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ABSTRACT

We propose kernel density decision trees (KDDTs), a novel fuzzy decision tree
(FDT, also called “soft” or “differentiable” decision tree) formalism based on ker-
nel density estimation that achieves state-of-the-art prediction performance often
matching or exceeding that of conventional tree ensembles. Ensembles of KDDTs
achieve even better generalization. FDTs address the sensitivity and tendency to
overfitting of decision trees by representing uncertainty through fuzzy partitions.
However, compared to conventional, crisp decision trees, FDTs are generally com-
plex to apply, sensitive to design choices, slow to fit and make predictions, and dif-
ficult to interpret. Moreover, finding the optimal threshold for a given fuzzy split
is challenging, resulting in methods that discretize data, settle for near-optimal
thresholds, or fuzzify crisp trees. Our KDDTs address these shortcomings using a
fast algorithm for finding optimal partitions for FDTs with piecewise-linear split-
ting functions or KDDTs with piecewise-constant fitting kernels. Prediction can
take place with or without fuzziness; without it, KDDTs are identical to standard
decision trees, but with a more robust fitting algorithm. Using KDDTs simplifies
the process of fitting a model, grounds design choices in the well-studied theory
of density estimation, supports optional incorporation of expert knowledge about
uncertainty in the data, and enables interpretation in the context of kernels. We
demonstrate prediction performance against conventional decision trees and tree
ensembles on 12 publicly available datasets.

1 INTRODUCTION

Decision trees are one of the oldest and most universally known model classes for classification and
regression in machine learning. They have many benefits: they are fast to train and make predictions,
relatively small in memory usage, easy to apply and tune, flexible in their non-parametric, variable-
resolution structure, easy to verify for safety and robustness properties due to their piecewise-
constant representation with linearly many pieces in the size of the model, and often considered
to be interpretable to humans, both holistically as a hierarchical partition of the input space and on
the individual prediction level as a list of simple rules.

However, decision trees in their most basic form are rarely used in practice due to certain weak-
nesses, the foremost of which is their sensitivity to the randomness innate to a set of training data
sampled from an unknown underlying distribution and affected by the noise of real-world data col-
lection, such as sensor noise. This results in severe overfitting in most scenarios. Moreover, the
piecewise-constant nature of decision trees makes them less than ideally suited for regression.

Perhaps the most widely adopted way to address these issues is to use ensembles of trees, which have
become standard repertoire in supervised learning of tabular data. These include random forests
(Breiman, 2001), which employ bagging and feature subsampling to reduce overfitting; highly ran-
domized ensembles, such as ExtraTrees (Geurts et al., 2006) that choose thresholds at random; and
boosted ensembles, such as XGBoost (Chen & Guestrin, 2016), which uses a variety of strategies to
improve generalization. Ensembles also improve the smoothness of regression because, while they
are still piecewise-constant, the number of pieces becomes exponential in the size of the ensemble.
The tradeoff of using ensembles is that the increased complexity results in longer training and pre-
diction time, a larger memory footprint, reduced ease of interpretation, and much slower verification
(shown to be NP-Complete by Katz et al. (2017)).

Another, less widely adopted way to address the overfitting issue of decision trees is by having
the tree model uncertainty in the data directly. There are many realizations of this concept going by
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names such as fuzzy decision trees, soft decision trees, differentiable decision trees, and neural trees.
We use “fuzzy decision trees” (FDT) as an umbrella term for these kinds of models. Most operate by
using soft partitions that, at each node, smoothly transition the allocation of the decision from one
subtree to another based on a learned splitting function. They often support, and sometimes require,
fuzzy data. They can be trained greedily by partitioning as in crisp trees, globally by algorithms
resembling backpropagation as in neural networks, or some combination of the two. In particular,
we focus on FDTs using greedy single-feature partitioning since they are the most like conventional,
crisp tree-based models and thus retain some benefits such as flexible, non-parametric learning. The
tradeoff of using this kind of FDTs is, overall, the complexity of using them. They generally exhibit
shortcomings such as requiring more fitting steps and the additional design choices that come with
them and losing some ease of interpretation compared to conventional, crisp decision trees. More
importantly, selecting optimal partitions for continuous features given a fuzzy splitting function
becomes a challenge because, unlike when fitting crisp trees, the loss is continuous in the threshold
value and not easily minimized. Existing methods instead use strategies such as discretizing data,
searching for near-optimal thresholds, or fuzzifying a fitted crisp tree.

We propose a new kind of FDT called kernel density decision tree (KDDT) that extends the CART
methodology (Breiman et al., 1984) to model uncertainty based on the concept of kernel density
estimation (KDE), a common approach to estimate the underlying distribution of a data sample.
A KDDT is defined by three components: a decision tree, fitting kernels, and optional prediction
kernels. The tree is identical in form to crisp trees, but instead of fitting to the data directly, it is
fitted to the distribution estimated by KDE using the fitting kernels, which account for randomness
from both the underlying process being modeled and from noise in the data collection process itself.
More concretely, a KDDT is the decision tree that would be obtained by estimating the density of the
data using the fitting kernel, sampling infinitely many points from the density estimate, then fitting a
typical CART decision tree to these points. If an appropriate fitting kernel is used, this can result in
better-generalizing selection both of splitting feature and threshold and of leaf values. If prediction
kernels are used, then the tree’s prediction is averaged over the prediction kernel at the given input
to account for uncertainty in input values at test time. They can be the same or different from the
fitting kernels, perhaps only modeling data collection uncertainty such as sensor noise. The kernels
(and associated bandwidths), unlike standard practice for KDE, may be asymmetrical and defined
differently over the domain. This could, for example, account for asymmetrical sensor noise that
differs depending on the measured value. To address the problem of finding optimal splits, we also
propose a fast optimal threshold search algorithm based on CART for FDTs with piecewise-linear
splitting functions or KDDTs with piecewise-constant fitting kernels.

In some sense, trees and density-based classifiers are able to cover each other’s weaknesses. Density-
based classifiers generalize well near training data, but cannot make predictions far from it and suffer
greatly from the curse of dimensionality. Trees, on the other hand, often overfit and fail to generalize
in high-density regions, but their partitioning approach produces reasonable predictions even outside
training data support, and they are more robust to the curse of dimensionality. KDDTs leverage
the best of both. Our experiments comparing against scikit-learn models on public datasets show
KDDT prediction performance sometimes matching or exceeding even random forests, and even
better when used in ensembles. This hybridization also offers high utility, with the greatest strength
over other FDT methods being its simplicity. The well-understood practice of density estimation
provides a grounded framework for making design choices and incorporating expert knowledge
about uncertainty in the data. Interpretation without a prediction kernel is identical to a conventional
crisp tree, and with one, the kernel formalism at least allows a global interpretation as the expectation
of the underlying crisp tree’s prediction over the kernel. Other than these points, we retain all the
aforementioned benefits of crisp trees, including fast fitting and prediction: we notably exploit the
piecewise-constant fitting kernels such that we do not need to evaluate the full KDE function at
multiple points, a computation that scales poorly with the number of training samples. In addition,
a KDDT with a prediction kernel gains the utilities of smoothness and differentiability.

Our novel contributions can be summarized as:

• A new formalism for using KDE to model uncertainty in data when training and predicting
with decision trees, which is unlike existing approaches that combine these concepts.

• A new FDT formulation that introduces an interdependence between splits at different lev-
els of the tree to model the proposed KDE-DT formalism.
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• A method to generate candidates for optimal splits in FDTs with piecewise-linear splitting
functions, or KDDTs with piecewise-constant fitting kernels, and accompanying proof that
one of the candidates is the optimal split.

• An extension of the CART algorithm to efficiently identify the optimal split candidate.

2 RELATED WORK

Fuzzy decision trees, unlike standard decision trees, are based on soft partitions that allocate a de-
cision partially to multiple subtrees rather than wholly to one or another. The allocation is typically
based on a learned splitting function. Starting with Chang & Pavlidis (1977), many variations of
the concept have been proposed over the years. We focus on those that build a tree greedily as
with crisp trees and refer the reader to Chen et al. (2009), Altay & Cinar (2016), and Sosnowski
& Gadomer (2019) for overviews of work in this area. In particular, we mention a few paradigms
for fitting to highlight the difference in our approach. Most methods are based on fuzzy sets and
only handle categorical features natively, so continuous data must be discretized (Mitra et al., 2002).
Other approaches instead add fuzziness to partitions selected by algorithms for crisp trees (Chandra
& Paul Varghese, 2009) or fuzzify a crisp tree after it is completely fitted (Crockett et al., 2000).
Our approach uses kernels to naturally represent fuzziness of continuous features without need for
discretization and efficiently finds optimal partitions for the estimated distributions of data.

There are a few cases where KDE has been integrated with decision trees. Smyth et al. (1995)
propose a technique whereby prediction paths in a conventionally trained decision tree are used to
choose features for KDE-based classification. This produces continuous predicted class probabilities
(like KDE classifiers) and resists performance degradation due to the curse of dimensionality (like
decision trees). Itani et al. (2020) use one-dimensional KDE as features for training decision trees
for one-class classification, which is used for tasks like outlier or anomaly detection. Other works
use KDE only in the leaves and not to determine partitions (Wang et al., 2006; Nowozin, 2012). Our
approach, unlike these related works, modifies the basic decision tree to fit directly to the density
estimate and optionally make kernel-smoothed predictions.

3 METHODS

We first cover some preliminaries and notation relating to data, trees, and kernels. Let X ∈ Rn×p,
Y ∈ Rn×q denote the training data. In the case of classification, each Yi,j is the probability that
sample i has label j; for normal classification, each Yi,: is a one-hot vector. We represent it in this
way to support fuzzy labels and to unify the methods with those of regression. Similarly, categorical
features can be represented in X as one-hot vectors or by probability of membership to each cate-
gory. In the case of regression, Yi,j is target value j of sample i. In most regression applications,
only one signal is predicted, or a separate model is used for each signal, so Y will have only one
column. We notate a tree as a collection of nodes {m1,m2, . . . }, each of which has two children, a
feature (attribute) index a(m) ∈ [p], and a threshold t(m) ∈ R that form decision rule xa(m) ≤ t(m).

A kernel function is a one-dimensional distribution used in kernel density estimation (KDE) to es-
timate a probability density given a sample. The typical form of multivariate KDE is f̂H(x) =
1
n

∑n
i=1KH(x−Xi,:) =

1
n |H|

−1/2∑n
i=1K(H−1/2(x−Xi,:)) where f̂ is the predicted density,

H is the bandwidth matrix, and K is the kernel function. Unlike the conventional form, we do
not assume that the kernel function is symmetric, or that it is the same at all locations and over all
features (dimensions) of x. We do assume that the bandwidth matrix is diagonal such that KH can
be written as a product over the features. While this is somewhat restrictive, it enables the efficient
computation of the probability that a point belongs to each partition defined by a tree with feature-
aligned splitting, as shown in the next section. Thus, incorporating the bandwidth into the kernel
function itself, we write the kernel at x′ evaluated at x as f(x,x′) =

∏p
j=1 fj(xj ,x

′) with fj(·,x′)
the marginal distributions of the features. We also write Fj(xj ,x

′) =
∫ xj

−∞ fj(z,x
′)dz the cumula-

tive distribution function (CDF) of fj . The full KDE is accordingly f̂X(x) = 1
n

∑n
i=1 f(x,Xi,:).

The following sections describe how KDDTs extend the decision tree formalism with kernels, how
they are fitted, and how they make predictions.
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3.1 FITTING

We fit a decision tree to the joint probability p(x,y |X,Y ) as estimated using the KDE on X .

f̂X,Y (x,y) =
1

n

∑
Yi,:=y

p∏
j=1

fj(xj ,Xi,:)

The fitting algorithm is a generalization of CART that recursively partitions the input space to min-
imize a loss, but rather than the raw data, we consider the distribution f̂X,Y . In other words, the
trained tree is equivalent to one trained by applying CART to infinitely many points sampled from
f̂X,Y . Of course, such an approach cannot actually be computed, but our fitting algorithm efficiently
achieves the same result under the assumption that the fj(·,Xi,:) are piecewise-constant.

To that end, for each node (including leaves) `, we define membership function u(`) : Rp → [0, 1]
that maps a point x to the probability that a random point x ∼ f(·,x) sampled from the kernel at x
follows the path to `.

u(`)(x) = Px∼f(·,x)(x follows Path(`))

Here Path(`) is the set of internal nodes visited to reach a node `. We further distinguish Path≤(`) =
{m ∈ Path(`) | xa(m) ≤ t(m)} the subset of the path where the left branch was taken, and similarly,
Path>(m) = {m′ ∈ Path(`) | xa(m) > t(m)} the subset where the right branch was taken.

Because we assume we can write f(·,x) =
∏p

j=1 fj(·,x), the features of x are independent. Let
Path≤,j(`) = {m ∈ Path≤(`) | a(m) = j}, and similarly for Path>. Then we can write u(`) as

u(`)(x) =
∏
j∈[p]

Pxj∼fj(·,x)( max
m∈Path>,j(`)

t(m) < xj ≤ min
m∈Path≤,j(`)

t(m))

=
∏
j∈[p]

max(0, b
(`)
≤,j(x)− b

(`)
>,j(x))

with upper and lower bound probabilities defined as

b
(`)
≤,j(x) =

{
1 if Path≤,j(`) is empty
minm∈Path≤,j(`) Fj(t

(m),x) otherwise

b
(`)
>,j(x) =

{
0 if Path>,j(`) is empty
maxm∈Path>,j(`) Fj(t

(m),x) otherwise
.

In this way, the membership values for a given point can be easily computed for all nodes by travers-
ing the tree and updating the bound probability values at each internal node.

The value of a leaf ` is determined by expectation of y over f̂X,Y given the path constraints. For
regression, the expectation may not be the minimizer for some loss functions, but for brevity, we
limit our analysis to those where it is the minimizer, such as mean squared error (MSE).

v(`) = Ex,y∼f̂X,Y
[y | x follows Path(`)] =

∑
i∈[n] Yi,:u

(`)(Xi,:)∑
i∈[n] u

(`)(Xi,:)

The tree is grown from the root by recursively splitting the input space to greedily improve the purity
of the leaf values as defined above. This results in a different tree from one trained without fitting
kernels, both in the choice of splits and the values of the leaves. Figure 1 gives a simple illustrative
example. In particular, at a node m, the feature a(m) and threshold t(m) of the split are chosen to
maximize the gain

g(a(m), t(m)) = L(v(m))−
∑

i∈[n] u
(mL)(Xi,:)∑

i∈[n] u
(m)(Xi,:)

L(v(mL))−
∑

i∈[n] u
(mR)(Xi,:)∑

i∈[n] u
(m)(Xi,:)

L(v(mR))

with mL and mR the children of m and L : Rp → R≥0 the loss function. For classification,
the most common loss functions for trees are entropy L(v) = −

∑
k∈[q] vk log vk and Gini impurity
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(b) The partition from fitting a
KDDT with box kernels.
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(c) Prediction with a box kernel
transitions smoothly in the bands.

Figure 1: A simple example to illustrate how KDDTs differ from conventional decision trees.

L(v) = 1−
∑

k∈[q] v
2
k. For regression, the most common loss is mean squared error (MSE) summed

over the q outputs. While it cannot be expressed as a function of v alone, it there is a loss function
that is equivalent in terms of gain. Since the estimate is the mean, the MSE is the weighted variance
E(y2) − E(y)2. When plugged into the gain, the E(y2) terms sum to zero between parent and
children, leaving loss L(v) = −

∑
k∈q v

2
k.

Splitting always stops when there is zero gain, but zero gain may never occur when fitting with a
kernel, so at least one additional stopping condition must be used. These may include a maximum
depth, minimum permissible sample mass

∑
i∈[n] u

(`)(Xi,:) for a leaf `, or a pruning condition,
such as cost-complexity pruning.

The key challenge is that, because of the smooth transition of decision allocation, algorithms for
building crisp trees, such as CART, cannot be naively applied to find optimal splits. In fact, we are
not aware of any previous work finding truly optimal splits for continuous features in fuzzy decision
trees. In the following section, we show that by using piecewise-constant kernels, we can not only
find the true optimal split, but incur only small additional computational cost over conventional
CART, which is not true of strategies that heuristically search for good splits in fuzzy trees.

3.2 OPTIMAL SPLITTING WITH KERNELS

Choosing optimal threshold t(m) for given feature a(m) with an arbitrary kernel requires optimizing
a one-dimensional non-convex function, and each candidate threshold tested costs O(nq). To tackle
this challenge, we introduce a more general form for FDTs and show how a KDDT maps to an equiv-
alent FDT with a specific dependence between subsequent splits, then propose an efficient, optimal
splitting algorithm for FDTs with piecewise-linear splitting functions, or KDDTs with piecewise-
constant kernels. We introduce our splitting method this way both so that it can be extended to other
kinds of FDTs and because the details are more easily explained in this general form.

3.2.1 GENERAL FUZZY DECISION TREES

In general, an FDT that uses single-feature threshold rules is defined by a decision tree and a splitting
function σ(m) : R → [0, 1] that uses the distance to the threshold to allocate the decision between
subtrees. Though not necessarily typical of FDTs, for compatibility with KDDTs, we must allow
the splitting function to also depend on the feature index and value of the input. Thus we write
prediction for internal nodes is computed recursively as

ŷ(m)(x) = (1− σa(m)(t(m),x))ŷ(mL)(x) + σa(m)(t(m),x)ŷ(mR)(x),

and for leaf nodes `, ŷ(`)(x) = v(`). This leads to a membership function

u(`)(x) =

 ∏
m∈Path≤(`)

1− σa(m)(t(m),x)

 ∏
m∈Path>(`)

σa(m)(t(m),x)

 ,

which is used to compute ŷ and v(`) in the same way as for KDDTs. A KDDT with kernels fj is
equivalent to an FDT with splitting functions defined at each node as

σ(m)(t(m),x) = max

0,min

1,
Fa(m)(t(m),x)− b(m)

>,a(m)(x)

b
(m)

≤,a(m)(x)− b
(m)

>,a(m)(x)

 .
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Figure 2: An illustration of how a KDDT kernel relates to an FDT splitting function.

The equivalence is proven in Appendix C and illustrated in Figure 2. Note that the equivalent FDT
has an interdependence between splitting functions at different levels of the tree through the b terms;
in principle, this is what distinguishes a KDDT from a typical application of fuzzy trees and allows
it to fit to a kernel density estimate. Without this interdependence, an FDT can artificially sharpen a
fuzzy split by successively splitting on the same feature and same (or similar) threshold value.

3.2.2 EFFICIENT OPTIMAL SPLITTING

We propose an efficient algorithm for finding optimal splits for FDT nodes when the splitting func-
tions are piecewise-linear. The method a generalization of CART, which testsO(n) candidate thresh-
olds that bisect pairs of points in ascending order while keeping running totals for each side of the
split so that computing loss requires constant time with respect to the number of training samples
for each candidate. Similarly, a piecewise-linear splitting function allows us to generate O(nr) can-
didate thresholds and keep running totals for each side of the split. The candidates are specified by
Theorem 1, which is proven in Appendix B.

Theorem 1. For given data X,Y and feature index j, if the splitting function σj(·,Xi,:) is con-
tinuous and is linear on intervals (−∞, ci,1), [ci,1, ci,2), . . . , [ci,ri ,∞) for all i ∈ [n] and the Hes-
sian of the loss L is negative semidefinite everywhere, then the maximizer of the gain g(j, ·) is in
{ci,k | i ∈ [n], k ∈ [ri]}.

Entropy, Gini impurity, and the weighted MSE as defined in Section 3.1 all satisfy the negative
semidefinite Hessian condition. In the context of KDDTs, the threshold candidates correspond to
the changepoints in the kernel values, which are conveniently also what must be iterated over to
efficiently compute loss at different possible split thresholds. That is, between any pair of adjacent
candidates, the membership functions resulting from the split are linear in the threshold value, and
thus so are the candidate children’s value vectors. By iterating over the candidates in ascending
order, updating the rate of change of the child values at each candidate, and using that rate of
change to compute the values themselves, we need only O(q) at each candidate to update the value
and compute loss. We can thus find the optimal feature and threshold in only O(pqrn log(rn))
(nr log(nr) from sorting nr threshold candidates), where r is the maximum number of pieces in
the splitting function. This is notably close to the O(pqn log n) to find the optimal split in CART;
however, the complexity of fitting the entire tree of max depth d for CART is O(pqdn log n) since
a point may only belong to a single path, whereas fitting an entire FDT is O(pq exp(d)nr log(nr))
since a point may belong to every path. The number of paths depends the kernel bandwidths, so
the fitting process is fast in practice for smaller bandwidths, but slow for larger ones. If one were
instead to compute the split fully at each candidate, without using the efficient scan, each candidate
would cost O(nq) (assuming the splitting function is evaluated in constant time), resulting in total
O(pqnc) for one split, with c the number of candidates, or O(pqrn2) when using the rn candidates
specified by Theorem 1. One could use fewer candidates, but the resulting split may not be optimal.

Algorithm 1 in Appendix A shows the full fitting process for an FDT. It updates a membership vector
u ∈ [0, 1]n at each split. The change to KDDT is straightforward by using the stated equivalence for
the splitting function and tracking bound probabilities B≤ ∈ [0, 1]n×p and B> ∈ [0, 1]n×p, which
are used to compute membership for each training sample. Omitted from Algorithm 1 for brevity
the extreme threshold candidates where one leaf or the other has the minimum allowed sample mass.
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3.3 PREDICTION

Prediction can be done with or without kernels. Prediction without kernels is the same process used
with a conventional, crisp decision tree (though the tree itself is different due to training with fitting
kernels), or equivalent to using a prediction kernel fj(xj ,x′) = δ(xj − x′j) with δ the Dirac delta
function. Prediction with kernels averages the prediction over the kernel, which is used to describe
of the belief distribution of the true value of the input given a measurement, for example to account
for imperfect sensors; the resulting prediction is the expectation of the prediction over that belief
distribution. Prediction kernels need not be used if there is no uncertainty in the input value.

ŷf̂ (x) = Ex∼f(·,x)[ŷ(x)] =
∑

`∈leaves

u(`)(x)v(`)

The algorithm for computing the prediction updates b≤ and b> while progressing from root to leaf,
then uses them to compute the leaf’s membership value, that is, its weight in the sum. Similarly to
fitting, prediction with a kernel is slowed depending on the kernel bandwidth because multiple paths
may be visited. Prediction is fully specified in Algorithm 2 in Appendix A.

3.4 CHOOSING KERNELS

The choice of kernels ultimately defines the behavior of a KDDT. In the best case, the ability to
define fj(·,x′) differently depending on x′ and j allows design of a density representation based on
expert knowledge. However, such knowledge is not always available, but given a strategy to auto-
matically make these choices, it still possible to benefit from using KDDTs. Though we limit fitting
kernels to be piecewise-constant, it is conventional wisdom that, in kernel density estimation, the
choice of bandwidth is more important than the choice of kernel, and the same holds true for KD-
DTs: if the bandwidth of the fitting kernel is too small, a KDDT behaves like a typical decision tree,
and if too large, different data become overly blurred together, resulting in underfitting. Choosing
prediction kernels is easier since candidates can be tested rapidly without refitting. Good defaults
are to use the same kernels as fitting or use none at all.

We propose a few approaches for choosing bandwidths for fitting given a generic kernel, such as the
box kernel or a piecewise-constant approximation of the Gaussian kernel. Since we assume that the
bandwidth matrix is diagonal, bandwidth selection amounts to selecting a scalar bandwidth for each
feature. Techniques from KDE such as Silverman’s rule of thumb (Silverman, 1998) are simple, fast,
and often effective, but do not consider the labels, so they are not always reliable for use with KD-
DTs. A more robust strategy is choosing the bandwidth h that maximizes the leave-one-out cross-
validation likelihood L(h | X,Y ) =

∏
i f̂−i(Xi,: | Yi,:;h) =

∏
i f̂−i(Xi,:,Yi,:;h)/f̂−i(Xi,:;h)

for each feature, where f̂−i(·;h) is the density estimate with bandwidth h fitted without sample i.
This can be computed efficiently for each candidate h because of the piecewise-constant fitting ker-
nels. Another possibility is to transform the data such that each feature has similar scale, then select
a single bandwidth for all features by cross-validation of the KDDT itself. This has the advantage of
accounting for the nature of the decision tree, but the disadvantages of selecting the same bandwidth
for all features and of taking significantly more computation.

Our KDDT formalism can also allow a different kernel at each node, so these automatic bandwidth
selection techniques (other than cross-validation of the whole KDDT) can be used to adapt the
choice of bandwidth to the current partition of the training data. We find that, using rules of thumb or
leave-one-out likelihood, it achieves excellent performance in some cases, but not very consistently
compared to simply using the same set of kernels at all nodes. This and other more specialized
bandwidth selection techniques are a topic for future work.

4 EXPERIMENTS

We compare the prediction accuracy of KDDTs against tree-based models from scikit-learn (Pe-
dregosa et al., 2011) in the forms of decision trees, random forests, and ExtraTrees. We also compare
against XGBoost (Chen & Guestrin, 2016) as a representative of boosted ensemble methods, but we
do not implement boosted ensembles of KDDTs. The data are the 12 most popular tabular clas-
sification datasets with continuous features at the time of writing from the UCI Machine Learning
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full name short name labels features samples
Iris iris 3 4 150
Wine wine 3 13 178
Glass Identification glass 6 9 214
Optical Recognition of Handwritten Digits optdigits 10 64 5620
Ionosphere ion 2 34 351
Pen-Based Recognition of Handwritten Digits pendigits 10 16 10992
Image Segmentation segment 7 19 210
Letter Recognition letter 26 16 20000
Yeast yeast 10 8 1484
Spambase spambase 2 57 4601
Connectionist Bench (Sonar, Mines vs. Rocks) sonar 2 60 208
Statlog (Landsat Satellite) satimage 6 36 6435

Table 1: Information about datasets.

decision tree random forest ExtraTrees boost
model skl ours ours skl ours ours skl ours ours xgb
p. kernel - yes no - yes no - yes no -
iris 94.0 96.7 97.3 94.0 94.7 95.3 95.3 95.3 96.0 94.0
wine 88.2 97.7 94.3 97.7 98.9 98.9 98.3 98.3 98.3 96.0
glass 71.0 73.3 71.0 78.6 80.9 77.6 77.1 76.7 76.3 78.1
optdigits 90.8 97.7 94.9 98.3 98.6 98.6 98.5 98.6 98.6 97.8
ion 87.8 92.3 93.2 93.7 94.9 94.9 94.3 94.3 94.3 93.2
pendigits 96.3 98.9 98.0 99.1 99.3 99.3 99.4 99.4 99.3 99.1
segment 88.6 89.5 89.0 91.9 92.9 92.4 91.4 92.9 91.9 87.6
letter 88.1 94.5 88.1 96.8 96.6 96.6 97.4 97.5 97.4 96.5
yeast 58.6 61.3 60.2 61.9 61.3 62.3 60.9 61.5 60.5 59.4
spambase 92.1 93.5 92.2 95.4 95.6 95.3 96.0 95.6 95.5 95.6
sonar 72.0 83.1 78.3 83.6 86.0 89.4 88.0 89.4 89.4 84.6
satimage 87.4 90.6 88.7 92.0 91.7 91.7 91.8 91.7 91.6 92.1

Table 2: Accuracy from 10-fold cross-validation compared to scikit-learn and XGBoost models.
The best accuracy within each category is bold, and the best overall for each dataset is underlined.

Repository (Dua & Graff, 2017), summarized in Table 1. We normalize the features of each dataset
to have mean 0 and standard deviation 1, then randomly split the dataset into 10 folds to compute
accuracy by cross-validation. For the scikit-learn decision tree, we select a cost-complexity pruning
α parameter from the log range of 10−5 to 100 by 10-fold cross-validation. For our models, we
select kernel bandwidth from the log range of 10−2 to 100 by 10-fold cross-validation. This se-
lects the same bandwidth for each feature, which is why we normalized the data. All KDDT-based
models use a simple box kernel, and results are reported with and without using the same kernel for
prediction. The stopping condition is a minimum sample mass of 1. All ensembles use the default
settings of scikit-learn, with 100 trees, subsampling the features to the square root of the number of
candidates at each node, and bootstrapping data samples only for random forests. The results are
shown in Table 2.

5 DISCUSSION

One of the foremost benefits of KDDTs is the simple, flexible framework for incorporating knowl-
edge about uncertainty in the data. Kernels can be designed to account for measurement noise that
depends on feature or measured value, known randomness in the process being observed, fuzzy
features or labels, or another known source of uncertainty. Even without this knowledge, our exper-
imental results show that automatic bandwidth selection with even a simple kernel can turn KDDTs
into a low-cost enhancement to conventional trees, usually providing a significant boost to single-
tree performance or a modest boost to random forest performance. There is less evidence that this
minimal automatic approach is beneficial to ExtraTrees models, where the altered choice of thresh-
old value is mostly lost due to random threshold selection. KDDTs outperform decision trees on
every dataset and come close to or exceed the scikit-learn and XGBoost ensembles on several, a no-
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table feat for single trees with feature-aligned splits. KDDTs outperform scikit-learn with random
forests on 10 datasets. With ExtraTrees, they outperform on 6 and tie on 3, though close results
should be viewed skeptically due to the particularly high innate randomness of ExtraTrees. A model
using KDDTs outperforms all baseline models on 9 datasets and ties on 1.

There is still potential gain from further study of automatic bandwidth selection. Cross-validation
can be somewhat expensive for ensembles used with large datasets, and limiting the search to use
the same bandwidth for every feature, even after normalizing the features, is extremely restric-
tive. Benchmarking a wider range of bandwidth selection approaches, designing approaches better
catered to KDDTs and their ensembles that consider different bandwidths for each feature, and in-
corporate pruning strategies for single-tree models are left to future work. However, ultimately, the
best use case is when expert knowledge about the data and the underlying process it describes can
be used to make choices about the kernels and bandwidth based on the needs of the application.

Even with better bandwidth selection, we are still limited to piecewise-constant fitting kernels. They
can be designed to approximate any kernels, but the cost is that the complexity of fitting a KDDT is
linear in the number of pieces. If there exists a class of piecewise-polynomial kernels with an analog
to Theorem 1, they could also be used, with additional linear cost in the degree of the polynomial
and the number of threshold candidates per piece. Regardless, kernels with support over a wide
domain will lead to slower fitting and prediction since more points will belong to more paths. We
are yet to study automatic kernel selection or how the choice of kernel shape affects performance.

The use of prediction kernels not only allows prediction with uncertain data, but also augments
KDDTs with the utilities of smooth prediction and differentiability. A topic of our ongoing study is
using this differentiability to train interpretable feature transformations for KDDTs, which addresses
the weakness of decision trees in capturing certain relationships between features. Preliminary re-
sults show that this produces smaller and sometimes better-generalizing trees.

We also strongly suspect that, because kernels introduce an incentive to expand the margin between
training points and the decision boundary, KDDTs will be more robust than conventional trees to
input perturbation with magnitude up to the bandwidth. Appendix D includes visualizations of KD-
DTs and standard tree-based models on toy datasets to highlight the difference in decision boundary,
particularly when the number of training samples is low. While we can verify KDDTs and ensembles
without prediction kernels using existing methodology for trees and ensembles, a complete study of
this topic will require a verification framework for KDDTs with prediction kernels. While we have
previously developed such a framework for FDTs, it does not generalize to KDDTs as proposed
because of the interdependence of splitting functions between layers of the tree. We are working to
generalize this methodology so that we can provide a comprehensive robustness analysis of KDDTs
in a future study.

Overall, KDDTs offer a simple and principled extension of conventional decision tree techniques
to improve generalization under uncertainty. With appropriate bandwidth and stopping conditions,
they can be incorporated into existing applications of trees, including ensembles, at little additional
computational cost, and they offer additional utility such as smoothness, differentiability, and poten-
tially higher robustness to input perturbation. With further study and improvements to come, we are
hopeful that KDDTs will bring about wider use of fuzziness in the application of decision trees.
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A ALGORITHMS

Algorithm 1 Fit an FDT with piecewise-linear splitting to X,Y .

1: function FIT(X,Y ,u)
2: remove every row i where ui = 0 from X , Y , and u
3: s←

∑
i∈[n] uiYi,: . weighted sum of labels

4: w ←
∑

i∈[n] ui . total sample weight
5: v ← s/w
6: if stopping conditions are met then return leaf m with v(m) = v
7: for j ∈ {1, . . . , p} do . iterate over features
8: σj ← splitting function for feature j at this node
9: ci,k ← changepoints of σj(·,Xi,:) for all i ∈ [n] . see Theorem 1

10: t← (ci,k | i ∈ [n], k ∈ [ri − 1]) . threshold candidates
11: i← (i | i ∈ [n], k ∈ [ri − 1]) . training data index corresponding to candidate
12: σ′′ ← (change in slope of σ(·,Xi:,) at ci,k | i ∈ [n], k ∈ [ri − 1])
13: sL ← 0, wL ← 0, s′L ← 0, w′L ← 0
14: k← argsort(t)
15: for k in k do . iterate over candidate thresholds in increasing order
16: δt ← tk − tk−1 . change in threshold; set to zero for first iteration
17: sL ← sL + δts

′
L, sR ← s− sL

18: wL ← wL + δtw
′
L, wR ← w − wL

19: s′L ← s′L + uikσ
′′
kYik,:

20: w′L ← w′L + uikσ
′′
k

21: vL ← sL/wL, vR ← sR/wR

22: gain← 1
n (wL(v)− wLL(vL)− wRL(vR)) . proportional to total sample weight

23: if gain is best so far and wL and wR are large enough then
24: update best gain
25: if s′L = 0 then adjust best threshold to maximize margin
26: if best gain is large enough then
27: j ← feature of best gain, k ← candidate index of best gain
28: uL,i ← (1− σj(tk,Xi,:))ui for all i ∈ [n], uR,i ← σj(tk,Xi,:)ui for all i ∈ [n]
29: mL ← FIT(X,Y ,uL), mR ← FIT(X,Y ,uR)
30: return internal node m with a(m) = j, t(m) = tk, and children mL, mR

31: return leaf m with v(m) = v
32: root← FIT(X,Y ,1)
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Algorithm 2 Predict with kernels.

1: function PREDICT(m,x, b≤, b>)
2: if m is a leaf then
3: return v(m)

∏
j∈[p] b≤,j − b>,j

4: b′≤ ← copy b≤, b′> ← copy b>
5: b′≤,a(m) ← min(b′≤,a(m) , Fa(m)(t(m),x)), b′

>,a(m) ← max(b′
>,a(m) , Fa(m)(t(m),x))

6: ŷ ← 0
7: if b′≤,a(m) > b>,a(m) then . skip paths with 0 probability
8: ŷ ← ŷ + PREDICT(left child of m,x, b′≤, b>)

9: if b≤,a(m) > b′
>,a(m) then . skip paths with 0 probability

10: ŷ ← ŷ + PREDICT(right child of m,x, b≤, b′>)
11: return ŷ

12: ŷ ← PREDICT(root,x,1,0)

B PROOF OF OPTIMALITY OF CANDIDATE THRESHOLDS

Recall that we define the gain as

g(a(m), t(m)) = L(v(m))−
∑

i∈[n] u
(mL)(Xi,:)∑

i∈[n] u
(m)(Xi,:)

L(v(mL))−
∑

i∈[n] u
(mR)(Xi,:)∑

i∈[n] u
(m)(Xi,:)

L(v(mR))

where L is the loss function. We will derive the second derivative with respect to the threshold t of
the mL term of the gain assuming linear splitting function. To ease notation, let ui = u(mL)(Xi,:),
w =

∑
i u

(mL)
i , and v = v(mL), and let w0 be defined similarly for the parent m.

d

dt

w

w0
L(v) =

1

w0

dw

dt
L(v) +

w

w0

dv

dt
· ∇L(v)

d2

dt2
w

w0
L(v) =

1

w0

d2w

dt2
L(v) +

(
2

w0

dw

dt

dv

dt
+

w

w0

d2v

dt2

)
· ∇L(v) + w

w0

dv

dt

>
∇2L(v)

dv

dt

We have ui = (1 − σ(m)(t,Xi,:))u
(m)(Xi,:). Since we assume σ(m)(·,Xi,:) is piecewise-linear,

ui is linear with respect to t, so d2w/dt2 = 0 and the first term vanishes. We next focus on the part
in parentheses. Let s =

∑
i uiYi,: so that v = s/w.

dv

dt
=

1

w2

(
w
ds

dt
− dw

dt
s

)
d2v

dt2
= − 2

w3

dw

dt

(
w
ds

dt
− dw

dt
s

)
+

1

w2

(
w
d2s

dt2
− d2w

dt2
s

)
Again because ui is linear with respect to t, d2w/dt2 = 0 and d2s/dt2 = 0.

= − 2

w3

dw

dt

(
w
ds

dt
− dw

dt
s

)
= − 2

w

dw

dt

dv

dt
Substitute this into the part of the earlier expression in parentheses.

2

w0

dw

dt

dv

dt
+

w

w0

d2v

dt2
=

2

w0

dw

dt

dv

dt
− 2

w0

dw

dt

dv

dt
= 0

Thus we have the simplified second derivative of the mL term.

d2

dt2
w

w0
L(v) =

w

w0

dv

dt

>
∇2L(v)

dv

dt

The same argument holds formR, where the only difference is ui = σ(m)(t,Xi,:)u
(m)(Xi,:). Thus,

if ∇2L is negative semidefinite everywhere, the gain has positive second derivative with respect to
t at all t. Moreover, this implies that on any given interval, the gain is maximized at one of the
endpoints; for piecewise-linear splitting, it is accordingly maximized at one of the change points.
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C PROOF OF EQUIVALENCE OF KDDT AND FDT

Recall that, for equivalence, we define the splitting function separately at each node as

σ(m)(t(m),x) = max

0,min

1,
Fa(m)(t(m),x)− b(m)

>,a(m)(x)

b
(m)

≤,a(m)(x)− b
(m)

>,a(m)(x)

 .

By induction over the path, we show that the membership function u(`)FDT for an FDT with the above
splitting function is equal to the KDDT membership function u(`)KDDT.

The base case is when the path is empty, that is, ` is the root. Then u(`)FDT(x) = u
(`)
KDDT(x) = 1.

For the inductive case, we assume that, for all x, u(`
′)

FDT(x) = u
(`′)
KDDT(x), where `′ is the parent of `.

Assume ` is the left child of `′.

u
(`)
FDT(x) = (1− σ(`′)(t(`

′),x))u
(`′)
FDT(x)

substitute for the splitting function and apply the inductive assumption.

=

1−max

0,min

1,
Fa(m)(t(m),x)− b(`

′)

>,a(m)

b
(`′)

≤,a(m) − b
(`′)

>,a(m)

u
(`′)
KDDT(x)

=
b
(`′)

≤,a(m) −max(b
(`′)

>,a(m) ,min(b
(`′)

≥,a(m) , Fa(m)(t(m),x)))

b
(`′)

≤,a(m) − b
(`′)

>,a(m)

u
(`′)
KDDT(x)

=
max(0, b

(`)

≤,a(m) − b
(`)

>,a(m))

b
(`′)

≤,a(m) − b
(`′)

>,a(m)

u
(`′)
KDDT(x)

In practice, a nonpositive denominator will not appear since the path would have already been
stopped due to zero membership. Expand u(`

′)
KDDT(x).

=
max(0, b

(`)

≤,a(m) − b
(`)

>,a(m))

max(0, b
(`′)

≤,a(m) − b
(`′)

>,a(m))

∏
j∈[p]

max(0, b
(`′)
≤,j − b

(`′)
>,j)

For any j 6= a(m), b(`
′)
≤,j = b

(`)
≤,j and b(`

′)
>,j = b

(`)
>,j .

=
∏
j∈[p]

max(0, b
(`)
≤,j − b

(`′)
>,j)

= u
(`)
KDDT(x)

The case where ` is the right child of `′ is nearly identical and thus omitted.

Since the membership function for an FDT using the specified splitting function is equivalent to a
KDDT, and since both use the membership function in the same way to learn leaf values, determine
splits, and make predictions, the two models are equivalent.

D VISUALIZATION ON TOY DATA

To help understand the practical difference between KDDTs and conventional trees, Figures 3 and 4
show some toy classification and regression datasets, respectively, each with 50, then 1000 samples,
as well as the output of decision trees, random forests, and KDDTs with and without prediction
kernels. Also reported is the test accuracy orR2 with 10,000 test points. As in the main experiments,
the scikit-learn models use default settings. The cost-complexity pruning parameter for the decision
trees and the bandwidth for KDDTs are chosen by 10-fold cross-validation.

The KDDT classifiers tend to produce smoother boundaries with larger margins. Even without a
prediction kernel, the tree is grown larger and produces smoother predicted probabilities (though

13



Under review as a conference paper at ICLR 2022

it can be pruned smaller without affecting the decision boundary if desired). In addition, both the
KDDT classifiers and regressors have particularly good performance compared to the scikit-learn
models on many of these toy datasets. We suspect that this might be due to kernels being especially
effective when the number of samples and features is low, and because the noise used to generate
these toy datasets is the same throughout the domain, resulting in the kernel describing the noise
quite effectively. Even better results can be achieved by assuming that said noise is known and
setting the kernel and bandwidth accordingly.
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data decision tree random forest KDDT (ours)
prediction kernel no prediction kernel

90.1 91.3 94.9 94.8

97.7 98.6 99.6 98.0

91.8 93.8 97.6 98.3

98.4 99.0 99.0 98.9

94.4 95.6 96.7 95.2

98.2 98.5 99.3 98.8

Figure 3: Visualization and test accuracy of classifiers fitted to toy data.
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data decision tree random forest KDDT (ours)
prediction kernel no prediction kernel

89.3 94.4 97.5 95.7

99.3 99.8 99.9 99.7

65.6 76.5 87.2 84.4

86.1 91.4 92.9 92.9

46.5 69.7 90.0 87.0

94.8 97.5 97.6 97.4

Figure 4: Visualization and test R2 of regressors fitted to toy data.
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