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Abstract

We compare a rule-based approach for knowledge graph completion against current
state-of-the-art, which is based on embeddings. Instead of focusing on aggregated metrics,
we look at several examples that illustrate essential differences between symbolic and latent
approaches. Based on our insights, we construct a simple method to combine the outcome
of rule-based and latent approaches in a post-processing step. Our method improves the
results constantly for each model and dataset used in our experiments.

1. Introduction and Motivation

In this paper we compare knowledge graph completion (KGC) methods, that are based on
non-symbolic representations in terms of embeddings, against a symbolic approach that is
based on rules. Given a knowledge graph G, which is a set of triples, a KGC task is to
predict the question mark in the incomplete triple r(e, ?) or r(?, e), where r is a relation
(binary predicate) used in G and e is an entity described by (usually) several triples in G.
KGC methods solve this task by generating a ranking of possible candidates, which are
evaluated by metrics that focus on the rank of the correct prediction within this ranking.

A first famous model for solving the KGC problem via a representation in an embeddings
space is known as TransE [Bordes et al., 2013]. The basic idea of such a model, termed
knowledge graph embedding (KGE) model in the following, is to first randomly map the
entities and relations from G to a multidimensional space, e.g., to IRn. Then the triples
from G are used to set up a large optimization problem that is solved via gradient descent
or a similar algorithm. How to transfer a triple into a part of the objective function is
usually the defining characteristic of the model. By doing this, the final embedding becomes
an alternative representation of the knowledge graph and it can be used to answer the
completion task. Contrary to this, a rule-based approach searches for regularities in the
graph and expresses them usually in the form of horn clauses. These rules are then used to
propose candidates for solving the completion task.

Within this paper we try to understand the essential differences between both families of
approaches. We first tackle this problem by analysing the rankings for several concrete com-
pletion tasks. This analysis results into several insights that motivates a specific method to
combine both types of approaches. This aggregation method improves each of the incoming
rankings, no matter whether rule or embeddings-based input has been better. As an addi-
tional benefit our method does not loose the explanatory power of a rule-based approach
but integrates it into the combined approach.



Meilicke, Betz & Stuckenschmidt

2. Related Work

In [Zhang et al., 2021] the authors are concerned with different KGC methods with a
focus on symbolic reasoning, neural reasoning techniques, and everything in between. How-
ever, they discuss differences from a rather abstract level and try to give a comprehensive
overview without any connection to their empirical analysis. Symbolic approaches and la-
tent approaches that are based on a projection to an embedding space have already been
compared in an experimental study in [Meilicke et al., 2018], where the authors identify
types of completion tasks for which there are differences between these approaches. How-
ever, within the last three years significant improvements have been made. For example, in
the 2018 publication the authors reported about top hits@10 scores for the FB237 dataset in
the range 0.4 to 0.43, while in [Ruffinelli et al., 2020] and [Rossi et al., 2021] scores between
0.5 and 0.55 are reported. This makes insights that follow from these experiments to some
degree unreliable, as it might be the case many flaws are meanwhile fixed. Note also that
our main interest is not to find types of completion tasks where rules are superior or vice
versa but to understand at least partially why this is the case.

In [Rossi et al., 2021] the authors compare a large set of embeddings based methods and
included the rule-based approach AnyBURL [Meilicke et al., 2019] as a baseline. This paper
describes an extensive experimental study and comes to the conclusion that AnyBURL is
an efficient alternative to non-symbolic methods. To our best knowledge, AnyBURL is the
only symbolic approach that has proven to achieve performances on par with the current
KGE state-of-the-art and therefore we choose AnyBURL as the representative for rule-based
approaches within our experiments.

In the second half of this paper we combine the results of rule and embedding based
approaches. The core principle of our strategy, combining multiple models into an ensemble,
has been studied in [Wang et al., 2018] and in [Meilicke et al., 2018]. Although the approach
in this paper can be seen as an extension, it differs fundamentally from a typical ensemble.
As we discuss in Section 4, we exclusively allow for candidates which are within the language
bias of the rule based approach by only considering its top-k candidates.

Our combination strategy ensures that the rule based method and the KGE model oper-
ate independently and are able to focus on their strengths before the results are aggregated
to achieve an overall improvement. There are several papers that propose, on the contrary,
to tightly integrate rule learning and embedding based approaches. Examples can be found
in KALE [Guo et al., 2016] and RUGE [Guo et al., 2018].1 However, approaches that belong
to this category are mostly restricted to a type of rule which does not allow for constants.

More recently differentiable rule learning has been proposed [Rocktäschel and Riedel,
2017, Yang et al., 2017, Sadeghian et al., 2019, Minervini et al., 2020]. These approaches
are not the focus of this work. Nevertheless, the aforementioned papers either have not
been applied to the common KGC datasets or the results in this paper are better.

1. A comparison with these models is possible via the performance achieved on the FB15K dataset. Here
the base version of AnyBURL alone performs significantly better.
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3. Rule-Based Knowledge Base Completion with AnyBURL

We abstain from a detailed description of the AnyBURL algorithm and refer the reader
to [Meilicke et al., 2019, 2020]. Nevertheless, for the purpose of this work it is important
to know what kind of rules AnyBURL learns and how they are applied to create the final
rankings.

3.1 Language Bias

We give concrete examples for the most important rule types within this section. There
are two additional rule types that are mainly used for filling up the rankings which are
explained in the Appendix in Section C. Each of the supported rules is a horn rule and can
be written as h← b. We call h the head of the rule and b, which is a conjunction of atoms,
the body of the rule.

The first and probably most prominent type of rules are called closed connected rules
in [Galárraga et al., 2013] or cyclic rules according to [Meilicke et al., 2019]. The attribute
cyclic refers to the head variables X and Y being directly connected in the head of the rule,
while there is an alternative path expressed in the body of the rule. These rules do not
contain constants but variables only. Here are some examples.

hypernym(X,Y )← hyponym(Y,X) (1)

contains(X,Y )← contains(X,A), adjoins(A, Y ) (2)

contains(X,Y )← administrative parent(A,X), adjoins(A,B), capital(B, Y ) (3)

The first rule expresses that the hypernym relation is inverse to the hyponym relation.
Rule 2 expresses the transitivity of the contains relation. Rule 3 is a rather complex rule
that expresses roughly that X contains Y if X is an administrative parent location of A,
A shares a border with B and B has capital Y . Note that this rule is an example of a rule
that creates highly ranked correct answers in our experiments.

Another important type of rules are acyclic rules with only one variable, that have a
constant in the head and a (in most cases different) constant in the body. AnyBURL is
restricted in its default setting, which we used in our experiments, to learn rules of this type
with only one body atom. Here are two examples.

citizen(X,UK)← bornIn(X,London) (4)

contains(Australia, Y )← contains(V ictoria, Y ) (5)

Rule 4 expresses that someone born in London is (probably) a citizen of the UK. Rule 5
says that locations contained in Victoria are also contained in Australia. The vast majority
of the mined rules are longer cyclic rules (as Rule 3) and acyclic rules similar to the ones
that we just presented. A regularity that cannot be expressed in terms of these rule types
is completely invisible to AnyBURL.

3.2 Applying Rules

To compute a prediction for a given completion task r(a, ?) AnyBURL applies all rules that
might create a triple r(a, c) where c is the predicted candidate. This is done by grounding



Meilicke, Betz & Stuckenschmidt

the relevant rules against the training set, i.e., by replacing the variables with constants (in
other words: entities) such that the resulting body atoms are triples contained in the training
set. Following this procedure2 it will happen quite often that a candidate is predicted by
several rules. In this case the maximum of the confidences of these rules is associated as
confidence of predicting c. If there are several candidates c and c′ that are predicted with
the same confidence, they are ordered in the ranking according to the confidence of the
second best rule, (if this confidence is also the same, the third-best counts, and so on). Two
candidates that cannot be distinguished due to the fact that they are predicted by a set of
rules that have exactly the same confidences, are ranked randomly.

We call this aggregation method in the following maximum-aggregation. In [Meilicke
et al., 2020] the authors also reported about a noisy-or-aggregation where a candidate
predicted by a set of rules will have a higher confidence than a candidate predicted by a
subset. It turned out that this method performed worse on all datasets compared to the
simpler maximum-aggregation. This was especially caused by the problem that the method
cannot discriminate between redundant rules that fire for the same reason and rules that
capture different aspects. Opposed to a symbolic approach, that requires to explicitly define
an aggregation type, KGE approaches have an implicit aggregation technique that is based
on the fact that each triple is part of a comprehensive objective function. This is another
advantage that KGE models might have compared to rule-based approaches as long as they
are based on a rather simple aggregation method.

4. Case By Case Analysis

It is not easy to distinguish accidental differences, that might be caused by the stochas-
tic nature of the approaches, from systematic differences. We first propose a method to
spot essential differences before we discuss what we found with this method. We report
occasionally about datasets and KGE models that are first introduced in Section 6.1.

4.1 Spotting Essential Differences

Let R be a candidate ranking for a completion task r(e, ?). A candidate ranking is a total
order over the entities in the given knowledge graph. We use R[n] to denote the entity
ranked at position n in R and R[c]# to denote the ranking position of a candidate c. Given
the completion task r(e, ?), let A denote the AnyBURL ranking for r(e, ?) and let E be
a ranking for r(e, ?) generated by a KGE model. We use conf(c, r(e, ?)) to denote the
confidence that AnyBURL assigns to c with respect to being the answer to r(e, ?). Then

Ψ(c, E , r(e, ?)) =
conf(c, r(e, ?))

conf(A[E [c]#], r(e, ?))

denotes the anomaly degree of ranking c in E for r(e, ?) from the perspective of AnyBURL.
The definition is based on the idea to compare the confidence that AnyBURL assigns to c
to the confidence that AnyBURL assigns within its own ranking to the entity ranked at the
position where c is ranked in the KGE ranking. A score of around 1 means that there is no

2. The actual AnyBURL algorithm is a bit more complicated, however, its final result corresponds to the
result of the procedure described here.
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AnyBURL ComplEx RESCAL
Rank Candidate Confidence Candidate Score Candidate Score

#1 Australia 0.659 South Australia 11.780 New South Wales 1.683
#2 USA 0.032 Queensland 11.226 Australia 1.385
#3 Canberra 0.026 New South Wales 10.323 New Zealand 1.221
#4 South Australia 0.017 Western Australia 9.515 South Australia 0.276
#5 New South Wales 0.017 Tasmania 8.676 Queensland 0.249
#6 Western Australia 0.017 Victoria 8.539 United Kingdom 0.074
#7 Queensland 0.017 Australia 8.338 England -0.064

Table 1: Rankings for the completion task contains(?, Darwin)

anomaly, high scores mean that AnyBURL is highly confident that c is ranked to low, and
low scores mean that c ranked to high.

One might argue that it would have been better to base the definition of Ψ on a direct
comparison of the ranking positions. If we have a completion task as locatedIn(?, UK) a
city as Bristol might be ranked by AnyBURL on position #12 while it might be ranked on
#77 by a KGE model. However, the AnyBURL confidences between rank #10 and #80
might be very close. Our definition of Ψ takes this into account and would yield a score
around 1, while we would get a high score if we would base the score on ranking positions.

4.2 Selected Examples

We first look at three predictions c with Ψ(c, E , r(e, ?)) < 0.2 that are ranked above the
correct hit. In the last paragraph we talk about the opposite, in particular we report about
a relation where we spotted high Ψ scores in general. We sometimes mark assertions with
‘(in test/training)’. This means that the corresponding triple can be found in the test set
(or in the training set). Additional examples are discussed in the appendix in Section B.

Where is the city Darwin The city Darwin is a city in Australia (in test). Darwin is
located in the Northern Territory (in training). The training set contains another triple that
states that Darwin is also the capital of the Northern Territory. The training set states also
that Australia contains the Northern Territory. We are now concerned with the completion
task contains(?, Darwin). As shown in Table 1 AnyBURL puts Australia first with all other
alternatives having a very low confidence, while ComplEx ranks each Australian territory
first before Australia appears at #7. RESCAL puts it on #2, however, its scores are similar
to the scores of other alternatives that are clearly wrong.

AnyBURL ranks Australia first due to Rule (3), a complex rule with three body atoms,
presented in Section 3.1. The rule that expresses the transitivity of the contains relation
(a rule with two atoms in the body) would also be sufficient to put Australia on top with
a confidence of 0.273. It seems that both regularities have a rather limited impact on the
KGE rankings. The KGE ranking might be affected by the fact that the other Australian
territories are very similar to the Northern Territory (all are contained in Australia, some
share borders with each other, ect.). The KGE ranking can be explained by a substitution
of Northern Territory in contains(Northern Territory, Darwin) by very similar entities.
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Metropolis The completion task festivals(Metropolis,?) asks at which festival the movie
Metropolis has been shown. The correct answer is the 39th Berlin International Film
Festival. AnyBURL places the correct answer at #18 with a low confidence of 0.016,
ComplEx ranks it at #25. This difference is not significant. More interesting are the
candidates that can be found in the complete ranking. The first 23 AnyBURL ranks are
filled with film festivals, followed by a mixed list that contains both festivals and cities
(the relation festivals has sometimes been used to express that a movie has been shown in
a certain city). All candidates have a low confidence. Still, they are to a certain degree
meaningful up to (at least) position #36. In the ComplEx ranking starting from position
#23 weird candidates show up: USA (#23), natural death cause (#24), Chris Parnell
(#31), electric guitar (#33). What is interesting with respect to these candidates is not
that they exists somewhere in the ranking but that they are ranked above some meaningful
candidates without obvious reasons. It seems that the signals for the other meaningful
candidates are too weak to enforce a meaningful order.

Michael Fisher works for King’s College This example is concerned with the com-
pletion task employer(fisher,?). Michael Fisher has been a mathematician and physicist,
who studied at the Kings’s College (training set) and worked as an employee at the Kings’s
College (test set). Another relatively important triple given in the training set states that
Michael Fisher worked also for the Leiden University. AnyBURL ranks the correct answer,
King’s College, at position #10 only, while ComplEx and most of the other KGE models
rank King’s College at #1 or at least among the top-5. When analysing the task from the
perspective of AnyBURL we detected the following two rules, that result into the correct
prediction. The rules are shown on the left, the triples that makes the rule fire are shown
on the right.

employer(X,Y )← studiedAt(X,Y ) studiedAt(fisher, kingscoll) (6)

employer(X, kingscoll)← employer(X, leiden) employer(fisher, leiden) (7)

Both rules have a confidence of ≈ 8%. There are several rules with higher confidences
(up to 15%) that generate the candidates that are ranked above King’s College. All other
rules, which allow to predict King’s College, have a confidence lower than 2%. As both
rules have nearly the same confidence, the maximum aggregation in AnyBURL will score
King’s College with (nearly) the same score no matter if we have both or only one of the
two triples. If we remove both, King’s college falls out of the top-50 ranking.

This example allows us to shed light on two question: (1) Are the triples that determine
the AnyBURL ranking the same triples that determines the KGE behaviour? (2) To what
extent can the KGE results be explained as a cumulative aggregation of these triples (and
the rules that they fire)? For this purpose we have executed ComplEx and HittER* on the
original dataset, on the variant where we removed (t1) studiedAt(fisher,kingscoll), on the
variant where we removed (t2) employer(fisher,leiden), and on the variant were we removed
both. As KGE models can vary a lot between different runs3, we conducted six runs,

3. It is sometimes argued that MRR scores are relatively stable between different runs. This observation is
not an objection to our claim as the MRR sums up scores from many completion tasks that might differ
on the fine-grained level.
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based on a different random initialisation, for each dataset variant. Results are reported in
Table 2.

ComplEx HittER*
Avg.Rank (Std) Avg.Score Avg.Rank (Std) Avg.Score

All triples 1.5 (0.83) 5.53 1.66 (0.81) 5.16
Without t1 2.83 (1.32) 4.95 10.8 (19.85) 4.39
Without t2 31 (24.43) 3.19 44.16 (25.37) 1.30
Without t1 and t2 68 (53.28) 2.28 97 (74.63) -0.17

Table 2: The impact of removing triples w.r.t a specific completion task.

Contrary to the maximum aggregation of AnyBURL, both KGE models aggregate the
evidence that lies within these triples in a beneficial way. When suppressing t1 the average
rank of the correct hit falls slightly for ComplEx and significantly for HittER*. The impact
of removing t2 is similar, yet stronger. If both triples are removed, King’s College drops to
a rank below #50. This shows that the triples that are relevant for the AnyBURL rankings
have also a significant impact on the rankings of ComplEx and HittER*.

This kind of aggregation seems to work in general better for the tail predictions related
to the employer -relation. We computed the MRR for these completion tasks only. The
KGE models achieved a score between 0.38 and 0.43, while the MRR of AnyBURL is 0.34
only. With only few exception all rules learned for this relation have a confidence less then
0.4. We further looked at several randomly selected examples and for most of them several
low-confident rules fired similar to the example we presented above.

5. Aggregating Rankings

In the following we propose an approach to combine the rankings generated by a rule-based
approach and the rankings generated by a KGE model. Motivated by the analysis in the
previous section, we try to achieve the following goals:

• If something appears in a KGE ranking (1) which is an artefact of an random initial-
isation (e.g., Metropolis) or (2) which appears there due to a similarity consideration
not backed by a regularity (e.g., Darwin), it should not appear in the final ranking.

• Relations for which KGE methods work better (e.g., employer) and relations for which
rules work better should be treated differently. The method should choose a weighting
between KGE and rules that fits best to the relation and direction (head vs. tail).

The first requirement can be fulfilled by suppressing any (top-ranked) KGE prediction
that is not at all predicted (or predicted with a confidence close to 0) by a rule based
approach. Thus, the approach that we describe in the next section is restricted to the top-k
ranking of AnyBURL and uses the KGE scores only as an additional information to change
the position in the ranking of AnyBURL. This will directly filter out any predictions for
which a rule-based approach does not see any evidence. It is a rather risky approach, as
it is build on the assumption that everything visible to KGE lies within the language bias
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of AnyBURL. In case our approach works well, this shows that the vast majority of KGE
predictions can be backed up by a symbolic explanation.

The second requirement can easily be implemented by using the validation set to de-
termine for which relations KGE models support better results and for which AnyBURL
creates better rankings. As it might be the case that there is a difference between head
and tail-predictions within the relation, we have to distinguish not only between different
relations but have to take the direction of the prediction additionally into account.

For each relation r we first collect all triples from the validation set that use r. We refer
to this subset as V (r). Now we search over possible values for an aggregation parameter
βr,ht where r denotes the relation and ht determines whether we deal with head or tail
predictions. We iterate over all head (or tail) completion tasks r(?, e) (or r(e, ?)) resulting
from the triples in V (r). For each prediction task r(e, ?) we compute an aggregated score
scoreagg for each candidate in Ak, where Ak denotes the top-k candidate ranking created by
AnyBURL. We use the following formula where scorenorm(c, r(?, e)) is the normalized score
that the KGE model assigned to c in the context of r(?, e). We explain in the appendix in
Section E how we normalize the KGE score.

scoreagg(c, r(?, e)) = βr,ht ∗ conf(c, r(?, e)) + (1− βr,ht) ∗ scorenorm(c, r(?, e))

The aggregated score is a linear combination of AnyBURL and normalized KGE score,
where βr,ht determines the weighting. Based on the aggregated scores, we create a reordered
ranking. Once we computed all aggregated rankings for the tail (or head) predictions in
V (r) for a specific βr,ht, we compute the MRR for these rankings. We search for the best
parameter βr,ht for each relation and direction (head vs. tail prediction) via a grid search.

6. Experiments

We first explain the settings and datasets that we used in our experiments in Section 6.1,
followed by a presentation of the most important results in Section 6.2 and further ablation
experiments in Section 6.3.

6.1 Settings

We evaluate our approach on FB237 [Toutanova and Chen, 2015] (also called FB15k-237
or FB15KSelected) and WNRR [Dettmers et al., 2018], which are frequently used in the
literature and have been created to overcome leakage and redundancy problems of FB15K
and WN18 [Bordes et al., 2013], respectively. Furthermore, we use the CoDEx bench-
mark [Safavi and Koutra, 2020] which includes three knowledge graphs in varying sizes
designed with the goal to be more difficult than previously published datasets [Safavi and
Koutra, 2020]. Summary statistics for the datasets can be found in Table 8 in the appendix.

In regard to the KGE models, we use the libKGE library [Broscheit et al., 2020] which
focuses on reproducibility and has shown to produce state-of-the-art results. We include
TransE [Bordes et al., 2013], RESCAL [Nickel et al., 2011], DistMult [Yang et al., 2015],
ComplEx [Trouillon et al., 2016], ConvE [Dettmers et al., 2018], and TuckER [Balažević
et al., 2019]. For these models, we use the pretrained embeddings from libKGE when avail-
able for the respective datasets. Due to its very good results, we use additionally the trans-
former implementation of libKGE which is based on the HittER no-context model [Chen
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Figure 1: MRR of AnyBURL, KGE (bottom), filtered (mid) and aggregated results (top).

et al., 2020]. We refer to this implementation, which is mentioned as transformer in libKGE,
as HittER* in the following.4 More details can be found in the supplementary material.

With respect to the aggregation method described in Section 5 , we set k=100. We search
the best βr,ht value over each multiple of 0.05 in the range [0, 1]. We use the evaluation
protocol that has first been proposed in [Bordes et al., 2013]. In particular, we report
hits@1, hits@10 and MRR (mean reciprocal rank). In the following we always present the
filtered variants of these measures without adding the adjective ‘filtered’.5

6.2 Main Results

In particular, we compare the MRR scores for KGE, AnyBURL and the aggregated results
in Figure 1 for WNRR, FB237, and CoDEx-L (all CoDEx variants can be found in the
appendix in Figure 2). Detailed numbers can be found in the appendix in Table 4. We have
depicted a vertical line for each KGE model. The lower endpoint refers to the MRR of the
model itself, and the upper endpoint refers to the MRR that we measured after applying
our aggregation method. The longer this vertical line, the stronger is the positive impact
of our approach. We explain the marker in the middle of each vertical line in Section 6.3.
We have depicted the AnyBURL results as a horizontal dashed line.

We need to point to some general differences first of all. The WNRR datasets is a
dataset where AnyBURL clearly outperforms each of the KGE models in terms of MRR.
For FB237 the opposite is the case with the exception of TransE. The largest version of the
CoDEx datasets is somewhere in between as there are some KGE models that are better
and some that are worse than AnyBURL. We observe a similar trend across all datasets
and KGE models. Each KGE model is improved by at least one percentage point on each
dataset. On average the improvement is 2.6 percentage points excluding TransE and 4.2
including TransE. The same holds from the perspective of AnyBURL. Even in the case of

4. For HittER*, the libKGE developers provided us with hyperparameter configurations for the FB237
dataset which we use for training the model. For the remaining datasets, we run the hyperparameter
search provided by libKGE where the search space is centered around the FB237 configuration.

5. Our MRR is based on the top-100 rankings and any correct candidate ranked below is not taken into
account, which means that the reported MRR of our aggregation method is slightly worse (at most
by -0.001) compared to the standard MRR. To avoid any unfair comparison we present the standard
MRR scores for the non-aggregated KGE models, which are based on the complete ranking.
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WNRR, each of the models, inlcuding those that do not perform well, help to improve the
results of AnyBURL by at least 0.5 percentage points.

The models that do not perform well (e.g., TransE on FB237, RESCAL on WNRR,
TransE on CoDEx-M) are improved significantly. As a result the gap between the results
that we have after the aggregation do not differ much between different models anymore.
This in particular important, as we are talking about models that differ a lot in terms of
computational effort required to find a good hyperparameter setting.

One of the best models in our evaluation is HittER*. Here we observe an improvement
of ≈ 2 percentage points for CoDEx-L, an improvement of more than 3 percentage points
on WNRR and and improvement of roughly 1.5 percentage points on FB237. Especially the
FB237 result is interesting, as it shows that the aggregation with AnyBURL can improve a
top-score even though the AnyBURL result itself is significantly worse. Please also note that
we were able to improve the HittER* results on FB237 and WNRR up to the performance
of the full-fledged HittER variant, that has been claimed to be state-of-the-art in [Chen
et al., 2020]. This is in particular interesting as our approach requires significantly less
computational resources to achieve the same results. Results for the full-fledged HittER
variant for CoDEx-L are not available, and it would be extremly costly to generate these
results.

6.3 Ablation Study

To better understand what causes these results, we conducted experiments where we ana-
lyzed the impact of the betar,ht scores. First, we fixed the betar,ht score to 0. This means
that the rankings are completely determined by the KGE scores, while the candidates that
are ranked are those provided by AnyBURL. By doing this, we are able to use our method
as a filtering technique that suppresses any artifact from the random initialisation and any-
thing based on a similarity consideration not backed by a regularity that corresponds to
a rule learned by AnyBURL. It turned out that the resulting MRR is always between the
original KGE score and the MRR of the aggregated results. We depict this score as a mark
within the vertical lines in Figure 1. Detailed results of these experiments can be found
in Table 5. Between 1/4 and 1/2 of the positive impact can be explained by filtering out
what is not predicted by AnyBURL. This result implies also that the KGE models are not
capable of detecting anything that cannot be described in terms of the rules we presented
in Section 3.1.

We further explore the behavior for different values of βr,ht. We show results of experi-
ments for HittER* and ComplEx on CoDEx-L in Table 3. The βr,ht=0.0 setting corresponds
to using AnyBURL as a filter as explained above. Setting βr,ht=1.0 corresponds to the orig-
inal AnyBURL scores. In the line that shows results for βr,ht=0.5, both members of the
ensemble have an equal and fixed weight. In the last row we show the results of our ap-
proach in its standard setting from Figure 1 where we allow to select the best βr,ht from
{0, 0.05, . . . , 1.0} based on the best MRRs on the validation set. In the row above we restrict
the search space to βr,ht ∈ {0, 1}.

The results show that an equally balanced approach can already improve the perfor-
mance. However, learning an optimal βr,ht against the validation set yields further im-
provements. This holds especially for HittER*, which is the best model in our experiments.
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ComplEx HittER*
h@1 h@10 MRR h@1 h@10 MRR

Original numbers 0.237 0.400 0.294 0.257 0.447 0.322

βr,ht = 0.0 (filter only) 0.247 0.430 0.309 0.262 0.453 0.327
βr,ht = 0.5 (equally balanced) 0.266 0.446 0.326 0.269 0.454 0.331
βr,ht = 1.0 (AnyBURL) 0.256 0.427 0.314 0.256 0.427 0.314

βr,ht ∈ {0, 1} 0.258 0.437 0.318 0.270 0.456 0.333
βr,ht ∈ {0, 0.05, . . . , 1.0} 0.268 0.447 0.329 0.277 0.463 0.340

Table 3: Exemplary results for different betar,ht setting on CoDEx-L.

Moreover, learning a relation and direction specific weighting is superior to selecting one
of the two approaches for each relation/direction, which is reflected by the βr,ht ∈ {0, 1}
setting which is 0.7 and 1.1 percentage points worse compared to the main results.

In Tables 9 to 12 in the Appendix, for the 10 most frequent relations of CoDEx-L
we present the βr,ht values that resulted in the best MRR scores against the validation
set in regard to the last two settings of Table 3. A βr,ht of 0.0 means that the KGE
model determines the ranking, while a value of 1.0 means that the ranking is completely
determined by AnyBURL. The βr,ht scores vary between the values of the respective search
spaces, indicating that it a weighting where none of the two ensemble members is ignored
is beneficial for most relations.

7. Conclusions

Instead of presenting a sophisticated new knowledge base completion method, in this work,
we tried to understand advantages and disadvantages of KGE models and rule-based ap-
proaches by analysing the rankings that they generate. Our means to achieve this goal was
the use of the explanatory power of a rule based approach. Thus, we were able to spot and
understand several examples of interesting predictions that revealed some essential differ-
ences. As a consequence of our understanding, we developed an approach that increases
the quality of an already top-performing KGE approach consistently by 1 to 3 percentage
points in terms of the MRR. While the prediction quality of our aggregation method is in
itself a valuable results, it is more important to understand what follow from these results:

• KGE models are good in combining/aggregating different signals.

• KGE models can suffer from relicts of the random initialization.

• KGE scores are affected by similarity considerations that are sometimes unreasonable.

• Rule based approaches are better in detecting signals that can be explained in terms
of (relatively) long rules.

• KGE models remain within the language scope described in Section 3.1, which means
that we can use the rules of AnyBURL to explain the predictions of the KGE model.

These insights explain why a naive way to combine symbolic and latent knowledge graph
completion techniques works surprisingly well.



Meilicke, Betz & Stuckenschmidt

References
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Appendix A. Detailed Results

Table 4 shows detailed results in terms of filtered hits@1, hits@10 and MRR (based on the
top-100 predictions only) for all combinations of KGE models and datasets.

Rules/KGE Results Aggregated Results Improvements
Approach h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR

F
B

23
7

AnyBURL .246 .506 .332
ComplEx .253 .536 .347 .270 .551 .363 +.017 +.015 +.016
ConvE .248 .521 .338 .273 .548 .363 +.024 +.027 +.025
DistMult .249 .531 .342 .266 .548 .359 +.017 +.017 +.017
HittER* .268 .549 .361 .283 .56 .374 +.015 +.01 +.013
RESCAL .263 .541 .355 .275 .555 .368 +.012 +.015 +.013
TransE .221 .497 .312 .264 .536 .354 +.043 +.039 +.042

W
N

18
R

R

AnyBURL .457 .572 .497
ComplEx .438 .547 .475 .464 .590 .506 +.026 +.042 +.031
ConvE .411 .505 .442 .459 .580 .500 +.049 +.075 +.058
DistMult .414 .531 .452 .460 .583 .502 +.047 +.053 +.050
HittER* .437 .531 .469 .463 .583 .503 +.026 +.052 +.033
RESCAL .439 .517 .467 .465 .582 .505 +.026 +.065 +.038
TransE .053 .520 .228 .458 .591 .503 +.405 +.071 +.275

C
oD

E
x
-S

AnyBURL .341 .622 .436
ComplEx .372 .646 .465 .373 .655 .467 +.001 +.010 +.002
ConvE .343 .635 .444 .361 .649 .457 +.019 +.013 +.013
HittER* .353 .641 .453 .376 .654 .468 +.023 +.013 +.015
RESCAL .294 .623 .404 .370 .654 .466 +.077 +.032 +.062
TransE .219 .634 .354 .361 .660 .459 +.143 +.026 +.105
TuckER .339 .638 .444 .375 .652 .468 +.035 +.015 +.024

C
oD

E
x
-M

AnyBURL .247 .45 .316
ComplEx .262 .476 .337 .277 .492 .349 +.015 +.017 +.012
ConvE .239 .464 .318 .274 .487 .346 +.035 +.024 +.028
HittER* .262 .486 .339 .289 .498 .359 +.027 +.012 +.021
RESCAL .244 .456 .317 .273 .484 .344 +.028 +.028 +.027
TransE .223 .454 .303 .266 .480 .340 +.043 +.026 +.037
TuckER .259 .458 .328 .274 .482 .344 +.015 +.024 +.016

C
oD

E
x
-L

AnyBURL .256 .427 .314
ComplEx .237 .400 .294 .268 .447 .329 +.031 +.047 +.035
ConvE .240 .420 .300 .269 .453 .332 +.029 +.033 +.032
HittER* .257 .447 .322 .277 .463 .340 +.021 +.016 +.018
RESCAL .242 .419 .304 .273 .451 .333 +.031 +.032 +.029
TransE .116 .317 .187 .255 .428 .314 +.139 +.111 +.127
TuckER .244 .43 .309 .274 .455 .336 +.030 +.025 +.027

Table 4: Detailed results.
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Table 5 is structured similar to Table 4, however, this time the results are based using the
AnyBURL ranking only for the purpose of filtering the KGE ranking. This means that
we keep the order of the KGE ranking and suppress each candidate that is not within the
top-100 ranking of AnyBURL. The empty positions in the ranking are filled up by the
subsequent candidates.

Rules/KGE Results Filtered Results Improvements
Approach h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR

F
B

23
7

AnyBURL .246 .506 .332
ComplEx .253 .536 .347 .259 .541 .352 +.006 +.005 +.005
ConvE .248 .521 .338 .254 .528 .344 +.006 +.008 +.006
DistMult .249 .531 .342 .255 .536 .348 +.006 +.004 +.005
HittER* .268 .549 .361 .273 .552 .364 +.005 +.002 +.003
RESCAL .263 .541 .355 .268 .546 .36 +.005 +.006 +.004
TransE .221 .497 .312 .237 .509 .326 +.016 +.012 +.014

W
N

18
R

R

AnyBURL .457 .572 .497
ComplEx .438 .547 .475 .448 .575 .490 +.010 +.027 +.015
ConvE .411 .505 .442 .434 .551 .474 +.023 +.047 +.032
DistMult .414 .531 .452 .437 .563 .479 +.023 +.033 +.027
HittER* .437 .531 .469 .447 .566 .486 +.010 +.035 +.017
RESCAL .439 .517 .467 .449 .557 .486 +.010 +.04 +.019
TransE .053 .520 .228 .337 .570 .422 +.284 +.049 +.194

C
oD

E
x
-M

AnyBURL .247 .45 .316
ComplEx .262 .476 .337 .266 .487 .341 +.003 +.011 +.004
ConvE .239 .464 .318 .248 .475 .325 +.009 +.011 +.007
HittER* .262 .486 .339 .267 .487 .342 +.006 +.001 +.003
RESCAL .244 .456 .317 .250 .469 .323 +.006 +.014 +.006
TransE .223 .454 .303 .238 .461 .312 +.015 +.008 +.009
TuckER .259 .458 .328 .262 .471 .333 +.003 +.013 +.005

C
o
D

E
x
-L

AnyBURL .256 .427 .314
ComplEx .237 .400 .294 .247 .430 .309 .010 .030 .015
ConvE .24 .420 .300 .247 .439 .312 .007 .019 .012
HittER* .257 .447 .322 .262 .453 .327 .006 .007 .005
RESCAL .242 .419 .304 .252 .436 .314 .010 .017 .010
TransE .116 .317 .187 .172 .363 .236 .056 .046 .049
TuckER .244 .430 .309 .254 .442 .318 .010 .012 .009

Table 5: Using the candidate ranking of AnyBURL for the purpose of filtering only.
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In addition to the visualisation shown in the main paper, we prepared the same diagram
for CoDEx-S, M and L in Figure 2. Note that the validation set of CoDEx-S is relatively
small, which might explain why the method works not so well for some models.
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Figure 2: Comparing MRR of AnyBURL, embeddings-based models, and improved com-
bined results on CODEX-S/M/L.
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Appendix B. Additional Examples

In the following we present two additional examples. The first example illustrates a be-
haviour similar to what we discussed with the Darvin/Australia example. The second ex-
ample is related to a specific pattern. We have also developed a simple method to measure
the impact of suppressing this pattern and report about its results.

Who produced Tomb Raider We are now concerned with the completion task pro-
ducedBy(TombRaiderI,?). We use TombRaiderI/II to refer to the first and second movie
from the series (in training is a prequel relation between these movies). The producer of
both movies is Lawrence Gordon (in test for TombRaiderI; in training for TombRaiderII).
Angeline Jolie acted in both movies as Lara Croft (both triples are available in training).
It is also relevant that Angelina Jolie produced several other movies.

AnyBURL ranks the correct answer on position #1. This is caused by a rule with
two atoms in the body that captures the regularity that the producer of a movie has
produced the prequel of this movie with a probability of 0.445. ComplEx ranks Angelina
Jolie first. What might be the reason for this result? It happens sometimes that a movie
is produced by one of the persons acting in that movie. Moreover, the producedBy and the
actedIn relations establish connections between the same types of entities. In that sense
the embedding of these relations might be similar. Thus, as it is known that Angelina Jolie
acted in TombRaider I, the triples actedIn(TombRaider I, Angelina Jolie) must have a high
score, and thus, the triple producedBy(TombRaider I, Angelina Jolie) will also receive a
relatively high score. On the other hand, the regularity that is captured by the rule that
triggered AnyBURLs decision seems to affect the results only to a limited degree.

Robert Schumann did not influence Robert Schumann A correct answer to the
completion task influencedBy(schumann,?) is (beside others) the composer Felix Mendel-
sohn. However, ComplEx puts Robert Schumann himself on the first rank resulting in the
triple influencedBy(schumann, schumann). The correct answer (Mendelsohn) is ranked on
position #9. Note that we observed many similar cases where a triple r(a, a) was predicted,
even though relation r is, as it is the case for the influencedBy relation, irreflexive. While
this sounds like a rather specific issue, it can again be explained by misleading similarity

AnyBURL ComplEx RESCAL
Rank Candidate Confidence Candidate Score Candidate Score

(A)
#1 Lawrence Gordon 0.445 Angelina Jolie 10.064 Avi Arad 4.025
#2 Michael G. Wilson 0.222 Steven Spielberg 9.134 Kathleen Kennedy 3.833
#3 Steven Spielberg 0.2 Lawrence Gordon 9.112 Lawrence Gordon 3.077

(B)

#1 Arthur Schopenhauer 0.36 Robert Schumann 9.062 Arnold Schoenberg 2.571
#2 Victor Hugo 0.25 Bach 8.232 Thomas Mann 2.514
#4 Spinoza 0.231 Schopenhauer 8.116 Mendelssohn 2.061
#9 Jean-Jacques Rousseau 0.153 Mendelssohn 7.517 Sigmund Freud 1.684
#28 Mendelssohn 0.07 Aleksandr Pushkin 5.853 Friedrich Hayek 0.427

Table 6: Ranking results for the completion tasks (A) producedBy(TombRaiderI,?) and (B)
influencedBy(schumann,?).
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consideration. There several triples given in the training set, which tell us about people that
have influenced Robert Schumann. Robert Schumann seems to be very similar to the aver-
age influencer of Schumann. For that reason he is proposed as a solution to the completion
task. Some predictions for AnyBURL, ComplEx and RESCAL are shown in Table 6.

Note also that AnyBURL puts the correct answer to a rather low ranking position.
However, that is not the point here. The main point here is related to the fact that an
alternative that is clearly wrong, given the fact that we never observe influencedBy(c,c) for
any constant c in the training set, is placed at a top position by the KGE approach due to
misleading similarity considerations.

We applied the following strategy to remove erroneous self-referential predictions from
the ranking. For each relation r We checked in the training set, whether there is a triples
r(c, c). If such a triples does not exist, we marked the relation as irreflexive. For each
irreflexive relation r, given the prediction task r(c, ?) or r(?, c) we removed c from the
candidate ranking. Note that this filtering technique removes exactly one candidate or no
candidates from a given ranking. The results of the approach are depicted in Table 7.

Rules/KGE Results Filtered Results Improvements
Approach h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR

F
B

23
7

ComplEx .253 .536 .347 .256 .537 .350 +.003 +.000 +.003
ConvE .248 .521 .338 .251 .521 .340 +.003 +.001 +.003
DistMult .249 .531 .342 .252 .532 .345 +.003 +.001 +.003
HittER* .268 .549 .361 .271 .55 .364 +.003 +.001 +.003
RESCAL .263 .541 .355 .265 .541 .357 +.002 +.001 +.002
TransE .221 .497 .312 .231 .500 .320 +.010 +.003 +.008

W
N

18
R

R

ComplEx .438 .547 .475 .443 .549 .479 +.005 +.002 +.004
ConvE .411 .505 .442 .411 .505 .442 +.000 +.000 +.000
DistMult .414 .531 .452 .414 .531 .452 +.001 +.001 +.000
HittER* .437 .531 .469 .44 .533 .472 +.003 +.002 +.003
RESCAL .439 .517 .467 .44 .518 .467 +.001 +.000 +.000
TransE .053 .52 .228 .072 .527 .242 +.019 +.007 +.014

C
oD

E
x
-M

ComplEx .262 .476 .337 .263 .476 .336 +.001 +.000 +.001
ConvE .239 .464 .318 .245 .464 .321 +.006 +.001 +.003
HittER* .262 .486 .339 .266 .486 .342 +.005 +.000 +.003
RESCAL .244 .456 .317 .248 .456 .319 +.003 +.000 +.002
TransE .223 .454 .303 .236 .455 .309 +.013 +.001 +.006
TuckER .259 .458 .328 .26 .458 .328 +.002 +.000 +.000

Table 7: Removing self-referential prediction from rankings related to completion tasks with
irreflexive relations.

We can see that the geometric embedding technique used by TransE seems to be affected
much more compared to the other KGE models. If we focus on the other models, we see an
improvement of .000 to 0.006 in hits@1. It is interesting to see that hits@10 scores is much
less affected. This holds especially for CoDEx-M. We can conclude that in most cases,
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where we observe a positive impact of this specific filtering approach, the self-referential
prediction is on #1 and the correct alternative is on #2. A number as 0.005 means (for
example, HittER* on CoDEx-M), that we observe this pattern in 1 out of 200 completion
tasks. This specific filtering technique is thus, much weaker, compared to the filtering that
is based on the top-100 AnyBURL ranking.
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Appendix C. Additional Rule Types

AnyBURL can mine more general rules than the rules shown in Section 3 by replacing the
constant in the body by an unbound variable. Some examples are listed in the following.

gender(X, female)← profession(X,A) (8)

citizen(X,UK)← bornIn(X,A) (9)

Rule (8) specifies the probability that something that has a profession (no matter what
profession) is female. Note that there is also a rule with the same body and the head
gender(X,male). Such rules specify a value distribution for a certain type of entities. They
have in most cases a rather low confidence and become relevant if nothing else is known
that can be understood as a stronger signal.

The final type of rules is a new type that has been added to the latest version of
AnyBURL recently. This rule type is based on the fact that asking the knowledge base
completion task r(a, ?) implies that there is a correct answer to ?. The confidence of such
a rule specifies the probability that a randomly chosen r-triple has a specific value in its
subject or object position without considering any other information than the distribution
of values. Here are some examples for these rules.

gender(X, female)← () (10)

citizen(X,UK)← citizen(X,A) (11)

Without these rules, AnyBURL would sometimes create an empty candidate ranking.
These rules yield a kind of default answer to avoid such cases. However, in some situations
these rules have an influence that is too strong. Thus, their confidence is multiplied by 0.1
(for Rule (8) and (9)) and 0.01 (Rule (10) and (11)). Without this modifications important
entities, e.g., USA, are too often ranked high without any specific reason. This setting is
currently the default setting of AnyBURL, which is constantly used across all datasets.



Meilicke, Betz & Stuckenschmidt

Appendix D. Summary Statistics and Datasets

#Triples
Dataset #Entities #Relations Train Valid Test

FB15k-237 14 505 237 272 115 17 535 20 466
WNRR 40 559 11 86 835 3 034 3 134

CoDEx-S 2 034 42 32 888 1 827 1 828
CoDEx-M 17 050 51 185 584 10 310 10 311
CoDEx-L 77 951 69 551 193 30 622 30 622

Table 8: Datasets and summary statistics.
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Appendix E. Normalizing KGE Scores

As KGE scores can be scattered over a wide value range, we need to normalize the score
before we compute the aggregated score. We could, for example, map the score of the #1
rank to 1.0 and the score of the #k rank to 0. The problem of this approach becomes
clear when looking at the completion tasks locatedIn(?,US) and locatedIn(?,Liechtenstein).
If we set k to 100 (the parameter setting we choose in our experiments) we will probably
have a situation where the first completion task might yield reasonable candidates within
the top-k ranking. For the second ranking this might not be the case, and only a few top
candidates are correct. Nevertheless, we would map the candidate at position #100 in
both cases on 0 and in the US case a significantly higher value would be more appropriate.
Instead of that, we map the KGE score to [min,max] with max = conf(A[1], r(e, ?)) and
min = conf(A[k], r(e, ?)), i.e., we map to a range that is defined by the confidence of first
and last candidate in the AnyBURL ranking. We are aware that there might be more
sophisticated techniques, however, for our purpose this approach turned out to work quite
well.

We abstained from other approaches that defines the mapping on a global level by
looking at all possible scores that can be derived from the embedding space. Such an
approach has to solve the inherent problem that there is probably a wide range of scores
that belong to clearly wrong triples.
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Appendix F. Further Results Related to the Ablation Study

In the following Tables, we present the best relation specific MRR results and βr,ht values
in different settings. Tables 9 and 11 list the values learned with the default setting that we
used to achieve the main results shown in Figure 1 for CoDEx-L for the models ComplEx
and HittER*, respectively. In general, the values for βr,ht vary between the different values
of the search space demonstrating the complementary nature of the two approaches (latent
vs. symbolic).

In Tables 10 and 12 we report values that were learned in a setting where the search
space for β is restricted to {0.0, 1.0}. This mimics a behaviour where a hard selection
between the two approaches must be made for each direction/relation in the dataset. For
ComplEx in Table 10, the β values are almost equal distributed whereas for HittER* most
of the time β is selected to be 0. A possible reason is the fact that we show these results for
the most frequent relations. We found a more equally distributed pattern when considering
all the relations of CoDEx-L.

head direction tail direction
relation r best MRR βr,h best MRR βr,t

occupation .015 .20 .549 .10
country of citizenship .040 .10 .847 .20
languages spoken .022 .15 .904 .25
place of birth .037 1.0 .316 .55
educated at .044 .20 .300 .20
genre .044 .20 .455 .15
cast member .093 .35 .063 .30
place of death .053 .45 .446 .35
member of .115 .15 .509 .20
member of political party .042 .10 .630 .25

Table 9: The best relation specific MRR values on the valid set and the corresponding βr,ht
values for ComplEx on CoDEx-L for the 10 most frequent relations.
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head direction tail direction
relation r best MRR βr,h best MRR βr,t

occupation .013 1.0 .535 0.0
country of citizenship .038 0.0 .828 0.0
languages spoken .019 0.0 .828 0.0
place of birth .037 1.0 .316 1.0
educated at .043 0.0 .276 1.0
genre .039 0.0 .425 0.0
cast member .091 1.0 .060 1.0
place of death .046 1.0 .440 1.0
member of .099 0.0 .472 0.0
member of political party .038 0.0 .590 0.0

Table 10: The best relation specific MRR values on the valid set and the corresponding
βr,ht values for ComplEx on CoDEx-L for the 10 most frequent relations when
beta is restricted to be in {0,1}.

head direction tail direction
relation r best MRR βr,h best MRR βr,t

occupation .016 .10 .567 .10
country of citizenship .047 .05 .859 .20
languages spoken .025 .05 .919 .20
place of birth .038 .90 .327 .40
educated at .045 .15 .318 .10
genre .046 .05 .469 .25
cast member .099 .20 .067 .20
place of death .057 .30 .468 .20
member of .124 .15 .546 .10
member of political party .044 .00 .641 .20

Table 11: The best relation specific MRR values on the valid set and the corresponding
βr,ht values for HittER* on CoDEx-L for the 10 most frequent relations.



Meilicke, Betz & Stuckenschmidt

head direction tail direction
relation r best MRR βr,h best MRR βr,t

occupation .016 0.0 .560 0.0
country of citizenship .047 0.0 .839 0.0
languages spoken .023 0.0 .914 0.0
place of birth .037 1.0 .310 0.0
educated at .041 0.0 .305 0.0
genre .045 0.0 .442 0.0
cast member .091 1.0 .061 0.0
place of death .049 0.0 .447 0.0
member of .122 0.0 .532 0.0
member of political party .044 0.0 .611 0.0

Table 12: The best relation specific MRR values on the valid set and the corresponding
betar,ht values for HittER* on CoDEx-L for the 10 most frequent relations when
β is restricted to be in {0,1}.
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