
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LIGHTWEIGHT LATENT VERIFIERS
FOR EFFICIENT META-GENERATION STRATEGIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Verifiers are auxiliary models that assess the correctness of outputs generated by
base large language models (LLMs). They play a crucial role in many strategies for
solving reasoning-intensive problems with LLMs. Typically, verifiers are LLMs
themselves, often as large (or larger) than the base model they support, making
them computationally expensive. In this work, we introduce a novel lightweight
verification approach, LiLaVe, which reliably extracts correctness signals from the
hidden states of the base LLM. A key advantage of LiLaVe is its ability to operate
with only a small fraction of the computational budget required by traditional
LLM-based verifiers. To demonstrate its practicality, we couple LiLaVe with
popular meta-generation strategies, like best-of-n or self-consistency. Moreover,
we design novel LiLaVe-based approaches, like conditional self-correction or
conditional majority voting, that significantly improve both accuracy and efficiency
in generation tasks with smaller LLMs. Our work demonstrates the fruitfulness of
extracting latent information from the hidden states of LLMs, and opens the door
to scalable and resource-efficient solutions for reasoning-intensive applications.

1 INTRODUCTION

Recently, there has been substantial interest in enhancing the reasoning capabilities of large lan-
guage models (LLMs). Specifically, this effort includes applying LLMs to solve mathematical
problems (Cobbe et al., 2021; Trinh et al., 2024), writing code (Jiang et al., 2025), automating
scientific discovery (Novikov et al., 2025), recognizing complex spatial patterns (Chollet et al., 2024),
and writing formal proofs (Mikuła et al., 2024; Lin et al., 2025).

Efforts to improve LLM performance on reasoning-intensive tasks have followed two primary
directions. First, there is a substantial body of work focusing on pre-training or fine-tuning models
targeting reasoning-intensive tasks. To this end, high-quality, reasoning-focused data are collected,
like OpenWebMath (Paster et al., 2023), or Proof Pile (Azerbayev et al., 2023). In addition to that,
new training methodologies are being developed, such as self-improvement loops (Zelikman et al.,
2022), or reinforcement-learning-based approaches (Guo et al., 2025; Zhang et al., 2025), which
emerged as remarkably effective in the context of reasoning tasks.

Second, there is ongoing research into designing inference-time techniques to enhance the performance
of LLMs on reasoning-focused tasks, where an LLM is already pre-trained and fixed (Welleck
et al., 2024). The examples of two such simple, yet effective techniques are chain-of-thought
prompting (Wei et al., 2022), and self-consistency decoding (Wang et al., 2023), also known as
majority voting. More advanced inference-time approaches often combine decoding process from
the base LLM with a verifier (often also called a reward model), trained to assess the correctness
of individual reasoning steps – or entire reasoning trajectories – in order to enhance the base
model’s performance (Cobbe et al., 2021; Lightman et al., 2023). Typically, such verifiers are
LLMs themselves, often as large – or larger – than the base model they support, making them
computationally expensive. For instance, in a recent work by Wu et al. Wu et al. (2025), an LLM
verifier of size 34B of parameters is paired with base models of size 7B and 34B parameters.

The increased inference-time computational cost resulting from using large, LLM-based verifiers
may be a significant limitation. This is especially important in setups where the verifier is called
multiple times for decoding one sample, which is the case in verifier-guided tree search approaches
like in the REBASE algorithm from Wu et al. (2025). Moreover, large verifiers may be costly to train.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

This is especially important given the indication from the literature (Havrilla et al., 2024; Wang et al.,
2024a) that the performance of LLM-based verifiers does not transfer across different base LLMs.

Our work aims to introduce computationally efficient verifiers (both in training and inference), which
can be used to enhance the performance of the base LLMs in reasoning-intensive tasks. To this
end, we develop LiLaVe – Lightweight Latent Verifier, which is a simple and practical method for
extracting the correctness signal from the hidden states of the base LLM (Section 2). LiLaVe is based
on a fast, classical machine learning model – gradient boosted decision trees. It can be trained quickly
(< 15 min) on CPU only using a small number of LLM samples (≈ 5k), to reliably extract the hidden
correctness signal. This makes our approach easily adaptable to new datasets and models.

In Section 3, through a series of experiments, we demonstrate how LiLaVe can be practically and
effectively used to implement various meta-generation strategies focused both on correctness of the
inferred answers as well as on inference-time compute-efficiency.

Besides the practical advantages of our approach, it reveals an intriguing phenomenon: hidden states
of LLMs carry useful information which can be uncovered by classical machine learning methods.

In summary, our contributions are as follows:

• We introduce LiLaVe: a novel lightweight verification approach that extracts correctness signals
from the hidden states of the base LLM; we show that in terms of the AUC metric it outperforms
other lightweight approaches and is competitive with compute-intensive LLM-based verifiers.

• We experimentally study which hidden states across the model’s layers and the output tokens
provide the optimal correctness signal, which brings introspection into the model’s mechanics.

• Finally, we show how LiLaVe brings practical advantage by coupling it with several meta-
generation strategies and demonstrating significantly improved accuracy and inference-time
compute-efficiency of LLMs on reasoning tasks compared to the baselines. In particular:

– We introduce the conditional majority voting approach, which reduces the average inference
cost while maintaining high accuracy.

– We demonstrate the effectiveness of the conditional self-correction approach, in which the
base model is asked to self-correct only when the LiLaVe verifier’s score is low.

2 METHOD

Our approach to improving the accuracy and efficiency of LLMs on reasoning-intensive tasks
at test time involves two key components. First, we train a lightweight latent verifier (LiLaVe)
using selected hidden states extracted from the LLM during the generation of CoT-style solutions
of mathematical problems, labeled by the correctness of the final answers concluding them (see
Section 2.1). Subsequently, we employ the verifier to estimate the probability of LLM’s answers
being correct and integrate it with various meta-generation strategies (described in Section 2.2).

2.1 LIGHTWEIGHT LATENT VERIFIER – LILAVE

Data Given a question q, an LLM generates an answer sequentially as y = y1y2 · · · ym, where
yis are individual tokens. During the decoding, we extract hidden states hl

t ∈ Rn representing the
activations from the l-th transformer’s layer at the generation of the t-th token, where n is the hidden
dimension of the model.Instead of extracting hidden states from all possible locations (t, l), we fix
sets of indices L, T and require l, t ∈ L× T . In Sec. 3.2 we experimentally determine optimal L, T .

While the answer y contains the chain-of-thought style reasoning, we determine its correctness solely
by looking at the final answer.To evaluate correctness, we use an automated evaluator that compares
the generated final answer to the ground truth, resulting in a binary correctness label c. Finally, a
dataset D for training LiLaVe consists of datapoints of the form of quadruples (hl

t, l, t, c). Note that
we extract |L| · |T | hidden states per one generation. Therefore, if Q is the dataset of questions and
we sample k generations for each q ∈ Q, we have |D| = |L| · |T | · |Q| · k.

Training Having collected D, we train an efficient classifier M to predict the binary label c given
the hidden state hl

t and its location given by the indices l, t. The output score M(hl
t, l, t) ∈ [0, 1] is

to be interpreted as the probability of the response y to be correct.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

We tested several classifiers suitable for such data: logistic regression (Hastie et al., 2009),
SwiGLU (Shazeer, 2020), and gradient boosted trees (Friedman, 2001). In our initial experiments, we
observed that the last method (concretely, its XGBoost implementation by Chen & Guestrin (2016))
performed best and most robustly (see Appendix B.2). Therefore, we chose to rely on this classifier.

Inference During inference, the base language model generates a response y along with a set of
associated hidden states Hy, which are indexed by their locations (l, t). We then apply the trained
XGBoost model M to predict a score sh for each hidden state h ∈ Hy. Finally, these scores are
aggregated, which results in the final correctness estimate, i.e., the LiLaVe score:

LiLaVe(y) = aggregate({sh}h∈Hy) ∈ [0, 1].

After experimenting with several aggregation methods – taking minimum, maximum, or average
score – we chose to use averaging as it performed best.

2.2 LILAVE-BASED META-GENERATION STRATEGIES

We consider several meta-generation strategies, i.e., strategies that build on top of the base generator
(the base language model) and a trained LiLaVe verifier. First, we experiment with two standard
approaches: best-of-n sampling and weighted majority voting. In both approaches, we first sample
n responses from the base generator with fixed temperature t > 0. As the final response in best-of-n,
we select the one with the highest LiLaVe score. In weighted majority voting, we perform a majority
voting across the final answers extracted from n full responses, weighted by their LiLaVe scores.

Standard majority voting and its weighted variant are effective techniques; however, they may be
computationally expensive as they require generating multiple independent samples per question. In
the weighted voting, there is an additional cost of extracting hidden states from the decoded samples,
which may cause a significant slowdown in practical settings.

This motivates our novel approach of conditional majority voting: first, we generate a single sample
from the base generator, and we score it with LiLaVe. If the score is above a predetermined threshold
s ∈ [0, 1], we consider the sampled response as final. Otherwise, we interpret the low score as an
indication of the base model’s mistake or uncertainty, and generate n additional samples to perform a
majority voting to determine the final response.

Finally, we investigate another new meta-generation strategy of conditional self-correction. Prompt-
ing LLMs to verify and correct their responses gives varied results (Huang et al., 2024). LLMs,
indeed, often are able to fix their mistakes, but at the same time, they tend to turn correct responses
into incorrect ones. This makes the self-correction procedure unreliable and, in most cases, overall
unsuccessful. In the conditional self-correction, we leverage LiLaVe to achieve reliable accuracy
improvements. First, we generate the initial response and score it with LiLaVe. Then, we prompt the
model to self-correct its response1 only if the LiLaVe score is below a predetermined threshold s.

In Section 3.4, we demonstrate the performance of these LiLaVe-based meta-generation strategies on
several reasoning-intensive benchmarks.

3 EXPERIMENTS

In this section, we describe the experiments we conducted in order to develop and evaluate LiLaVe.
First, in Section 3.1, we describe four reasoning-intensive, mathematical benchmarks that we used.
In Section 3.2, we study the influence of the location of extracted hidden states as well as sampling
temperature on the predictive performance of LiLaVe. In Section 3.3, we introduce two alternative
baseline methods for estimating the correctness of the LLM reasoning, which we subsequently
compare with LiLaVe. Finally, in Section 3.4, we harness LiLaVe to four meta-generation strategies
described in Section 2.2, and we demonstrate that despite being so lightweight, our verifier allows us
to achieve substantial performance gains on the mathematical benchmarks.

Our experimental results demonstrate that LiLaVe excels in extracting the correctness signal from the
internal states of the base LLM, and that this signal can be practically utilized in meta-generation
strategies, improving the performance and efficiency on reasoning-intensive benchmarks.

1The specific self-correction prompt we use is shown in Figure 14 in Appendix C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

algebra_linear_1d
G

S
M

−
S

ym
bolic

G
S

M
−

S
ym

bolic−
p2

G
S

M
8K

M
AT

H

0 5 10 15 20 25 30 ... −31 −26 −21 −16 −11 −6 −1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

token index

A
U

C

layer

−1

−2

−4

−8

−16

LiLaVe scores accuracy across layers and tokens

Figure 1: Predictive performance of LiLaVe on individual locations of hidden states determined by
the indices of the transformer’s layer and the sequence’s token. We test the tokens from the prefix and
suffix of the generated sequences, both of length 32. It is visible that the higher-quality signal can
be retrieved from the final tokens; however, interestingly, even for the first tokens, LiLaVe provides
a signal significantly better than the random baseline (dashed lines). At the same time, we cannot
conclude which transformer layers give the best signal.

3.1 REASONING-FOCUSED BENCHMARKS

We evaluate LiLaVe and LiLaVe-based meta-generation strategies on four mathematical QA datasets,
whose difficulty is appropriate for the LLMs we use: GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), GSM-Symbolic (Mirzadeh et al., 2024), and algebra linear 1d (Saxton et al., 2019).
The last two datasets are synthetic and therefore avoid potential contamination effects. For each of
the benchmarks we select 1000 training examples to train a dataset-specific LiLaVe. We test on sets
of 500–1319 examples, depending on the dataset. See Appendix A for more details regarding data.

3.2 DEVELOPING LILAVE

Below, we describe experiments determining (1) the location of extracted internal language model
information as well as (2) sampling temperatures resulting in optimal LiLaVe’s performance.

In our main experimental line we use Llama 3.1 8B as the base model. To test the universality of
LiLaVe, we also experimented with popular Gemma 2 2B and Phi-3.5-mini models – see Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Hidden states locations As described in Section 2.1, we train LiLaVe on hidden states extracted
from the base language model. The hidden states we extract correspond to different layers of the
transformer model as well as different tokens in the decoded sequences. It is not clear which of those
locations can allow for extracting the best correctness signal, therefore, we run an experiment aiming
to answer this question. We fix a set of layer indices L and token indices T as:

L = {−1,−2,−4,−8,−16},
T = {0, 1, 2, 3, . . . , 31,−32,−31, . . . ,−3,−2,−1}.

Negative indices follow the Python convention of list indexing: the element −n is the nth element
counting from the end of the list. For each (l, t) ∈ L×T , we train a separate XGBoost model Ml,t on
hidden states corresponding to layer l and token t. Then, we evaluate each of the trained models Ml,t

on a testing partition (using the corresponding hidden states), and calculate its predictive performance
using the AUC metric.2

Figure 1 presents results of the experiment for the four datasets (introduced in Section 3.1; for
GSM-Symbolic, we also consider its more difficult p2 variant).

First, we observe that, predictably, the correctness signal is better in the suffix of the decoded
sequences (which is especially noticeable for algebra linear 1d). However, curiously, the signal in
the prefix of the decoded sequences is still significantly better than the random baseline (AUC = 0.5),
which is especially visible for the first few tokens in the MATH dataset. Another observation is that
there is no significant distinction between different transformer’s layers, and even layers as deep as
−16 provide good signal (Llama 3.1 8B used in this experiment has 32 layers in total.)

Based on the obtained results, we fix the following sets of indices of layers LLiLaVe and tokens TLiLaVe
from which we extract the hidden state to train and evaluate the LiLaVe verifier:

LLiLaVe = (−1,−2,−4,−8,−16),

TLiLaVe = (−1,−2,−3, . . . ,−16).

As described in Section 2.1, in the LiLaVe’s inference mode, for one LLM’s decoding, we aggregate
the XGBoost-inferred scores of hidden states corresponding to these tokens and layers using the
arithmetic mean.

0.0 0.2 0.6 0.8 1.1
temperature of evaluation generations

0.
0

0.
2

0.
6

0.
8

1.
1

te
m

pe
ra

tu
re

 o
f t

ra
in

in
g

ge
ne

ra
tio

ns 0.742 0.75 0.777 0.785 0.872

0.779 0.782 0.807 0.814 0.882

0.79 0.795 0.82 0.823 0.893

0.78 0.791 0.82 0.827 0.893

0.786 0.786 0.813 0.821 0.91

Figure 2: Performance (AUC) of
LiLaVe trained and evaluated on hid-
den states of Llama 3.1 8B answers to
GSM8K questions with various temper-
ature settings.

Sampling temperature When generating samples for the
LiLaVe training, it is not immediately clear which sampling
temperatures should be used. On one hand, for reasoning-
intensive problems, low temperatures typically result in
better performance. On the other hand, meta-generation
techniques like majority voting require non-zero temper-
ature to make the samples diverse (see Figure 12 in Ap-
pendix B demonstrating this trade-off for various datasets).
Therefore, ideally, we want LiLaVe to perform well on sam-
ples generated across a range of temperatures. To check if
it does, we experimentally study how the temperature of
generations on which the verifiers are trained impacts their
predictive ability when tested on answers to test questions,
generated with various temperatures.

Fig. 2 shows the results of this analysis for hidden states of
the Llama 3.1 8B and temperatures {0.0, 0.2, 0.6, 0.8, 1.1}
on GSM8K. Each cell represents a mean of 16 experi-
ments: final AUC on the test set of 16 classifiers trained
on hidden states from layers {−2,−4,−8,−16} and to-
kens {−2,−4,−8,−16}. For all temperatures except 0,
we generate 8 answers per question.

2The area under the ROC curve (AUC) represents the probability that the model, if given a randomly chosen
positive and negative example, will give a higher score to the positive example than to the negative one. Therefore,
AUC is directly related to the downstream task performance of score-based methods like best-of-n and weighted
majority voting. For the conditional voting and self-correction methods, the score threshold for binary separation
into positive / negative classes is additionally required, which needs to be tuned separately.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance (AUC) of three methods for predicting the correctness of the LLM’s answers:
LiLaVe and four baseline methods: self-reflection, logprob-based confidence estimation, and two
compute-intensive LLM-based ORMs finetuned either on Mistral-7B or DeepSeekMath-Instruct data.

benchmark LiLaVe self-reflect logprobs ORM-Mistral ORM-Deepseek

GSM8K (test) 0.86 0.68 0.78 0.81 0.88
GSM-Symbolic 0.84 0.70 0.78 0.85 0.90

GSM-Symbolic-p2 0.78 0.60 0.63 0.73 0.75
algebra linear 1d 0.93 0.61 0.81 0.90 0.90

MATH500 0.88 0.79 0.67 0.79 0.90

We observe that the predictive performance of the verifier increases both with the temperature of the
evaluation samples as well as training samples. We hypothesize that increased temperature results in
more diverse training examples and also examples with different correctness labels for one question,
which is good for training the verifier. Higher temperature on the evaluation side likely results in
samples that are incorrect in a way easier to detect by the verifier.

The experiment shows that increased temperature for generating training samples is beneficial. Given
this result, and to ensure diversity in the training samples, we decide to train LiLaVe on samples
generated with a mixture of five temperatures: {0, 0.25, 0.5, 0.75, 1.0}.

3.3 BASELINES

We compare LiLaVe with four baselines: two natural methods for estimating the correctness of
the language model’s answer – logprob-based estimator and self-reflection prompting – as well as
two LLM-based verifiers. These baselines are described below, and their performance compared to
LiLaVe is shown in Table 1.

Logprob-based estimator Assume that for a question q, a language model generates a response
y = y1y2 · · · yn, where each decoded token yi is given probability pi. For each response, we compute
the sum of log-probabilities over a k-suffix:

∑k−1
i=0 log pn−k.

We treat this sum as an (uncalibrated) estimator of the output correctness. The straightforward intuition
behind it is that higher probabilities of the individual (suffix) tokens mean a higher probability of the
answer. For each dataset, we choose the suffix length k, for which this estimator achieves the highest
AUC score. We report results in Table 1. See Appendix B.4 for more details about this baseline,
including a breakdown of performance over different suffix lengths.

Self-reflection prompting This baseline involves a base LLM self-reporting the confidence score
(Tian et al., 2023; Pawitan & Holmes, 2024). Here we prompt the LLM (the same as the base one) to
express a confidence of its answer being correct on a scale from 1 to 10. The specific self-reflection
prompt we use is provided in Figure 15 in Appendix C.

LLM-based verifiers We also benchmarked two LLM-based verifiers (aka outcome reward models,
or ORMs) developed in Xiong et al. (2024). Both of them are based on Llama 3.1 8B; they differ by
the model that was used to generate their training data: either Mistral-7B or DeepSeekMath-Instruct
7B. The training datasets of both these ORMs consist of more than 250k. Note that LiLaVe was
trained on only 5k examples per benchmark (5 samples for each of the 1k training questions).

Given the results in Table 1 comparing LiLaVe with the baselines, we conclude that LiLaVe excels at
extracting useful signal, estimating the model’s correctness of its answers. LiLaVe is significantly
better than self-reflection prompting and logprob-based estimator. Moreover, LiLaVe achieves
comparably good results as large, LLM-based verifiers trained on datasets a couple of orders of
magnitude larger. Additionally, in Table 2 in Appendix B we present LiLaVe’s strong results for two
other base LLMs: Gemma 2 2B and Phi-3.5-mini.

3.4 LILAVE-BASED META-GENERATION STRATEGIES

As shown above, LiLaVe proves to be effective in distinguishing correct and incorrect LLM’s
responses as measured by the AUC metric. In this subsection, we experimentally demonstrate that
this statistical performance can be translated into efficient and practical meta-generation strategies.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

algebra_linear_1d GSM−Symbolic GSM−Symbolic−p2 MATH

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
0.25

0.30

0.35

0.40

0.45

0.40

0.45

0.50

0.55

0.60

0.80

0.84

0.88

0.7

0.8

0.9

samples per question

ac
cu

ra
cy

method best−of−N majority voting weighted majority voting

Best−of−n, majority voting, and weighted majority voting

Figure 3: Best-of-n, majority voting, and weighted majority voting on four datasets. For each of the
methods, the number of samples per question is varied between 1 and 16. Weighted majority voting
performs best for all the datasets, but the margin differs across the datasets.

th
re

sh
ol

d:
 0

.7
2

ne
ve

r
se

lf−
co

rr
ec

t

al
w

ay
s

se
lf−

co
rr

ec
t

th
re

sh
ol

d:
 0

.8
1

ne
ve

r
se

lf−
co

rr
ec

t

al
w

ay
s

se
lf−

co
rr

ec
t

th
re

sh
ol

d:
 0

.4
8

ne
ve

r
se

lf−
co

rr
ec

t

al
w

ay
s

se
lf−

co
rr

ec
t

th
re

sh
ol

d:
 0

.4
1

ne
ve

r
se

lf−
co

rr
ec

t

al
w

ay
s

se
lf−

co
rr

ec
t

algebra_linear_1d GSM−Symbolic GSM−Symbolic−p2 MATH

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000 500 600 700 800 900 1000 500 600 700 800 900 1000

0.1

0.2

0.3

0.4

0.30

0.35

0.40

0.45

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

generated samples

ac
cu

ra
cy

Conditional self−correct

Figure 4: Conditional self-correction on four datasets. The dark points indicate the performance
for different score thresholds. The left-most points correspond to no self-correction (and only one
sample per question generated); The right-most points correspond to unconditional self-correction
(and therefore two samples per question generated). The optimal thresholds are orange.

In this section, we show experiments using all the datasets from Section 3.1, except GSM8K – this is
because, besides the previously mentioned weaknesses of this benchmark, Llama 3.1 8B achieves on
it results that are similar to the base version of GSM-Symbolic.

Best-of-n and weighted majority voting First, we employ LiLaVe as a scoring function in best-of-n
and weighted majority voting strategies (see Section 2.2). For both strategies, we generate between 1
and 16 samples per question with temperature 1.0, and score each of them with LiLaVe. In Figure 3,
we show the results for both strategies, comparing them with the baseline of standard majority voting.

The weighted majority voting strategy performs best across all numbers of votes, and for all datasets,
whereas for MATH, this dominance is the largest. For both GSM-Symbolic datasets, weighted
majority voting is only slightly better than standard majority voting, and the difference diminishes
with growing numbers of votes (samples). Best-of-n is weaker than weighted majority voting, and for
higher numbers of samples, also weaker than standard majority voting. This may be caused by false
positives: responses appearing as correct to the verifier; the chance of encountering such examples
grows with the number of samples (cf Section 5.1 of (Cobbe et al., 2021)).

Conditional self-correction We evaluate the conditional self-correction strategy (Section 2.2) with
a sampling temperature of 0. Figure 4 shows the performance across four datasets for varying
thresholds s ∈ [0, 1], which control how often self-correction is attempted.

A typical issue with self-correction is that while LLMs are often able to fix incorrect responses, they
also turn many correct responses into incorrect ones. As seen in Figure 4, applying self-correction
to all responses reduces accuracy by 15–30 percentage points. However, selectively correcting only
low-scoring responses leads to significant gains for algebra linear 1d and GSM-Symbolic-p2, with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.6

0.7

0.8

0.9

1e+03 1e+04 1e+05
generated samples

ac
cu

ra
cy

score
threshold

0.50

0.75

0.82

0.85

Conditional majority voting, algebra_linear_1d

0.75

0.80

0.85

0.90

1e+03 1e+04 1e+05
generated samples

ac
cu

ra
cy

score
threshold

0.75

0.79

0.82

0.85

0.89

Conditional majority voting, GSM−Symbolic

Figure 5: Conditional majority voting with varying threshold s and the number of samples per
question n between 1 and 256. The parameter n is shown implicitly as for fixed s it influences the
total number of generated samples through the number of dataset questions scored below s (which
for dataset D is equal (n+1) · |D|; the additional one sample per example is the probe sample). Note
that on the x-axis, a logarithmic scale is applied. In black, the baseline of standard majority voting is
shown. Conditional majority voting outperforms the baseline on a wide range of generation budgets.

smaller improvements on other datasets. The optimal threshold varies per dataset (indicated in orange
in Figure 4), so in practice, this hyperparameter must be tuned depending on the data.

Conditional majority voting In this meta-generation strategy (Section 2.2) four hyperparameters
are involved: the temperature t0 of generating the probe sample, the temperature of the samples
for majority voting tmv, the score threshold s below which the majority voting is triggered, and
the number of majority voting samples n. We fix t0 = 0, tmv = 1, and perform experiments with
n ∈ {1, 2, 4, . . . , 256} and a range of various s ∈ [0, 1]. Figure 5 presents results for two datasets.

In these plots, we do not explicitly show the n parameter, but instead, on the x axis, we put the total
number of samples generated when evaluating on all the examples (which is influenced by both n and
s). This exposes an interesting fact: for a fixed budget (in terms of the number of generated samples),
different combinations of n and s parameters of conditional majority voting give optimal accuracy.
Importantly, conditional majority voting for lower budgets achieves better performance than standard
majority voting (black line in the plots). This shows that LiLaVe-conditioned majority voting is a
practical method allowing for trade between accuracy and efficiency in restricted budget settings.
In a real scenario, one would tune the n and s parameters on a validation set to achieve a desired
accuracy-efficiency trade-off.

4 RELATED WORK

Reasoning and large language models Step-by-step problem solving is fundamental to human
intelligence and scientific discovery. Mathematical problems are often considered a hallmark of
reasoning and have been extensively studied in the context of LLMs (Lewkowycz et al., 2022; Cobbe
et al., 2021; Hendrycks et al., 2021). The field is advancing rapidly, with models like OpenAI’s
o3 solving certain research-level problems from the FrontierMath benchmark (Glazer et al., 2024).
Although o3’s training details remain undisclosed, conjecturally similar DeepSeek-R1 (Guo et al.,
2025) exemplifies the class of “thinking models,” typically trained with reinforcement learning to
conduct extensive searches over the space of solutions. The flip side is the high inference cost; o3
reportedly used 33M tokens to solve a single ARC-AGI puzzle (Chollet, 2019; Chollet et al., 2024).
This underscores the need for efficient inference, which has become a growing research focus. Snell
et al. (2024) and Wu et al. (2025) explore trade-offs between model size and inference time, aiming
to establish compute-optimal strategies. Our work similarly prioritizes inference-time efficiency, with
a particular focus on reward model design.

Inference-time techniques Chain-of-Thought (CoT) prompting (Wei et al., 2022; Nye et al., 2021)
is arguably the most widely adopted technique for improving LLM reasoning. Self-consistency
decoding (Wang et al., 2023) involves generating multiple answers and applying majority voting.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Furthermore, tree and graph search methods, including Monte Carlo tree search and AlphaZero-
inspired techniques, have been widely studied (Yao et al., 2023; Besta et al., 2024; Feng et al., 2024;
Welleck et al., 2022). Another research direction focuses on self-refinement techniques where the
LLM responses are iteratively improved / fixed by the model itself, possibly using external feedback
(Havrilla et al., 2024; Madaan et al., 2023; Shinn et al., 2023). However, the effectiveness and
efficiency of these methods remain limited (Huang et al., 2024; Havrilla et al., 2024). Our work
contributes to the area of inference-time techniques by proposing a lightweight verifier that can boost
the accuracy of the base language model with low computational overhead. For a broad overview of
inference-time generation techniques with large language models, see (Welleck et al., 2024).

Approximate verifiers LLM-generated answers or reasoning process can be assessed by fine-tuned
models, known either as verifiers or reward models. Verifiers can be trained to predict correctness of
entire answers (Cobbe et al., 2021) or to verify individual reasoning steps (Lightman et al., 2023;
Yu et al., 2024; Havrilla et al., 2024; Uesato et al., 2022).3 Acquiring training data remains the key
challenge. Lightman et al. (2023) rely on costly human data, while Wang et al. (2024a), Wang et al.
(2024b), Luo et al. (2024), and Havrilla et al. (2024) generate synthetic data. A recent work Ye et al.
(2024) examines LLM reasoning rationales and hidden mechanisms, suggesting that latent structures
could enable training simple verifiers, which inspired our work.

Probing Probing (Alain & Bengio, 2018) the internal states of transformer models has become an
established method of studying their latent representations (Gurnee & Tegmark, 2024), memorized
sensitive information (Kim et al., 2023), and in-context algorithms (Akyürek et al., 2023). For a recent
introduction to techniques for studying the internal workings of transformer-based language models,
see (Ferrando et al., 2024). Using the models’ hidden layer activations to predict the truthfulness of
their generations has been extensively studied in the context of hallucination detection, see (Azaria
& Mitchell, 2023; Chen et al., 2024; He et al., 2024; Beigi et al., 2024). Outside of hallucination
detection, OPENIA (Bui et al., 2025) notes that model internal representations encode information
useful for predicting the correctness of generated code. While applying this insight to a different
domain, we also use a different type of latent classifier and additionally study recipes for utilizing the
verifiers to improve model generations.

5 LIMITATIONS AND FUTURE WORK

Verifier-conditioned decoding In our experiments, the LiLaVe verifier scores answers after full
generation. However, as shown in Figure 1, LiLaVe detects useful signal throughout the sequence,
even at the first decoded token. This suggests integrating the verifier directly into decoding as a reward
model guiding token selection toward high-certainty paths while avoiding erroneous trajectories.
Given LiLaVe’s efficiency and low computational overhead, this direction is particularly promising.

Verifier-oracle gap While our work advances test-time reasoning, there is still substantial room for
improvement. In the best-of-n setting, when an oracle selects a correct answer if present among n
samples, performance increases dramatically (see Figure 10 in Appendix B). This performance gap
highlights the potential for improving verifiers, which could translate to significant gains.

We hypothesize that better verifiers can be obtained by integrating information for a larger number of
tokens and layers, as well as creating ensemble models utilizing additional information such as logits
and self-evaluation, which we treat as separate methods here.

Moreover, LiLaVe can be combined with different base LLMs which may constitute multiple
standalone verifiers that digest responses generated beforehand from an arbitrary model. See
Appendix B.7 for a prototype experiment in that direction, which gave promising results.

Adaptive conditional majority voting In our conditional majority voting strategy, we fix the number
of samples n to be generated per question beforehand. This could be optimized by allowing n to
be selected adaptively, based on the score from the verifier. Our initial experiments have shown
promising results: the verifier’s score on the probe sample was inversely correlated with the entropy
among the answers in the subsequently generated samples. This suggests a meta-generation strategy
where lower scores of the probe sample imply larger numbers of samples for voting.

3The verifiers for entire answers are also called outcome reward models (ORM), whereas the verifiers for
reasoning steps are called process reward models (PRM).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

In the Supplementary material we provide code and data for reproducing LiLaVe experimental results
presented in this paper. In particular, we include:

• The four datasets used in the experiments (GSM8K, GSM-Symbolic, MATH, algebra linear 1d)
including the training / testing splits.

• A script for extracting hidden states from the base LLMs to train LiLaVe models.

• A script for training LiLaVe’s XGBoost model based on the hidden states.

• Three pre-trained LiLaVe models: algebra linear 1d.xgb, GSM8K.xgb, and
MATH.xgb, trained on the training partitions of the respective datasets.

• The implementation of the meta-generation strategies described in the paper.

• Prompts we used for LLM generations.

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? Investigations with linear models. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.net/forum?id=0g0X4H8yN4I.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes,
2018. URL https://arxiv.org/abs/1610.01644.

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it’s lying, 2023. URL
https://arxiv.org/abs/2304.13734.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. CoRR, abs/2310.10631, 2023. URL https://doi.org/10.48550/arXiv.
2310.10631.

Mohammad Beigi, Ying Shen, Runing Yang, Zihao Lin, Qifan Wang, Ankith Mohan, Jianfeng He,
Ming Jin, Chang-Tien Lu, and Lifu Huang. InternalInspector I2: Robust confidence estimation in
LLMs through internal states, 2024. URL https://arxiv.org/abs/2406.12053.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph
of thoughts: Solving elaborate problems with large language models. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(16):17682–17690, March 2024. ISSN 2159-5399. doi: 10.
1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/aaai.v38i16.29720.

Tuan-Dung Bui, Thanh Trong Vu, Thu-Trang Nguyen, Son Nguyen, and Hieu Dinh Vo. Correctness
assessment of code generated by large language models using internal representations, 2025. URL
https://arxiv.org/abs/2501.12934.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye.
INSIDE: LLMs’ internal states retain the power of hallucination detection, 2024. URL https:
//arxiv.org/abs/2402.03744.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (eds.),
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 785–794. ACM, 2016. doi:
10.1145/2939672.2939785. URL https://doi.org/10.1145/2939672.2939785.

François Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. ARC prize 2024: Technical
report. CoRR, abs/2412.04604, 2024. doi: 10.48550/ARXIV.2412.04604. URL https://doi.
org/10.48550/arXiv.2412.04604.

10

https://openreview.net/forum?id=0g0X4H8yN4I
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/2304.13734
https://doi.org/10.48550/arXiv.2310.10631
https://doi.org/10.48550/arXiv.2310.10631
https://arxiv.org/abs/2406.12053
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2501.12934
https://arxiv.org/abs/2402.03744
https://arxiv.org/abs/2402.03744
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.48550/arXiv.2412.04604
https://doi.org/10.48550/arXiv.2412.04604

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

François Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/
1911.01547.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. AlphaZero-like tree-search can guide large language model decoding and training, 2024.
URL https://arxiv.org/abs/2309.17179.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R. Costa-jussà. A primer on the inner
workings of transformer-based language models, 2024. URL https://arxiv.org/abs/
2405.00208.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189 – 1232, 2001. doi: 10.1214/aos/1013203451. URL https://doi.org/
10.1214/aos/1013203451.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli Järviniemi,
Matthew Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla, Qiuyu Ren, Elizabeth Pratt, Lionel
Levine, Grant Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana Grechuk, Shreepranav Varma
Enugandla, and Mark Wildon. FrontierMath: A benchmark for evaluating advanced mathematical
reasoning in AI, 2024. URL https://arxiv.org/abs/2411.04872.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei
Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian
Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen,
Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

11

https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2309.17179
https://arxiv.org/abs/2405.00208
https://arxiv.org/abs/2405.00208
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://zenodo.org/records/12608602
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2501.12948

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wes Gurnee and Max Tegmark. Language models represent space and time, 2024. URL https:
//arxiv.org/abs/2310.02207.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd Edition. Springer Series in Statistics. Springer,
2009. ISBN 9780387848570. doi: 10.1007/978-0-387-84858-7. URL https://doi.org/
10.1007/978-0-387-84858-7.

Alexander Havrilla, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, and Roberta Raileanu. GLoRe: When, where, and how to improve
LLM reasoning via global and local refinements. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=LH6R06NxdB.

Jinwen He, Yujia Gong, Kai Chen, Zijin Lin, Chengan Wei, and Yue Zhao. LLM Factoscope:
Uncovering LLMs’ factual discernment through inner states analysis, 2024. URL https://
arxiv.org/abs/2312.16374.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet, 2024. URL https:
//arxiv.org/abs/2310.01798.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. ACM Trans. Softw. Eng. Methodol., July 2025. ISSN 1049-331X. doi:
10.1145/3747588. URL https://doi.org/10.1145/3747588.

Siwon Kim, Sangdoo Yun, Hwaran Lee, Martin Gubri, Sungroh Yoon, and Seong Joon Oh. Propile:
Probing privacy leakage in large language models, 2023. URL https://arxiv.org/abs/
2307.01881.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language
models, 2022. URL https://arxiv.org/abs/2206.14858.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. CoRR,
abs/2305.20050, 2023. URL https://doi.org/10.48550/arXiv.2305.20050.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng,
Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang, Hongzhou
Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling formal
theorem proving with scaffolded data synthesis and self-correction. CoRR, abs/2508.03613, 2025.
doi: 10.48550/ARXIV.2508.03613. URL https://doi.org/10.48550/arXiv.2508.
03613.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language
models by automated process supervision. CoRR, abs/2406.06592, 2024. doi: 10.48550/ARXIV.
2406.06592. URL https://doi.org/10.48550/arXiv.2406.06592.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

12

https://arxiv.org/abs/2310.02207
https://arxiv.org/abs/2310.02207
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://openreview.net/forum?id=LH6R06NxdB
https://arxiv.org/abs/2312.16374
https://arxiv.org/abs/2312.16374
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://doi.org/10.1145/3747588
https://arxiv.org/abs/2307.01881
https://arxiv.org/abs/2307.01881
https://arxiv.org/abs/2206.14858
https://doi.org/10.48550/arXiv.2305.20050
https://doi.org/10.48550/arXiv.2508.03613
https://doi.org/10.48550/arXiv.2508.03613
https://doi.org/10.48550/arXiv.2406.06592
https://arxiv.org/abs/2303.17651

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Maciej Mikuła, Szymon Tworkowski, Szymon Antoniak, Bartosz Piotrowski, Albert Qiaochu Jiang,
Jin Peng Zhou, Christian Szegedy, Łukasz Kuciński, Piotr Miłoś, and Yuhuai Wu. Magnushammer:
A transformer-based approach to premise selection, 2024. URL https://arxiv.org/abs/
2303.04488.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2024. URL https://arxiv.org/abs/2410.05229.

Alexander Novikov, Ngân Vu, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian,
M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian
Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and
algorithmic discovery. CoRR, abs/2506.13131, 2025. doi: 10.48550/ARXIV.2506.13131. URL
https://doi.org/10.48550/arXiv.2506.13131.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. OpenWebMath: An open
dataset of high-quality mathematical web text. CoRR, abs/2310.06786, 2023. URL https:
//doi.org/10.48550/arXiv.2310.06786.

Yudi Pawitan and Chris Holmes. Confidence in the reasoning of large language models, 2024. URL
https://arxiv.org/abs/2412.15296.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models, 2019. URL https://arxiv.org/abs/1904.01557.

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/
2408.03314.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
Finn, and Christopher D. Manning. Just ask for calibration: Strategies for eliciting calibrated
confidence scores from language models fine-tuned with human feedback, 2023. URL https:
//arxiv.org/abs/2305.14975.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations, 2024a.
URL https://arxiv.org/abs/2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=1PL1NIMMrw.

13

https://arxiv.org/abs/2303.04488
https://arxiv.org/abs/2303.04488
https://arxiv.org/abs/2410.05229
https://doi.org/10.48550/arXiv.2506.13131
https://doi.org/10.48550/arXiv.2310.06786
https://doi.org/10.48550/arXiv.2310.06786
https://arxiv.org/abs/2412.15296
https://arxiv.org/abs/1904.01557
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2305.14975
https://arxiv.org/abs/2305.14975
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2312.08935
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
Multi-step problem solving through a verifier: An empirical analysis on model-induced process
supervision. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November
12-16, 2024, pp. 7309–7319. Association for Computational Linguistics, 2024b. URL https:
//aclanthology.org/2024.findings-emnlp.429.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. NaturalProver:
Grounded mathematical proof generation with language models, 2022. URL https://arxiv.
org/abs/2205.12910.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaı̈d Harchaoui. From decoding to meta-generation: Inference-time algorithms for
large language models. Trans. Mach. Learn. Res., 2024, 2024. URL https://openreview.
net/forum?id=eskQMcIbMS.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. 2025.
URL https://openreview.net/pdf?id=VNckp7JEHn.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm.
https://github.com/RLHFlow/RLHF-Reward-Modeling, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process, 2024. URL https://arxiv.org/abs/
2407.20311.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in
mathematical reasoning, 2024. URL https://arxiv.org/abs/2311.09724.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. STaR: Bootstrapping reasoning with
reasoning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
arXiv preprint arXiv:2509.08827, 2025.

14

https://aclanthology.org/2024.findings-emnlp.429
https://aclanthology.org/2024.findings-emnlp.429
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2205.12910
https://arxiv.org/abs/2205.12910
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/pdf?id=VNckp7JEHn
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2311.09724
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Question: Travis has 10000 apples, and he is planning to sell these apples in boxes. Fifty
apples can fit in each box. If he sells each box of apples for $35, how much will he be able to
take home?

Rationale: The total of boxes of apples is 10000 / 50 = 200. Therefore the total amount he
can take home is 200 × $35 = 7000.
Answer: 7000

Figure 6: An example of a question from the GSM8K benchmark, followed by a couple of reasoning
steps – a rationale for the final answer, which is always a number.

A REASONING-FOCUSED BENCHMARKS

We evaluate LiLaVe and LiLaVe-based meta-generation strategies on four mathematical QA datasets.
For each of them we select 1000 training examples to train a dataset-specific LiLaVe. We test on sets
of 500–1319 examples, depending on the dataset. Below, we describe each of the benchmarks. We
share the data partitions in the supplementary materials.

GSM8K Cobbe et al. (2021), contains grade school math problems with integer answers. To fit
LiLaVe, we select 1000 examples from its training partition, and in evaluation, use its full test set of
1319 questions. For answer generation, we use the standard 8-shot chain-of-thought prompt used
in Wei et al. (2022). While widely used in LLM reasoning research, GSM8K is a relatively easy
benchmark for modern LLMs. Also, it is likely leaked into LLM pretraining data.

GSM-Symbolic Mirzadeh et al. (2024), has been developed to mitigate data contamination problem
of GSM8K by semi-automatically generating questions from question templates obatined from
GSM8K. Additional variants p1 and p2 of this dataset add one or two extra clauses to questions,
increasing reasoning complexity. When evaluating LiLaVe-based generation strategies on GSM-
Symbolic, we reuse GSM8K’s training set for training the verifier. We also apply the same 8-shot
chain-of-thought prompt that we use for GSM8K.

algebra linear 1d is a subset of a synthetic benchmark introduced in Saxton et al. (2019) to
evaluate the performance of language models on a broad range of common mathematical tasks.
algebra linear 1d evaluates models for solving single-variable linear equations with integer solutions.
We generate training and test sets, each containing 1000 examples. To query an LLM for answers, we
use a simple zero-shot CoT prompt (see Figure 16). In Figure 7 (in Appendix B), there is an example
of a question and solution from algebra linear 1d.

MATH Hendrycks et al. (2021) contains competition-level mathematical problems. We train
LiLaVe on 1000 selected training questions, and in evaluation we use its MATH500 subset used in
Lightman et al. (2023). LLM inference is performed using the 4-shot chain-of-thought prompt used
in Lewkowycz et al. (2022). The final answers to MATH’s questions include expressions such as
polynomials, fractions, or complex numbers. To evaluate the generated answers, they need to be
properly parsed and semantically compared with the ground truth. For that, we reuse the final answer
extractor from Gao et al. (2024).4

B ADDITIONAL RESULTS

B.1 TEMPERATURE OF GENERATIONS

Our latent verifiers are trained on hidden states gathered from intermediate layers of the LLama 3.1 8B
model, using generations sampled at different temperatures. In this section, we extend the temperature
sensitivity analysis (discussed earlier in Section 3.2) beyond GSM8K to additional datasets. We test
how well do verifiers trained on various temperatures transfer to verifying generations sampled from

4Specifically, we reuse the code available at https://github.com/EleutherAI/
lm-evaluation-harness/blob/main/lm_eval/tasks/minerva_math/utils.py

15

https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/tasks/minerva_math/utils.py
https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/tasks/minerva_math/utils.py

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Question: Solve −78 = 30 ∗ r + 150− 78 for r.

Rationale: First, let’s simplify the right-hand side of the equation by combining the constants:

−78 = 30 ∗ r + 72

Next, let’s subtract 72 from both sides of the equation to isolate the term with r:

−78− 72 = 30 ∗ r
−150 = 30 ∗ r

Now, let’s divide both sides of the equation by 30 to solve for r:

−150/30 = r

−5 = r

Answer: -5

Figure 7: An example of a question from the algebra linear 1d benchmark, and a solution followed
by a correct answer generated by Llama 3.1 8B.

0.0 0.2 0.6 0.8 1.1
temperature of evaluation generations

0.
0

0.
2

0.
6

0.
8

1.
1

te
m

pe
ra

tu
re

 o
f t

ra
in

in
g

ge
ne

ra
tio

ns

0.742 0.75 0.777 0.785 0.872

0.779 0.782 0.807 0.814 0.882

0.79 0.795 0.82 0.823 0.893

0.78 0.791 0.82 0.827 0.893

0.786 0.786 0.813 0.821 0.91

GSM8K

0.0 0.2 0.6 0.8 1.1
temperature of evaluation generations

0.
0

0.
2

0.
6

0.
8

1.
1

te
m

pe
ra

tu
re

 o
f t

ra
in

in
g

ge
ne

ra
tio

ns

0.934 0.93 0.923 0.91 0.89

0.944 0.94 0.934 0.922 0.905

0.944 0.941 0.937 0.927 0.913

0.942 0.939 0.935 0.927 0.918

0.94 0.937 0.934 0.927 0.935

algebra_linear_1d

0.0 0.2 0.6 0.8 1.1
temperature of evaluation generations

0.
0

0.
2

0.
6

0.
8

1.
1

te
m

pe
ra

tu
re

 o
f t

ra
in

in
g

ge
ne

ra
tio

ns

0.846 0.861 0.85 0.857 0.915

0.85 0.87 0.863 0.869 0.923

0.855 0.87 0.869 0.876 0.928

0.846 0.865 0.864 0.873 0.926

0.84 0.854 0.86 0.875 0.928

MATH500

Figure 8: Transfer of performance (AUC) of LiLaVe trained and evaluated on hidden states extracted
from answers generated from different temperatures, for three datasets. The base LLM used in this
experiment is Llama 3.1 8B.

different ones. The heatmap for GSM8K is identical to the one presented in Figure 5, we include it
here again for the comparizon with results on other datasets.

Figure 8 shows heatmaps with the results of this analysis for hidden states of LLama 3.1 8B model
and temperatures from the set 0.0, 0.2, 0.6, 0.8, 1.1 on three datasets: GSM8K, algebra linear 1d,
and MATH500. For all temperatures, except temperature 0, we generate 8 answers for each question.
Each cell in a heatmap represents the mean AUC of XGBoost verifier on an appropriate test set,
averaged over 16 classifiers trained on hidden states from different layers (2, 4, 8, 16) and different
tokens (2, 4, 8, 16, counted from the end of the generated sequence).

Observations and conclusions for GSM8K are discussed in Section 3.2. Most importantly, the
predictive performance of the verifier increases with both the training and evaluation temperatures.
For algebra linear 1d, most AUC values are very close to each other, but the variability trend differs
from GSM8K: for a fixed training temperature, the verifier performs better when the evaluation
temperature is lower. The heatmap for MATH follows a similar pattern to GSM8K, but the optimal
training temperature for a fixed evaluation temperature is reached faster – AUC increases until
T = 0.6 and then plateaus.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 CHOICE OF LILAVE ARCHITECTURE

16 14 12 10 8 6 4 2
Token index

0.50

0.55

0.60

0.65

0.70

0.75

0.80
AU

C
XGBoost
Logistic Regression
MLP
SWIGLU

Figure 9: Ablation on the architecture of LiLaVe. Methods are compared on generations from Llama
3.1 8B on GSM8K dataset. The x-axis represents token index, while y-axis represents the value of
AUC metric.

In all our main experiments, we instantiate our verifier as an XGBoost model Chen & Guestrin (2016).
This choice is informed by our ablation experiments, which demonstrate its superior performance
compared to alternative architectures. Additionally, XGBoost requires minimal hyperparameter
tuning, making it a practical choice. We set the maximum tree depth to 5, selecting it as one of several
equally well-performing candidates, and we use a learning rate (eta) of 0.1. All other hyperparameters
are the default ones. Training a single instance of XGBoost classifier in our setup is computationally
efficient, taking only three minutes on our CPUs.

To validate our choice, we compare XGBoost against three other methods: Logistic Regression,
a Multi-Layer Perceptron (MLP), and a SWIGLU-based MLP Shazeer (2020). Each method is
trained on token-level features extracted from the token T (T ∈ {−1,−2, . . . ,−16}) and the layer L
(L ∈ {−1,−2, . . . ,−5}). We run each method for each T and L for 10 seeds. Figure 9 illustrates
the comparative performance of these architectures, highlighting XGBoost’s consistent superiority
over the alternatives. For each line and plot The solid lines are medians, and the shadow region is a
nonsymmetric 90% confidence interval.

While hyperparameter tuning for MLP and SWIGLU could potentially improve their performance,
we performed only a limited sweep over the number of layers and learning rates. However, the
difficulty of tuning these models further underscores the advantage of XGBoost, which performs well
out-of-the-box with minimal effort.

B.2.1 HYPERPARAMETERS OF COMPARED METHODS

Logistic Regression We use an sklearn implementation with a maximum iteration count of 1000
and balanced classes.

MLP The MLP consists of a hidden layer of size 16, and an output dimension of 1. It is trained
using a logistic regression loss for 20 epochs with a batch size of 32. The model is optimized with
Adam, using a learning rate of 10−4.

SWIGLU This variant is a residual MLP using SWIGLU activations. It has two hidden layers of size
32, and an intermediate hidden dimension of 16. Like the standard MLP, it is trained with logistic
regression loss for 20 epochs and a batch size of 32. The learning rate is 5× 10−4, and weight decay
is set to 0.1.

XGBoost In all our experiments, we train XGBoost with the following hyperparameters:

• max depth=10,
• eta=0.1,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

algebra_linear_1d GSM−Symbolic GSM−Symbolic−p2 MATH

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16

0.3

0.4

0.5

0.6

0.4

0.5

0.6

0.7

0.8

0.9

0.80

0.85

0.90

0.95

0.7

0.8

0.9

samples per question

ac
cu

ra
cy

method best−of−N majority voting oracle selection weighted majority voting

Best−of−n, majority voting, weighted majority voting, and oracle selection

Figure 10: Comparison of meta-generation strategies to oracle selection.

51015
ns

0.70

0.72

0.74

0.76

0.78

GSM8K

51015
ns

0.5

0.6

0.7

0.8
algebra_linear_1d

51015
ns

0.650

0.675

0.700

0.725

0.750

0.775

GSM-Symbolic

51015
ns

0.54

0.56

0.58

0.60

0.62

GSM-Symbolic-p2

51015
ns

0.40

0.45

0.50

0.55

0.60

0.65

MATH500

Figure 11: AUC of the sum of log probabilities over the answer suffix. The results correspond to
zero-temperature generations from LLaMA 3.1 8B on the test sets of the respective datasets. The
x-axis represents the length of the suffix considered.

• nrounds=30.

The rest of the hyperparameters use their default values set by the authors of the official XGBoost
implementation.

All input sizes are equal to 4096, as this is the dimensionality of Llama 3.1 8B hidden states. For MLP
and SWIGLU, we report their test performance on an epoch after which the validation performance
is the best.

B.3 ACCURACY OF BEST-OF-N GIVEN THE ORACLE

We compare the results of meta-generation strategies to oracle selection. This theoretical and
practically impossible strategy assumes access to an omnipotent verifier, which always selects the
correct answer from the set of LLM-generated ones, if only such a correct answer appears in this
set. Otherwise, the strategy fails. Figure 10 presents the results of this experiment, suggesting a gap
between the best known meta-generation strategy and this theoretical upper bound, suggesting that
further improving the verifiers still has a lot of potential.

B.4 LOGPROBS BASELINE RESULTS

This section provides a detailed analysis of the logprob-based estimator introduced in Section 3.3.
The estimator is computed as the sum of log probabilities from Llama 3.1 8B over the final k tokens
of a generated answer.

Figure 11 shows the AUC scores of this estimator across various (1-16) suffix lengths and datasets.
For each dataset, we select the suffix length k that yields the highest AUC, and report these results in

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

algebra_linear_1d GSM−Symbolic−p2 MATH

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.3

0.5

0.7

0.9

temperature

ac
cu

ra
cy

votes

256

128

64

32

16

8

4

2

1

Accuracy vs temperature and number of votes

Figure 12: Accuracy of majority voting for different generation temperatures and number of votes.
Base model is Llama 3.1 8B.

Table 2: Performance (AUC) of LiLaVe for three different base LLMs: Llama 3.1 8B, Gemma 2 2B,
Phi-3.5-mini. LiLaVe preserves strong predictive performance across all the three models and all
the benchmarks – with one exception of Gemma on MATH. The reason is likely because this model
scored only ∼5% on MATH, which did not give enough positive examples for training LiLaVe.

benchmark Llama 3.1 8B Gemma 2 2B Phi-3.5-mini

GSM8K (test) 0.86 0.83 0.83
GSM-Symbolic 0.84 0.83 0.79

GSM-Symbolic-p2 0.78 0.84 0.78
algebra linear 1d 0.93 0.86 0.96

MATH500 0.88 0.53 0.93

Table 1. Thus, this table reflects the best-performing suffix length for each dataset, giving an idealized
upper bound on the estimator’s performance.

In most datasets (GSM8K, GSM-Symbolic, GSM-Symbolic-p2, and MATH500), we observe a
positive correlation between model confidence (measured by the sum of log probabilities) and answer
correctness: a higher confidence in the final tokens generally indicates a higher chance of correctness.
Interestingly, an exception arises in the algebra linear 1d dataset, where the relationship is inverted.
Specifically, for short suffixes (lengths 1 to 8), AUC falls below 0.5. This implies that in this dataset,
higher model confidence is actually indicative of a greater chance of error, suggesting the base model
is overconfident.

Since the suffix length k is fixed, normalization of the sum is not necessary. We also verified that this
sum-based estimator consistently outperforms a more commonly used average over all logprobs in
the answer.

B.5 OPTIMAL TEMPERATURES IN MAJORITY VOTING

In this experiment, we evaluate the accuracy of majority voting (see Section 3.4) with respect to the
temperature of generations and the number of votes. Results are presented in Figure 12. We observe
that for different numbers of votes, different generation temperatures are optimal.

B.6 PERFORMANCE OF LILAVE WITH OTHER BASE LLMS

In Table 2 we present AUC performance of LiLaVe for three different base LLM: Llama 3.1 8B (used
in the main experimental line presented in the main text), Gemma 2 2B, and Phi-3.5-mini.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 3: A comparison of two verification setups: the standard one, where responses generated by
Phi-3.5-mini are scored based on the hidden states extracted from Phi during the generation (the
middle column), versus responses generated by Phi, but later ingested by LLama 3.1 8B and scored
based on the hidden states extracted from it (the right column). The latter setup in general performs
worse – but not much worse, and for GSM-Symbolic actually better.

benchmark Phi-3.5-mini
+ Phi-LiLaVe

Phi-3.5-mini
+ Llama-LiLaVe

GSM8K (test) 0.83 0.83
GSM-Symbolic 0.79 0.83

GSM-Symbolic-p2 0.78 0.76
algebra linear 1d 0.96 0.94

MATH500 0.93 0.91

Table 4: Transfer of performance (AUC) of LiLaVe trained and evaluated on different datasets. The
base LLM used in this experiment is Llama 3.1 8B.

train
test GSM8K algebra linear 1d MATH

GSM8K 0.86 0.87 0.84
algebra linear 1d 0.75 0.93 0.71

MATH 0.72 0.53 0.88

B.7 PERFORMANCE OF LILAVE TESTED ON RESPONSES ORIGINATING FROM A DIFFERENT
MODEL

The standard mode of using LiLaVe is to apply it to the hidden states of the base LLM that generates
the response. However, another setup is possible, where the responses are given without the hidden
states and these are recreated by digesting the responses by an LLM for which a LiLaVe is available.
In Table 3 we compare the results of two such approaches. The responses are coming from Phi-3.5-
mini, and they are scored either by the LiLaVe trained for Phi (Phi-LiLaVe), or by Llama-LiLaVe,
after retrieving the hidden states from Llama 3.1 8B that digested the Phi’s responses. As can be seen,
the latter setup gives good results, only slightly weaker than the original setup.

B.8 TRANSFER TO OTHER DATASETS

We evaluate the generalization ability of a verifier trained on one dataset when applied to another.
Table 4 presents the AUC scores for different train-test combinations.

Our results indicate that while training and evaluating on the same dataset yields the highest perfor-
mance, there is a significant cross-dataset generalization. For instance, a verifier trained on GSM8K
achieves an AUC of 0.87 on algebra linear 1d and 0.84 on MATH, which is better then baseline
methods based on logprobs and self-reflection (see Table 1). Interestingly, the verifier trained on
MATH generalizes less effectively, achieving only 0.53 AUC on algebra linear 1d and 0.72 on
GSM8K.

Overall, the results of this experiment suggest that some transferability across datasets exists, but we
leave the exploration of transferability to other models for future work.

B.9 ADDITIONAL DATASETS AND MODELS (QWEN 3 AND AIME)

We run an experiment where we use a new, strong reasoning model, Qwen3 8B, as the base LLM,
and more challenging math dataset: AIME. We train LiLaVe on Qwen3 responses to problems from
AIME 1983-2021 and test on AIME 2022-2025. We also run Qwen3 both in “thinking” (long-CoT)
and “non-thinking” (standard-CoT) mode. We show the results in Table 5. LiLaVe achieved excellent
AUC verification performance for both modes:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: AUC performance of LiLaVe with Qwen and Llama models on AIME dataset.
model AIME

Qwen3 thinking 0.97
Qwen3 non-thinking 0.96

Llama 3.1 8B 0.67

Table 6: LiLaVe vs Math-Shepherd PRM.
benchmark LiLaVe ORM-Deepseek Math-Shepherd

GSM8K (test) 0.86 0.88 0.89
GSM-Symbolic 0.84 0.90 0.91

GSM-Symbolic-p2 0.78 0.75 0.79
algebra linear 1d 0.93 0.90 0.92

MATH500 0.88 0.90 0.82

When we use Llama 3.1 8B as the base LLM in the same setting, LiLaVe achieves a much weaker
AUC of 0.67. The main reason likely is the fact that Llama gets only 12% accuracy on AIME
which results in too few positives for training LiLaVe. Qwen3 gets 34% and 65% of accuracy in
non-thinking and thinking mode, respectively. Moreover, Qwen3 is a strong reasoning model on its
own and when it cannot produce a correct answer, it may manifest quite clearly in the hidden states.

B.10 COMPARISON WITH A PRM

We ran additional experiments comparing the performance of LiLaVe to Math-Shepherd. We used
the exact same data (Llama 3.1 8B math solutions) as for the experiment whose results we present in
Table 1. Below, we compare the performance of LiLaVe and Math-Shepherd. We also include the
performance of the stronger ORM from Table 1. We present the results in Table 6.

The results are mixed: Math-Shepherd performs better on GSM-style tasks, while LiLaVe does better
on MATH500 and linear algebra. Also, in accordance with the literature, Math-Shepherd performs
better than the ORM.

In general, we find it interesting and positive that even heavy-weight PRMs sometimes are weaker
than lightweight LiLaVe operating on hidden states and trained on relatively small training sets.

0.60

0.65

0.70

0.75

0.80

1e+04 1e+05 1e+06
generated samples

ac
cu

ra
cy

score
threshold

0.50

0.75

0.80

0.81

Conditional majority voting, Gemma 2 2B,
algebra_linear_1d

op
tim

al
 th

re
sh

ol
d:

 0
.5

2

ne
ve

r
se

lf−
co

rr
ec

t

al
w

ay
s

se
lf−

co
rr

ec
t

0.60

0.62

0.64

0.66

1000 1250 1500 1750 2000
generated samples

ac
cu

ra
cy

Conditional self−correct, Gemma 2 2B,
algebra_linear_1d

Figure 13: Conditional majority voting and conditional self-correction for Gemma 2 2B model, on
algebra linear 1d benchmark. The results are similarly good as those for Llama 3.1 8B.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The solution you provided contains mistakes and the answer is incorrect. Please, carefully
review the solution and write a new, correct one.

Figure 14: Prompt used for the self-correction experiments.

Please, rate on a scale of 1 to 10 how confident you are of the correctness of your answer.

Figure 15: Prompt used for the self-reflection confidence estimation.

C PROMPTS

We present prompts used in our experiments in Figure 14, Figure 15, Figure 17, Figure 16, and
Figure 18.

D EFFICIENCY

LLM-based verifiers typically require a large number of training examples, e.g. both models from
(Xiong et al., 2024) which we benchmark against, were trained on over 250k examples. In contrast,
LiLaVe achieves comparable performance with just 5k samples per benchmark – two orders of
magnitude less – making it a strong choice in data-scarce settings. Once the hidden states are
collected, training LiLaVe takes only 15 minutes on a CPU, compared to the GPU-intensive fine-
tuning required for LLM-based verifiers.

In terms of inference efficiency, scoring pre-generated Llama 3.1 8B’s responses to 1319 GSM8K
test questions using an LLM-based verifier (via the code from (Xiong et al., 2024)) took nearly
20 minutes on an NVIDIA GH200 GPU. The same task (having the hidden states extracted) was
completed by LiLaVe in only ∼ 3.4s of wall clock time on CPUs of a Dell Precision 3561 laptop,
yielding a ∼ 350× speedup.

Of course, one could argue that, like other verifiers, LiLaVe still relies on a large generator to produce
the answer to be verified. In scenarios where both generation and verification are benchmarked
together, the speedup offered by LiLaVe may be limited to at most 2×, assuming verifier and generator
are of similar size. However, even in this setting, LiLaVe provides important practical advantages.
Unlike LLM-based verifiers that require GPUs, LiLaVe runs efficiently on CPU. This avoids the need
to load large generator and verifier onto separate GPUs, which would double the required hardware,
or to repeatedly load and unload model weights to and from GPU memory, which can significantly
slow down the whole pipeline. It also introduces minimal compute overhead compared to LLM-based
verifiers, which makes it much easier to integrate with more adaptive generation strategies.

Think step by step.

Figure 16: 0-shot prompt for the algebra linear 1d dataset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant
today?
Answer: There are 15 trees originally. Then there were 21 trees after some more were planted.
So there must have been 21 - 15 = 6. The answer is 6.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in
the parking lot?
Answer: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do
they have left in total?
Answer: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 =
74. After eating 35, they had 74 - 35 = 39. The answer is 39.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops.
How many lollipops did Jason give to Denny?
Answer: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he
gave Denny 20 - 12 = 8. The answer is 8.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad.
How many toys does he have now?
Answer: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is
4 more toys. 5 + 4 = 9. The answer is 9.

Question: There were nine computers in the server room. Five more computers were installed
each day, from monday to thursday. How many computers are now in the server room?
Answer: There were originally 9 computers. For each of 4 days, 5 more computers were
added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost
2 more. How many golf balls did he have at the end of wednesday?
Answer: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35.
After losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she
have left?
Answer: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she
has 23 - 15 dollars left. 23 - 15 is 8. The answer is 8.

Question:

Figure 17: 8-shot prompt for GSM8K, GSM-Symbolic, and GSM-symbolic-p2 datasets.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Problem: Find the domain of the expression
√
x−2√
5−x

.
Solution: The expressions inside each square root must be non-negative. Therefore, x−2 ≥ 0,
so x ≥ 2, and 5 − x ≥ 0, so x ≤ 5. Also, the denominator cannot be equal to zero, so
5 − x > 0, which gives x < 5. Therefore, the domain of the expression is [2, 5) . Final

Answer: The final answer is [2,5) . I hope it is correct.

Problem: If detA = 2 and detB = 12, then find det(AB).

Solution: We have that det(AB) = (detA)(detB) = (2)(12) = 24 . Final Answer: The
final answer is 24 . I hope it is correct.

Problem: Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound
weights instead, how many times must Terrell lift them in order to lift the same total weight?
Solution: If Terrell lifts two 20-pound weights 12 times, he lifts a total of 2 · 12 · 20 = 480
pounds of weight. If he lifts two 15-pound weights instead for n times, he will lift a total of
2 · 15 · n = 30n pounds of weight. Equating this to 480 pounds, we can solve for n:

30n = 480

⇒ n = 480/30 = 16

Final Answer: The final answer is 16 . I hope it is correct.

Problem: If the system of equations

6x− 4y = a,

6y − 9x = b.

has a solution (x, y) where x and y are both nonzero, find a
b , assuming b is nonzero.

Solution: If we multiply the first equation by − 3
2 , we obtain

6y − 9x = −3

2
a.

Since we also know that 6y − 9x = b, we have

−3

2
a = b ⇒ a

b
= −2

3
.

Final Answer: The final answer is −2

3
. I hope it is correct.

Problem:

Figure 18: 4-shot prompt for the MATH dataset.

24

	Introduction
	Method
	Lightweight latent verifier – LiLaVe
	LiLaVe-based meta-generation strategies

	Experiments
	Reasoning-focused benchmarks
	Developing LiLaVe
	Baselines
	LiLaVe-based meta-generation strategies

	Related work
	Limitations and future work
	Reasoning-focused benchmarks
	Additional results
	Temperature of generations
	Choice of LiLaVe architecture
	Hyperparameters of compared methods

	Accuracy of best-of-n given the oracle
	Logprobs baseline results
	Optimal temperatures in majority voting
	Performance of LiLaVe with other base LLMs
	Performance of LiLaVe tested on responses originating from a different model
	Transfer to other datasets
	Additional datasets and models (Qwen 3 and AIME)
	Comparison with a PRM

	Prompts
	Efficiency

