran these prompts 310

in zero-, few- and many-shot settings. We designed 311

few- and many-shot experiments using 2% and 20% 312

of the data, respectively, to explore how varying 313

levels of contextual information alter LLMs’ abil- 314

ity to generalise to nuanced emotional categories. 315

This experimental setup thus provides novel lens 316

for evaluating prompt strategies in resource-scarce 317

scenarios. 318

3.3 Hybrid annotation framework 319

To enhance annotation quality, we developed a hy- 320

brid framework combining LLM-generated labels 321

with human refinement. First, datasets were an- 322

notated using the best-performing LLM configura- 323

tions, guided by tailored prompts. Human annota- 324

tors then validated and revised a subset of the LLM- 325

labelled data, addressing nuanced cases like over- 326

lapping emotional states. Feedback loops informed 327

prompt refinement and targeted consistent LLM 328

misclassifications. The final dataset aggregated 329

refined labels with LLM annotations, and perfor- 330

mance improvements were quantified using metrics 331

such as accuracy and Cohen’s Kappa. This frame- 332

work effectively combined LLM efficiency with 333

human contextual understanding, achieving no- 334

table gains in annotation quality and inter-annotator 335

agreement. 336

4 Human annotation 337

Two of the three datasets were public-domain and 338

pre-annotated. For the Incel dataset, six annota- 339

tors validated a 10% subset of labelled rows. The 340

team included four linguists and social scientists, 341

and two computational linguists with advanced de- 342

grees. Annotators followed guidelines aligned with 343

the zero-shot prompt, using NLG-generated labels 344

as references but could choose alternative labels 345

if needed. Inter-annotator agreement (IAA) was 346

measured with Fleiss Kappa (scaled 0–100). 347

Annotators initially reviewed 100 rows, with 50 348

random rows manually evaluated after each round. 349
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Round Kappa Description
R1 24.98 Base round with all annotators
R1 84.62 3 experienced annotators
R1 11.72 3 inexperienced annotators
R2 36.72 More specific prompt
R3 74.91 Emotion definition and examples
R4 86.04 High-quality examples
R5 83.26 Final agreement among 6

Table 2: Inter-annotator agreement on a subset of the
Incel corpus. Rounds 2 to 4 were performed only with
the inexperienced conflicting annotators.

Three experienced annotators achieved high agree-350

ment (80.26%) out-of-the-box, while three less ex-351

perienced annotators had low agreement (11.72%).352

Through two additional rounds, refinements were353

made: clearer guidelines increased agreement by354

12%, and 10 high-quality examples with emotion355

definitions (similar to 2%-shot ICL prompting)356

raised agreement to 74.91%. A final round us-357

ing error-focused examples brought agreement to358

86.26% among conflicting annotators and 83.26%359

overall. The process, completed in four weeks,360

demonstrated how LLM-generated examples and361

definitions improved IAA from 24.98% to 86.26%362

(Table 2), highlighting hybrid annotation systems’363

potential to enhance quality and consistency in364

complex tasks like emotion classification.365

LLMs provided an efficient baseline by resolv-366

ing ambiguities, but their biases, such as over-367

detecting negative language in the Hate-Speech368

dataset, required human oversight. The proposed369

hybrid framework combines LLM scalability with370

human review to flag ambiguous cases, improving371

annotation quality, reduce cognitive load, and main-372

taining ethical alignment. These findings empha-373

sise the effectiveness of hybrid systems in domain-374

specific tasks. Figure 1 shows the label agreement375

matrix, where GPT-3.5 and GPT-4 achieved high376

agreement (86.04%), indicating similar predictions.377

In contrast, Claude-Opus and Gemma-2b showed378

lower agreement with GPT-3.5 and GPT-4, high-379

lighting reduced consistency in smaller or less ro-380

bust models (Liu et al., 2024).381

5 Results and Discussion382

Our evaluation of LLMs on the Hate-Speech, Neg-383

ative Emotion, and Incel datasets highlights no-384

table differences in performance across various385

prompting techniques and models. For the Hate-386

Speech dataset, GPT-4 demonstrates superior gen-387

eralisation capabilities across prompting strategies, 388

achieving a Cohen’s Kappa score of 73.45% in the 389

zero-shot setting. This highlights its robustness in 390

handling complex classification tasks without ad- 391

ditional context, aligning with our contribution to 392

advancing cross-domain generalisation. However, 393

the variability in GPT-4’s performance across few- 394

and many-shot settings suggests the critical role 395

of prompt design. This underscores our second 396

contribution related to optimising prompting strate- 397

gies for nuanced annotation tasks. This is signifi- 398

cantly higher than GPT-3.5’s 59.10% and GPT-4o’s 399

60.98%. These results suggest that GPT-4’s robust 400

training allows it to better handle the hate-speech 401

classification task without needing additional exam- 402

ples. The improvement in performance with GPT-4 403

in the few-shot settings (2%-shot and 20%-shot) 404

further reinforces its superior capability in lever- 405

aging context to enhance classification accuracy, 406

achieving a peak Cohen’s Kappa score of 73.59% 407

in the 2%-shot setting. 408

In contrast, GPT-4o and GPT-3.5 show more 409

variable results: GPT-4 achieves a high precision 410

score in some cases, such as 92.67% in the zero- 411

shot setting, compared to GPT-3.5’s 88.16% and 412

GPT-4o’s at 88.55%. However, GPT-4o’s perfor- 413

mance is less consistent, with Cohen’s Kappa drop- 414

ping in the 20%-shot setting to 63.92%. This vari- 415

ability indicates that while GPT-4o and GPT-3.5 416

can be competitive, their performance is less sta- 417

ble compared to the more consistently high results 418

from GPT-4. In the results for other models like 419

Claude-Opus and Gemma-2b, we observe lower 420

overall performance compared to GPT-4. For ex- 421

ample, Claude-Opus achieves a Cohen’s Kappa of 422

28.27% in the 20%-shot setting, whereas Gemma- 423

2b reaches 19.34%. Both models perform notice- 424

ably lower than GPT-4 and GPT-3.5, underscoring 425

the advantage of more advanced models in terms of 426

handling nuanced hate-speech classification tasks. 427

Specifically, Gemma-2b shows more variability in 428

performance, with its zero-shot Cohen’s Kappa at 429

16.15%, increasing only slightly to 23.17% in the 430

2%-shot setting. Due to the poor performance of 431

Claude-Opus and Gemma-2b in the zero-, few- and 432

many-shot setting when using the base prompt, we 433

do not further assess their capabilities in the CoT 434

and ICL scenarios. 435

For the Negative Emotion dataset, GPT-4o 436

demonstrates superior Cohen’s Kappa scores com- 437

pared to GPT-3.5 and GPT-4o. GPT-4o achieves 438
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Claude-Opus Gemma-2b
Zero-shot 2%-shot 20%-shot Zero-shot 2%-shot 20%-shot

Hate-speech Accuracy 47.38 52.93 58.61 42.00 52.03 48.26
Precision 63.94 67.21 66.47 61.74 69.84 56.14
Cohen’s Kappa 21.46 23.27 28.27 16.15 23.17 19.34

Negative Emotion Accuracy 39.84 33.21 28.48 32.40 31.24 26.53
Precision 71.77 69.78 65.22 68.17 67.74 64.82
Cohen’s Kappa 58.23 63.33 58.88 61.23 62.59 57.28

Incel Accuracy 33.42 31.11 27.83 28.43 30.28 26.45
Precision 68.98 59.82 51.22 58.37 53.38 53.24
Cohen’s Kappa 58.66 62.23 53.78 59.23 60.03 56.14

Table 3: Accuracy, Precision, and Cohen’s Kappa Results from the Base Prompts in Zero, Few, and Many-Shot
Settings across all Corpora using Claude-Opus and Gemma-2b.

Zero-shot Base 2%-shot Base 20%-shot Base
3.5 4 4o 3.5 4 4o 3.5 4 4o

Hate-speech Accuracy 79.90 89.00 82.4 81.00 88.70 81.90 76.63 84.00 80.06
Precision 88.16 91.77 88.55 88.26 92.67 90.32 87.16 86.73 82.51

Cohen’s Kappa 59.10 73.45 60.98 58.76 73.59 61.29 57.25 70.29 63.92
Negative Emotion Accuracy 75.93 77.18 76.67 75.10 79.25 78.42 71.37 77.59 76.79

Precision 75.68 77.43 77.06 75.37 79.15 78.92 72.22 77.69 76.81
Cohen’s Kappa 57.60 61.44 60.74 58.08 64.00 63.89 52.51 61.97 60.45

Incels Accuracy 60.21 52.85 47.64 35.92 59.27 63.12 58.23 53.23 57.43
Precision 53.33 48.83 44.79 42.47 54.55 56.38 56.44 52.51 55.42

Cohen’s Kappa 29.64 22.93 20.44 15.36 32.34 30.01 33.76 31.64 32.36

Table 4: Accuracy, Precision, and Cohen’s Kappa Results from the Base Prompts in Zero, Few, and Many-Shot
Settings across all Corpora using GPT-3.5, 4 and 4o.

Zero-shot ICL 2%-shot ICL 20%-shot ICL
3.5 4 4o 3.5 4 4o 3.5 4 4o

Negative Emotion Accuracy 77.52 76.76 74.27 62.39 64.79 60.52 72.61 68.60 72.98
Precision 75.38 77.67 75.15 70.14 71.42 68.03 72.99 71.00 73.17
Cohen’s Kappa 57.64 61.55 56.91 48.38 49.28 46.97 55.17 42.39 54.37

Incels Accuracy 65.27 52.85 47.64 34.29 60.76 59.04 59.62 64.69 69.63
Precision 53.33 48.83 44.79 52.31 54.32 49.69 56.14 56.14 58.17
Cohen’s Kappa 29.64 22.93 20.44 13.35 30.2 26.58 34.87 34.97 39.42

Table 5: Accuracy, Precision, and Cohen’s Kappa Results from In-Context Learning Prompts in Zero, Few, and
Many-Shot Settings for the Incel and Negative Emotion Corpora using GPT-3.5, 4 and 4o.

Zero-shot CoT 2%-shot CoT 20%-shot CoT
3.5 4 4o 3.5 4 4o 3.5 4 4o

Negative Emotion Accuracy 75.95 77.59 78.42 43.60 44.82 25.80 72.62 76.12 79.59
Precision 77.30 77.85 78.40 63.10 64.17 51.14 72.98 76.14 80.21
Cohen’s Kappa 54.85 62.31 63.63 18.36 21.62 0.12 54.30 60.81 67.10

Incels Accuracy 63.11 20.34 36.54 60.80 56.60 41.41 60.02 54.69 59.96
Precision 51.55 47.27 41.94 57.62 53.21 43.14 54.40 49.14 54.07
Cohen’s Kappa 31.86 14.91 13.54 39.40 30.28 17.54 30.72 34.87 36.25

Table 6: Accuracy, Precision, and Cohen’s Kappa Results from Chain-of-thought Learning Prompts in Zero, Few,
and Many-Shot Settings for the Incel and Negative Emotion Corpora using GPT-3.5, 4 and 4o.
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(a) GPT-4o (b) GPT-3.5 (c) Claude-Opus (d) Gemma-2b (e) GPT-4

Figure 2: Misclassifications across corpora using different LLMs and prompting strategies. The confusion matrices
highlight the relationship between true and predicted labels for each model.

the highest Kappa score of 67.10% in the 20%-439

shot CoT setting, surpassing GPT-3.5, which has440

a Kappa score of 54.3% in the same setting. The441

performance of GPT-4o in ICL settings reflects its442

ability to leverage provided examples effectively,443

while the CoT prompting yields higher variability,444

with Cohen’s Kappa scores fluctuating in different445

few-shot settings.446

For the Incel dataset, GPT-4o shows notable ad-447

vantages, with the highest Cohen’s Kappa score448

of 39.42% in the 20%-shot ICL setting, compared449

to GPT-3.5’s 34.87% and GPT-4o’s 34.97%. In450

contrast, GPT-4 and GPT-3.5 exhibit inconsistent451

performance across different settings, with GPT-4o452

showing better results in the 2%-shot CoT settings453

but lagging in the 20%-shot setting. These find-454

ings underscore the GPT-4 model’s superiority in455

cross-domain generalisation and multi-label classi-456

fication tasks.457

Our analysis reveals an interesting feature where458

Cohen’s Kappa scores for the Negative Emotion459

dataset (with fewer labels) are generally higher460

compared to the Incel dataset (with relatively more461

labels). This discrepancy can be explained given462

the specific nature of the labels used in each dataset.463

This disparity underscores the unique challenges464

posed by domain-specific emotional nuances, and465

hence the need for targeted adaptations to LLM466

architectures. The Negative Emotion dataset is467

characterized by labels such as "anger," "sadness,"468

and "fear," which are relatively easier to distin-469

guish compared to the broader range of six labels470

in the Incel dataset, including "sadness," "anger,"471

"fear," "loneliness," "jealousy," and "not sure." The472

increased number of labels introduces a higher de-473

gree of complexity and potential overlap between474

categories (Li et al., 2024). For example, emotions475

like "anger" and "fear" can often be contextually476

intertwined, making it difficult to accurately dis-477

tinguish them. The presence of overlapping or478

similar emotional states makes it more difficult for479

models to assign precise labels, resulting in lower 480

Cohen’s Kappa scores (Wang et al., 2023b, 2020). 481

The model’s performance is further affected by the 482

inherent ambiguity in classifying emotions that are 483

nuanced or context-dependent, such as "not sure," 484

which introduces additional variability in predic- 485

tions (Rodriguez et al., 2022). 486

Models tend to exhibit greater agreement with 487

human annotators when dealing with fewer, more 488

distinct categories, as opposed to a broader, more 489

nuanced set of labels where distinctions can be sub- 490

tle and overlapping. Consequently, while Cohen’s 491

Kappa scores are a valuable metric for assessing 492

model performance, they also reflect the inherent 493

challenges posed by the nature of the classifica- 494

tion tasks and the granularity of the labels involved. 495

Overall, GPT-4’s superior performance in Cohen’s 496

Kappa scores across most datasets and prompting 497

settings demonstrates its robust capability in han- 498

dling complex classification tasks. 499

The results presented in Tables 5, 6, and Table 500

C in Appendix illustrate the challenges of nuanced 501

emotion classification in resource-scarce domains. 502

Misclassification patterns, such as anger being con- 503

fused with sadness or fear with sadness, highlight 504

the limitations of LLMs in distinguishing subtle 505

emotional signals. These errors, coupled with high 506

false positive rates for hate-speech classification, 507

point to systematic biases that hinder generalisation. 508

However, the iterative annotation process (Section 509

6) demonstrated how LLMs can complement hu- 510

man efforts, improving inter-annotator agreement 511

to over 86%. These findings collectively support 512

our third and fourth contributions, providing ac- 513

tionable insights into reducing emotional bias in 514

LLMs and the practical utility of hybrid annotation 515

systems. 516

The results for the hybrid annotation framework 517

are in Table 7. For the LLM-only results, we used 518

the best-performing configurations for each dataset. 519

Hate-Speech results were obtained using GPT-4 520
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Data Metric
LLM-
Only

LLM +
Human

Refinement
Improvement

Hate-
Speech

Annotation Accuracy (%) 89.10 96.30 +8.1

Inter-Annotator
Agreement (Kappa)

0.71 0.89 +25.4

Negative
Emotion

Annotation Accuracy (%) 84.5 93.72 +10.9

Inter-Annotator
Agreement (Kappa)

0.68 0.85 +25

Incel Annotation Accuracy (%) 78.2 92.4 +18.2
Inter-Annotator

Agreement (Kappa)
0.62 0.82 +32.3

Table 7: Comparison of LLM-only and LLM + Human
Refinement approaches across the Hate-Speech, Neg-
ative Emotion, and Incel datasets. Improvements (%)
indicate the relative increase in performance achieved
through the hybrid annotation framework, combining
LLM outputs with human refinements.

with a Base Prompt in a Few-Shot (2%-shot) set-521

ting, achieving high annotation accuracy and inter-522

annotator agreement. For the Negative Emotion523

dataset, GPT-4 demonstrated its capabilities with a524

Chain-of-Thought (CoT) Prompt in a Many-Shot525

(20%-shot) setting, emphasising the importance of526

step-by-step reasoning in nuanced emotional clas-527

sification. The Incel dataset results were derived528

using GPT-4o with an In-Context Learning (ICL)529

Prompt in a Many-Shot (20%-shot) setting, show-530

casing the utility of providing extensive context for531

handling emotionally complex and domain-specific532

data.533

6 Analysing Misclassifications534

We randomly sampled 100 rows to identify and535

analyse the most common label misclassifications536

across different models. All results are displayed537

in Tables A - E in Appendix B, Figure 3. Across538

all models, a consistent pattern emerged in the mis-539

classification of emotions, particularly in the Incel540

dataset, where anger was often mistaken for sad-541

ness. This likely reflects challenges in understand-542

ing emotional intensity and receiving contextual nu-543

ances in environments characterised by pervasive544

negative affect. Similarly, in the Negative Emo-545

tion dataset, sadness was often confused with fear,546

highlighting the difficulty in distinguishing emo-547

tional distress when emotion indicators are subtle.548

In the Hate-Speech dataset, all models exhibited549

a tendency to misclassify not hate-speech as hate-550

speech, likely due to over-sensitivity to offensive or551

emotionally charged language and limited recogni-552

tion of nuanced features like sarcasm or non-hateful553

tones. A comparative analysis across GPT-4, GPT-554

4o, and GPT-3.5 reveals evolving patterns of error. 555

For example, GPT-4 misclassified anger as sadness 556

21 times, compared to 24 in GPT-4o and 33 in GPT- 557

3.5, indicating marginal improvement in newer iter- 558

ations. However, identify other emotions e.g., con- 559

fusion increased slightly in the newer GPT-4o (37 560

instances) compared to GPT-4 (33 instances) and 561

GPT-3.5 (29 instances). Misclassification of not 562

hate-speech as hate-speech rose from 43 instances 563

in GPT-4 to 53 in GPT-4o, suggesting increased 564

sensitivity in newer models. 565

Despite these gradual improvements, all GPT 566

models struggled with fine-grained emotional nu- 567

ances and failed to accurately identify neutral lan- 568

guage. These biases present opportunities for im- 569

provement. 570

7 Conclusion 571

This study tackles the challenge of leveraging state- 572

of-the-art large language models (LLMs) for nu- 573

anced and domain-specific negative emotion classi- 574

fication, focusing on generalisation across datasets 575

and prompting strategies. Our findings highlight 576

GPT-4’s superior performance in resource-scarce 577

and emotionally complex datasets, such as incel dis- 578

course, though prompting strategies significantly 579

impact outcomes, with zero-shot and few-shot 580

settings often outperforming many-shot settings. 581

While Chain-of-Thought (CoT) prompting shows 582

potential, it requires further refinement for ambigu- 583

ous cases. 584

Our analysis reveals biases in LLM outputs, such 585

as frequent misclassifications of overlapping emo- 586

tions like anger and sadness, underscoring the need 587

for targeted training and advanced prompting tech- 588

niques. To address these limitations, we intro- 589

duced a hybrid annotation framework that com- 590

bines LLM efficiency with human expertise. This 591

framework significantly improves annotation qual- 592

ity, reduces biases, and enhances inter-annotator 593

agreement, particularly in nuanced or high-stakes 594

tasks. This work contributes benchmarks for LLM 595

performance, insights into prompting strategies, 596

and a practical framework for reducing the psycho- 597

logical and logistical burdens of annotation. Future 598

research should refine LLM generalisation, miti- 599

gate biases, and expand the ethical and effective 600

deployment of LLMs in sensitive real-world appli- 601

cations. 602
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Limitations603

We focus on single-label classification whereas it is604

possible for one text to have multiple labels. In our605

prompt analysis, we use the emotion label which606

has the majority effect. However, texts can have607

both anger and jealousy, but if the text depicts jeal-608

ousy more dominantly, then the label of jealousy is609

the one assigned. The training and deployment of610

state-of-the-art LLMs for data annotation demand611

substantial computational resources, which may612

not be accessible to all researchers and organisa-613

tions, thus limiting widespread adoption. As for614

the widespread application of LLMs as data an-615

notators for hate-speech or sentiment-related con-616

texts, robust data privacy protocols are essential to617

ensure confidentiality and consent in training and618

annotation datasets. Human oversight should be619

employed to review LLM-generated annotations,620

ensuring accuracy, ethical compliance, and mitigat-621

ing risks of error propagation or bias.622
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Appendix A: Prompts 965

Prompt Type Prompt Example
Base Prompt Analyse the following text and determine the primary emotion expressed. Choose only one emotion from this list: sadness, anger,

loneliness, jealousy, fear, or not sure. Respond with only the chosen emotion word.
In-context Learning Prompt You are an emotion classifier. The emotions can be one of the following: sadness, anger, loneliness, jealousy, fear, or not sure.

Below are the definitions of these emotions. Use these definitions to classify the emotion of the new text provided at the end. -
Sadness: Emotions such as grief, sorrow, or melancholy. - Anger: Emotions such as rage, frustration, or hostility. - Loneliness:
Emotions associated with feeling isolated, abandoned, or disconnected. - Jealousy: Emotions stemming from fear of loss or rivalry. -
Fear: Emotions characterized by apprehension, anxiety, or dread. Now classify the following text.

Chain-of-Thought Prompt Classify the emotion in the following text by reasoning through the feelings step by step. Choose only one emotion from this
list: sadness, anger, loneliness, jealousy, fear, or not sure. - Sadness: Emotions such as grief, sorrow, or melancholy. - Anger:
Emotions such as rage, frustration, or hostility. - Loneliness: Emotions associated with feeling isolated, abandoned, or disconnected.
- Jealousy: Emotions stemming from fear of loss or rivalry. - Fear: Emotions characterized by apprehension, anxiety, or dread. Given
this framework, think step by step about the emotions conveyed by the text. First, describe the feelings you observe in the text, and
then identify the primary emotion based on those feelings.

Table 8: Prompt types and examples of the prompts used across all models. All prompt generations were conducted
with a temperature setting of 0.3.

Appendix B: Misclassifications 966

Figure 3: Misclassifications across corpora using different LLMs and prompting strategies. Each subfigure represents
one model’s misclassification results for the Incel, Negative Emotion, and Hate-Speech datasets.
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