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Abstract

Reward models (RMs) play a crucial role in aligning large language models (LLMs)
with human preferences and enhancing reasoning quality. Traditionally, RMs are
trained to rank candidate outputs based on their correctness and coherence. How-
ever, in this work, we present several surprising findings that challenge common
assumptions about RM behavior. Our analysis reveals that state-of-the-art reward
models prioritize structural consistency over causal correctness. Specifically, re-
moving the problem statement has minimal impact on reward scores, whereas
altering numerical values or disrupting the reasoning flow significantly affects RM
outputs. Furthermore, RMs exhibit a strong dependence on complete reasoning
trajectories—truncated or incomplete steps lead to significant variations in reward
assignments, indicating that RMs primarily rely on learned reasoning patterns
rather than explicit problem comprehension. These findings hold across multiple
architectures, datasets, and tasks, leading to three key insights: (1) RMs primar-
ily assess coherence rather than true reasoning quality; (2) The role of explicit
problem comprehension in reward assignment is overstated; (3) Current RMs may
be more effective at ranking responses than verifying logical validity. Our results
suggest a fundamental limitation in existing reward modeling approaches, empha-
sizing the need for a shift toward causality-aware reward models that go beyond
consistency-driven evaluation.

1 Introduction

Large language models (LLMs) [Hurst et al., 2024, Dubey et al., 2024, Team et al., 2024, Anthropic,
2024, Jiang et al., 2023a, Liu et al., 2024a, Yang et al., 2024a] have emerged as a dominant paradigm
in natural language processing, demonstrating remarkable performance across a diverse range of
tasks. The Scaling Law [Kaplan et al., 2020] suggests that as model size increases, LLMs develop
emergent abilities, enhancing their capacity to comprehend and solve complex tasks. This scalability
enables LLMs to generate coherent, contextually accurate responses, supporting a wide array of
downstream applications, including summarization [Zhang et al., 2019, 2024], code generation [Chen
et al., 2021], mathematical reasoning [Hendrycks et al., 2021, Zhou et al., 2023], and conversational
Al [OpenAl, 2022, Hurst et al., 2024].

A key factor contributing to the success of large language models is their ability to align model outputs
with user preferences[Christiano et al., 2017], which relies on training robust reward models. Beyond
preference alignment, reward models also play a crucial role in enhancing reasoning capabilities,
serving as mechanisms to evaluate and refine logical correctness in complex tasks[Cobbe et al.,
2021, Lightman et al., 2023]. One promising approach to scaling test-time computation [Snell
et al., 2024, Brown et al., 2024, Cobbe et al., 2021, Dong et al., 2023] involves leveraging reward
models to search for optimal solutions among multiple candidates. Despite these advancements, the
intrinsic mechanisms of reward models remain underexplored—specifically, the basis on which
they assign rewards to generated trajectories and whether they truly comprehend and reason
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Figure 1: Illustrations of the reward model input modifications. We apply various perturbations, in-
cluding numerical value modification, question shuffling, question truncation, initial steps truncation,
last steps truncation, and all steps truncation, to assess the sensitivity of different input components
on reward evaluation.
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about the questions they evaluate. In this paper, we conduct a comprehensive empirical study of
state-of-the-art reward models across multiple reasoning datasets and uncover two surprising findings.
First, our systematic error analysis (Figure 1) reveals that question truncation has the least impact on
reward outputs, whereas modifying numerical values or shuffling the question significantly disrupts
reward assignments. This suggests that reward models prioritize internal coherence over true causal
understanding—they assess solutions based on structural consistency rather than verifying whether
the reasoning directly corresponds to the given question. Second, when provided with incomplete
trajectories (i.e., truncated reasoning steps or only given the final answer), the reward outputs change
significantly. This indicates that current reward models rely heavily on complete reasoning steps
or learned patterns to justify trajectory quality, rather than truly understanding the problem-solving
process. Furthermore, our rank correlation analysis and Best-of-N experiments confirm that while
reward models remain robust to question omission, they are highly sensitive to the completeness of
reasoning steps and the consistency between the question and solution.

Our results advocate a rethinking of existing reward models. These findings highlight a fundamental
limitation of current reward models: they evaluate logical structure rather than verifying causal
correctness, raising important questions about their ability to generalize and assess novel problem-
solving scenarios effectively.

2 Related Work

2.1 LLM Reward Models.

Reward models play a crucial role in human preference alignment [Christiano et al., 2017, Bai
et al., 2022, Casper et al., 2023] by guiding large language models (LLMs) toward desired behaviors.
Broadly, reward modeling methods can be categorized into two approaches. The first is the preference-
based reward model, such as Bradley-Terry (BT) model [Bradley and Terry, 1952, Zhao et al., 2023,
Rafailov et al., 2024, Ethayarajh et al., 2024, Xiong et al., 2024a] and general preference model
[Jiang et al., 2023b, Munos et al., 2023, Tang et al., 2024, Ye et al., 2024, Azar et al., 2024], which
defines the reward function by the preference between two responses. Conventional RLHF usually
capture the human preference with BT model [Ouyang et al., 2022, OpenAl, 2022], which has been
widely proven to improve the quality of model outputs [Dubey et al., 2024, Dong et al., 2024, Guo
et al., 2024]. The second approach estimate the probability of correctness as rewards, directly scoring
outputs without relying on pairwise comparisons. In this paper, we primarily focus on correctness-
based cases, which are well-defined and more commonly used for selecting reasoning trajectories
during both training [Chen et al., 2024, Wang et al., 2024] and inference [Brown et al., 2024] in
reasoning tasks. Depending on how reward signals are assigned, these models can be classified into
Outcome Reward Models (ORMs) and Process Reward Models (PRMs). ORMs [Yu et al., 2023]
evaluate solutions based solely on the final output, while PRMs [Lightman et al., 2023] provide
step-level annotations, offering dense and granular reward signals at each reasoning step to encourage
structured problem-solving. PRMs have been proven to be effective in mathematical problems [Shao
et al., 2024, Snell et al., 2024, Luo et al., 2024, Liao et al., 2025].
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2.2 Robustness of Reward Models.

Despite the success of reward models in aligning with human preferences, they still have issues. A
common issue is reward hacking [Ibarz et al., 2018, Denison et al., 2024], where the policy achieves
high reward scores from the reward model without exhibiting the desired behavior. This phenomenon
leads to performance degradation [Bai et al., 2022] and increases the discrepancy between the policy
model’s behavior and the intended objective [Stiennon et al., 2020]. Reward hacking manifests in
various patterns [Park et al., 2024], with length hacking being one of the most prevalent and well-
documented cases in large language model research. Singhal et al. [2024] investigate length-related
issues in reward models, demonstrating a strong correlation between reward scores and text length.
This finding aligns with the observation by Dubois et al. [2023] that output length distributions tend
to increase after applying PPO. And Liu et al. [2024b] explore length hacking with the popular DPO
algorithm. In addition, ODIN [Denison et al., 2024] explores to mitigate the length hacking issue by
disentangling the length from the original reward. In this work, rather than exploring new general
patterns of reward hacking or developing mitigation techniques, we focus on an empirical study that
explores whether state-of-the-art reward models genuinely understand questions, reasoning steps, and
their causal relationships in reasoning tasks.

3 LLM Reward

We formalize the interaction between a user and an LLM as a mapping from a given context or
prompt, denoted as z, to a generated response y. The response y consists of a sequence of steps,
represented as y = [y1,...,Yn]. The ideal reward function r.(z,y) quantifies the quality of the
generated response in terms of its final performance. To ensure a well-defined reward function, we
adopt an outcome-based formulation and focus on objective reasoning problems, where the reward is
defined as the probability that y produces a correct or desirable outcome:

r«(z,y) = P(y is correct | ).

This probabilistic formulation provides a structured measure of response effectiveness. By framing
the reward in this manner, we ensure that learning objectives align with producing accurate and
reliable responses.

In real world, although we can access the reward for training data. People usually use another LLM
to estimate the optimal reward ry. Ideally, ry ~ r,. To train a reward model, people use a dataset of
labeled examples {(x;, y;, z;) }_,, where x; represents the input prompt, y; is the generated response,
and z; € {1,0} is a binary label indicating whether the response is correct (1) or incorrect (0). The
reward model r¢(z,y) is parameterized by 6 and is trained to approximate the ideal reward function
r+(z,y) by minimizing a loss function that encourages consistency with the labeled data. A common
approach is to optimize a binary cross-entropy loss:

n

L(0) = — Z [zilogrg (i, yi) + (1 — zi) log(1 — ro(2i,11))],
i=1

where rg(z;,y;) is interpreted as the probability that y; is correct given x;. This formulation ensures
that the reward model learns to distinguish between high-quality and low-quality responses. Once
trained, the reward model can be used to guide response generation in reinforcement learning or
ranking-based optimization frameworks.

In addition, people are refining the reward model with the process-based supervision.
r4(2,y1.5) = P(y1.x is correct | ).

By incorporating process-based supervision, reward models can capture fine-grained signals that
improve alignment with human reasoning, ultimately leading to more interpretable and controllable
LLM outputs. This paradigm enables reward models to provide more structured feedback, particularly
for tasks requiring multi-step reasoning or sequential decision-making.

In this paper, we would like to investigate the reward behavior of incomplete inputs to identify
what are really matters for reward models. For example, empty input rg(None, y), truncated output
To (1‘7 yl:n/2) Or 7o ('T7 yn/2:n)’ shuffled inPUt To ('T/a y)
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Figure 2: Density maps of absolute reward errors across different datasets when truncating various
input components, using Qwen-2.5-Math-1.5B-Instruct as the base model and Skywork-O1-Open-
PRM-Qwen-2.5-1.5B as the reward model..

4 Experimental Setup

We outline the experimental setup used in our analysis in Sections 5 and 6.

Models. We utilize two reward model families: Skywork-ol-OpenPRM [0l Team, 2024] and
RLHFlow [Xiong et al., 2024b]. Specifically, our experiments include Skywork-o1-Open-PRM-
Qwen-2.5-1.5B, Skywork-01-Open-PRM-Qwen-2.5-7B, Llama3.1-8B-ORM-Deepseek-Data, and
Llama3.1-8B-PRM-Deepseek-Data. For base models, we employ both general-purpose and math-
focused LLMs, specifically Llama-3 [Dubey et al., 2024] and Qwen-2.5-Math [Yang et al., 2024b].

Datasets. We conduct experiments on a diverse set of reasoning tasks, including GSM8K [Cobbe
et al., 2021], MATHS00 [Hendrycks et al., 2021], OlympiadBench [He et al., 2024], GaoKao-2023-
En [Liao et al., 2024], and Minerva Math Lewkowycz et al. [2022].

Default Setting. All experiments were conducted on NVIDIA H100 GPUs, using vLLM[Kwon
et al., 2023] as the backend. We set the generation parameters to temperature = 0.8 and top_p
= 1.0 for Best-of-/NV sampling and trajectory collection. A reasoning step is defined as a generation
ending with \n\n. For the process reward model, each trajectory is scored based on the reward of its
final step. In the error analysis experiments (Section5), we sample 32 trajectories per question.

5 Questions Matters Little

5.1 Which Input Matters Most?

To assess the relative importance of different components in reward model inputs, we systematically
truncate various parts of the input and analyze their impact on model predictions. Specifically, we
evaluate how the absence of key information—such as the question or portions of the solution—affects
the reward assignment. The following truncation strategies are considered:
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Question Truncation: The question is entirely removed, leaving only the solution trajectory as input
to the reward model. This tests whether the model primarily relies on the reasoning process rather
than the problem statement itself.

Initial Steps Truncation: The first half of the solution steps is removed, preserving only the
latter portion. This examines whether early-stage reasoning contributes significantly to the model’s
assessment or if later steps alone are sufficient.

Last Steps Truncation: The final half of the solution steps is removed, retaining only the initial por-
tion. This helps determine whether the model emphasizes intermediate reasoning steps or prioritizes
the final stages of problem-solving.

All Steps Truncation: All solution steps are removed, leaving only the final answer box. This
scenario isolates the influence of the final answer on the reward model’s judgment, shedding light on
whether the model evaluates reasoning quality or focuses primarily on correctness.

We quantify the impact of input modifications by computing the absolute error between the original
reward output, 7, and the reward of the truncated input, r*, given by |r—r*|. The results on MATHS500,
GSMSK, OlympiadBench, and GaoKao-2023-En are visualized in Figure 2. We present histograms
of the error distribution across all questions, with each question sampled over 32 trajectories.

We observe that the error distributions vary across datasets and truncation strategies, highlighting the
differing sensitivities of reward models to different input components. Question truncation generally
results in a lower absolute error, suggesting that the model can still assign reasonable reward scores
based on the solution trajectory alone. In contrast, initial steps truncation and last steps truncation
exhibit distinct effects, with the latter often leading to larger errors, implying that final reasoning steps
play a crucial role in the model’s decision-making process. The all steps truncation condition, which
retains only the final answer box, consistently produces the highest errors, particularly in MATH500
and OlympiadBench, indicating that intermediate reasoning steps are essential for accurate reward
assignment.

These findings suggest that the question is less important than the reasoning steps in determining
reward scores. The relatively low absolute error from question truncation indicates that the model
can still evaluate solution quality even without explicit access to the problem statement. Conversely,
the higher errors observed in last steps truncation and all steps truncation highlight the critical role of
intermediate and final reasoning steps in the model’s decision-making process. This suggests that
reward models prioritize logical coherence and solution completeness over simply understanding the
original question, emphasizing the necessity of reasoning depth in reward evaluation.

5.2 Consistency Matters

To gain deeper insights into the role of the question in reward modeling, we conduct a series of
controlled experiments designed to assess the extent to which the reward model relies on the problem
statement for evaluating solution quality. Specifically, we investigate how disrupting the question-
solution relationship and altering key numerical values affect the model’s reward assignment.

Question Shuffling: We shuffle the questions and their corresponding solution trajectories, disrupting
the original question-solution pairings. This tests the reward model’s reliance on the semantic
coherence between the problem statement and the reasoning steps.

Numerical Value Modification: We replace numerical values in the question with random values,
altering the problem while preserving its overall structure. This evaluates the model’s sensitivity to
specific numerical details in the question.

Figure 3 presents the absolute error distributions for different question modification strategies across
four reasoning benchmarks. Across all datasets, question truncation consistently results in lower
errors, suggesting that removing the question has a limited impact on the reward model. Question
shuffling introduces moderate errors, particularly in GSM8K, indicating that the semantic consistency
between the problem and solution plays a role in reward assignment. Numerical value modification,
especially in GSMB8K, leads to the largest errors, demonstrating that changes in numerical details
significantly affect the reward model’s predictions.

These results highlight the importance of consistency in the reward model’s input. The fact that
question truncation results in lower errors implies that the reward model primarily evaluates the
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Figure 3: Density maps of absolute reward errors across different datasets. We compare the effects
of question truncation, question shuffling, and numerical value modification using Qwen-2.5-Math-
1.5B-Instruct as the base model and Skywork-O1-Open-PRM-Qwen-2.5-1.5B as the reward model.
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Figure 4: Spearman correlation of reward rankings under input truncation and Shuffling on MATH500
and Olympiad Bench. NV is the number of sampled trajectories for each input.

reasoning process rather than the question itself. However, the increased errors in question shuffling
suggest that disrupting semantic alignment between the problem and solution trajectory weakens
the model’s ability to assign consistent rewards. Moreover, the high error from numerical value
modification indicates that numerical consistency is crucial, as the model relies on specific values to
gauge correctness.

6 Impact on Ranking of Rewards

A key application of reward models is to rank candidate outputs and select the best among them.
Beyond absolute error analysis, it is crucial to evaluate how input modifications influence the relative
ranking of rewards assigned to different outputs. To this end, we investigate the impact of question
and reasoning modifications on ranking consistency through two complementary analyses:

* Rank Correlation of Rewards: We assess how well the reward model preserves the relative
ranking of outputs after input modifications by computing ranking correlation metrics.



206
207
208

210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225

Table 1: Best-of- N results under different reward input modifications.

Olympiad Minerva

Base Model RM  Setting MATHS500 GSMSK Bench Math Avg.
7B - - 83.2 95.7 41.2 375 64.4
Math Model, Base: Qwen2.5-Math-Instruct, RM: Skywork- 0o1-Open-PRM 1.5B
7B 1.5B N =4 85.4 96.9 43.3 39.3 66.2
7B 1.5B N =38 84.6 96.7 453 38.2 66.2
7B 1.5B N =16 854 96.9 45.0 38.6 66.5
Question Truncation
7B 1.5B N =4 85.8 96.4 43.0 36.0 65.3
7B 1.5B N =38 86.4 97.0 42.7 37.9 66.0
7B 1.5B N =16 86.0 96.1 45.3 37.1 66.1
Initial Steps Truncation
7B 1.5B N =4 85.0 96.4 39.7 36.4 64.4
7B 1.5B N =238 86.4 96.3 43.0 36.4 65.5
7B 1.5B N =16 85.4 96.0 43.1 375 65.5
Last Steps Truncation
7B 1.5B N =4 84.0 95.5 42.4 38.2 65.0
7B 1.5B N =28 87.0 96.1 38.8 349 64.2
7B 1.5B N =16 83.6 95.6 41.8 37.5 64.6
Question Shuffling
7B 1.5B N =4 84.8 95.9 41.9 37.5 65.0
7B 1.5B N =28 85.0 96.1 427 37.1 65.2
7B 1.5B N =16 85.0 96.7 44.0 36.0 65.4
Math Model, Base: Qwen2.5-Math-Instruct, RM: Skywork- o1-Open-PRM 7B
7B 7B N =4 86.0 97.0 41.8 38.2 65.8
7B 7B N =28 87.0 97.1 45.3 37.5 66.7
7B 7B N =16 86.0 97.1 47.0 39.3 67.4
Question Truncation
7B 7B N =4 86.2 96.4 44.0 353 65.5
7B 7B N =28 86.0 96.2 43.1 379 65.8
7B 7B N =16 84.0 96.3 46.5 41.9 67.2
Initial Steps Truncation
7B 7B N =4 82.8 96.3 41.5 38.2 64.7
7B 7B N =38 85.4 96.7 42.7 40.1 66.2
7B 7B N =16 84.6 96.3 43.9 40.8 66.4
Last Steps Truncation
7B 7B N =4 84.4 96.4 39.9 39.7 65.1
7B 7B N =38 83.4 96.1 40.7 37.1 64.3
7B 7B N =16 85.6 96.4 43.0 37.1 64.5
Question Shuffling
7B 7B N =4 83.4 96.6 39.0 349 63.5
7B 7B N =238 81.8 95.8 43.0 36.8 64.4
7B 7B N =16 83.2 95.3 41.6 37.9 64.7

* Best-of-NV Selection: We evaluate the effect of input modifications on Best-of- N selection
performance, where the reward model is used to choose the best candidate from a set of
generated outputs.

6.1 Rank Correlation of Rewards

Using Qwen2.5-Math-7B-Instruct as the base model and Skywork-o1-Open-PRM-Qwen-2.5-1.5B as
the reward model, we generate 4, 8, 16, and 32 candidate outputs per question on MATH500 and
OlympiadBench. To assess the stability of reward rankings under input modifications, we compute
Spearman’s rank correlation coefficient (p) as our ranking consistency metric. Spearman’s correlation
quantifies the monotonic relationship between two variables, providing insight into how well the
reward model preserves the relative ranking of candidate outputs despite perturbations in input
structure. A high Spearman correlation indicates that the ranking of outputs remains stable regardless
of modifications. Conversely, a low correlation signifies that input modifications significantly alter
the ranking behavior, revealing potential inconsistencies in the model’s reward assignment process.

Figure 4 presents the Spearman rank correlation coefficients for different truncation strategies across
varying values of V. Removing the question consistently results in the highest rank correlation across
all values of N, suggesting that the reward model remains relatively stable in ranking outputs even
when the problem statement is absent. Additionally, the correlation increases as [N grows, indicating
that the ranking consistency improves when selecting from a larger set of candidate outputs. In
contrast, removing the first half of the solution steps leads to a significantly lower correlation, implying
that complete reasoning steps is important in determining rankings. Furthermore, disrupting the
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semantic coherence between the question and solution has a noticeable impact on ranking correlation,
demonstrating that maintaining a logically consistent input structure is important for stable ranking
performance.

These findings further confirms that reward models prioritize reasoning consistency over direct
question comprehension. While the models demonstrate robustness to question removal, their
sensitivity to reasoning disruptions suggests that they rely more on structural coherence than an actual
understanding of problem-solving logic.

6.2 Best-of-NV

Table 1 and Table 2 present the Best-of- N results under different input modifications for reward
models. For the Qwen2.5-Math-Instruct-7B models, removing the question has a relatively minor
impact on performance, with scores remaining stable across different values of N. For instance,
when N=16, the model achieves an average score of 66.1, only 0.4 points lower than the vanilla
Best-of-N setting. This finding aligns with previous observations that reward models primarily rely
on reasoning steps rather than the problem statement itself. In contrast, truncating initial or final steps
leads to a more noticeable performance drop, highlighting the importance of complete reasoning
trajectories. Additionally, question shuffling results in the largest performance degradation across
both reward models, reinforcing the necessity of consistency between the question and solution for
effective ranking.

For the Llama-3.2 base model, we evaluate both ORM and PRM reward models (Appendix A.1).
Similar to the Qwen models, removing the question leads to only minor performance degradation.
However, the most significant drop is observed in the question shuffling condition, particularly in
Olympiad Bench and Minerva Math, where the disrupted semantic alignment prevents the reward
model from identifying high-quality reasoning trajectories among multiple samples. With shuffled
questions, the average performance drops to 24.0, even worse than the baseline of 24.8. These
results further emphasize that reward models prioritize structural consistency and reasoning flow over
explicit problem comprehension.

Best-of- N results reflect the performance of the trajectory assigned the highest reward score, offering
insights into how different input modifications impact the reward model’s ability to identify the best
solution. The results in the table reinforce the key finding that reward models prioritize structural con-
sistency over causal understanding. The relatively stable performance in question truncation suggests
that the reward model does not rely on the problem statement itself to evaluate responses. Instead, it
primarily assesses the internal coherence of the solution trajectory. However, the consistency between
the question and the solution remains crucial, as disruptions can significantly degrade performance,
highlighting the importance of semantic alignment in reward-based ranking.

7 Discussion and Conclusion

In this paper, we investigate the impact of input modifications on reward models and uncover key
insights into their evaluation behavior. Our findings reveal that truncating the question has minimal
impact on both absolute reward values and ranking consistency, suggesting that reward models
primarily evaluate the solution trajectory rather than the problem statement itself. However, shuffling
the question or modifying numerical values significantly alters the reward model’s output, indicating
that semantic coherence and numerical consistency play a crucial role in assessment. Additionally,
incomplete reasoning steps lead to substantial changes in rankings, highlighting the model’s strong
reliance on a structured and complete reasoning trajectory rather than an explicit understanding of
problem-solving steps.

The Consistency Bias in Reward Models. Our findings suggest that reward models are not truly
evaluating the causal relationship between the question and its solution but rather the internal
consistency of the reasoning process. Even when the question is removed, if the solution remains
well-structured, the model continues to assign high scores. Conversely, when reasoning steps are
truncated, the model struggles to maintain ranking consistency, indicating that it relies on pattern
recognition rather than an actual causal understanding of the problem-solution relationship. This
raises concerns about the model’s ability to generalize beyond familiar solution structures and adapt
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to novel problem distributions. Future research should explore techniques to mitigate this consistency
bias and encourage a more causally grounded evaluation framework.

Towards Causality-Aware Reward Models. To move beyond consistency-driven ranking, future
reward models should incorporate causal reasoning techniques to better assess the logical validity of
solutions. Potential directions include:

» Causality-Augmented Training: Incorporating counterfactual reasoning tasks to train
reward models to recognize causal dependencies rather than relying solely on surface-level
patterns.

¢ Chain-of-Thought Awareness: Rewarding models not only for correct final answers but
also for their adherence to logically structured reasoning chains, ensuring that each step
contributes meaningfully to the solution.

* Human-in-the-Loop Refinement: Leveraging human preference data to penalize superficial
pattern matching and encourage robust causal reasoning, improving the model’s ability to
distinguish valid reasoning from plausible but incorrect trajectories.

Reconsidering Reward Model Objectives. Current reward models might be optimizing for ranking
stability rather than true problem-solving ability. This raises the need to rethink selection strategies,
such as:

* Uncertainty-Aware Reward Models: Incorporating confidence-aware mechanisms to quan-
tify the model’s uncertainty in evaluating complex reasoning tasks.

* Deeper Reasoning Signals: Designing reward functions that explicitly capture reasoning
depth and logical validity, rather than solely relying on surface-level agreement with high-
ranked answers.

Ethics Statement

This work presents an empirical analysis of reward model behavior in large language models (LLMs),
with a focus on understanding their evaluation mechanisms rather than proposing new models for
deployment. All models and datasets used in this study are publicly available and widely used in the
research community. We emphasize that our analyses are intended to identify limitations and inform
better practices in reward model design.

Our findings highlight potential shortcomings in current reward modeling techniques, such as over-
reliance on structural consistency and susceptibility to input manipulation. While these insights can
inform more robust and causality-aware evaluation frameworks, they also underscore risks if reward
models are deployed without careful validation in safety-critical or high-stakes applications.

We encourage researchers and practitioners to interpret our results responsibly, particularly when
using reward models to guide generation in reinforcement learning or automated decision-making.
Future work should aim to incorporate human-in-the-loop oversight and causal reasoning capabilities
to ensure that reward models reflect genuine understanding and alignment with human values.

No human subjects or personally identifiable information were used in this study, and no new data
were collected.
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76 A Appendix

477 A.1 Best-of-N Results on LLaMA

478 For the Llama-3.2 1B base model, we evaluate both ORM and PRM reward models under different
input modifications.

Table 2: Best-of-N results under different reward input modifications.

Olympiad  Minerva

Draft RM  Setting MATH500 GSMSK Bench Math Avg.
1B - - 314 54.0 7.7 6.2 24.8
General Model, Base: Llama-3.2, RM: Llama3.1-8B-ORM-Deepseek-Data
1B 7B N =4 38.2 68.7 10.1 103 31.8
1B 7B N =238 432 74.7 124 10.3 352
Question Truncation
1B 7B N =14 37.0 62.8 9.8 9.6 29.8
1B 7B N =38 40.8 68.6 9.6 9.6 322
Initial Steps Truncation
1B 7B N =41 352 62.0 9.2 114 29.5
1B 7B N =38 41.0 66.6 11.0 10.3 322
Last Steps Truncation
1B 7B N =14 36.2 64.2 9.9 11.8 30.5
1B 7B N =238 37.6 68.8 10.4 13.6 32.6
Question Shuffling
1B 7B N =4 29.0 54.7 8.6 9.2 254
1B 7B N =38 28.4 53.8 7.0 6.6 24.0
General Model, Base: Llama-3.2, RM: Llama3.1-8B-PRM-Deepseek-Data
1B 7B N =4 354 64.1 9.8 8.5 29.5
1B 7B N =38 41.2 69.1 10.4 11.4 33.0
Question Truncation
1B 7B N =4 36.4 62.2 9.8 8.1
1B 7B N =238 39.0 64.6 10.8 9.9
Initial Steps Truncation
1B 7B N =4 332 63.3 8.3 9.6 28.6
1B 7B N =38 39.4 62.7 12.0 9.2 30.8
Last Steps Truncation
1B 7B N =41 33.6 62.5 8.1 10.3 28.6
1B 7B N =38 36.4 64.9 7.7 9.9 29.7
Question Shuffling
1B 7B N =14 27.4 53.1 6.7 5.1 23.1
1B 7B N =238 29.8 50.0 6.8 6.2 232
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