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Abstract

Reward models (RMs) play a crucial role in aligning large language models (LLMs)1

with human preferences and enhancing reasoning quality. Traditionally, RMs are2

trained to rank candidate outputs based on their correctness and coherence. How-3

ever, in this work, we present several surprising findings that challenge common4

assumptions about RM behavior. Our analysis reveals that state-of-the-art reward5

models prioritize structural consistency over causal correctness. Specifically, re-6

moving the problem statement has minimal impact on reward scores, whereas7

altering numerical values or disrupting the reasoning flow significantly affects RM8

outputs. Furthermore, RMs exhibit a strong dependence on complete reasoning9

trajectories—truncated or incomplete steps lead to significant variations in reward10

assignments, indicating that RMs primarily rely on learned reasoning patterns11

rather than explicit problem comprehension. These findings hold across multiple12

architectures, datasets, and tasks, leading to three key insights: (1) RMs primar-13

ily assess coherence rather than true reasoning quality; (2) The role of explicit14

problem comprehension in reward assignment is overstated; (3) Current RMs may15

be more effective at ranking responses than verifying logical validity. Our results16

suggest a fundamental limitation in existing reward modeling approaches, empha-17

sizing the need for a shift toward causality-aware reward models that go beyond18

consistency-driven evaluation.19

1 Introduction20

Large language models (LLMs) [Hurst et al., 2024, Dubey et al., 2024, Team et al., 2024, Anthropic,21

2024, Jiang et al., 2023a, Liu et al., 2024a, Yang et al., 2024a] have emerged as a dominant paradigm22

in natural language processing, demonstrating remarkable performance across a diverse range of23

tasks. The Scaling Law [Kaplan et al., 2020] suggests that as model size increases, LLMs develop24

emergent abilities, enhancing their capacity to comprehend and solve complex tasks. This scalability25

enables LLMs to generate coherent, contextually accurate responses, supporting a wide array of26

downstream applications, including summarization [Zhang et al., 2019, 2024], code generation [Chen27

et al., 2021], mathematical reasoning [Hendrycks et al., 2021, Zhou et al., 2023], and conversational28

AI [OpenAI, 2022, Hurst et al., 2024].29

A key factor contributing to the success of large language models is their ability to align model outputs30

with user preferences[Christiano et al., 2017], which relies on training robust reward models. Beyond31

preference alignment, reward models also play a crucial role in enhancing reasoning capabilities,32

serving as mechanisms to evaluate and refine logical correctness in complex tasks[Cobbe et al.,33

2021, Lightman et al., 2023]. One promising approach to scaling test-time computation [Snell34

et al., 2024, Brown et al., 2024, Cobbe et al., 2021, Dong et al., 2023] involves leveraging reward35

models to search for optimal solutions among multiple candidates. Despite these advancements, the36

intrinsic mechanisms of reward models remain underexplored—specifically, the basis on which37

they assign rewards to generated trajectories and whether they truly comprehend and reason38
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How many positive whole-number divisors does 196 have?

The formula to find the number of divisors of a number from its prime factorization is to add 1 to each of the 

exponents in the factorization and then multiply the results. For the prime factorization \\( 2^2 \\times 7^2 \\

), the exponents are 2 and 2. Adding 1 to each exponent gives us 3 and 3. Multiplying these together, we get:\n\n

\\[ (2+1)(2+1) = 3 \\times 3 = 9 \\]\n\n

Therefore, the number of positive whole-number divisors of 196 is:\n\n

To determine the number of positive whole-number divisors of 196, we start by finding its prime factorization. 

The number 196 can be factored as follows:\n\n

\\[ 196 \\div 2 = 98 \\]\n\\[ 98 \\div 2 = 49 \\]\n\\[ 49 \\div 7 = 7 \\]\n\\[ 7 \\div 7 = 1 \\]\n\n

So, the prime factorization of 196 is:\n\n

\\[ 196 = 2^2 \\times 7^2 \\]\n\n

\\[ \\boxed{9} \\]

How many positive whole-number divisors does 200 have?

Raw Input

Question Shuffling

Question Truncation

Initial Steps Truncation

Last Steps Truncation

All Steps Truncation

RM

Evaluate $(1+2i)6-3i$.

Numerical Value Modification

Figure 1: Illustrations of the reward model input modifications. We apply various perturbations, in-
cluding numerical value modification, question shuffling, question truncation, initial steps truncation,
last steps truncation, and all steps truncation, to assess the sensitivity of different input components
on reward evaluation.

about the questions they evaluate. In this paper, we conduct a comprehensive empirical study of39

state-of-the-art reward models across multiple reasoning datasets and uncover two surprising findings.40

First, our systematic error analysis (Figure 1) reveals that question truncation has the least impact on41

reward outputs, whereas modifying numerical values or shuffling the question significantly disrupts42

reward assignments. This suggests that reward models prioritize internal coherence over true causal43

understanding—they assess solutions based on structural consistency rather than verifying whether44

the reasoning directly corresponds to the given question. Second, when provided with incomplete45

trajectories (i.e., truncated reasoning steps or only given the final answer), the reward outputs change46

significantly. This indicates that current reward models rely heavily on complete reasoning steps47

or learned patterns to justify trajectory quality, rather than truly understanding the problem-solving48

process. Furthermore, our rank correlation analysis and Best-of-N experiments confirm that while49

reward models remain robust to question omission, they are highly sensitive to the completeness of50

reasoning steps and the consistency between the question and solution.51

Our results advocate a rethinking of existing reward models. These findings highlight a fundamental52

limitation of current reward models: they evaluate logical structure rather than verifying causal53

correctness, raising important questions about their ability to generalize and assess novel problem-54

solving scenarios effectively.55

2 Related Work56

2.1 LLM Reward Models.57

Reward models play a crucial role in human preference alignment [Christiano et al., 2017, Bai58

et al., 2022, Casper et al., 2023] by guiding large language models (LLMs) toward desired behaviors.59

Broadly, reward modeling methods can be categorized into two approaches. The first is the preference-60

based reward model, such as Bradley-Terry (BT) model [Bradley and Terry, 1952, Zhao et al., 2023,61

Rafailov et al., 2024, Ethayarajh et al., 2024, Xiong et al., 2024a] and general preference model62

[Jiang et al., 2023b, Munos et al., 2023, Tang et al., 2024, Ye et al., 2024, Azar et al., 2024], which63

defines the reward function by the preference between two responses. Conventional RLHF usually64

capture the human preference with BT model [Ouyang et al., 2022, OpenAI, 2022], which has been65

widely proven to improve the quality of model outputs [Dubey et al., 2024, Dong et al., 2024, Guo66

et al., 2024]. The second approach estimate the probability of correctness as rewards, directly scoring67

outputs without relying on pairwise comparisons. In this paper, we primarily focus on correctness-68

based cases, which are well-defined and more commonly used for selecting reasoning trajectories69

during both training [Chen et al., 2024, Wang et al., 2024] and inference [Brown et al., 2024] in70

reasoning tasks. Depending on how reward signals are assigned, these models can be classified into71

Outcome Reward Models (ORMs) and Process Reward Models (PRMs). ORMs [Yu et al., 2023]72

evaluate solutions based solely on the final output, while PRMs [Lightman et al., 2023] provide73

step-level annotations, offering dense and granular reward signals at each reasoning step to encourage74

structured problem-solving. PRMs have been proven to be effective in mathematical problems [Shao75

et al., 2024, Snell et al., 2024, Luo et al., 2024, Liao et al., 2025].76
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2.2 Robustness of Reward Models.77

Despite the success of reward models in aligning with human preferences, they still have issues. A78

common issue is reward hacking [Ibarz et al., 2018, Denison et al., 2024], where the policy achieves79

high reward scores from the reward model without exhibiting the desired behavior. This phenomenon80

leads to performance degradation [Bai et al., 2022] and increases the discrepancy between the policy81

model’s behavior and the intended objective [Stiennon et al., 2020]. Reward hacking manifests in82

various patterns [Park et al., 2024], with length hacking being one of the most prevalent and well-83

documented cases in large language model research. Singhal et al. [2024] investigate length-related84

issues in reward models, demonstrating a strong correlation between reward scores and text length.85

This finding aligns with the observation by Dubois et al. [2023] that output length distributions tend86

to increase after applying PPO. And Liu et al. [2024b] explore length hacking with the popular DPO87

algorithm. In addition, ODIN [Denison et al., 2024] explores to mitigate the length hacking issue by88

disentangling the length from the original reward. In this work, rather than exploring new general89

patterns of reward hacking or developing mitigation techniques, we focus on an empirical study that90

explores whether state-of-the-art reward models genuinely understand questions, reasoning steps, and91

their causal relationships in reasoning tasks.92

3 LLM Reward93

We formalize the interaction between a user and an LLM as a mapping from a given context or94

prompt, denoted as x, to a generated response y. The response y consists of a sequence of steps,95

represented as y = [y1, . . . , yn]. The ideal reward function r∗(x, y) quantifies the quality of the96

generated response in terms of its final performance. To ensure a well-defined reward function, we97

adopt an outcome-based formulation and focus on objective reasoning problems, where the reward is98

defined as the probability that y produces a correct or desirable outcome:99

r∗(x, y) = P(y is correct | x).

This probabilistic formulation provides a structured measure of response effectiveness. By framing100

the reward in this manner, we ensure that learning objectives align with producing accurate and101

reliable responses.102

In real world, although we can access the reward for training data. People usually use another LLM103

to estimate the optimal reward rθ. Ideally, rθ ≈ r∗. To train a reward model, people use a dataset of104

labeled examples {(xi, yi, zi)}ni=1, where xi represents the input prompt, yi is the generated response,105

and zi ∈ {1, 0} is a binary label indicating whether the response is correct (1) or incorrect (0). The106

reward model rθ(x, y) is parameterized by θ and is trained to approximate the ideal reward function107

r∗(x, y) by minimizing a loss function that encourages consistency with the labeled data. A common108

approach is to optimize a binary cross-entropy loss:109

L(θ) = −
n∑

i=1

[
zi log rθ(xi, yi) + (1− zi) log(1− rθ(xi, yi))

]
,

where rθ(xi, yi) is interpreted as the probability that yi is correct given xi. This formulation ensures110

that the reward model learns to distinguish between high-quality and low-quality responses. Once111

trained, the reward model can be used to guide response generation in reinforcement learning or112

ranking-based optimization frameworks.113

In addition, people are refining the reward model with the process-based supervision.

r∗(x, y1:k) = P(y1:k is correct | x).

By incorporating process-based supervision, reward models can capture fine-grained signals that114

improve alignment with human reasoning, ultimately leading to more interpretable and controllable115

LLM outputs. This paradigm enables reward models to provide more structured feedback, particularly116

for tasks requiring multi-step reasoning or sequential decision-making.117

In this paper, we would like to investigate the reward behavior of incomplete inputs to identify118

what are really matters for reward models. For example, empty input rθ(None, y), truncated output119

rθ(x, y1:n/2) or rθ(x, yn/2:n), shuffled input rθ(x′, y).120
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Figure 2: Density maps of absolute reward errors across different datasets when truncating various
input components, using Qwen-2.5-Math-1.5B-Instruct as the base model and Skywork-O1-Open-
PRM-Qwen-2.5-1.5B as the reward model..

4 Experimental Setup121

We outline the experimental setup used in our analysis in Sections 5 and 6.122

Models. We utilize two reward model families: Skywork-o1-OpenPRM [o1 Team, 2024] and123

RLHFlow [Xiong et al., 2024b]. Specifically, our experiments include Skywork-o1-Open-PRM-124

Qwen-2.5-1.5B, Skywork-o1-Open-PRM-Qwen-2.5-7B, Llama3.1-8B-ORM-Deepseek-Data, and125

Llama3.1-8B-PRM-Deepseek-Data. For base models, we employ both general-purpose and math-126

focused LLMs, specifically Llama-3 [Dubey et al., 2024] and Qwen-2.5-Math [Yang et al., 2024b].127

Datasets. We conduct experiments on a diverse set of reasoning tasks, including GSM8K [Cobbe128

et al., 2021], MATH500 [Hendrycks et al., 2021], OlympiadBench [He et al., 2024], GaoKao-2023-129

En [Liao et al., 2024], and Minerva Math Lewkowycz et al. [2022].130

Default Setting. All experiments were conducted on NVIDIA H100 GPUs, using vLLM[Kwon131

et al., 2023] as the backend. We set the generation parameters to temperature = 0.8 and top_p132

= 1.0 for Best-of-N sampling and trajectory collection. A reasoning step is defined as a generation133

ending with \n\n. For the process reward model, each trajectory is scored based on the reward of its134

final step. In the error analysis experiments (Section5), we sample 32 trajectories per question.135

5 Questions Matters Little136

5.1 Which Input Matters Most?137

To assess the relative importance of different components in reward model inputs, we systematically138

truncate various parts of the input and analyze their impact on model predictions. Specifically, we139

evaluate how the absence of key information—such as the question or portions of the solution—affects140

the reward assignment. The following truncation strategies are considered:141
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Question Truncation: The question is entirely removed, leaving only the solution trajectory as input142

to the reward model. This tests whether the model primarily relies on the reasoning process rather143

than the problem statement itself.144

Initial Steps Truncation: The first half of the solution steps is removed, preserving only the145

latter portion. This examines whether early-stage reasoning contributes significantly to the model’s146

assessment or if later steps alone are sufficient.147

Last Steps Truncation: The final half of the solution steps is removed, retaining only the initial por-148

tion. This helps determine whether the model emphasizes intermediate reasoning steps or prioritizes149

the final stages of problem-solving.150

All Steps Truncation: All solution steps are removed, leaving only the final answer box. This151

scenario isolates the influence of the final answer on the reward model’s judgment, shedding light on152

whether the model evaluates reasoning quality or focuses primarily on correctness.153

We quantify the impact of input modifications by computing the absolute error between the original154

reward output, r, and the reward of the truncated input, r∗, given by |r−r∗|. The results on MATH500,155

GSM8K, OlympiadBench, and GaoKao-2023-En are visualized in Figure 2. We present histograms156

of the error distribution across all questions, with each question sampled over 32 trajectories.157

We observe that the error distributions vary across datasets and truncation strategies, highlighting the158

differing sensitivities of reward models to different input components. Question truncation generally159

results in a lower absolute error, suggesting that the model can still assign reasonable reward scores160

based on the solution trajectory alone. In contrast, initial steps truncation and last steps truncation161

exhibit distinct effects, with the latter often leading to larger errors, implying that final reasoning steps162

play a crucial role in the model’s decision-making process. The all steps truncation condition, which163

retains only the final answer box, consistently produces the highest errors, particularly in MATH500164

and OlympiadBench, indicating that intermediate reasoning steps are essential for accurate reward165

assignment.166

These findings suggest that the question is less important than the reasoning steps in determining167

reward scores. The relatively low absolute error from question truncation indicates that the model168

can still evaluate solution quality even without explicit access to the problem statement. Conversely,169

the higher errors observed in last steps truncation and all steps truncation highlight the critical role of170

intermediate and final reasoning steps in the model’s decision-making process. This suggests that171

reward models prioritize logical coherence and solution completeness over simply understanding the172

original question, emphasizing the necessity of reasoning depth in reward evaluation.173

5.2 Consistency Matters174

To gain deeper insights into the role of the question in reward modeling, we conduct a series of175

controlled experiments designed to assess the extent to which the reward model relies on the problem176

statement for evaluating solution quality. Specifically, we investigate how disrupting the question-177

solution relationship and altering key numerical values affect the model’s reward assignment.178

Question Shuffling: We shuffle the questions and their corresponding solution trajectories, disrupting179

the original question-solution pairings. This tests the reward model’s reliance on the semantic180

coherence between the problem statement and the reasoning steps.181

Numerical Value Modification: We replace numerical values in the question with random values,182

altering the problem while preserving its overall structure. This evaluates the model’s sensitivity to183

specific numerical details in the question.184

Figure 3 presents the absolute error distributions for different question modification strategies across185

four reasoning benchmarks. Across all datasets, question truncation consistently results in lower186

errors, suggesting that removing the question has a limited impact on the reward model. Question187

shuffling introduces moderate errors, particularly in GSM8K, indicating that the semantic consistency188

between the problem and solution plays a role in reward assignment. Numerical value modification,189

especially in GSM8K, leads to the largest errors, demonstrating that changes in numerical details190

significantly affect the reward model’s predictions.191

These results highlight the importance of consistency in the reward model’s input. The fact that192

question truncation results in lower errors implies that the reward model primarily evaluates the193
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Figure 3: Density maps of absolute reward errors across different datasets. We compare the effects
of question truncation, question shuffling, and numerical value modification using Qwen-2.5-Math-
1.5B-Instruct as the base model and Skywork-O1-Open-PRM-Qwen-2.5-1.5B as the reward model.
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Figure 4: Spearman correlation of reward rankings under input truncation and Shuffling on MATH500
and Olympiad Bench. N is the number of sampled trajectories for each input.

reasoning process rather than the question itself. However, the increased errors in question shuffling194

suggest that disrupting semantic alignment between the problem and solution trajectory weakens195

the model’s ability to assign consistent rewards. Moreover, the high error from numerical value196

modification indicates that numerical consistency is crucial, as the model relies on specific values to197

gauge correctness.198

6 Impact on Ranking of Rewards199

A key application of reward models is to rank candidate outputs and select the best among them.200

Beyond absolute error analysis, it is crucial to evaluate how input modifications influence the relative201

ranking of rewards assigned to different outputs. To this end, we investigate the impact of question202

and reasoning modifications on ranking consistency through two complementary analyses:203

• Rank Correlation of Rewards: We assess how well the reward model preserves the relative204

ranking of outputs after input modifications by computing ranking correlation metrics.205
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Table 1: Best-of-N results under different reward input modifications.

Base Model RM Setting MATH500 GSM8K Olympiad Minerva Avg.Bench Math

7B - - 83.2 95.7 41.2 37.5 64.4

Math Model, Base: Qwen2.5-Math-Instruct, RM: Skywork- o1-Open-PRM 1.5B

7B 1.5B N = 4 85.4 96.9 43.3 39.3 66.2
7B 1.5B N = 8 84.6 96.7 45.3 38.2 66.2
7B 1.5B N = 16 85.4 96.9 45.0 38.6 66.5

Question Truncation
7B 1.5B N = 4 85.8 96.4 43.0 36.0 65.3
7B 1.5B N = 8 86.4 97.0 42.7 37.9 66.0
7B 1.5B N = 16 86.0 96.1 45.3 37.1 66.1

Initial Steps Truncation
7B 1.5B N = 4 85.0 96.4 39.7 36.4 64.4
7B 1.5B N = 8 86.4 96.3 43.0 36.4 65.5
7B 1.5B N = 16 85.4 96.0 43.1 37.5 65.5

Last Steps Truncation
7B 1.5B N = 4 84.0 95.5 42.4 38.2 65.0
7B 1.5B N = 8 87.0 96.1 38.8 34.9 64.2
7B 1.5B N = 16 83.6 95.6 41.8 37.5 64.6

Question Shuffling
7B 1.5B N = 4 84.8 95.9 41.9 37.5 65.0
7B 1.5B N = 8 85.0 96.1 42.7 37.1 65.2
7B 1.5B N = 16 85.0 96.7 44.0 36.0 65.4

Math Model, Base: Qwen2.5-Math-Instruct, RM: Skywork- o1-Open-PRM 7B

7B 7B N = 4 86.0 97.0 41.8 38.2 65.8
7B 7B N = 8 87.0 97.1 45.3 37.5 66.7
7B 7B N = 16 86.0 97.1 47.0 39.3 67.4

Question Truncation
7B 7B N = 4 86.2 96.4 44.0 35.3 65.5
7B 7B N = 8 86.0 96.2 43.1 37.9 65.8
7B 7B N = 16 84.0 96.3 46.5 41.9 67.2

Initial Steps Truncation
7B 7B N = 4 82.8 96.3 41.5 38.2 64.7
7B 7B N = 8 85.4 96.7 42.7 40.1 66.2
7B 7B N = 16 84.6 96.3 43.9 40.8 66.4

Last Steps Truncation
7B 7B N = 4 84.4 96.4 39.9 39.7 65.1
7B 7B N = 8 83.4 96.1 40.7 37.1 64.3
7B 7B N = 16 85.6 96.4 43.0 37.1 64.5

Question Shuffling
7B 7B N = 4 83.4 96.6 39.0 34.9 63.5
7B 7B N = 8 81.8 95.8 43.0 36.8 64.4
7B 7B N = 16 83.2 95.3 41.6 37.9 64.7

• Best-of-N Selection: We evaluate the effect of input modifications on Best-of-N selection206

performance, where the reward model is used to choose the best candidate from a set of207

generated outputs.208

6.1 Rank Correlation of Rewards209

Using Qwen2.5-Math-7B-Instruct as the base model and Skywork-o1-Open-PRM-Qwen-2.5-1.5B as210

the reward model, we generate 4, 8, 16, and 32 candidate outputs per question on MATH500 and211

OlympiadBench. To assess the stability of reward rankings under input modifications, we compute212

Spearman’s rank correlation coefficient (ρ) as our ranking consistency metric. Spearman’s correlation213

quantifies the monotonic relationship between two variables, providing insight into how well the214

reward model preserves the relative ranking of candidate outputs despite perturbations in input215

structure. A high Spearman correlation indicates that the ranking of outputs remains stable regardless216

of modifications. Conversely, a low correlation signifies that input modifications significantly alter217

the ranking behavior, revealing potential inconsistencies in the model’s reward assignment process.218

Figure 4 presents the Spearman rank correlation coefficients for different truncation strategies across219

varying values of N . Removing the question consistently results in the highest rank correlation across220

all values of N , suggesting that the reward model remains relatively stable in ranking outputs even221

when the problem statement is absent. Additionally, the correlation increases as N grows, indicating222

that the ranking consistency improves when selecting from a larger set of candidate outputs. In223

contrast, removing the first half of the solution steps leads to a significantly lower correlation, implying224

that complete reasoning steps is important in determining rankings. Furthermore, disrupting the225
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semantic coherence between the question and solution has a noticeable impact on ranking correlation,226

demonstrating that maintaining a logically consistent input structure is important for stable ranking227

performance.228

These findings further confirms that reward models prioritize reasoning consistency over direct229

question comprehension. While the models demonstrate robustness to question removal, their230

sensitivity to reasoning disruptions suggests that they rely more on structural coherence than an actual231

understanding of problem-solving logic.232

6.2 Best-of-N233

Table 1 and Table 2 present the Best-of-N results under different input modifications for reward234

models. For the Qwen2.5-Math-Instruct-7B models, removing the question has a relatively minor235

impact on performance, with scores remaining stable across different values of N . For instance,236

when N=16, the model achieves an average score of 66.1, only 0.4 points lower than the vanilla237

Best-of-N setting. This finding aligns with previous observations that reward models primarily rely238

on reasoning steps rather than the problem statement itself. In contrast, truncating initial or final steps239

leads to a more noticeable performance drop, highlighting the importance of complete reasoning240

trajectories. Additionally, question shuffling results in the largest performance degradation across241

both reward models, reinforcing the necessity of consistency between the question and solution for242

effective ranking.243

For the Llama-3.2 base model, we evaluate both ORM and PRM reward models (Appendix A.1).244

Similar to the Qwen models, removing the question leads to only minor performance degradation.245

However, the most significant drop is observed in the question shuffling condition, particularly in246

Olympiad Bench and Minerva Math, where the disrupted semantic alignment prevents the reward247

model from identifying high-quality reasoning trajectories among multiple samples. With shuffled248

questions, the average performance drops to 24.0, even worse than the baseline of 24.8. These249

results further emphasize that reward models prioritize structural consistency and reasoning flow over250

explicit problem comprehension.251

Best-of-N results reflect the performance of the trajectory assigned the highest reward score, offering252

insights into how different input modifications impact the reward model’s ability to identify the best253

solution. The results in the table reinforce the key finding that reward models prioritize structural con-254

sistency over causal understanding. The relatively stable performance in question truncation suggests255

that the reward model does not rely on the problem statement itself to evaluate responses. Instead, it256

primarily assesses the internal coherence of the solution trajectory. However, the consistency between257

the question and the solution remains crucial, as disruptions can significantly degrade performance,258

highlighting the importance of semantic alignment in reward-based ranking.259

7 Discussion and Conclusion260

In this paper, we investigate the impact of input modifications on reward models and uncover key261

insights into their evaluation behavior. Our findings reveal that truncating the question has minimal262

impact on both absolute reward values and ranking consistency, suggesting that reward models263

primarily evaluate the solution trajectory rather than the problem statement itself. However, shuffling264

the question or modifying numerical values significantly alters the reward model’s output, indicating265

that semantic coherence and numerical consistency play a crucial role in assessment. Additionally,266

incomplete reasoning steps lead to substantial changes in rankings, highlighting the model’s strong267

reliance on a structured and complete reasoning trajectory rather than an explicit understanding of268

problem-solving steps.269

The Consistency Bias in Reward Models. Our findings suggest that reward models are not truly270

evaluating the causal relationship between the question and its solution but rather the internal271

consistency of the reasoning process. Even when the question is removed, if the solution remains272

well-structured, the model continues to assign high scores. Conversely, when reasoning steps are273

truncated, the model struggles to maintain ranking consistency, indicating that it relies on pattern274

recognition rather than an actual causal understanding of the problem-solution relationship. This275

raises concerns about the model’s ability to generalize beyond familiar solution structures and adapt276
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to novel problem distributions. Future research should explore techniques to mitigate this consistency277

bias and encourage a more causally grounded evaluation framework.278

Towards Causality-Aware Reward Models. To move beyond consistency-driven ranking, future279

reward models should incorporate causal reasoning techniques to better assess the logical validity of280

solutions. Potential directions include:281

• Causality-Augmented Training: Incorporating counterfactual reasoning tasks to train282

reward models to recognize causal dependencies rather than relying solely on surface-level283

patterns.284

• Chain-of-Thought Awareness: Rewarding models not only for correct final answers but285

also for their adherence to logically structured reasoning chains, ensuring that each step286

contributes meaningfully to the solution.287

• Human-in-the-Loop Refinement: Leveraging human preference data to penalize superficial288

pattern matching and encourage robust causal reasoning, improving the model’s ability to289

distinguish valid reasoning from plausible but incorrect trajectories.290

Reconsidering Reward Model Objectives. Current reward models might be optimizing for ranking291

stability rather than true problem-solving ability. This raises the need to rethink selection strategies,292

such as:293

• Uncertainty-Aware Reward Models: Incorporating confidence-aware mechanisms to quan-294

tify the model’s uncertainty in evaluating complex reasoning tasks.295

• Deeper Reasoning Signals: Designing reward functions that explicitly capture reasoning296

depth and logical validity, rather than solely relying on surface-level agreement with high-297

ranked answers.298

Ethics Statement299

This work presents an empirical analysis of reward model behavior in large language models (LLMs),300

with a focus on understanding their evaluation mechanisms rather than proposing new models for301

deployment. All models and datasets used in this study are publicly available and widely used in the302

research community. We emphasize that our analyses are intended to identify limitations and inform303

better practices in reward model design.304

Our findings highlight potential shortcomings in current reward modeling techniques, such as over-305

reliance on structural consistency and susceptibility to input manipulation. While these insights can306

inform more robust and causality-aware evaluation frameworks, they also underscore risks if reward307

models are deployed without careful validation in safety-critical or high-stakes applications.308

We encourage researchers and practitioners to interpret our results responsibly, particularly when309

using reward models to guide generation in reinforcement learning or automated decision-making.310

Future work should aim to incorporate human-in-the-loop oversight and causal reasoning capabilities311

to ensure that reward models reflect genuine understanding and alignment with human values.312

No human subjects or personally identifiable information were used in this study, and no new data313

were collected.314
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A Appendix476

A.1 Best-of-N Results on LLaMA477

For the Llama-3.2 1B base model, we evaluate both ORM and PRM reward models under different478

input modifications.

Table 2: Best-of-N results under different reward input modifications.

Draft RM Setting MATH500 GSM8K Olympiad Minerva Avg.Bench Math

1B - - 31.4 54.0 7.7 6.2 24.8

General Model, Base: Llama-3.2, RM: Llama3.1-8B-ORM-Deepseek-Data

1B 7B N = 4 38.2 68.7 10.1 10.3 31.8
1B 7B N = 8 43.2 74.7 12.4 10.3 35.2

Question Truncation
1B 7B N = 4 37.0 62.8 9.8 9.6 29.8
1B 7B N = 8 40.8 68.6 9.6 9.6 32.2

Initial Steps Truncation
1B 7B N = 4 35.2 62.0 9.2 11.4 29.5
1B 7B N = 8 41.0 66.6 11.0 10.3 32.2

Last Steps Truncation
1B 7B N = 4 36.2 64.2 9.9 11.8 30.5
1B 7B N = 8 37.6 68.8 10.4 13.6 32.6

Question Shuffling
1B 7B N = 4 29.0 54.7 8.6 9.2 25.4
1B 7B N = 8 28.4 53.8 7.0 6.6 24.0

General Model, Base: Llama-3.2, RM: Llama3.1-8B-PRM-Deepseek-Data

1B 7B N = 4 35.4 64.1 9.8 8.5 29.5
1B 7B N = 8 41.2 69.1 10.4 11.4 33.0

Question Truncation
1B 7B N = 4 36.4 62.2 9.8 8.1 29.1
1B 7B N = 8 39.0 64.6 10.8 9.9 31.1

Initial Steps Truncation
1B 7B N = 4 33.2 63.3 8.3 9.6 28.6
1B 7B N = 8 39.4 62.7 12.0 9.2 30.8

Last Steps Truncation
1B 7B N = 4 33.6 62.5 8.1 10.3 28.6
1B 7B N = 8 36.4 64.9 7.7 9.9 29.7

Question Shuffling
1B 7B N = 4 27.4 53.1 6.7 5.1 23.1
1B 7B N = 8 29.8 50.0 6.8 6.2 23.2
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