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ABSTRACT

Verifiers are auxiliary models that assess the correctness of outputs generated by
base large language models (LLMs). They play a crucial role in many strategies for
solving reasoning-intensive problems with LLMs. Typically, verifiers are LLMs
themselves, often as large (or larger) than the base model they support, making
them computationally expensive. In this work, we introduce a novel lightweight
verification approach, LiLaVe, which reliably extracts correctness signals from the
hidden states of the base LLM. A key advantage of LilaVe is its ability to operate
with only a small fraction of the computational budget required by traditional
LLM-based verifiers. To demonstrate its practicality, we couple LiLaVe with
popular meta-generation strategies, like best-of-n or self-consistency. Moreover,
we design novel Lil.aVe-based approaches, like conditional self-correction or
conditional majority voting, that significantly improve both accuracy and efficiency
in generation tasks with smaller LLMs. Our work demonstrates the fruitfulness of
extracting latent information from the hidden states of LLMs, and opens the door
to scalable and resource-efficient solutions for reasoning-intensive applications.

1 INTRODUCTION

Recently, there has been substantial interest in enhancing the reasoning capabilities of large lan-
guage models (LLMs). Specifically, this effort includes applying LLMs to solve mathematical
problems (Cobbe et al., 2021} [Trinh et al. [2024), writing code (Jiang et al., [2025)), automating
scientific discovery (Novikov et al.,[2025), recognizing complex spatial patterns (Chollet et al., [2024),
and writing formal proofs (Mikutfa et al.,[2024; [Lin et al., 2025).

Efforts to improve LLM performance on reasoning-intensive tasks have followed two primary
directions. First, there is a substantial body of work focusing on pre-training or fine-tuning models
targeting reasoning-intensive tasks. To this end, high-quality, reasoning-focused data are collected,
like OpenWebMath (Paster et al., [2023)), or Proof Pile (Azerbayev et al.,|2023)). In addition to that,
new training methodologies are being developed, such as self-improvement loops (Zelikman et al.,
2022), or reinforcement-learning-based approaches (Guo et al., [2025} Zhang et al.| 2025)), which
emerged as remarkably effective in the context of reasoning tasks.

Second, there is ongoing research into designing inference-time techniques to enhance the performance
of LLMs on reasoning-focused tasks, where an LLM is already pre-trained and fixed (Welleck
et al [2024). The examples of two such simple, yet effective techniques are chain-of-thought
prompting (Wei et al., 2022)), and self-consistency decoding (Wang et al.| [2023)), also known as
majority voting. More advanced inference-time approaches often combine decoding process from
the base LLM with a verifier (often also called a reward model), trained to assess the correctness
of individual reasoning steps — or entire reasoning trajectories — in order to enhance the base
model’s performance (Cobbe et al., [2021}; [Lightman et al., 2023). Typically, such verifiers are
LLMs themselves, often as large — or larger — than the base model they support, making them
computationally expensive. For instance, in a recent work by Wu et al. [Wu et al.| (2025)), an LLM
verifier of size 34B of parameters is paired with base models of size 7B and 34B parameters.

The increased inference-time computational cost resulting from using large, LLM-based verifiers
may be a significant limitation. This is especially important in setups where the verifier is called
multiple times for decoding one sample, which is the case in verifier-guided tree search approaches
like in the REBASE algorithm from |Wu et al.| (2025). Moreover, large verifiers may be costly to train.
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This is especially important given the indication from the literature (Havrilla et al., 2024} Wang et al.|
2024a)) that the performance of LLM-based verifiers does not transfer across different base LLMs.

Our work aims to introduce computationally efficient verifiers (both in training and inference), which
can be used to enhance the performance of the base LLMs in reasoning-intensive tasks. To this
end, we develop LiLaVe — Lightweight Latent Verifier, which is a simple and practical method for
extracting the correctness signal from the hidden states of the base LLM (Section [2). LiLaVe is based
on a fast, classical machine learning model — gradient boosted decision trees. It can be trained quickly
(< 15 min) on CPU only using a small number of LLM samples (= 5k), to reliably extract the hidden
correctness signal. This makes our approach easily adaptable to new datasets and models.

In Section [3] through a series of experiments, we demonstrate how LilL.aVe can be practically and
effectively used to implement various meta-generation strategies focused both on correctness of the
inferred answers as well as on inference-time compute-efficiency.

Besides the practical advantages of our approach, it reveals an intriguing phenomenon: hidden states
of LLMs carry useful information which can be uncovered by classical machine learning methods.

In summary, our contributions are as follows:

* We introduce Lil.aVe: a novel lightweight verification approach that extracts correctness signals
from the hidden states of the base LLM; we show that in terms of the AUC metric it outperforms
other lightweight approaches and is competitive with compute-intensive LLM-based verifiers.

* We experimentally study which hidden states across the model’s layers and the output tokens
provide the optimal correctness signal, which brings introspection into the model’s mechanics.

* Finally, we show how LiL.aVe brings practical advantage by coupling it with several meta-
generation strategies and demonstrating significantly improved accuracy and inference-time
compute-efficiency of LLMs on reasoning tasks compared to the baselines. In particular:

— We introduce the conditional majority voting approach, which reduces the average inference
cost while maintaining high accuracy.

— We demonstrate the effectiveness of the conditional self-correction approach, in which the
base model is asked to self-correct only when the LiLaVe verifier’s score is low.

2 METHOD

Our approach to improving the accuracy and efficiency of LLMs on reasoning-intensive tasks
at test time involves two key components. First, we train a lightweight latent verifier (LiLaVe)
using selected hidden states extracted from the LLM during the generation of CoT-style solutions
of mathematical problems, labeled by the correctness of the final answers concluding them (see
Section [2.1). Subsequently, we employ the verifier to estimate the probability of LLM’s answers
being correct and integrate it with various meta-generation strategies (described in Section[2.2).

2.1 LIGHTWEIGHT LATENT VERIFIER — LILAVE

Data Given a question g, an LLM generates an answer sequentially as y = y1ys - - - Y, Where
y;s are individual tokens. During the decoding, we extract hidden states h. € R” representing the
activations from the [-th transformer’s layer at the generation of the ¢-th token, where n is the hidden
dimension of the model.Instead of extracting hidden states from all possible locations (t,1), we fix
sets of indices L, T" and require [, ¢ € L x T'. In Sec.[3.2] we experimentally determine optimal L, T".

While the answer y contains the chain-of-thought style reasoning, we determine its correctness solely
by looking at the final answer.To evaluate correctness, we use an automated evaluator that compares
the generated final answer to the ground truth, resulting in a binary correctness label c. Finally, a
dataset D for training LiLaVe consists of datapoints of the form of quadruples (h!,,t,c). Note that
we extract | L| - |T| hidden states per one generation. Therefore, if () is the dataset of questions and
we sample k generations for each g € @, we have |D| = |L|- |T| - |Q] - k.

Training Having collected D, we train an efficient classifier M to predict the binary label ¢ given
the hidden state k! and its location given by the indices [, t. The output score M (ht,1,t) € [0, 1] is
to be interpreted as the probability of the response ¥ to be correct.
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We tested several classifiers suitable for such data: logistic regression (Hastie et al. [2009),
SwiGLU (Shazeer, 2020), and gradient boosted trees (Friedman, [2001). In our initial experiments, we
observed that the last method (concretely, its XGBoost implementation by (Chen & Guestrin| (2016))
performed best and most robustly (see Appendix [B.2)). Therefore, we chose to rely on this classifier.

Inference During inference, the base language model generates a response y along with a set of
associated hidden states H,,, which are indexed by their locations (I, ¢). We then apply the trained
XGBoost model M to predict a score sy, for each hidden state h € H,,. Finally, these scores are
aggregated, which results in the final correctness estimate, i.e., the LiLaVe score:

LiLaVe(y) = aggregate({sn }rem,) € [0,1].

After experimenting with several aggregation methods — taking minimum, maximum, or average
score — we chose to use averaging as it performed best.

2.2 LILAVE-BASED META-GENERATION STRATEGIES

We consider several meta-generation strategies, i.e., strategies that build on top of the base generator
(the base language model) and a trained LiL.aVe verifier. First, we experiment with two standard
approaches: best-of-n sampling and weighted majority voting. In both approaches, we first sample
n responses from the base generator with fixed temperature ¢ > 0. As the final response in best-of-n,
we select the one with the highest LiLaVe score. In weighted majority voting, we perform a majority
voting across the final answers extracted from n full responses, weighted by their LiLaVe scores.

Standard majority voting and its weighted variant are effective techniques; however, they may be
computationally expensive as they require generating multiple independent samples per question. In
the weighted voting, there is an additional cost of extracting hidden states from the decoded samples,
which may cause a significant slowdown in practical settings.

This motivates our novel approach of conditional majority voting: first, we generate a single sample
from the base generator, and we score it with LiLaVe. If the score is above a predetermined threshold
s € [0, 1], we consider the sampled response as final. Otherwise, we interpret the low score as an
indication of the base model’s mistake or uncertainty, and generate n additional samples to perform a
majority voting to determine the final response.

Finally, we investigate another new meta-generation strategy of conditional self-correction. Prompt-
ing LLMs to verify and correct their responses gives varied results (Huang et al., 2024). LLMs,
indeed, often are able to fix their mistakes, but at the same time, they tend to turn correct responses
into incorrect ones. This makes the self-correction procedure unreliable and, in most cases, overall
unsuccessful. In the conditional self-correction, we leverage LilLaVe to achieve reliable accuracy
improvements. First, we generate the initial response and score it with LiL.aVe. Then, we prompt the
model to self-correct its respons only if the LiL.aVe score is below a predetermined threshold s.

In Section we demonstrate the performance of these LilL.aVe-based meta-generation strategies on
several reasoning-intensive benchmarks.

3 EXPERIMENTS

In this section, we describe the experiments we conducted in order to develop and evaluate LilL.aVe.
First, in Section@ we describe four reasoning-intensive, mathematical benchmarks that we used.
In Section[3.2] we study the influence of the location of extracted hidden states as well as sampling
temperature on the predictive performance of LiLaVe. In Section[3.3] we introduce two alternative
baseline methods for estimating the correctness of the LLM reasoning, which we subsequently
compare with LiLaVe. Finally, in Section[3.4] we harness LiLaVe to four meta-generation strategies
described in Section [2.2] and we demonstrate that despite being so lightweight, our verifier allows us
to achieve substantial performance gains on the mathematical benchmarks.

Our experimental results demonstrate that LiL.aVe excels in extracting the correctness signal from the
internal states of the base LLLM, and that this signal can be practically utilized in meta-generation
strategies, improving the performance and efficiency on reasoning-intensive benchmarks.

'The specific self-correction prompt we use is shown in Figurein Appendix
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Figure 1: Predictive performance of LiLaVe on individual locations of hidden states determined by
the indices of the transformer’s layer and the sequence’s token. We test the tokens from the prefix and
suffix of the generated sequences, both of length 32. It is visible that the higher-quality signal can
be retrieved from the final tokens; however, interestingly, even for the first tokens, LilL.aVe provides
a signal significantly better than the random baseline (dashed lines). At the same time, we cannot
conclude which transformer layers give the best signal.

3.1 REASONING-FOCUSED BENCHMARKS

We evaluate LiLaVe and LiLaVe-based meta-generation strategies on four mathematical QA datasets,
whose difficulty is appropriate for the LLMs we use: GSM8K [2021), MATH
2021), GSM-Symbolic (Mirzadeh et al. [2024), and algebra _linear_ld (Saxton et al., 2019).
The last two datasets are synthetic and therefore avoid potential contamination effects. For each of
the benchmarks we select 1000 training examples to train a dataset-specific LiLaVe. We test on sets
of 500-1319 examples, depending on the dataset. See Appendix [A]for more details regarding data.

3.2 DEVELOPING LILAVE

Below, we describe experiments determining (1) the location of extracted internal language model
information as well as (2) sampling temperatures resulting in optimal LiLaVe’s performance.

In our main experimental line we use Llama 3.1 8B as the base model. To test the universality of
LiLaVe, we also experimented with popular Gemma 2 2B and Phi-3.5-mini models — see Appendix [B]
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Hidden states locations As described in Section 2.1] we train LiLaVe on hidden states extracted
from the base language model. The hidden states we extract correspond to different layers of the
transformer model as well as different tokens in the decoded sequences. It is not clear which of those
locations can allow for extracting the best correctness signal, therefore, we run an experiment aiming
to answer this question. We fix a set of layer indices L and token indices 7" as:

L={-1,-2-4,-8,—16},
T=1{0,1,2,3,...,31,-32,-31,...,-3,-2,—1}.

Negative indices follow the Python convention of list indexing: the element —n is the nth element
counting from the end of the list. For each (I,¢) € L x T, we train a separate XGBoost model M; ; on
hidden states corresponding to layer [ and token ¢. Then, we evaluate each of the trained models M; ;
on a testing partition (using the corresponding hidden states), and calculate its predictive performance
using the AUC metric [

Figure [I] presents results of the experiment for the four datasets (introduced in Section [3.1} for
GSM-Symbolic, we also consider its more difficult p2 variant).

First, we observe that, predictably, the correctness signal is better in the suffix of the decoded
sequences (which is especially noticeable for algebra_linear_1d). However, curiously, the signal in
the prefix of the decoded sequences is still significantly better than the random baseline (AUC = 0.5),
which is especially visible for the first few tokens in the MATH dataset. Another observation is that
there is no significant distinction between different transformer’s layers, and even layers as deep as
—16 provide good signal (Llama 3.1 8B used in this experiment has 32 layers in total.)

Based on the obtained results, we fix the following sets of indices of layers Ly ,ve and tokens 77 i ave
from which we extract the hidden state to train and evaluate the LilLaVe verifier:

Liirave = (-1, -2, -4, -8, -16),
Tiitave = (—1,-2,-3,...,—16).

As described in Section[2.1] in the LiLaVe’s inference mode, for one LLM’s decoding, we aggregate
the XGBoost-inferred scores of hidden states corresponding to these tokens and layers using the
arithmetic mean.

Sampling temperature When generating samples for the
LiLaVe training, it is not immediately clear which sampling
temperatures should be used. On one hand, for reasoning-
intensive problems, low temperatures typically result in
better performance. On the other hand, meta-generation
techniques like majority voting require non-zero temper-
ature to make the samples diverse (see Figure|12|in Ap-
pendix [B] demonstrating this trade-off for various datasets).
Therefore, ideally, we want LiLaVe to perform well on sam-
ples generated across a range of temperatures. To check if
it does, we experimentally study how the temperature of
generations on which the verifiers are trained impacts their
predictive ability when tested on answers to test questions, 00 02 06 08 11

generated with various temperatures. temperature of evaluation generations

ons
0.0
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Fig.|2| shows the results of this analysis for hidden states of _. .

the Llama 3.1 8B and temperatures {0.0,0.2,0.6,0.8,1.1} Fl.gure 2: . Performance (AUC) .Of
- LiLaVe trained and evaluated on hid-

on GSMB8K. Each cell represents a mean of 16 experi- d f11 31SB

ments: final AUC on the test set of 16 classifiers trained GeSnNigit(es of Llama - h  answers to

on hidden states from layers {—2, —4, —8, —16} and to- ; ttquestlons with various temper-

kens {—2, —4, —8, —16}. For all temperatures except 0, ¢ SCHUNEs:

we generate 8 answers per question.

’The area under the ROC curve (AUC) represents the probability that the model, if given a randomly chosen
positive and negative example, will give a higher score to the positive example than to the negative one. Therefore,
AUC is directly related to the downstream task performance of score-based methods like best-of-n and weighted
majority voting. For the conditional voting and self-correction methods, the score threshold for binary separation
into positive / negative classes is additionally required, which needs to be tuned separately.
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Table 1: Performance (AUC) of three methods for predicting the correctness of the LLM’s answers:
LiLaVe and four baseline methods: self-reflection, logprob-based confidence estimation, and two
compute-intensive LLM-based ORMs finetuned either on Mistral-7B or DeepSeekMath-Instruct data.

benchmark LilaVe self-reflect logprobs ORM-Mistral ORM-Deepseek

GSMBK (test) 0.86 0.68 0.78 0.81 0.88
GSM-Symbolic 0.84 0.70 0.78 0.85 0.90
GSM-Symbolic-p2 0.78 0.60 0.63 0.73 0.75
algebra_linear_1d 0.93 0.61 0.81 0.90 0.90
MATHS500 0.88 0.79 0.67 0.79 0.90

We observe that the predictive performance of the verifier increases both with the temperature of the
evaluation samples as well as training samples. We hypothesize that increased temperature results in
more diverse training examples and also examples with different correctness labels for one question,
which is good for training the verifier. Higher temperature on the evaluation side likely results in
samples that are incorrect in a way easier to detect by the verifier.

The experiment shows that increased temperature for generating training samples is beneficial. Given
this result, and to ensure diversity in the training samples, we decide to train LiLaVe on samples
generated with a mixture of five temperatures: {0, 0.25,0.5,0.75,1.0}.

3.3 BASELINES

We compare LiLaVe with four baselines: two natural methods for estimating the correctness of
the language model’s answer — logprob-based estimator and self-reflection prompting — as well as
two LLM-based verifiers. These baselines are described below, and their performance compared to
LiLaVe is shown in Table

Logprob-based estimator Assume that for a question ¢, a language model generates a response
Y = Y1Y2 - - - Yn, Where each decoded token y; is given probability p;. For each response, we compute

the sum of log-probabilities over a k-suffix: Zf;ol log pr—k.

We treat this sum as an (uncalibrated) estimator of the output correctness. The straightforward intuition
behind it is that higher probabilities of the individual (suffix) tokens mean a higher probability of the
answer. For each dataset, we choose the suffix length &, for which this estimator achieves the highest
AUC score. We report results in Table[I] See Appendix [B.4]for more details about this baseline,
including a breakdown of performance over different suffix lengths.

Self-reflection prompting This baseline involves a base LLM self-reporting the confidence score
(Tian et al., [2023} [Pawitan & Holmes, [2024)). Here we prompt the LLM (the same as the base one) to
express a confidence of its answer being correct on a scale from 1 to 10. The specific self-reflection
prompt we use is provided in Figure[T5]in Appendix

LLM-based verifiers We also benchmarked two LLM-based verifiers (aka outcome reward models,
or ORMs) developed in Xiong et al.[(2024). Both of them are based on Llama 3.1 8B; they differ by
the model that was used to generate their training data: either Mistral-7B or DeepSeekMath-Instruct
7B. The training datasets of both these ORMs consist of more than 250k. Note that LiLaVe was
trained on only 5k examples per benchmark (5 samples for each of the 1k training questions).

Given the results in Table[T|comparing LiLaVe with the baselines, we conclude that LiLaVe excels at
extracting useful signal, estimating the model’s correctness of its answers. LilLaVe is significantly
better than self-reflection prompting and logprob-based estimator. Moreover, LiLaVe achieves
comparably good results as large, LLM-based verifiers trained on datasets a couple of orders of
magnitude larger. Additionally, in Table[2)in Appendix [B|we present LiLaVe’s strong results for two
other base LLMs: Gemma 2 2B and Phi-3.5-mini.

3.4 LILAVE-BASED META-GENERATION STRATEGIES

As shown above, LiLaVe proves to be effective in distinguishing correct and incorrect LLM’s
responses as measured by the AUC metric. In this subsection, we experimentally demonstrate that
this statistical performance can be translated into efficient and practical meta-generation strategies.
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Figure 3: Best-of-n, majority voting, and weighted majority voting on four datasets. For each of the
methods, the number of samples per question is varied between 1 and 16. Weighted majority voting
performs best for all the datasets, but the margin differs across the datasets.

Conditional self-correct
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Figure 4: Conditional self-correction on four datasets. The dark points indicate the performance
for different score thresholds. The left-most points correspond to no self-correction (and only one
sample per question generated); The right-most points correspond to unconditional self-correction
(and therefore two samples per question generated). The optimal thresholds are orange.

In this section, we show experiments using all the datasets from Section[3.1] except GSM8K - this is
because, besides the previously mentioned weaknesses of this benchmark, Llama 3.1 8B achieves on
it results that are similar to the base version of GSM-Symbolic.

Best-of-n and weighted majority voting First, we employ LiLaVe as a scoring function in best-of-n
and weighted majority voting strategies (see Section[2.2)). For both strategies, we generate between 1
and 16 samples per question with temperature 1.0, and score each of them with LiLaVe. In Figure
we show the results for both strategies, comparing them with the baseline of standard majority voting.

The weighted majority voting strategy performs best across all numbers of votes, and for all datasets,
whereas for MATH, this dominance is the largest. For both GSM-Symbolic datasets, weighted
majority voting is only slightly better than standard majority voting, and the difference diminishes
with growing numbers of votes (samples). Best-of-n is weaker than weighted majority voting, and for
higher numbers of samples, also weaker than standard majority voting. This may be caused by false
positives: responses appearing as correct to the verifier; the chance of encountering such examples
grows with the number of samples (cf Section 5.1 of (Cobbe et al., [2021}))).

Conditional self-correction We evaluate the conditional self-correction strategy (Section|2.2)) with
a sampling temperature of 0. Figure [] shows the performance across four datasets for varying
thresholds s € [0, 1], which control how often self-correction is attempted.

A typical issue with self-correction is that while LLMs are often able to fix incorrect responses, they
also turn many correct responses into incorrect ones. As seen in Figure[d] applying self-correction
to all responses reduces accuracy by 15-30 percentage points. However, selectively correcting only
low-scoring responses leads to significant gains for algebra_linear_1d and GSM-Symbolic-p2, with
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Figure 5: Conditional majority voting with varying threshold s and the number of samples per
question n between 1 and 256. The parameter n is shown implicitly as for fixed s it influences the
total number of generated samples through the number of dataset questions scored below s (which
for dataset D is equal (n + 1) - | D|; the additional one sample per example is the probe sample). Note
that on the x-axis, a logarithmic scale is applied. In black, the baseline of standard majority voting is
shown. Conditional majority voting outperforms the baseline on a wide range of generation budgets.

smaller improvements on other datasets. The optimal threshold varies per dataset (indicated in orange
in Figure ), so in practice, this hyperparameter must be tuned depending on the data.

Conditional majority voting In this meta-generation strategy (Section four hyperparameters
are involved: the temperature ¢y of generating the probe sample, the temperature of the samples
for majority voting ¢, the score threshold s below which the majority voting is triggered, and
the number of majority voting samples n. We fix ¢ty = 0,¢,, = 1, and perform experiments with
n € {1,2,4,...,256} and a range of various s € [0, 1]. Figure 5| presents results for two datasets.

In these plots, we do not explicitly show the n parameter, but instead, on the = axis, we put the total
number of samples generated when evaluating on all the examples (which is influenced by both n and
s). This exposes an interesting fact: for a fixed budget (in terms of the number of generated samples),
different combinations of n and s parameters of conditional majority voting give optimal accuracy.
Importantly, conditional majority voting for lower budgets achieves better performance than standard
majority voting (black line in the plots). This shows that LiLaVe-conditioned majority voting is a
practical method allowing for trade between accuracy and efficiency in restricted budget settings.
In a real scenario, one would tune the n and s parameters on a validation set to achieve a desired
accuracy-efficiency trade-off.

4 RELATED WORK

Reasoning and large language models Step-by-step problem solving is fundamental to human
intelligence and scientific discovery. Mathematical problems are often considered a hallmark of
reasoning and have been extensively studied in the context of LLMs (Lewkowycz et al.| 2022} |(Cobbe
et al.| 2021} [Hendrycks et al.| |2021). The field is advancing rapidly, with models like OpenAI’s
03 solving certain research-level problems from the FrontierMath benchmark (Glazer et al., [ 2024).
Although 03’s training details remain undisclosed, conjecturally similar DeepSeek-R1 (Guo et al.}
2025) exemplifies the class of “thinking models,” typically trained with reinforcement learning to
conduct extensive searches over the space of solutions. The flip side is the high inference cost; 03
reportedly used 33M tokens to solve a single ARC-AGI puzzle (Chollet, [2019} |Chollet et al., 2024).
This underscores the need for efficient inference, which has become a growing research focus. [Snell
et al.|(2024) and Wu et al.| (2025)) explore trade-offs between model size and inference time, aiming
to establish compute-optimal strategies. Our work similarly prioritizes inference-time efficiency, with
a particular focus on reward model design.

Inference-time techniques Chain-of-Thought (CoT) prompting (Wei et al.,|2022; [Nye et al., [2021)
is arguably the most widely adopted technique for improving LLM reasoning. Self-consistency
decoding (Wang et al.,|2023) involves generating multiple answers and applying majority voting.
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Furthermore, tree and graph search methods, including Monte Carlo tree search and AlphaZero-
inspired techniques, have been widely studied (Yao et al., 2023} |Besta et al., 2024} |[Feng et al., 2024;
Welleck et al., [2022). Another research direction focuses on self-refinement techniques where the
LLM responses are iteratively improved / fixed by the model itself, possibly using external feedback
(Havrilla et al., 2024; [Madaan et al., 2023; |Shinn et al., [2023)). However, the effectiveness and
efficiency of these methods remain limited (Huang et al., [2024; |[Havrilla et al., 2024). Our work
contributes to the area of inference-time techniques by proposing a lightweight verifier that can boost
the accuracy of the base language model with low computational overhead. For a broad overview of
inference-time generation techniques with large language models, see (Welleck et al.| 2024).

Approximate verifiers LLM-generated answers or reasoning process can be assessed by fine-tuned
models, known either as verifiers or reward models. Verifiers can be trained to predict correctness of
entire answers (Cobbe et al., [2021) or to verify individual reasoning steps (Lightman et al., 2023}
Yu et al.,[2024; Havrilla et al., [2024; |Uesato et al., 2022)E] Acquiring training data remains the key
challenge. [Lightman et al.|(2023) rely on costly human data, while Wang et al.| (2024a), | Wang et al.
(2024b)), |Luo et al.[(2024), and |[Havrilla et al.|(2024) generate synthetic data. A recent work |Ye et al.
(2024)) examines LLM reasoning rationales and hidden mechanisms, suggesting that latent structures
could enable training simple verifiers, which inspired our work.

Probing Probing (Alain & Bengio, |2018) the internal states of transformer models has become an
established method of studying their latent representations (Gurnee & Tegmarkl 2024}, memorized
sensitive information (Kim et al.|[2023)), and in-context algorithms (Akyiirek et al.,2023). For a recent
introduction to techniques for studying the internal workings of transformer-based language models,
see (Ferrando et al., [2024). Using the models’ hidden layer activations to predict the truthfulness of
their generations has been extensively studied in the context of hallucination detection, see (Azaria
& Mitchell, 2023} (Chen et al., 2024} He et al., 2024} Beigi et al., [2024). Outside of hallucination
detection, OPENIA (Bui et al., [2025) notes that model internal representations encode information
useful for predicting the correctness of generated code. While applying this insight to a different
domain, we also use a different type of latent classifier and additionally study recipes for utilizing the
verifiers to improve model generations.

5 LIMITATIONS AND FUTURE WORK

Verifier-conditioned decoding In our experiments, the LiLaVe verifier scores answers after full
generation. However, as shown in Figure[I] LiLaVe detects useful signal throughout the sequence,
even at the first decoded token. This suggests integrating the verifier directly into decoding as a reward
model guiding token selection toward high-certainty paths while avoiding erroneous trajectories.
Given LiLaVe’s efficiency and low computational overhead, this direction is particularly promising.

Verifier-oracle gap While our work advances test-time reasoning, there is still substantial room for
improvement. In the best-of-n setting, when an oracle selects a correct answer if present among n
samples, performance increases dramatically (see Figure[I0]in Appendix [B). This performance gap
highlights the potential for improving verifiers, which could translate to significant gains.

We hypothesize that better verifiers can be obtained by integrating information for a larger number of
tokens and layers, as well as creating ensemble models utilizing additional information such as logits
and self-evaluation, which we treat as separate methods here.

Moreover, LiLaVe can be combined with different base LLMs which may constitute multiple
standalone verifiers that digest responses generated beforehand from an arbitrary model. See
Appendix for a prototype experiment in that direction, which gave promising results.

Adaptive conditional majority voting In our conditional majority voting strategy, we fix the number
of samples n to be generated per question beforehand. This could be optimized by allowing n to
be selected adaptively, based on the score from the verifier. Our initial experiments have shown
promising results: the verifier’s score on the probe sample was inversely correlated with the entropy
among the answers in the subsequently generated samples. This suggests a meta-generation strategy
where lower scores of the probe sample imply larger numbers of samples for voting.

3The verifiers for entire answers are also called outcome reward models (ORM), whereas the verifiers for
reasoning steps are called process reward models (PRM).
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REPRODUCIBILITY STATEMENT

In the Supplementary material we provide code and data for reproducing LilL.aVe experimental results
presented in this paper. In particular, we include:

* The four datasets used in the experiments (GSM8K, GSM-Symbolic, MATH, algebra_linear_1d)
including the training / testing splits.

* A script for extracting hidden states from the base LLMs to train LiL.aVe models.
* A script for training LiLaVe’s XGBoost model based on the hidden states.

e Three pre-trained LiLaVe models: algebra__linear_1d.xgb, GSM8K.xgb, and
MATH. xgb, trained on the training partitions of the respective datasets.

* The implementation of the meta-generation strategies described in the paper.

* Prompts we used for LLM generations.

REFERENCES

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? Investigations with linear models. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.net/forum?id=0g0X4H8yN4T.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes,
2018. URL https://arxiv.org/abs/1610.01644.

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it’s lying, 2023. URL
https://arxiv.org/abs/2304.13734l

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. CoRR, abs/2310.10631, 2023. URL https://doi.orqg/10.48550/arXiv.
2310.10631.

Mohammad Beigi, Ying Shen, Runing Yang, Zihao Lin, Qifan Wang, Ankith Mohan, Jianfeng He,
Ming Jin, Chang-Tien Lu, and Lifu Huang. Internallnspector I2: Robust confidence estimation in
LLMs through internal states, 2024. URL https://arxiv.org/abs/2406.12053|

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph
of thoughts: Solving elaborate problems with large language models. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(16):17682—17690, March 2024. ISSN 2159-5399. doi: 10.
1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/aaai.v38116.29720.

Tuan-Dung Bui, Thanh Trong Vu, Thu-Trang Nguyen, Son Nguyen, and Hieu Dinh Vo. Correctness
assessment of code generated by large language models using internal representations, 2025. URL
https://arxiv.org/abs/2501.12934.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye.
INSIDE: LLMs’ internal states retain the power of hallucination detection, 2024. URL https:
//arxiv.org/abs/2402.03744.

Tiangi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (eds.),
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 785-794. ACM, 2016. doi:
10.1145/2939672.2939785. URL https://doi.org/10.1145/2939672.2939785.

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. ARC prize 2024: Technical
report. CoRR, abs/2412.04604, 2024. doi: 10.48550/ARX1V.2412.04604. URL https://doil
org/10.48550/arXiv.2412.04604.

10


https://openreview.net/forum?id=0g0X4H8yN4I
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/2304.13734
https://doi.org/10.48550/arXiv.2310.10631
https://doi.org/10.48550/arXiv.2310.10631
https://arxiv.org/abs/2406.12053
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2501.12934
https://arxiv.org/abs/2402.03744
https://arxiv.org/abs/2402.03744
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.48550/arXiv.2412.04604
https://doi.org/10.48550/arXiv.2412.04604

Under review as a conference paper at ICLR 2026

Frangois Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/
1911.01547.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. AlphaZero-like tree-search can guide large language model decoding and training, 2024.
URLhttps://arxiv.org/abs/2309.171709.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R. Costa-jussa. A primer on the inner
workings of transformer-based language models, 2024. URL https://arxiv.org/abs/
2405.00208.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189 — 1232, 2001. doi: 10.1214/a0s/1013203451. URL |https://doi.org/
10.1214/a20s/1013203451.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli Jarviniemi,
Matthew Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla, Qiuyu Ren, Elizabeth Pratt, Lionel
Levine, Grant Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana Grechuk, Shreepranav Varma
Enugandla, and Mark Wildon. FrontierMath: A benchmark for evaluating advanced mathematical
reasoning in Al, 2024. URL https://arxiv.org/abs/2411.04872.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei
Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian
Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen,
Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

11


https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2309.17179
https://arxiv.org/abs/2405.00208
https://arxiv.org/abs/2405.00208
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://zenodo.org/records/12608602
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2501.12948

Under review as a conference paper at ICLR 2026

Wes Gurnee and Max Tegmark. Language models represent space and time, 2024. URL https:
//arxiv.org/abs/2310.02207.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd Edition. Springer Series in Statistics. Springer,
2009. ISBN 9780387848570. doi: 10.1007/978-0-387-84858-7. URL https://doi.org/
10.1007/978-0-387-84858-7.

Alexander Havrilla, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, and Roberta Raileanu. GLoRe: When, where, and how to improve
LLM reasoning via global and local refinements. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=LH6R06NxdB.

Jinwen He, Yujia Gong, Kai Chen, Zijin Lin, Chengan Wei, and Yue Zhao. LLM Factoscope:
Uncovering LLMs’ factual discernment through inner states analysis, 2024. URL https://
arxiv.orqg/abs/2312.16374.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurlPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets—-benchmarks—-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dclbl0al7836al-Abstract—round2.htmll

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet, 2024. URL https:
//arxiv.org/abs/2310.01798.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. ACM Trans. Softw. Eng. Methodol., July 2025. ISSN 1049-331X. doi:
10.1145/3747588. URL https://doi.org/10.1145/3747588|

Siwon Kim, Sangdoo Yun, Hwaran Lee, Martin Gubri, Sungroh Yoon, and Seong Joon Oh. Propile:
Probing privacy leakage in large language models, 2023. URL https://arxiv.org/abs/
2307.01881.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language
models, 2022. URL https://arxiv.org/abs/2206.14858.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. CoRR,
abs/2305.20050, 2023. URL https://doi.org/10.48550/arXiv.2305.20050!

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng,
Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang, Hongzhou
Lin, Yejin Choi, Dangi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling formal
theorem proving with scaffolded data synthesis and self-correction. CoRR, abs/2508.03613, 2025.
doi: 10.48550/ARXIV.2508.03613. URL https://doi.org/10.48550/arXiv.2508.
03613

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language
models by automated process supervision. CoRR, abs/2406.06592, 2024. doi: 10.48550/ARXIV.
2406.06592. URL https://doi.org/10.48550/arXiv.2406.06592.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

12


https://arxiv.org/abs/2310.02207
https://arxiv.org/abs/2310.02207
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://openreview.net/forum?id=LH6R06NxdB
https://arxiv.org/abs/2312.16374
https://arxiv.org/abs/2312.16374
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://doi.org/10.1145/3747588
https://arxiv.org/abs/2307.01881
https://arxiv.org/abs/2307.01881
https://arxiv.org/abs/2206.14858
https://doi.org/10.48550/arXiv.2305.20050
https://doi.org/10.48550/arXiv.2508.03613
https://doi.org/10.48550/arXiv.2508.03613
https://doi.org/10.48550/arXiv.2406.06592
https://arxiv.org/abs/2303.17651

Under review as a conference paper at ICLR 2026

Maciej Mikuta, Szymon Tworkowski, Szymon Antoniak, Bartosz Piotrowski, Albert Qiaochu Jiang,
Jin Peng Zhou, Christian Szegedy, Lukasz Kucinski, Piotr Mito$, and Yuhuai Wu. Magnushammer:
A transformer-based approach to premise selection, 2024. URL |https://arxiv.org/abs/
2303.04488.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2024. URL https://arxiv.org/abs/2410.05229,

Alexander Novikov, Ngan Vu, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian,
M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian
Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and
algorithmic discovery. CoRR, abs/2506.13131, 2025. doi: 10.48550/ARXIV.2506.13131. URL
https://doi.orqg/10.48550/arXiv.2506.13131.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.001 14,
2021.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. OpenWebMath: An open
dataset of high-quality mathematical web text. CoRR, abs/2310.06786, 2023. URL https:
//doi.org/10.48550/arXiv.2310.06786.

Yudi Pawitan and Chris Holmes. Confidence in the reasoning of large language models, 2024. URL
https://arxiv.org/abs/2412.15296.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models, 2019. URL https://arxiv.org/abs/1904.01557|

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters, 2024. URL |https://arxiv.org/abs/
2408.03314.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
Finn, and Christopher D. Manning. Just ask for calibration: Strategies for eliciting calibrated
confidence scores from language models fine-tuned with human feedback, 2023. URL https:
//arxiv.org/abs/2305.14975.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476-482, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations, 2024a.
URLhttps://arxiv.org/abs/2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=1PLINIMMrwl

13


https://arxiv.org/abs/2303.04488
https://arxiv.org/abs/2303.04488
https://arxiv.org/abs/2410.05229
https://doi.org/10.48550/arXiv.2506.13131
https://doi.org/10.48550/arXiv.2310.06786
https://doi.org/10.48550/arXiv.2310.06786
https://arxiv.org/abs/2412.15296
https://arxiv.org/abs/1904.01557
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2305.14975
https://arxiv.org/abs/2305.14975
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2312.08935
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw

Under review as a conference paper at ICLR 2026

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
Multi-step problem solving through a verifier: An empirical analysis on model-induced process
supervision. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November
12-16, 2024, pp. 7309-7319. Association for Computational Linguistics, 2024b. URL |https:
//aclanthology.orqg/2024.findings—emnlp.4209.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecfdflbafO0f/b3labcad—Abstract-Conference.htmll

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. NaturalProver:
Grounded mathematical proof generation with language models, 2022. URL https://arxiv.
org/abs/2205.12910.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
[lia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms for
large language models. Trans. Mach. Learn. Res., 2024, 2024. URL https://openreview,
net/forum?id=eskQMcIbMS.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. 2025.
URL https://openreview.net/pdf?id=VNckp7JEHn.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm.
https://github.com/RLHFlow/RLHF-Reward—-Modeling), 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models, 2023.
URLhttps://arxiv.org/abs/2305.10601.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process, 2024. URL https://arxiv.org/abs/
2407.20311L

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in
mathematical reasoning, 2024. URL https://arxiv.org/abs/2311.09724l

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. STaR: Bootstrapping reasoning with
reasoning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.htmll

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
arXiv preprint arXiv:2509.08827, 2025.

14


https://aclanthology.org/2024.findings-emnlp.429
https://aclanthology.org/2024.findings-emnlp.429
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2205.12910
https://arxiv.org/abs/2205.12910
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/pdf?id=VNckp7JEHn
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2311.09724
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html

Under review as a conference paper at ICLR 2026

Question: Travis has 10000 apples, and he is planning to sell these apples in boxes. Fifty
apples can fit in each box. If he sells each box of apples for $35, how much will he be able to
take home?

Rationale: The total of boxes of apples is 10000 / 50 = 200. Therefore the total amount he
can take home is 200 x $35 = 7000.

Answer: 7000

Figure 6: An example of a question from the GSM8K benchmark, followed by a couple of reasoning
steps — a rationale for the final answer, which is always a number.

A REASONING-FOCUSED BENCHMARKS

We evaluate LiLaVe and LiLaVe-based meta-generation strategies on four mathematical QA datasets.
For each of them we select 1000 training examples to train a dataset-specific LiLaVe. We test on sets
of 5001319 examples, depending on the dataset. Below, we describe each of the benchmarks. We
share the data partitions in the supplementary materials.

GSMSK |Cobbe et al.| (2021), contains grade school math problems with integer answers. To fit
LiLaVe, we select 1000 examples from its training partition, and in evaluation, use its full test set of
1319 questions. For answer generation, we use the standard 8-shot chain-of-thought prompt used
in Wei et al.| (2022). While widely used in LLM reasoning research, GSMS8K is a relatively easy
benchmark for modern LLMs. Also, it is likely leaked into LLM pretraining data.

GSM-Symbolic [Mirzadeh et al.| (2024)), has been developed to mitigate data contamination problem
of GSMS8K by semi-automatically generating questions from question templates obatined from
GSMSK. Additional variants p1 and p2 of this dataset add one or two extra clauses to questions,
increasing reasoning complexity. When evaluating LilL.aVe-based generation strategies on GSM-
Symbolic, we reuse GSMS8K'’s training set for training the verifier. We also apply the same 8-shot
chain-of-thought prompt that we use for GSM8K.

algebra_linear_1d is a subset of a synthetic benchmark introduced in |Saxton et al.| (2019) to
evaluate the performance of language models on a broad range of common mathematical tasks.
algebra_linear_1d evaluates models for solving single-variable linear equations with integer solutions.
We generate training and test sets, each containing 1000 examples. To query an LLM for answers, we
use a simple zero-shot CoT prompt (see Figure[I6). In Figure[7)(in Appendix [B)), there is an example
of a question and solution from algebra_linear_1d.

MATH [Hendrycks et al.| (2021) contains competition-level mathematical problems. We train
LiLaVe on 1000 selected training questions, and in evaluation we use its MATHS00 subset used in
Lightman et al.|(2023). LLM inference is performed using the 4-shot chain-of-thought prompt used
in Lewkowycz et al.| (2022)). The final answers to MATH’s questions include expressions such as
polynomials, fractions, or complex numbers. To evaluate the generated answers, they need to be
properly parsed and semantically compared with the ground truth. For that, we reuse the final answer
extractor from |Gao et al. (2024)

B ADDITIONAL RESULTS

B.1 TEMPERATURE OF GENERATIONS

Our latent verifiers are trained on hidden states gathered from intermediate layers of the LLama 3.1 8B
model, using generations sampled at different temperatures. In this section, we extend the temperature
sensitivity analysis (discussed earlier in Section [3.2) beyond GSMS8K to additional datasets. We test
how well do verifiers trained on various temperatures transfer to verifying generations sampled from

“Specifically, we reuse the code available at https://github.com/EleutherAl/
Im—evaluation-harness/blob/main/lm_eval/tasks/minerva_math/utils.py
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Question: Solve —78 = 30 * r + 150 — 78 for r.

Rationale: First, let’s simplify the right-hand side of the equation by combining the constants:

—78 =30*x7r+ 72
Next, let’s subtract 72 from both sides of the equation to isolate the term with r:

—78—-72=30x*r
—150 =30 *7r
Now, let’s divide both sides of the equation by 30 to solve for r:

—150/30 = r
—5=r
Answer: -5

Figure 7: An example of a question from the algebra_linear_1d benchmark, and a solution followed
by a correct answer generated by Llama 3.1 8B.
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Figure 8: Transfer of performance (AUC) of LiLaVe trained and evaluated on hidden states extracted
from answers generated from different temperatures, for three datasets. The base LLM used in this
experiment is Llama 3.1 8B.

different ones. The heatmap for GSM8K is identical to the one presented in Figure 5, we include it
here again for the comparizon with results on other datasets.

Figure 8| shows heatmaps with the results of this analysis for hidden states of LLama 3.1 8B model
and temperatures from the set 0.0,0.2,0.6,0.8,1.1 on three datasets: GSM8K, algebra_linear_1d,
and MATHS500. For all temperatures, except temperature 0, we generate 8 answers for each question.
Each cell in a heatmap represents the mean AUC of XGBoost verifier on an appropriate test set,
averaged over 16 classifiers trained on hidden states from different layers (2, 4, 8, 16) and different
tokens (2, 4, 8, 16, counted from the end of the generated sequence).

Observations and conclusions for GSM8K are discussed in Section [3.2] Most importantly, the
predictive performance of the verifier increases with both the training and evaluation temperatures.
For algebra_linear_1d, most AUC values are very close to each other, but the variability trend differs
from GSMSK: for a fixed training temperature, the verifier performs better when the evaluation
temperature is lower. The heatmap for MATH follows a similar pattern to GSMS8K, but the optimal
training temperature for a fixed evaluation temperature is reached faster — AUC increases until
T = 0.6 and then plateaus.
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B.2 CHOICE OF LILAVE ARCHITECTURE
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Figure 9: Ablation on the architecture of LiLaVe. Methods are compared on generations from Llama
3.1 8B on GSMSK dataset. The x-axis represents token index, while y-axis represents the value of
AUC metric.

In all our main experiments, we instantiate our verifier as an XGBoost model |(Chen & Guestrin|(2016)).
This choice is informed by our ablation experiments, which demonstrate its superior performance
compared to alternative architectures. Additionally, XGBoost requires minimal hyperparameter
tuning, making it a practical choice. We set the maximum tree depth to 5, selecting it as one of several
equally well-performing candidates, and we use a learning rate (eta) of 0.1. All other hyperparameters
are the default ones. Training a single instance of XGBoost classifier in our setup is computationally
efficient, taking only three minutes on our CPUs.

To validate our choice, we compare XGBoost against three other methods: Logistic Regression,
a Multi-Layer Perceptron (MLP), and a SWIGLU-based MLP |Shazeer| (2020). Each method is
trained on token-level features extracted from the token 7' (T" € {—1,—2,..., —16}) and the layer L
(L € {-1,-2,...,—5}). We run each method for each T" and L for 10 seeds. Figure@]illustrates
the comparative performance of these architectures, highlighting XGBoost’s consistent superiority
over the alternatives. For each line and plot The solid lines are medians, and the shadow region is a
nonsymmetric 90% confidence interval.

While hyperparameter tuning for MLP and SWIGLU could potentially improve their performance,
we performed only a limited sweep over the number of layers and learning rates. However, the
difficulty of tuning these models further underscores the advantage of XGBoost, which performs well
out-of-the-box with minimal effort.

B.2.1 HYPERPARAMETERS OF COMPARED METHODS

Logistic Regression We use an sklearn implementation with a maximum iteration count of 1000
and balanced classes.

MLP The MLP consists of a hidden layer of size 16, and an output dimension of 1. It is trained
using a logistic regression loss for 20 epochs with a batch size of 32. The model is optimized with
Adam, using a learning rate of 1074,

SWIGLU This variant is a residual MLP using SWIGLU activations. It has two hidden layers of size
32, and an intermediate hidden dimension of 16. Like the standard MLP, it is trained with logistic
regression loss for 20 epochs and a batch size of 32. The learning rate is 5 x 10~%, and weight decay
is set to 0.1.

XGBoost In all our experiments, we train XGBoost with the following hyperparameters:

* max_depth=10,
o eta=0.1,
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Best-of-n, majority voting, weighted majority voting, and oracle selection
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Figure 10: Comparison of meta-generation strategies to oracle selection.
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Figure 11: AUC of the sum of log probabilities over the answer suffix. The results correspond to
zero-temperature generations from LLaMA 3.1 8B on the test sets of the respective datasets. The
x-axis represents the length of the suffix considered.

¢ nrounds=30.

The rest of the hyperparameters use their default values set by the authors of the official XGBoost
implementation.

All input sizes are equal to 4096, as this is the dimensionality of Llama 3.1 8B hidden states. For MLP
and SWIGLU, we report their test performance on an epoch after which the validation performance
is the best.

B.3 ACCURACY OF BEST-OF-N GIVEN THE ORACLE

We compare the results of meta-generation strategies to oracle selection. This theoretical and
practically impossible strategy assumes access to an omnipotent verifier, which always selects the
correct answer from the set of LLM-generated ones, if only such a correct answer appears in this
set. Otherwise, the strategy fails. Figure[I0] presents the results of this experiment, suggesting a gap
between the best known meta-generation strategy and this theoretical upper bound, suggesting that
further improving the verifiers still has a lot of potential.

B.4 LOGPROBS BASELINE RESULTS

This section provides a detailed analysis of the logprob-based estimator introduced in Section [3:3]
The estimator is computed as the sum of log probabilities from Llama 3.1 8B over the final k tokens
of a generated answer.

Figure [TT]| shows the AUC scores of this estimator across various (1-16) suffix lengths and datasets.
For each dataset, we select the suffix length & that yields the highest AUC, and report these results in
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Accuracy vs temperature and number of votes
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Figure 12: Accuracy of majority voting for different generation temperatures and number of votes.
Base model is Llama 3.1 8B.

Table 2: Performance (AUC) of LiLaVe for three different base LLMs: Llama 3.1 8B, Gemma 2 2B,
Phi-3.5-mini. LiLaVe preserves strong predictive performance across all the three models and all
the benchmarks — with one exception of Gemma on MATH. The reason is likely because this model
scored only ~5% on MATH, which did not give enough positive examples for training Lil.aVe.

benchmark Llama3.1 8B Gemma?22B Phi-3.5-mini

GSMSK (test) 0.86 0.83 0.83
GSM-Symbolic 0.84 0.83 0.79
GSM-Symbolic-p2 0.78 0.84 0.78
algebra_linear_1d 0.93 0.86 0.96
MATHS500 0.88 0.53 0.93

Table[T] Thus, this table reflects the best-performing suffix length for each dataset, giving an idealized
upper bound on the estimator’s performance.

In most datasets (GSM8K, GSM-Symbolic, GSM-Symbolic-p2, and MATH500), we observe a
positive correlation between model confidence (measured by the sum of log probabilities) and answer
correctness: a higher confidence in the final tokens generally indicates a higher chance of correctness.
Interestingly, an exception arises in the algebra_linear_1d dataset, where the relationship is inverted.
Specifically, for short suffixes (lengths 1 to 8), AUC falls below 0.5. This implies that in this dataset,
higher model confidence is actually indicative of a greater chance of error, suggesting the base model
is overconfident.

Since the suffix length k is fixed, normalization of the sum is not necessary. We also verified that this
sum-based estimator consistently outperforms a more commonly used average over all logprobs in
the answer.

B.5 OPTIMAL TEMPERATURES IN MAJORITY VOTING

In this experiment, we evaluate the accuracy of majority voting (see Section [3.4) with respect to the
temperature of generations and the number of votes. Results are presented in Figure[T2] We observe
that for different numbers of votes, different generation temperatures are optimal.

B.6 PERFORMANCE OF LILAVE WITH OTHER BASE LLMS

In Table 2] we present AUC performance of LiLaVe for three different base LLM: Llama 3.1 8B (used
in the main experimental line presented in the main text), Gemma 2 2B, and Phi-3.5-mini.
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Table 3: A comparison of two verification setups: the standard one, where responses generated by
Phi-3.5-mini are scored based on the hidden states extracted from Phi during the generation (the
middle column), versus responses generated by Phi, but later ingested by LLama 3.1 8B and scored
based on the hidden states extracted from it (the right column). The latter setup in general performs
worse — but not much worse, and for GSM-Symbolic actually better.

Phi-3.5-mini Phi-3.5-mini

benchmark b0 i ove 4 Llama-LiLave
GSMBK (test) 0.83 0.83
GSM-Symbolic 0.79 0.83
GSM-Symbolic-p2 0.78 0.76
algebra_linear_1d 0.96 0.94
MATHS00 0.93 0.91

Table 4: Transfer of performance (AUC) of LiLaVe trained and evaluated on different datasets. The
base LLM used in this experiment is Llama 3.1 8B.

N GSMSK  algebra_linear_Id MATH
train

GSMSK 0.86 0.87 0.84
algebra_linear_1d 0.75 0.93 0.71
MATH 0.72 0.53 0.88

B.7 PERFORMANCE OF LILAVE TESTED ON RESPONSES ORIGINATING FROM A DIFFERENT
MODEL

The standard mode of using LiL.aVe is to apply it to the hidden states of the base LLM that generates
the response. However, another setup is possible, where the responses are given without the hidden
states and these are recreated by digesting the responses by an LLM for which a LiL.aVe is available.
In Table [3| we compare the results of two such approaches. The responses are coming from Phi-3.5-
mini, and they are scored either by the LiL.aVe trained for Phi (Phi-LiL.aVe), or by Llama-Lil.aVe,
after retrieving the hidden states from Llama 3.1 8B that digested the Phi’s responses. As can be seen,
the latter setup gives good results, only slightly weaker than the original setup.

B.8 TRANSFER TO OTHER DATASETS

We evaluate the generalization ability of a verifier trained on one dataset when applied to another.
Table @] presents the AUC scores for different train-test combinations.

Our results indicate that while training and evaluating on the same dataset yields the highest perfor-
mance, there is a significant cross-dataset generalization. For instance, a verifier trained on GSM8K
achieves an AUC of 0.87 on algebra_linear_1d and 0.84 on MATH, which is better then baseline
methods based on logprobs and self-reflection (see Table[I). Interestingly, the verifier trained on
MATH generalizes less effectively, achieving only 0.53 AUC on algebra_linear_1d and 0.72 on
GSMBK.

Overall, the results of this experiment suggest that some transferability across datasets exists, but we
leave the exploration of transferability to other models for future work.

B.9 ADDITIONAL DATASETS AND MODELS (QWEN 3 AND AIME)

We run an experiment where we use a new, strong reasoning model, Qwen3 8B, as the base LLM,
and more challenging math dataset: AIME. We train LiL.aVe on Qwen3 responses to problems from
AIME 1983-2021 and test on AIME 2022-2025. We also run Qwen3 both in “thinking” (long-CoT)
and “non-thinking” (standard-CoT) mode. We show the results in Table[5] LiLaVe achieved excellent
AUC verification performance for both modes:
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Table 5: AUC performance of LiLaVe with Qwen and Llama models on AIME dataset.
model AIME
Qwen3 thinking  0.97

Qwen3 non-thinking  0.96
Llama3.18B  0.67

Table 6: LiLaVe vs Math-Shepherd PRM.
benchmark LiLaVe ORM-Deepseek Math-Shepherd

GSMBK (test)  0.86 0.88 0.89
GSM-Symbolic  0.84 0.90 0.91
GSM-Symbolic-p2  0.78 0.75 0.79
algebra_linear_1d 0.93 0.90 0.92
MATHS500  0.88 0.90 0.82

When we use Llama 3.1 8B as the base LLM in the same setting, LiL.aVe achieves a much weaker
AUC of 0.67. The main reason likely is the fact that Llama gets only 12% accuracy on AIME
which results in too few positives for training LiLaVe. Qwen3 gets 34% and 65% of accuracy in
non-thinking and thinking mode, respectively. Moreover, Qwen3 is a strong reasoning model on its
own and when it cannot produce a correct answer, it may manifest quite clearly in the hidden states.

B.10 COMPARISON WITH A PRM

We ran additional experiments comparing the performance of LiLaVe to Math-Shepherd. We used
the exact same data (Llama 3.1 8B math solutions) as for the experiment whose results we present in
Table 1. Below, we compare the performance of LiLaVe and Math-Shepherd. We also include the
performance of the stronger ORM from Table 1. We present the results in Table [6]

The results are mixed: Math-Shepherd performs better on GSM-style tasks, while Lil.aVe does better
on MATHS00 and linear algebra. Also, in accordance with the literature, Math-Shepherd performs
better than the ORM.

In general, we find it interesting and positive that even heavy-weight PRMs sometimes are weaker
than lightweight LiLaVe operating on hidden states and trained on relatively small training sets.

Conditional majority voting, Gemma 2 2B, Conditional self-correct, Gemma 2 2B,
algebra_linear_1d algebra_linear_1d
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Figure 13: Conditional majority voting and conditional self-correction for Gemma 2 2B model, on
algebra_linear_1d benchmark. The results are similarly good as those for Llama 3.1 8B.
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The solution you provided contains mistakes and the answer is incorrect. Please, carefully
review the solution and write a new, correct one.

Figure 14: Prompt used for the self-correction experiments.

Please, rate on a scale of 1 to 10 how confident you are of the correctness of your answer.

Figure 15: Prompt used for the self-reflection confidence estimation.

C PROMPTS

We present prompts used in our experiments in Figure [I4] Figure [T5] Figure [I7} Figure [T6] and

Figure[T8]
D EFFICIENCY

LLM-based verifiers typically require a large number of training examples, e.g. both models from
(Xiong et al.,|2024)) which we benchmark against, were trained on over 250k examples. In contrast,
LiL.aVe achieves comparable performance with just Sk samples per benchmark — two orders of
magnitude less — making it a strong choice in data-scarce settings. Once the hidden states are
collected, training LilLaVe takes only 15 minutes on a CPU, compared to the GPU-intensive fine-
tuning required for LLM-based verifiers.

In terms of inference efficiency, scoring pre-generated Llama 3.1 8B’s responses to 1319 GSM8K
test questions using an LLM-based verifier (via the code from (Xiong et al., [2024)) took nearly
20 minutes on an NVIDIA GH200 GPU. The same task (having the hidden states extracted) was
completed by LiL.aVe in only ~ 3.4s of wall clock time on CPUs of a Dell Precision 3561 laptop,
yielding a ~ 350 speedup.

Of course, one could argue that, like other verifiers, LilL.aVe still relies on a large generator to produce
the answer to be verified. In scenarios where both generation and verification are benchmarked
together, the speedup offered by LiL.aVe may be limited to at most 2 X, assuming verifier and generator
are of similar size. However, even in this setting, Lil.aVe provides important practical advantages.
Unlike LLM-based verifiers that require GPUs, LiLaVe runs efficiently on CPU. This avoids the need
to load large generator and verifier onto separate GPUs, which would double the required hardware,
or to repeatedly load and unload model weights to and from GPU memory, which can significantly
slow down the whole pipeline. It also introduces minimal compute overhead compared to LLM-based
verifiers, which makes it much easier to integrate with more adaptive generation strategies.

Think step by step.

Figure 16: 0-shot prompt for the algebra_linear_1d dataset.
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Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant
today?

Answer: There are 15 trees originally. Then there were 21 trees after some more were planted.
So there must have been 21 - 15 = 6. The answer is 6.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in
the parking lot?
Answer: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do
they have left in total?

Answer: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 =
74. After eating 35, they had 74 - 35 = 39. The answer is 39.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops.
How many lollipops did Jason give to Denny?

Answer: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he
gave Denny 20 - 12 = 8. The answer is 8.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad.
How many toys does he have now?

Answer: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is
4 more toys. 5 + 4 =9. The answer is 9.

Question: There were nine computers in the server room. Five more computers were installed
each day, from monday to thursday. How many computers are now in the server room?
Answer: There were originally 9 computers. For each of 4 days, 5 more computers were
added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost
2 more. How many golf balls did he have at the end of wednesday?
Answer: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35.
After losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she
have left?

Answer: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she
has 23 - 15 dollars left. 23 - 15 is 8. The answer is 8.

Question:

Figure 17: 8-shot prompt for GSM8K, GSM-Symbolic, and GSM-symbolic-p2 datasets.
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Vx—2

. . . . 5_$ ’ .

Solution: The expressions inside each square root must be non-negative. Therefore, x —2 > 0,
sox > 2,and 5 —x > 0, so xz < 5. Also, the denominator cannot be equal to zero, so

Problem: Find the domain of the expression

5 — x > 0, which gives < 5. Therefore, the domain of the expression is | [2,5) |. Final
Answer: The final answer is| [2,5) |. I hope it is correct.

Problem: If det A = 2 and det B = 12, then find det(AB).
Solution: We have that det(AB) = (det A)(det B) = (2)(12) = . Final Answer: The
final answer is . I hope it is correct.

Problem: Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound
weights instead, how many times must Terrell lift them in order to lift the same total weight?
Solution: If Terrell lifts two 20-pound weights 12 times, he lifts a total of 2 - 12 - 20 = 480
pounds of weight. If he lifts two 15-pound weights instead for n times, he will lift a total of
2-15 - n = 30n pounds of weight. Equating this to 480 pounds, we can solve for n:

30n = 480
=  n=480/30 =

Final Answer: The final answer is . I hope it is correct.

Problem: If the system of equations

6x — 4y = a,
6y — 9z = 0.

has a solution (z,y) where x and y are both nonzero, find £, assuming b is nonzero.
Solution: If we multiply the first equation by — %, we obtain

3
6y — 9 = —=a.
y — 9z 5%
Since we also know that 6y — 9z = b, we have
3 a 2
——a=b=>—-=|—2|
2" b | 3
. .2 .
Final Answer: The final answer is 3t I hope it is correct.

Problem:

Figure 18: 4-shot prompt for the MATH dataset.
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