
Under review as a conference paper at ICLR 2023

NETBOOSTER: EMPOWERING TINY DEEP LEARNING
BY STANDING ON THE SHOULDERS OF DEEP GIANTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tiny deep learning has attracted increasingly growing interest driven by the substan-
tial demand for deep learning solutions in numerous Internet-of-Things (IoT) appli-
cations. Nevertheless, due to the under-fitting issue, it is still a challenge to unleash
tiny deep learning’s full potential on large-scale datasets. Consequently, tiny neural
networks’ (TNNs’) downstream task performance is limited due to the inferior
learned representations during pretraining. To this end, we propose a framework
dubbed NetBooster which empowers tiny deep learning from a novel perspective
by augmenting the architecture of TNNs via an expansion-then-contraction strategy.
Specifically, during training, our proposed NetBooster first expands each/some
layer(s) of a given TNN into multi-layer blocks, favoring the learning of more com-
plex features to generate an expanded counterpart model (i.e., deep giant), and then
contracts the expanded layers by gradually removing the non-linear layers from
the expanded ones to recover efficiency. NetBooster’s expansion-then-contraction
training empowers its trained TNNs to benefit from the superior performance of
their expanded counterparts while preserving the TNNs’ original complexity and
thus inference efficiency. Extensive experiments and ablation studies on two tasks,
seven datasets, and six networks validate that NetBooster consistently leads to a
nontrivial accuracy boost (e.g., 1.3% ∼ 2.5%) on top of state-of-the-art TNNs on
ImageNet and as much as 4.7% higher accuracy on various downstream datasets,
while maintaining their inference complexity/efficiency.

1 INTRODUCTION

Powerful deep learning networks are often accompanied by prohibitively huge computational and
memory costs (Liu et al., 2021c; Brown et al., 2020; He et al., 2016; Liu et al., 2021b), hindering
their wider applications in resource-constrained Internet-of-Things (IoT) devices (Lin et al., 2020).
To this end, tiny deep learning, which aims to develop tiny neural networks (TNNs) featuring a much-
reduced network size along with memory and computational costs to enable deep learning-powered
solutions in tiny IoT devices (e.g., MCU (Lin et al., 2020) and Raspi (Raspberry Pi Limited.)),
has emerged as a promising direction and attracted an increasingly growing interest from both
industry and academia (Lin et al., 2020; Cai et al., 2021). In particular, existing tiny deep learning
works strive to improve the performance of TNNs by either designing a novel efficient network
architecture manually or automatically (Lin et al., 2020; 2021; Sandler et al., 2018; Howard et al.,
2019), or compressing a large deep neural network (DNN) to reduce its network redundancy via
DNN compression techniques, such as pruning, quantization, etc (Liu et al., 2017; Fu et al., 2021a;
Wang et al., 2020; Teerapittayanon et al., 2016; He et al., 2018; Liu et al., 2020).

Despite both the extensive efforts and the promising progress in developing novel TNN architectures
and compressing existing DNN networks, the achieved accuracy-efficiency trade-off of existing
TNN works is still far from satisfactory for many IoT and emerging applications. Specifically,
TNNs’ accuracy-efficiency trade-off bottleneck comes from two folds: Iss. 1: It is challenging for
TNNs to learn complex but representative features and achieve satisfactory task performance on
commonly used large-scale datasets (e.g., ImageNet (Deng et al., 2009)), and Iss. 2: TNNs’ limited
task performance on large-scale datasets further hinders TNN-based solutions from taking advantage
of the widely used pretrain-then-finetune paradigm in real-world deployment.

1



Under review as a conference paper at ICLR 2023

MFLOPs

A
cc

ur
ac

y 
(%

) +1.4% +1.3%

+2.6% 

-0.5% -0.3%

-0.3%
Vanilla, r=224

+1.3% 

+0.2% 

Epochs

Vanilla, r=144 
NetBooster, r=144 NetBooster 

DropBlock 
Vanilla 

(a) (b)

Figure 1: (a) Iss. 1: TNN training suffers from under-fitting
issues. When training MobileNetV2 (Sandler et al., 2018)
on ImageNet (Deng et al., 2009), regularization techniques
(e.g., DropBlock (Ghiasi et al., 2018)) even lead to infe-
rior accuracy compared with vanilla training. Our proposed
NetBooster can boost TNNs’ accuracy by increasing its ca-
pacity during training. (b) Iss. 2: Inadequately trained TNNs
cannot learn complex features and thus suffer from limited
downstream task accuracy. Finetuning ImageNet pretrained
vanilla MobileNetV2-35 with a resolution of 224× 224 and
144× 144, respectively, on the CIFAR-100 dataset for even
four times more epochs (i.e., 600 epochs) still cannot im-
prove the achievable accuracy. Our proposed NetBooster can
boost TNNs’ accuracy by inheriting pretrained deep giants’
learned complex features.

In parallel, it has recently been recog-
nized that a dedicated training recipe
can boost the accuracy of TNNs (Cai
et al., 2021), which yet is still under-
explored. Unlike DNN training,
which requires techniques like data
augmentation (Hendrycks et al., 2019;
Zhang et al., 2017; Cubuk et al., 2020;
2018) and/or regularization (Ghiasi
et al., 2018; Srivastava et al., 2014)
to alleviate the over-fitting issue, re-
cent studies (Tan & Le, 2019; Cai
et al., 2021) have shown that TNNs
tend to suffer from under-fitting issues
due to their small capacity, and ex-
tensively augmented training data or
regularized training can even hurt the
achieved task performance of TNNs.
This is because TNNs have a limited
ability to learn complex features from
the given large-scale dataset during
training (i.e., Iss. 1). For example,
applying the state-of-the-art (SOTA)
regularization technique introduced
in DropBlock(Ghiasi et al., 2018) to
ResNet-50 (He et al., 2016) can lead
to a 1.6% accuracy improvement on the challenging ImageNet dataset (Deng et al., 2009); however,
as shown in Fig. 1 (a), training MobileNetV2 (Sandler et al., 2018) of various sizes with DropBlock
(green line) even results in inferior task performance (an accuracy drop of 0.5% ∼ 0.7%) compared
with the corresponding vanilla trained networks (blue line). Moreover, when transferring pretrained
TNNs to downstream tasks, the lack of learned complex and representative features in the pretrained
TNN models further limits the achievable accuracy of downstream tasks, which cannot be recovered
even with more finetuning epochs (i.e., Iss. 2). For instance, as shown in Fig. 1 (b), transferring
a vanilla ImageNet (Deng et al., 2009) pretrained MobileNetV2-35 (Cai et al., 2018) to CIFAR-
100 (Krizhevsky et al., 2009) only leads to an accuracy of 75.8% and 74.07% with an input resolution
of 224× 224 (blue line) and 144× 144 (green line), respectively, and even adopting four times more
training epochs cannot improve the accuracy due to the inferior learned features during pretraining.

To close the gap between the growing demand for more powerful TNNs in real-world applications
and the lack of effective TNN training schemes, we aim to develop techniques that can boost the
achievable task performance of TNNs, while maintaining their attractive efficiency, by empowering
TNNs’ learnable features. In particular, this work makes the following contributions:

• To the best of our knowledge, we are the first to discover and promote a new paradigm of
training TNNs to empower their achievable accuracy via constructing a competent deep giant
with compound network augmentation (i.e., augmenting both width and depth dimensions
of the given TNNs), which is simple, effective, and generally applicable.

• Leveraging the above discovery, we propose a TNN training framework dubbed NetBooster
that can alleviate TNNs’ under-fitting issue during training and thus boost their achievable
accuracy, while maintaining their original network complexity and thus inference efficiency.
Specifically, our NetBooster integrates a two-step expansion-then-contraction training strat-
egy: Step-1: Network Expansion to expand each/some layer(s) of a given TNN into
multi-layer blocks, favoring the learning of more complex features by leveraging the cor-
responding deep giant counterpart to equip the TNN with an initial state that have learned
sufficient knowledge, and Step-2: Progressive Linearization Tuning (PLT) to convert the
deep giant back to the given TNN’s original architecture by removing the non-linear layers
from the expanded layers and then contracting them.

• We make heuristic efforts to empirically explore (1) what kinds of multi-layer blocks should
be used for expansion, (2) when to expand during training, and (3) where to expand within

2



Under review as a conference paper at ICLR 2023

a TNN to more effectively boost the achieved accuracy of TNNs when implementing
compound network augmentation in our proposed NetBooster framework.

• Extensive experiments and ablation studies on two tasks, six networks, and seven datasets
show that NetBooster consistently leads to a nontrivial accuracy boost (e.g., 1.3% ∼ 2.6%)
on top of SOTA TNNs on the ImageNet dataset and as much as 4.7% higher accuracy on
various downstream tasks, while maintaining inference complexity/efficiency.

2 RELATED WORKS

2.1 TINY NEURAL NETWORK

Tiny deep learning aims to develop TNNs featuring a much reduced network size and lower memory
and computational costs, together with acceptable accuracy, enabling deep learning-powered solutions
in resource-constrained IoT devices. Existing techniques towards fulfilling the goal of tiny deep
learning can mostly be categorized into two trends. One trend is to design novel TNN architectures
by resorting to either human expertise (Sandler et al., 2018; Ma et al., 2018; Zhang et al., 2018) or
automated tools, e.g., neural architecture search (Cai et al., 2018; Wu et al., 2019; Wan et al., 2020;
Fu et al., 2021b); The other trend is to make use of compression techniques, including pruning (Liu
et al., 2018; 2017; Li et al., 2021), quantization (Fu et al., 2021a; Zhou et al., 2017), dynamic
inference (Wang et al., 2020; Wu et al., 2018; Teerapittayanon et al., 2016; Yu et al., 2021), etc., to
further trim down network complexity on top of previously designed TNN architectures.

In this work, we propose to pursue tiny deep learning solutions with boosted performance-efficiency
trade-offs from a less explored and orthogonal direction, i.e., how to train TNNs to unleash their
achievable accuracy more effectively. To the best of our knowledge, the only pioneering work
focusing on a similar direction is NetAug (Cai et al., 2021), which proposes to augment TNNs from
the width dimension by introducing a wider supernet to assist training and then directly removing the
supernet. In contrast, our NetBooster proposes to first expands a TNN network from both the depth
and width dimensions to provide a competent deep giant during TNN training, and then gradually
contract it back to the original structure, instead of directly removing augmented parts, to avoid
unrecoverable information losses which might incur nontrivial accuracy drops.

2.2 DATA AUGMENTATION AND REGULARIZATION

Data augmentation and regularization techniques have been proposed to alleviate the over-fitting
issues associated with large-scale DNNs in order to boost their network generalization performance
and thus achievable accuracy. Data augmentation techniques focus on manipulating the input
data samples (Cubuk et al., 2018; Liu et al., 2018; Zhong et al., 2020; Gong et al., 2021) while
regularization techniques focus more on the network aspect and randomly drop different components
from the network (Ghiasi et al., 2018; Srivastava et al., 2014; Huang et al., 2016) during training.

Nevertheless, as shown in recent studies (Tan & Le, 2019; Cai et al., 2021) and Fig. 1 (a), TNN training
suffers from under-fitting instead of over-fitting. Existing data augmentation and regularization
techniques fail to fully unleash the potential of TNNs.

2.3 KNOWLEDGE DISTILLATION

Knowledge distillation (KD) aims to transfer the already learned knowledge to new training processes
by leveraging an often larger teacher network to guide a smaller student network (Hinton et al., 2015;
Zagoruyko & Komodakis, 2016; Tung & Mori, 2019; Huang & Wang, 2017; Park et al., 2019; Heo
et al., 2019).

Our proposed NetBooster is orthogonal to KD, and it does not require a teacher network to provide
guidance during training. Instead, NetBooster aims to inherit the learned features from the expanded
TNNs and thus can achieve higher accuracy than the original network. As such, it is expected
that combining our proposed NetBooster with existing KD techniques can further boost TNNs’
performance.

3



Under review as a conference paper at ICLR 2023

Pointwise Conv

Network Expansion on Large Dataset Progressive Linearization Tuning on the Target Dataset 

Act.

Act.

Pointwise ConvPointwise ConvDepthwise Conv

Pointwise Conv

Pointwise Conv

Act.

Pointwise ConvPointwise ConvDepthwise Conv

Pointwise Conv

Act.

Pointwise Conv

Act.

Pointwise ConvPointwise ConvDepthwise Conv

Pointwise Conv

Act.

Contract Layer i

Layer i-1

Layer i+1

Tiny Neural
Networks

Layer i

Layer i-1

Layer i+1

Tiny Neural
Networks

Expand

Non-Linear Func. Linear Func.Non-linearity Removal

Layer i+1

Layer i-1

Layer i+1 Layer i+1

Layer i-1 Layer i-1

Figure 2: An overview of the proposed NetBooster framework. In NetBooster, we augment the TNN
from both depth and width dimensions. Specifically, we uniformly select TNN layers and expand
them into inverted residual blocks Sandler et al. (2018) to formulate the deep giant, helping to learn
complex features. Then in PLT, we progressively decay the non-linear activation functions within
the expanded inverted residual blocks to an identity mapping function and contract the expanded
blocks back to the corresponding original layers to maintain the given TNN’s original structure and
inference efficiency.

2.4 TRANSFER LEARNING

Motivated by DNNs’ strong capability in extracting features, using transfer learning (Donahue et al.,
2014; Chatfield et al., 2014; Sharif Razavian et al., 2014; Azizpour et al., 2015) under the pretrain-
then-finetune paradigm to inherit pretrained DNNs’ representative and generalizable features for
downstream tasks is a widely used paradigm across different domains (Mormont et al., 2018; Lim,
2012; Houlsby et al., 2019). Despite the extensive efforts to boost the transfer performance, it is
still a common understanding that larger pretrained networks can provide more representative and
generalizable features and thus lead to better transfer task performance than training TNNs from
scratch. Our proposed NetBooster aims to narrow the aforementioned gap by empowering TNNs
with high-quality features and achieves this by leveraging TNNs’ corresponding deep giants through
compound network augmentation.

3 THE PROPOSED NETBOOSTER FRAMEWORK

3.1 MOTIVATIONS AND INSPIRATIONS

The key challenge for TNN training. Due to the lack of sufficient network capacity, TNNs
tend to suffer from severe under-fitting issues when being trained on large-scale datasets (e.g.,
ImageNet (Deng et al., 2009)), limiting their ability to learn complex but representative features and
further hindering their achievable performance on downstream tasks.

Inspirations for our works. Recent works show that overparameterization during training can
benefit the final achievable accuracy while the network complexity during inference can be trimmed
down without hurting the accuracy (Liu et al., 2021a). Different DNN compression techniques have
also echoed this insight, e.g., pruning methods (Han et al., 2015; Liu et al., 2017) keep the original
dense network during training and then remove the redundant neurons for inference. Nevertheless,
the aforementioned methods only focus on overparameterization from the width dimension. At the
same time, existing work (Nguyen et al., 2020) shows that DNNs with different depth and width
tend to learn different features, urging for introducing overparameterization into both depth and
width dimensions. Thus, if we can equip TNNs with comprehensive overparameterization during
training and then restore the original network structure during inference, the under-fitting issue can
be effectively mitigated to achieve more accurate yet efficient TNN inference. This has inspired us to
design a principled expansion-then-contraction methodology by first expanding the target TNN to a
more overparameterized network for better feature learning and then contract it back to the original
structure to enhance its efficiency.

4



Under review as a conference paper at ICLR 2023

3.2 OVERVIEW

Implementation of expansion-then-contraction. Given the expansion-then-contraction principle,
there are different potential implementations. Inspired by the success of RepVGG (Ding et al., 2021),
which shows that parallel branches can be merged thanks to their linearity, we hypothesize that if we
can properly remove the non-linear activation functions, the consecutive layers can also be merged
via a linear combination. Fortunately, recent works show that some of the activation functions can
be safely removed from the network without hurting the task performance (Jha et al., 2021; Cho
et al., 2021; Ghodsi et al., 2021). This motivates us to propose our expansion-then-contraction-based
NetBooster training framework, which adopts two steps: Step-1: Network Expansion, where we
augment both TNNs’ depth and width during training by replacing some layers in the original TNNs
with multi-layer blocks, aiming to increase the TNNs’ capacity and alleviate their under-fitting
issues during training and thus enabling a better feature learning on the source dataset, and Step-2:
Progressive Linearization Tuning (PLT), where we progressively remove the non-linearity inside
the expanded blocks on the target dataset. After the non-linear layers inside the blocks are removed,
we contract the augmented/expanded TNNs back to the corresponding original TNNs at the end of
training to inherit the learned features while ensuring the boosted performance does not come with
additional inference cost.

Technical challenges to achieve NetBooster. While the aforementioned principle sounds straightfor-
ward, implementing such a training pipeline is non-trivial. In Step-1, naively expanding all layers
with a high expansion ratio can lead to an excessively large network which is difficult to train. To
enable a practical and effective expansion strategy, at least the following three questions need to be
addressed: Q1: what blocks to insert? What kind of blocks we should use to expand the target layer,
Q2: where to expand? How to find which layers we should expand, and Q3: how to determine the
expansion ratio? To what extent we should expand the target layers. In Step-2, how to contract the
network expanded from both width and depth dimensions while preserving the learned knowledge of
the augmented network is still an open question. Despite the method proposed in (Ding et al., 2021)
can merge the parallel convolution layers into one single layer via linear combination, the non-linear
activation layers between sequentially connected convolution layers make it impossible to merge
convolution layers along the depth dimension directly. We next elaborate on our proposed solutions
to tackle the above challenges and the design of each step as follows.

3.3 STEP 1: NETWORK EXPANSION

The network expansion step aims to transform the target TNNs into more powerful deep giants,
boosting the network capacity and learning complex but representative features from the large-scale
dataset to improve the accuracy and transferability. To answer the questions raised in Sec. 3.2, we
propose the following criteria when expanding the network:

a. Structural consistency: To guarantee that applying NetBooster does not change the network
structure for inference, each expansion block will be required to contract back to the original
single layer via linear combination in the PLT step. Thus, for the network expansion step,
the receptive field of each expansion block should be equal to that of the original layer.

b. Sufficient capacity: Motivated by the findings in (Cai et al., 2021), we aim to alleviate the
under-fitting issue and ease the learning process by increasing the capacity of the expanded
network (i.e., the corresponding deep giant). Thus, we should sufficiently expand the given
TNN from multiple positions and dimensions (i.e., expand width with increased expansion
ratios and depth by inserting multiple layers).

c. Effective feature inheritance: In addition to the sufficient capacity of the deep giant,
effectively inheriting the deep giant’s learned features is equally important. As suggested
in (Mirzadeh et al., 2020), excessively large networks tend to learn significantly different
feature distribution from that of small networks, which can not only forbid small networks
from inheriting but even hurt the small networks’ task performance. Thus, (1) the complexity
gap between the original network and its expanded deep giant should not be too large and
(2) the selected layers to be expanded should contain sufficient parameters to ensure an
effective knowledge inheritance from the deep giant.

Based on the above criteria, we answer the questions raised in Sec. 3.2 below:

5



Under review as a conference paper at ICLR 2023

Q1 What blocks to insert? We select the types of inserted blocks from a pool of well-established
DNN building blocks (e.g., the basic and bottleneck blocks in ResNet (He et al., 2016) and the
inverted residual block in MobileNetV2 (Sandler et al., 2018)). The basic block is first eliminated to
satisfy structure consistency (criteria a.). As the basic block stacks two layers with large convolution
kernels, leading to a receptive field larger than that of the original layer, we then select the inverted
residual block over the bottleneck block to narrow down the complexity gap for effective feature
inheritance (criteria c.).

Q2 Where to expand? There is a trade-off between increasing the network capacity by constructing a
larger deep giant (criteria b.) and improving the feature inheritance effectiveness by narrowing down
the size gap between the deep giant and original TNN (criteria c.), limiting the achievable performance
of NetBooster. A simple but effective way to push forward the trade-off further is to consider the
knowledge inheritance effectiveness from a more fine-grained granularity (i.e., layer-wise) instead
of model-wise. Specifically, multiple layers can have a better representation ability than a single
layer. Thus, the expanded layer’s learned complex features can be more effectively inherited by
distributing them to multiple adjacent layers in the contracted network. To this end, we propose
uniformly selecting layers to be expanded on top of the original network, which can guarantee that
there are sufficient layers to inherit learned features from the expanded block.

Q3 How to determine expansion ratio? Similar to Q2, the selection of the adopted expansion ratio has
to trade-off between the network capacity (criteria b.) and the effectiveness of knowledge inheritance
(criteria c.). However, thanks to the proposed uniform expansion strategy in Q2, we empirically find
that the commonly used expansion ratio, 6 (Sandler et al., 2018) in the inserted inverted residual
blocks works well on balancing the aformentioned two criteria

3.4 STEP 2: PROGRESSIVE LINEARIZATION TUNING (PLT)

The next step is to recover the original network structure on the target dataset while inheriting the
knowledge learned by the deep giant. Inspired by (Ding et al., 2021), which proposes to merge
parallel convolution layers into one single layer, we find that sequentially connected layers can also
be merged via linear combinations by properly removing the non-linear operations between them. To
achieve this, we propose PLT to progressively remove the non-linearity from the expanded network
and then contract the expanded network back to its original architecture during finetuning on the
target dataset.

Motivating observation. Non-linearity has been considered a key enabler for the promising
performance of DNNs and most existing works use the combination of convolution and non-linear
activation layers as a basic design unit. In parallel, recent works (Jha et al., 2021; Cho et al., 2021)
have shown that non-linearity within DNNs can be highly redundant for inference, a large portion
of element-wise non-linear activation functions can be removed from a DNN, and the complex
features learned from the original network during training can be largely preserved. Inspired by the
revolution from element-wise pruning to structure pruning, we aim to step further and remove the
non-linearity in a structured manner (i.e., layerwisely).

Non-linearity removal. We propose to transform the expanded deep giant back to the original
network meanwhile preserve the learned features learned by slowly decaying the non-linear activation
functions.

Without loss of generality, we take the ReLU activation function as an example as it is the most
commonly adopted activation function in TNNs, and our following discussions can also be extended
to other activation functions like ReLU6. Here the ReLU function is defined as:

Yl = max(0, Xl), (1)

where Xl and Yl are the input and output of layer l, respectively. We change the formulation of ReLU
to the following format,

Yl = max(αlXl, Xl), (2)

where 0 < αl < 1 is the slope parameter to manipulate the non-linearity of the corresponding
activation layer. When αl = 0, it is exactly the ReLU function. When αl = 1, the activation function
is decayed to an identity mapping.

6



Under review as a conference paper at ICLR 2023

Given a list L of non-linear activation layers to be removed, we increase αl′ for l′ ∈ L from 0 to 1
in Ed epochs, the value of αl′ is uniformly increased in each iteration. When αl′ = 1, Eq. 2 is an
identity mapping, and thus the non-linearity is removed.

Expanded block contraction. With the non-linear activation functions removed, the remaining
layers can be contracted into one layer via simple linear combinations.

Formulation: Without lose of generality, we take two convolution layers as an example. Given
the input to the first layer X ∈ Rh1×w1×c1 , the output Y ∈ Rh3×w3×c3 , as well as the kernels
of two layers K1 ∈ Rk1×k1×c1×c2 and K2 ∈ Rk2×k2×c2×c3 , the overall functionality of the two
convolution layers can be formulated as

Yp,q,o =

k−1∑
i=0

k−1∑
j=0

c1−1∑
m=0

Xp−i,q−j,mKi,j,m,o, (3)

where Ki,j,m,o =

sh∑
s=sl

th∑
t=tl

c2−1∑
n=0

K1
i−s,j−t,m,nK

2
s,t,n,o, (4)

where k = k1 + k2 − 1, sl = max(0, i − k1 + 1), sh = min(k2 − 1, i), tl = max(0, j − k2 + 1)
and th = min(k2 − 1, j).

Remark: It is worth noting that different expansion ratios of the inserted inverted residual block
will result in the same computational cost after contraction since the input and output channels after
contraction are always equal to the input channel of the first layer and the output channel of the last
layer, respectively, regardless of intermediate layers.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Tasks, datasets, and networks We consider two tasks, including image classification and object
detection, with seven datasets to provide a thorough evaluation of NetBooster. Specifically, to evaluate
NetBooster’s performance in alleviating the under-fitting performance to achieve higher accuracy on
the large-scale dataset, we consider the ImageNet dataset (Deng et al., 2009). To evaluate how deep
giant’s learned better representation helps with downstream tasks, we consider image classification
task on five datasets, including CIFAR-100 (Krizhevsky et al., 2009), Cars (Krause et al., 2013),
Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), and Pets (Parkhi et al.,
2012). We also evaluate the downstream object detection task performance on the Pascal VOC
dataset (Everingham et al., 2010). We consider six networks, including ResNet-50 (He et al., 2016),
different variants of MobileNet (Sandler et al., 2018), including MobileNetV2-100/50/Tiny, neural
architecture searched hardware friendly network MCUNet (Lin et al., 2020), and recently trending
vision transformer DeiT-Tiny (Touvron et al., 2021).

Baselines. We benchmark the proposed NetBooster over vanilla networks under standard training,
a series of SOTA KD algorithms (i.e., tf-KD (Yuan et al., 2020), RCO-KD (Jin et al., 2019), and
RocketLaunch (Zhou et al., 2018)), and NetAug (Cai et al., 2021), which is the pioneering work
aiming at boosting TNN training performance.

Expansion strategy. We uniformly expand 50% of blocks in the target TNN. To expand each block,
we replace the first pointwise convolution layer with an inverted residual block with an expansion
ratio of 6. The kernel size of the depthwise convolution layer in the inserted inverted residual block is
set to 1 to make the receptive field the same as the original pointwise convolution.

Training settings. We develop our training settings based on the commonly adopted settings. Specif-
ically, when evaluating NetBooster’s performance in improving TNNs’ performance on large-scale
ImageNet dataset, we follow (Cai et al., 2021) to train the deep giant (expanded network) on Im-
ageNet for 160 epochs using SGD optimizer with a batch size of 1024, an initial learning rate of
0.2 and cosine anneal learning rate schedule. In PLT, we set Ed = 40, and further finetune for
110 epochs also on ImageNet. For downstream tasks transfer, we use the ImageNet pretrained deep
giant (expanded network) as the starting point and develop our training recipe on CIFAR-100 based

7



Under review as a conference paper at ICLR 2023

on (Tian et al., 2019), on Cars, Flowers102, Food101, and Pets based on (Salman et al., 2020), and
on Pascal VOC based on (Cai et al., 2021). In all experiments on downstream tasks, we assign Ed to
20% of the total tuning epochs to PLT and finetune the network in the remaining epochs.

4.2 MITIGATING Iss. 1: BENCHMARKING ON LARGE-SCALE DATASET

Table 1: Benchmarking on ImageNet. ’r’ is the input resolu-
tion.

Network FLOPs Params Training Method Accuracy

MobileNetV2-Tiny
(r=144) 23.5M 0.75M

Vanilla 51.2
RocketLaunch (Zhou et al., 2018) 51.8

tf-KD (Yuan et al., 2020) 51.9
RCO-KD (Jin et al., 2019) 52.6
NetAug (Cai et al., 2021) 53.0

NetBooster 53.7

MCUNet
(r=176) 81.8M 0.74M

Vanilla 61.4
NetAug (Cai et al., 2021) 62.5

NetBooster 62.8

MobileNetV2-50
(r=160) 50.2M 1.95M

Vanilla 61.4
NetAug (Cai et al., 2021) 62.5

NetBooster 62.7

MobileNetV2-100
(r=160) 154.1M 3.47M

Vanilla 69.6
NetAug (Cai et al., 2021) 70.5

NetBooster 70.9

To evaluate whether the proposed Net-
Booster can help TNNs to learn the
complex features on the large-scale
dataset and thus improve performance
on the challenging dataset, we bench-
mark NetBooster on ImageNet dataset
with NetAug and various of KD al-
gorithms. As shown in Table 1, Net-
Booster achieves 1.3% ∼ 2.5% accu-
racy improvements over the vanilla
networks, showing the strong ability
to boost the TNN accuracy by stand-
ing on the shoulder of deep giants gen-
erated by NetBooster.

Compared with the KD baselines, our
proposed NetBooster achieves 0.9% ∼ 1.1% accuracy improvement without guidance from the
teacher network (Assemble-ResNet50 (Lee et al., 2020)), suggesting that the network expansion in
NetBooster can equip the expanded network with sufficient capacity to effectively learn the complex
features at least comparable with the large-scale teacher DNN used in the KD baselines, proving
the learned features can be effectively inherited by the target network from the PLT step. Moreover,
enabling training without a teacher network in NetBooster further leads to only 32.5% additional
iteration-wise training latency over vanilla training, which is 19.4% less than vanilla KD.

Table 2: Benchmarking on downstream image classification
datasets. ’r’ is the input resolution.

Network Training Method CIFAR-100 Cars Flowers102 Food101 Pets

MobileNetV2-Tiny
(r=144)

Vanilla 74.07 76.18 90.01 75.43 78.30
NetBooster 75.46 80.93 90.53 75.96 78.90

MobileNetV2-35
(r=160)

Vanilla 76.08 78.36 90.63 76.80 80.64
Vanilla + KD 76.38 77.47 91.41 77.02 82.44
NetBooster 76.66 80.91 91.16 77.26 80.92

NetBooster + KD 77.15 83.36 92.68 77.81 83.37

Compared with NetAug, which is a
pioneering work focusing on a sim-
ilar scenario as NetBooster, we also
achieve consistently superior perfor-
mance over their method, suggesting
the multi-dimensional network expan-
sion and the PTL for features inheri-
tance is more effective than the net-
work width expansion and directly
drop augmented neuron after training proposed in NetAug. It is worth noticing that, even training
NetAug with two times of training epochs, NetBooster still achieves 0.3% higher accuracy than
NetAug (53.7% v.s. 53.4%). Please refer to Appendix A for NetBooster’s performance on more
models.

4.3 MITIGATING Iss. 2: BENCHMARKING ON DOWNSTREAM TASKS

Table 3: Benchmarking on object detec-
tion tasks with Pascal VOC dataset with
MobileNetV2-35 at 416 resolution.

Method Vanilla NetAug NetBooster

AP50 60.8 62.4 62.6

To evaluate whether the learned complex and represen-
tative features in deep giant from the large-scale dataset
can further help TNNs to achieve better downstream tasks
performance, we first evaluate NetBooster’s performance
when transferring the ImageNet pretrained deep giant
to five representative smaller-scale image classification
datasets with PLT. As shown in Table 2, compared with
vanilla training, NetBooster’s framework achieves 0.46% ∼ 4.75% accuracy improvement, show-
ing the complex features learned by a deep giant are effectively inherited after PLT, leading to
higher downstream task performance. Our method is also orthogonal to KD, where applying KD
together with our proposed NetBooster can lead to another 0.49% ∼ 2.45% accuracy boost on top of
NetBooster alone.

We further evaluate NetBooster’s performance when transferring to the Pascal VOC object detection
task. As shown in Table 3, NetBooster achieves 1.8 and 0.2 higher AP50 compared with vanilla

8



Under review as a conference paper at ICLR 2023

training and NetAug, respectively. This proves that NetBooster can be considered as a general method
to boost TNNs’ performance across various tasks.

4.4 VALIDATING EXPANSION STRATEGY

Table 4: Ablation study on what kind of block to
insert.

Inserted Block Type Expanded Acc. Final Acc.

Vanilla - 51.20

Inverted Residual 54.90 53.70
Basic Block 54.52 53.41

Bottleneck Block 55.23 53.62

We validate our answer to each question in
Sec. 3.3 by validating the impact of replac-
ing our proposed strategy with alternatives
when training MobileNet-Tiny on the ImageNet
dataset with an input resolution of 144.

Q1. What blocks to insert: We ablate the im-
pact of expanding with different kinds of blocks
and report the results in Table 4. Expanding
with inverted residual blocks leads to slightly
better results (0.29% ∼ 0.08%). Showing (1) the NetBooster framework can robustly boost TNNs’
performance, and (2) inserting with the inverted residual block is an effective choice.

Table 5: Ablation study on which block to expand.

Expansion Expanded Expanded Acc. Final Acc.FLOPs Params

Vanilla 29.4M 0.75M - 51.20

Expand First 8 65.0M 0.83M 51.46 51.50
Expand Middle 8 49.6M 0.93M 52.98 52.62

Expand Last 8 51.2M 1.25M 53.90 52.47

Uniform Expand 8 63.9M 0.99M 54.90 53.70

Q2. Where to expand: We ablate different ex-
pansion locations’ impacts and report our find-
ings in Table 5. We observe that uniformly ex-
panding the model achieves 2.20% ∼ 1.08%
higher accuracy compared with excessively ex-
panding the first/middle/last part of the network,
proving the necessity to expand the model uni-
formly.

Q3. How to determine expansion ratio: We
ablate different selection of expansion ratios in the inserted inverted residual blocks and report the
results in Table. 6. We observe that NetBooster with a wide range of commonly used expansion ratios
(i.e., 4 ∼ 6) consistently improves the TNNs’ performance, further proving NetBooster’s robustness
to hyperparameter selection.

Please refer to Appendix B for more ablation study on our proposed expansion strategy.

4.5 SCHEDULE FOR NON-LINEARITY REMOVAL Table 6: Ablation study on expansion
ratio of inserted block.

Expansion ratio 2 4 6 8

Final Acc. 52.94 53.52 53.70 52.56

One of the key factors to NetBooster’s success is to min-
imize the knowledge loss after progressively removing the
non-linearity in inserted blocks during PLT. Thus, we fur-
ther ablate the appropriate way to remove the non-linearity
from the network by training the MCUNet on the ImageNet dataset with different Ed. We summarize
the results in Table 7. Surprisingly, as long as we use the proposed PLT to decay the non-linearity
gradually, the variance in decay epochs only leads to a marginal change in the achieved accuracy (i.e.,
less than 0.3% accuracy change), proving the necessity and the stability of PLT.

5 CONCLUSION

Table 7: Ablation study on
non-linearity decay epochs.

Network Ed Accuracy

MCUNet

0 61.8
20 62.6
40 62.8
60 62.5

In this paper, we discover and promote a new paradigm for training
TNNs to empower their achievable accuracy via augmenting both
dimensions of the network (i.e., depth and width) during training.
Furthermore, we propose a framework dubbed NetBooster, which
is dedicated to boosting the performance of SOTA TNNs by using
an expand-then-contract training strategy to alleviate TNNs’ under-
fitting issue. Finally, we make heuristic efforts to empirically explore
what/when/where to augment when training TNNs using our pro-
posed NetBooster. Extensive experiments and ablation studies on
seven networks and two datasets show that NetBooster consistently leads to a nontrivial accuracy
boost (e.g., 1.3% ∼ 2.5%) on top of SOTA TNNs on the ImageNet and as much as 4.7% higher
accuracy on various downstream tasks, while maintaining their inference complexity/efficiency.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Stefan Carlsson. Factors
of transferability for a generic convnet representation. IEEE transactions on pattern analysis and
machine intelligence, 38(9):1790–1802, 2015.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In European conference on computer vision, pp. 446–461. Springer,
2014.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, Ji Lin, and Song Han. Network augmentation for tiny deep learning. arXiv
preprint arXiv:2110.08890, 2021.

Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of the devil in the
details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531, 2014.

Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx: Relu-
efficient network design for private inference. arXiv preprint arXiv:2106.11755, 2021.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg:
Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13733–13742, 2021.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In
International conference on machine learning, pp. 647–655. PMLR, 2014.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Yonggan Fu, Qixuan Yu, Meng Li, Vikas Chandra, and Yingyan Lin. Double-win quant: Aggressively
winning robustness of quantized deep neural networks via random precision training and inference.
In International Conference on Machine Learning, pp. 3492–3504. PMLR, 2021a.

Yonggan Fu, Zhongzhi Yu, Yongan Zhang, Yifan Jiang, Chaojian Li, Yongyuan Liang, Mingchao
Jiang, Zhangyang Wang, and Yingyan Lin. Instantnet: Automated generation and deployment of
instantaneously switchable-precision networks. arXiv preprint arXiv:2104.10853, 2021b.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for convolutional
networks. arXiv preprint arXiv:1810.12890, 2018.

Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, and Siddharth Garg. Circa: Stochastic relus for
private deep learning. Advances in Neural Information Processing Systems, 34, 2021.

10



Under review as a conference paper at ICLR 2023

Chengyue Gong, Dilin Wang, Meng Li, Vikas Chandra, and Qiang Liu. Keepaugment: A simple
information-preserving data augmentation approach. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1055–1064, 2021.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pp. 784–800, 2018.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781, 2019.

Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge transfer via distillation
of activation boundaries formed by hidden neurons. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 3779–3787, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324,
2019.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pp. 646–661. Springer, 2016.

Zehao Huang and Naiyan Wang. Like what you like: Knowledge distill via neuron selectivity transfer.
arXiv preprint arXiv:1707.01219, 2017.

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu
reduction for fast private inference. In International Conference on Machine Learning, pp. 4839–
4849. PMLR, 2021.

Xiao Jin, Baoyun Peng, Yichao Wu, Yu Liu, Jiaheng Liu, Ding Liang, Junjie Yan, and Xiaolin
Hu. Knowledge distillation via route constrained optimization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1345–1354, 2019.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In Proceedings of the IEEE international conference on computer vision
workshops, pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Jungkyu Lee, Taeryun Won, Tae Kwan Lee, Hyemin Lee, Geonmo Gu, and Kiho Hong. Compounding
the performance improvements of assembled techniques in a convolutional neural network. arXiv
preprint arXiv:2001.06268, 2020.

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang. Dynamic
slimmable network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8607–8617, 2021.

11



Under review as a conference paper at ICLR 2023

Joseph Jaewhan Lim. Transfer learning by borrowing examples for multiclass object detection. PhD
thesis, Massachusetts Institute of Technology, 2012.

Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep
learning on iot devices. arXiv preprint arXiv:2007.10319, 2020.

Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. Mcunetv2: Memory-efficient
patch-based inference for tiny deep learning. arXiv preprint arXiv:2110.15352, 2021.

Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian Tang, and Jieping Ye. Autocompress: An
automatic dnn structured pruning framework for ultra-high compression rates. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pp. 4876–4883, 2020.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pp. 6989–7000. PMLR, 2021a.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. arXiv preprint
arXiv:2111.09883, 2021b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021c.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 5191–5198, 2020.

Romain Mormont, Pierre Geurts, and Raphaël Marée. Comparison of deep transfer learning strategies
for digital pathology. In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, pp. 2262–2271, 2018.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth. arXiv preprint
arXiv:2010.15327, 2020.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729. IEEE, 2008.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3967–
3976, 2019.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Raspberry Pi Limited. Raspberry Pi 4. https://www.raspberrypi.org/products/
raspberry-pi-4-model-b/, accessed 2020-09-01.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversari-
ally robust imagenet models transfer better? Advances in Neural Information Processing Systems,
33:3533–3545, 2020.

12



Under review as a conference paper at ICLR 2023

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp. 806–813, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International Conference on Machine Learning, pp. 6105–6114. PMLR, 2019.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd International Conference on Pattern
Recognition (ICPR), pp. 2464–2469. IEEE, 2016.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. arXiv
preprint arXiv:1910.10699, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 1365–1374, 2019.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for spatial
and channel dimensions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12965–12974, 2020.

Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei Xu, Tan Nguyen, Richard Baraniuk, Zhangyang
Wang, and Yingyan Lin. Dual dynamic inference: Enabling more efficient, adaptive, and con-
trollable deep inference. IEEE Journal of Selected Topics in Signal Processing, 14(4):623–633,
2020.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10734–10742, 2019.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen Grauman,
and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8817–8826, 2018.

Zhongzhi Yu, Yonggan Fu, Sicheng Li, Chaojian Li, and Yingyan Lin. Mia-former: Efficient and
robust vision transformers via multi-grained input-adaptation. arXiv preprint arXiv:2112.11542,
2021.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via
label smoothing regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3903–3911, 2020.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

13



Under review as a conference paper at ICLR 2023

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6848–6856, 2018.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data aug-
mentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
13001–13008, 2020.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

Guorui Zhou, Ying Fan, Runpeng Cui, Weijie Bian, Xiaoqiang Zhu, and Kun Gai. Rocket launching:
A universal and efficient framework for training well-performing light net. In Thirty-second AAAI
conference on artificial intelligence, 2018.

A NETBOOSTER AS A GENERAL TECHNIQUE TO IMPROVE NETWORK
PERFORMANCE

Existing works have shown that although larger networks normally suffer from over-fitting instead of
under-fitting, increasing the network capacity can still lead to non-trivially performance improve-
ment (Liu et al., 2021c; He et al., 2016; Liu et al., 2021b). To validate whether NetBooster has
the potential as a general technique to boost neural networks’ performance, we further validate the
NetBooster on ResNet-50 (He et al., 2016) and DeiT-Tiny (Touvron et al., 2021) on the ImageNet
dataset with input resolution 224.

Table 8: Evaluating NetBooster’s perfor-
mance on ResNet-50 and DeiT-Tiny.

Network Training method Accuracy

ResNet-50 Vanilla 77.6
NetBooster 78.0

DeiT-Tiny Vanilla 72.2
NetBooster 73.7

Experiments setting: We follow the training setting
in (He et al., 2016) and (Touvron et al., 2021) to train
ResNet-50 and DeiT-Tiny, respectively. We follow the
proposed setting to expand 50% of blocks in ResNet-50
and DeiT-Tiny uniformly. Specifically, for ResNet-50, we
expand the first layer into the inverted residual block with
a depthwise convolution kernel size of 3, expansion ratio
6 in the first layer in the selected blocks. For DeiT-Tiny, we expand the first fully connected layer in
the feedforward network of the selected blocks into two fully connected layers with an expansion
ratio of 6. We set Ed to 20% of the total training epochs.

Figure 3: Visualization of the expanded accuracy
(i.e., the accuracy of the expanded network) and
final accuracy when using different numbers of
expand blocks with an expansion ratio 6.

Results: As shown in Table 8, NetBooster leads
to 0.4% higher accuracy over vanilla training
on the large-scale DNN (i.e., ResNet-50) and
1.5% higher accuracy over the attention-based
vision transformer (i.e., DeiT-Tiny), showing
its promising potential in boosting all DNNs’
performance.

B NUMBER OF EXPANSION LAYERS

The other factor that controls the deep giant’s
capacity is the number of expansion layers. We
evaluate the relationship between the expansion
ratio and the final performance on MobileNetV2-
Tiny and the ImageNet dataset with an input
resolution of 144. As shown in Fig. 3, we ob-
serve that with various numbers of expansion
layers, (1) networks boosted by the expansion-
then-contraction strategy in NetBooster can con-
stantly surpass the performance of vanilla net-
works, proving the NetBooster’s effectiveness, (2) the expanded network performance (ExpandAcc.)
increase first then decrease. We suspect the decrease in the expanded network accuracy is due to
the overly deep network makes it challenging to train the network effectively, and (3) the boosted

14



Under review as a conference paper at ICLR 2023

network performance (FinalAcc.) also has the increase-then-decrease pattern, validating our selected
number of expansion layers.

15


