
Published as a conference paper at ICLR 2026

IMPROVING SET FUNCTION APPROXIMATION WITH
QUASI-ARITHMETIC NEURAL NETWORKS

Tomas Tokar
University of Toronto
Wondeur AI
tomas@wondeur.ai

Scott Sanner
University of Toronto
Vector Institute
ssanner@mie.utoronto.ca

ABSTRACT

Sets represent a fundamental abstraction across many types of data. To handle
the unordered nature of set-structured data, models such as DeepSets and Point-
Net rely on fixed, non-learnable pooling operations (e.g., sum or max) – a design
choice that can hinder the transferability of learned embeddings and limits model
expressivity. More recently, learnable aggregation functions have been proposed
as more expressive alternatives. In this work, we advance this line of research by
introducing the Neuralized Kolmogorov Mean (NKM) – a novel, trainable frame-
work for learning a generalized measure of central tendency through an invertible
neural function. We further propose quasi-arithmetic neural networks (QUANNs),
which incorporate the NKM as a learnable aggregation function. We provide a the-
oretical analysis showing that, QUANNs are universal approximators for a broad
class of common set-function decompositions and, thanks to their invertible neural
components, learn more structured latent representations. Empirically, QUANNs
outperform state-of-the-art baselines across diverse benchmarks, while learning
embeddings that transfer effectively even to tasks that do not involve sets.

1 INTRODUCTION

Sets represent a fundamental abstraction for various data types, examples of such include, set of
objects placed in a scene (Eslami et al., 2016; Kosiorek et al., 2018), point clouds in a physical
space (Chang et al., 2015; Wu et al., 2015), or a set of reinforcement learning agents (Sunehag
et al., 2017). Developing neural methods that can effectively learn to approximate set functions is
therefore crucial for advancing machine learning applications across diverse domains.

Sets impose no inherent ordering, making the design of neural architectures for processing them a
unique challenge. To properly handle this property, neural architectures must exhibit permutation
invariance, i.e., ensure that the output remains unchanged regardless of the order of the input el-
ements. To guarantee this, most existing approaches such as DeepSets (Zaheer et al., 2017) and
PointNet (Qi et al., 2017a) rely on pooling operations (e.g. sum, or max) that aggregate embeddings
of the individual elements or their combinations into a single fixed-size representation, which is in
turn processed to produce the final prediction (Murphy et al., 2019) (cf. Figure 1).

X . . . ϕ
...

. . . ϕ
...

. . . ϕ

pool ρ ŷ

Figure 1: Generalized framework for set
function learning, involving encoder ϕ, esti-
mator ρ and pooling operation (e.g. sum, or
max).

Because the pooling operation is fixed and non-
trainable, the approximation burden is thus divided
between the only two neural components: an en-
coder ϕ, which maps each set element (or their com-
binations) to a latent representation, and an estima-
tor ρ, which processes the pooled representation to
produce the final prediction. Therefore, the encoder
is forced to learn embeddings that are tailored not
only to the downstream task but also to the a pri-
ori chosen pooling operation, restricting its ability
to learn a more general or transferable latent repre-
sentations (Soelch et al., 2019; Wagstaff et al., 2019;
Bueno & Hylton, 2021; Wagstaff et al., 2022).
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More recently, learnable aggregation functions have been proposed as more expressive alterna-
tives (Locatello et al., 2020; Pellegrini et al., 2021; Kimura et al., 2024). To advance this line of
research, we introduce a trainable modification of the Kolmogorov mean (a.k.a. quasi-arithmetic
mean) (Bullen & Bullen, 2003), an important generalization of means that encompasses many com-
monly used measures of central tendency (e.g. arithmetic, geometric, harmonic mean, etc.). The
Kolmogorov mean induces set aggregation via a selection of invertible generating function, which
we implement using an invertible neural network, resulting in highly expressive learnable pooling
operation. The use of trainable Kolmogorov mean enables more principled set-function approxi-
mation, leading to more structured latent spaces, improved encoder transferability, and consistently
better downstream performance.

Main contributions (i) We propose the first machine-learnable modification of the Kolmogorov
mean. (ii) We propose quasi-arithmetic neural networks (QUANNs), which adopt the newly intro-
duced neuralized Kolmogorov mean to serve as a learnable aggregation function. (iii) We support
our proposal with theoretical and empirical analysis, demonstrating that QUANNs: (a) can approx-
imate mean- (in the generalized sense) and, under mild assumptions, also max-decomposable set
functions arbitrarily well; (b) QUANNs enable learning of more structured embeddings and more
transferable encoders than existing models; and (c) overall, they outperform state-of-the-art (SOTA)
set function models.

2 PRELIMINARIES

Set-structured data Let X denote the input space, and let D = {(Xi, yi)}Ni=1 be a dataset where
each Xi is a finite set of elements: Xi = {xi,1, . . .xi,ni}, and yi is the corresponding label. For
simplicity, we assume that each Xi is a homogeneous set, i.e., all elements of Xi come from the
same domain X : xij ∈ X . However, our framework can be naturally extended to heterogeneous
sets. Additionally, we restrict our attention to the countable case, where all sets Xi are finite and of
arbitrary cardinality ni that varies across the inputs.

Set function modeling We seek to learn a set function F : Pf (X ) → Y where Pf (X ) denotes
the set of all finite subsets of X , and the output space Y , which is usually either R (scalar case, e.g.
regression), or Rdout for some fixed output dimensionality dout ∈ N (in the vector-valued prediction
case, e.g. classification). Our objective is to approximate the function F using a neural network,
trained on the dataset D by minimizing a loss function L obtained from the predicted outputs F̂ (Xi)
and the labels yi ∈ Y .

Permutation invariance A key requirement for set function modeling is permutation invariance,
i.e., the output of the set function should remain unchanged under any reordering of the elements in
the input set. Formally, we require the target function estimate F̂ to satisfy:

F̂ (X) = F̂ (π(X)) ∀X ⊆ X , ∀π ∈ S|X|, (1)

where S|X| denotes the symmetric group of all permutations over the elements of the set X, and
π(X) is the permutation of X under π.

3 RELATED WORK

3.1 JANOSSY POOLING

Most current methods for learning set functions can be viewed as specific instances of a broader
generalization referred to as Janossy pooling (Murphy et al., 2019), which can be formalized as
follows:

F̂ (X) = ρ
(

poolπ∈Pk(X)ϕ (π(X))
)

(2)

where: Pk(X) indicates all k-permutations of a set X; encoder ϕ is a neural function that learns
latent embedding of the input permutations; pool is a permutation-invariant pooling operation that
aggregates the obtained embeddings, and estimator ρ is another neural function that maps an aggre-
gated embeddings to the final output.
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Table 1: Unified comparison of the existing methods of Janossy pooling and QUANNs (ours); ϕ,
ρ, and ψ are neural functions; w indicates trainable parameter; P2(X) indicates all 2-permutations
(pairs) of the input set and n is set cardinality.

MODEL FUNCTIONAL FORM REF.

Unary DeepSets ρ (
∑n
i=1 ϕ(xi)) Zaheer et al. (2017)

PointNet ρ (maxni=1 ϕ(xi)) Qi et al. (2017a)
Normalized DeepSets ρ (1/n

∑n
i=1 ϕ(xi)) Bueno & Hylton (2021)

Hölder’s Power DeepSets ρ (1/n
∑n
i=1 ϕ(xi)

w)
1/w Kimura et al. (2024)

QUANN-1 ρ
(
ψ−1 (1/n

∑n
i=1 ψ(ϕ(xi)))

)
(ours)

Binary SetTransformer ρ
(∑

(xi,xj)∈P2(X) ϕ(xi,xj)
)

Lee et al. (2019)

QUANN-2 ρ
(
ψ−1

(∑
(xi,xj)∈P2(X) ψ(ϕ(xi,xj))

))
(ours)

Any neural network that can be factorized in the above form, is said to be a k-ary Janossy pooling,
distinct by its choice of k and the adopted pooling operation (cf. Table 1). Below we discuss several
important specific cases of Janossy pooling. It is important to note that alternative generalizations
of the neural set functions were proposed (Kim et al., 2021).

Unary pooling networks Some of the earliest permutation-invariant deep learning architectures
for set function modeling were DeepSets (Zaheer et al., 2017) and PointNet (Qi et al., 2017a).
Both architectures can be viewed as special cases of unary Janossy pooling, where the permutation
invariance is secured by using summation and max pooling, respectively.

Binary pooling networks Obviously, the unary pooling networks fail to capture the relationships
between elements of the set, which imposes an important limitation. Inspired by the success of
transformer architecture in various other application,Lee et al. (2019) proposed to addresses this
limitation by introducing a SetTransformer, which takes into account the relationships between two
elements in the input set via attention mechanism. However, SetTransformer can be factorized into
a functional form in the equation 2 with k = 2 (Wagstaff et al., 2022), and thus constitutes a binary
Janossy pooling.

Janossy pooling with learnable pooling function Clearly, the pooling function is the only non-
learnable component in Janossy pooling (Eq. 2). This was first highlighted in Soelch et al. (2019)
where the authors proposed using recurrent neural networks with attention as learnable alternative.
However, the method’s overall complexity, further aggravated by rather unclear implementation,
limits its applicability to most real world datasets. Kimura et al. (2024) proposed Hölder’s Power
DeepSets (HPDS) that uses power mean with learnable exponent as the pooling function. Closely
related to this work is the learnable aggregation function proposed by Pellegrini et al. (2021), in
which four distinct power means are fused through a fixed-form aggregation scheme with additional
learnable parameters. However, this method does not admit a strict Janossy factorization.

3.2 NON-JANOSSY METHODS

Not all permutation-invariant architectures can be factorized into the functional form described in
Eq. 2. These non-Janossy approaches can be broadly grouped into two conceptually distinct cate-
gories: models that achieve permutation invariance through slot attention mechanisms and models
that seek an optimal ordering of the input set.

Slot attention Slot attention models learn set representations by binding a fixed number of learn-
able “slots” to input set elements, using attention (Locatello et al., 2020). Each slot acts as a latent
variable that competes to explain different aspects of the input through soft assignment and recurrent
refinement. The input elements are transformed via linear projections and then aggregated through
a weighted mean, where the attention coefficients serve as the weights. Multiple modification and
extensions were later proposed (Skianis et al., 2020; Wu et al., 2022; Jia et al., 2023; Seitzer et al.,
2023; Zhang et al., 2023).
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Permutation optimization and sorting Zhang et al. (2019b) addressed permutation invariance
by explicitly computing the optimal permutation of the input set with respect to a learnable cost
function, thereby aligning elements before aggregation. In contrast,Zhang et al. (2020) proposed a
simpler approach, where inputs are independently sorted along each feature dimension and subse-
quently fed to the encoder.

4 NEURALIZED KOLMOGOROV MEAN

In this section, we introduce neuralized Kolmogorov means (NKM) – a novel framework for aggre-
gating sets of embeddings via a learnable measure of central tendency. In the following section we
show how NKMs can be used as learnable pooling operation to improve set function approximation.

Kolmogorov mean The Kolmogorov mean, also known as the quasi-arithmetic mean, is a measure
of central tendency that generalizes various common means. Given a continuous and invertible func-
tion f , the Kolmogorov mean of a set of numbers {xi}ni=1 is defined as: Mf = f−1

(
1/n

∑n
i f(xi)

)
,

where the function f is usually referred to as generating function. Since the generating function f
is continuous and invertible, it must be a strictly monotonic function on its domain, which guaran-
tees that Mf is bounded between min(x) and max(x). Special cases of Kolmogorov mean include,
arithmetic (f(x) = ax+ b), geometric (f(x) = log x), and power means (f(x) = xp).

Neuralization of Kolmogorov mean We propose a neuralized form of the Kolmogorov mean,
where the generating function is implemented by an invertible neural network ψ:

Mψ(X) = ψ−1
( 1
n

n∑
i=1

ψ(xi)
)

(3)

This way we obtain learnable measure of central tendency, which we refer to as neuralized Kol-
mogorov mean (NKM). Despite the broad attention given by the scientific community (Kimura
et al., 2024), to our knowledge, we are the first to propose, not only neuralized, but any machine-
learnable modification of the Kolmogorov mean. Conceptually related, yet complementary, is the
use of invertible neural functions for neuralization of semirings proposed by Dos Martires (2021).

Choice of invertible architecture In all our experiments, we used the RevNet (Gomez et al.,
2017) architecture to implement the generating function ψ of the NKM. Alternative choice of the
invertible architecture in NKM were explored, but did not lead to a qualitative change in the models’
performance (cf. Appendix 5).

5 QUASI-ARITHMETIC NEURAL NETWORKS

Intuitively, introducing learnable pooling operation to set function models should enhance the ex-
pressiveness of their hypothesis spaces. Therefore, we propose adopting the hereby introduced
NKMs (cf. Section 4) as learnable pooling operation, resulting in a novel class of models, which
we refer to as Quasi-Arithmetic Neural Networks (QUANNs). Note that we chose a distinct name
to emphasize that NKM represents a general framework for learnable aggregation of latent codes,
whereas QUANNs are specifically designed for set function learning.

5.1 RATIONALE

Any neural network that approximates a set function F (X) using the following factorization is
referred to as a k-ary QUANN, where the value of k distinguishes the degree of interactions it
models:

F̂ (X) = ρ
[
ψ−1

( 1

|Pk(X)|
∑

π∈Pk(X)

ψ(ϕ(π))
)]

(4)

where ϕ, ρ are any arbitrary neural functions, while ψ is invertible neural function to serve as gen-
erative function of the NKM. In more compact form, we can write ρ(Mψ,ϕ(X)), where Mψ,ϕ(X)
indicates NKM induced via ψ using encoder ϕ.
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Depending on the choice of k we thus propose two specific instances of QUANN models: (i) unary
pooling network QUANN-1 encoding individual set elements (P1(X) = X); and (ii) binary pooling
network QUANN-2 encoding interactions between the set element pairs via attention mechanism
(similar to SetTransfomer)(cf. Table 1).

5.2 APPROXIMATION OF THE COMMON DECOMPOSITIONS

Theorem 5.1 (Universal Approximation of QUANNs). Let U denote the set of all permutation-
invariant set functions F : Pf (X) → Y that can be uniformly approximated by Quasi-Arithmetic
Neural Networks of the form 4, where ρ, ψ and ϕ are arbitrary neural networks. Let UW denote the
set of all permutation-invariant set functions F : Pf (X) → † that are uniformly continuous with
respect to the Wasserstein metric. Then U ⊇ UW .

Means and central tendencies QUANNs are fundamentally mean-pooling architectures, and as
such, they are able to exactly represent any function that is uniformly continuous with respect to
the Wasserstein metric (cf. Theorem 5.1). This means that any continuous function that depends
smoothly on the empirical distribution of the input set, rather than single extreme point, can be
approximated arbitrarily well using QUANNs. These involve various types of means and other
central tendencies (e.g. median, quantiles).

This also means that QUANNs, in principle, are not able to exactly represent target set functions
that are sum- or max-decomposable. However, in the context of set function learning, exact repre-
sentation is seldom the objective; instead, the central goal is often to approximate a target function
with sufficient accuracy (Wagstaff et al., 2022). To this end, we analyze QUANNs approximation
capacity with respect to these decompositions.

Max decomposition Under mild assumptions, QUANNs can approximate max-decomposable set
functions with worst-case approximation error that scales favorably with the cardinality of the input
set (cf. Proposition H.4 – Approximation of Max-Decomposable Set Function). This is achieved
by learning a generating function ψ that falls into an exponential function family (cf. Table 2). In
which case, for finite-size sets, QUANNs can attain arbitrarily small approximation error.

Table 2: Order of approximation E of mean,
sum and max-decomposable set functions
F (x) that QUANNs can achieve by learning
ψ that falls under the given function family.
F (X) ψ E
a ◦ mean ◦ b w1x+ w2 O(1)
a ◦ max ◦ b exp (wx) O(1/w logn)
a ◦ sum ◦ b · O(n)

Sum decomposition QUANNs exhibit limited
capacity in approximating sum-decomposable set
functions due to the inherently expansive nature
of summation, which poses a principal challenge
for neural architectures designed to preserve per-
mutation invariance via normalization-based pool-
ing (Bueno & Hylton, 2021). Specifically, we
demonstrate that, regardless of the particular func-
tion ψ learned by the model, the approximation error
tends to grow linearly with the cardinality n of the
input set, thus constraining the model’s performance
in sum-structured tasks (cf. Proposition H.5 – Approximation of Sum-Decomposable Set Function).
However, QUANNs can still approximate such functions so that the expected approximation error
becomes arbitrarily small – by letting the encoder ϕ “absorb” the expected value of the inputs car-
dinality and thus to appropriately rescale the learned NKM (cf. Proposition H.6 – Expected value of
the Approximation of Sum-Decomposable Set Function).

5.3 THEORETICAL BENEFITS OVER NORMALIZED DEEPSETS

A careful reader may notice a formal similarity between the functional form of the normalized
DeepSet and that of the proposed QUANN model. Specifically, by introducing substitutions
ρ′ = ρ ◦ ψ−1 and ϕ′ = ψ ◦ ϕ, the functional form of QUANNs can be rewritten in a form that
is functionally equivalent to normalized DeepSets: ρ′(1/n

∑n
i=1 ϕ

′(xi)). This may suggest that
QUANNs and Normalized DeepSets are essentially the same model class. However, in such case, ρ′
and ϕ′ would not be independent functions, but functional compositions connected via component
ψ and its inverse. This distinction confers several important advantages to the QUANN architecture.
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Increased expressivity under fixed ρ and ϕ First, under any fixed choice of the encoder ϕ and
the estimator ρ in a normalized DeepSet, introducing the additional learnable and invertible trans-
formation ψ strictly increases the expressivity of the model. This expansion of the hypothesis space
can be particularly valuable in practical scenarios where one or more components (e.g., the encoder
ϕ) are pre-trained, such as in transfer learning.

Natural regularization via ψ Enforcing invertibility on ψ acts as a natural form of regularization.
We hypothesize that this constraint improves the generalization capability of the model by encour-
aging the network to learn a ψ that aligns well with the intrinsic structure or decomposition of the
target set function F (X); independent of the specific choices of the encoder or estimator networks.

Dimensional collapse prevention To better illustrate this point, consider the dervivative of the
function F̂ (X) with respect of the wϕ, the parameter of the encoder ϕ. For simplicity, we assume
that F̂ (X) is factorized as QUANN-1 model. Using the inverse function theorem together with the
derivative of Kolmogorov mean (cf. Appendix A), we obtain:

∂F̂ (X)

∂wϕ
= Jρ(Mψ,ϕ)J

−1
ψ (Mψ,ϕ)

1

|X|
∑
x∈X

Jψ(ϕ(x))
∂ϕ(x)

∂wϕ
(5)

= Jρ(Mψ,ϕ)
∑
x∈X

1

|X|J
−1
ψ (Mψ,ϕ)Jψ(ϕ(x))

∂ϕ(x)

∂wϕ
(6)

= Jρ(Mψ,ϕ)
∑
x∈X

∂Mψ,ϕ

∂ϕ(x)

∂ϕ(x)

∂wϕ
(7)

where Jρ denotes the Jacobian of the estimator ρ. During training, the derivative of Kolmogorov
mean ∂Mψ,ϕ/∂ϕ(π) scales changes in the latent representations of the elements x proportionally
to their “leverage” on the representation of the entire input set – Mψ,ϕ. Because ψ is invertible,
derivative of Kolmogorov mean is non-singular, ensuring that no latent dimension is collapsed to
zero when aggregating gradients across the inputs. Consequently, information from each dimension
is preserved during backpropagation, effectively preventing dimensional collapse (Jing et al., 2022).

Structured latent representations If ψ is learned to be locally monotonic around Mψ,ϕ, then the
derivative ∂Mψ,ϕ/∂ϕ(π) in Equation 7 is positive semidefinite. In this case, Mψ,ϕ tends to follow
the gradients computed across the inputs and stays within a ball around the latent representations of
the input set elements (Nielsen, 2023), leading to more structured latent representations.

6 EXPERIMENTAL DESIGN

Research questions We hypothesize that the theoretical advantages established in the previous
section enable QUANNs to learn more transferable encoders and achieve superior performance
compared to state-of-the-art methods. Based on this hypothesis, we formulate the following research
questions. RQ1: Does the proposed neural function factorization described by Equation 4 improve
the approximation of common set function decompositions compared to an equivalent model with-
out the use of invertible neural networks? RQ2: Does the proposed approach learn a better encoder
ϕ, by (a) producing qualitatively improved embeddings compared to those trained using baseline
methods, (b) reducing the need for fine-tuning pre-trained encoders in downstream set function
learning tasks, and (c) enabling the learned encoders to be transferable to non-set tasks? RQ3: Do
QUANNs outperform state-of-the-art methods in set function learning tasks across diverse experi-
mental conditions?

Baselines To evaluate the performance of our proposed method, we compared it against a diverse
set of Janossy pooling models. We included three unary pooling models: DeepSets (Zaheer et al.,
2017) and PointNet (Qi et al., 2017a), which are widely regarded as foundational methods, and Nor-
malized DeepSets (Bueno & Hylton, 2021), which serves as a representative method for learning
average decomposable functions. As a representative of Janossy pooling methods with a learnable
pooling function, we employed the Hölder Power Deep Set (HPDS) model (Kimura et al., 2024).
For binary pooling architectures, we used the SetTransformer (Lee et al., 2019), which conveys
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set function approximation via pairwise attention-based interactions between set elements. In ad-
dition, we compared QUANNs with three representatives of non-Janossy methods: Slot attention
(SlotAtt) (Locatello et al., 2020), FSPool (Zhang et al., 2020) and LAF (Pellegrini et al., 2021).

Datasets To evaluate our method against baseline models, we adopted one synthetic dataset and
three publicly available real-world datasets: MNIST (LeCun et al., 1998), Omniglot (Lake et al.,
2015) and ModelNet40 (Wu et al., 2015). Since MNIST and Omniglot, are not originally designed
for set function modeling, similar to previous works (Zaheer et al., 2017; Lee et al., 2019), we
introduced modifications to adapt these datasets to the set-based setting. The specific preprocessing
procedures and task definitions are detailed in the Section E.1.

7 RESULTS

7.1 SYNTHETIC DATA EXPERIMENTS

We designed a synthetic data experiment using randomly generated point clouds and 10 different
vector aggregation functions, which models were supposed to approximate (cf. Section E.1). We
evaluated QUANN-1 against three models: Ablation 1, in which the transformation ψ was replaced
with the identity function: ψ(x) = x, Ablation 2, which also replaced ψ with the identity function,
but extended the encoder ϕ and the estimator ρ networks such that the total number of trainable
parameters and the model depth approximately matched those of QUANN-1; and Ablation 3, which
removed 1/|Pk(X)| normalization in the Equation 4. QUANN-1 outperformed the ablated models
in 9 out of 10 experiments (RQ1).

Table 3: Results of the synthetic data experiments. Performance of the proposed model (QUANN-1)
and the three ablated models when approximating 10 different set aggregation functions, as mea-
sured by mean squared error (MSE, lower is better). QUANN-1 outperformed ablations in 9 out of
10 experiments (highlighted in bold); with significant improvements in 7 of them.

Ablation 1 Ablation 2 Ablation 3 QUANN-1

Mean Std Mean Std Mean Std Mean Std

Geometric median 4.521 0.213 14.955 0.704 14.096 1.228 4.138 0.453
Quadratic mean 1.011 0.122 3.643 0.101 6.667 0.805 0.988 0.111
Median 4.628 0.135 15.236 0.781 14.171 1.028 4.104 0.383
Medoid 18.725 0.723 31.075 1.243 27.179 1.337 17.312 0.667
Midpoint 25.914 0.571 38.691 0.915 33.578 0.965 24.236 0.497
VecMaxNorm 94.926 2.440 137.045 4.350 114.042 1.933 89.499 2.363
Max 20.929 0.817 43.143 1.854 45.038 6.135 13.583 0.565
LogSumExp 19.242 1.078 41.386 1.463 43.969 7.656 12.557 0.856
Variance 132.388 10.578 105.119 9.594 589.282 95.461 74.128 15.605
Skewness 0.027 0.001 0.027 0.001 0.074 0.032 0.027 0.001

7.2 MNIST-SETS EXPERIMENTS

· · ·

{4, 9, 3, . . . , 2} F y

Model ŷ

LMSE(y, ŷ)

Figure 2: Experiment with aggregation of
MNIST digits. The goal is to approximate
the function F by learning to estimate its out-
puts.

We expanded the sum-of-MNIST-digits experiment,
originally performed in Zaheer et al. (2017), by
adding other aggregating functions, including max,
mean, mode, etc. The model task is to learn to ap-
proximate the MNIST digits aggregation function F
by learning to estimate the function outputs (cf. Fig-
ure 2). The experiments were performed under two
experimental setups: using generic encoders, which
was followed by the qualitative analysis; and using
pre-trained encoders (neural function ϕ).

Using generic encoders The MNIST-set experiments were first conducted using generic encoders,
where the models had to learn the MNIST image embeddings from scratch alongside other neural
components. According to the obtained results (cf. Table 5), QUANN-1 outperformed all unary
baselines across all 5 aggregation tasks. The second proposed model, QUANN-2, achieved overall
the best performance across all models evaluated. These experiments were further expanded by
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adding five measures of central tendency; providing further validation of the benefits of QUANN
models (cf. Supplementary Table F).

Qualitative analysis To assess the models’ ability to learn meaningful input representations, we
extracted the image encoders ϕ from the Janossy models trained in the previous experiments and
applied them to embed the MNIST test set images. The resulting embeddings were subsequently
projected into a two-dimensional space using UMAP (McInnes et al., 2018). The obtained projec-
tions were then plotted to reveal the structure of the embeddings (cf. Figure 7). The results show that
only the embeddings obtained from QUANNs, and SetTransformer, but not other models, consis-
tently produced class-wise separable structures across all tasks, demonstrating their ability to learn
more structured representations (RQ2a).

Using pre-trained encoders The experiments were then repeated using pre-trained MNIST image
encoders (neural function ϕ). Specifically, we first trained a standalone MNIST image classifier
composed of a small convolutional neural network followed by an MLP predictor, achieving 98%
test set accuracy. The trained encoder was transferred to the set function models, with its weights
being fixed. The models were then trained in the same manner as in the previous experiments.

Since the encoder is trained to produce class-separated embeddings and not to recover quantitative
relations between the images, we expected that the performance of the set function models would
generally worsen under this setting. The goal was to assess whether QUANNs would experience
a smaller performance drop compared to the baselines. This was confirmed by the results, which
show that only QUANNs retain their performance across all tasks, whereas the baselines experience
significant performance drop (cf. Figure 8); despite similar number of trainable parameters (RQ2b).

7.3 OMNIGLOT-SETS EXPERIMENTS

· · ·

Greek Hebrew Sanskirt . . . Latin
1 1 0 . . . 1

Model

y

ŷ

LBCE(y, ŷ)

Figure 3: Omniglot experiment. The task is
to identify which alphabets are represented in
a set of images of hand-written characters.

We modified the experiment proposed in Lee et al.
(2019) to a multi-label binary classification, where
the goal was to identify which of the 40 Omniglot
alphabets were represented within a given set of n
Omniglot handwritten character images (cf. Fig-
ure 3). The experiments were conducted under four
different conditions, fixing the minimum cardinality
at nmin = 5 while varying the maximum cardinality
of the image sets as nmax = 10, 15, 20 and 25.

The performance was assessed using the balanced accuracy score, computed as the macro-average
across the alphabets. The obtained results (cf. Table 5) show that QUANNs surpassed all baselines.

Table 4: Omniglot image classification ob-
tained from the transfer learning experiment.

ACC ↑
Mean Std

Model

Unary DeepSet 0.524 0.042
PointNet 0.256 0.219
NormDeepSet 0.393 0.052
HPDS 0.435 0.023
QUANN-1 0.597 0.014

Binary SetTransformer 0.480 0.019
QUANN-2 0.589 0.041

Non-Janossy FSPool 0.463 0.051
SlotAtt 0.484 0.018
LAF 0.156 0.007

Transfer learning We extended the Omniglot ex-
periments with a transfer learning analysis. We ex-
tracted the encoders ϕ from all models trained in the
Omniglot experiment, froze their weights, and trans-
ferred them to a image classification model com-
posed of the encoder followed by a linear layer. This
model was trained to predict the alphabet to which
each image belongs.

The results show that encoders learned by QUANNs
provide better support for the image classification
compared to those learned by the baselines (cf. Ta-
ble 4). This suggests that the factorization employed
in QUANNs learns more transferrable embeddings
that can be used beyond the set-related tasks (RQ2a).

7.4 MODELNET40 EXPERIMENTS

We performed multi-class classification experiments using the ModelNet40 dataset, following a
setup similar to that of Qi et al. (2017a) and Qi et al. (2017b). The task was to predict the category
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of the object represented by a point cloud. The experiments were conducted under three different
settings: the point clouds were subsampled to n points, where the maximum number of points was
fixed at nmax = 2048, while the minimum number of points varied as nmin = 256, 512 and 1024.

QUANNs were outperformed by FSPool and also by PointNet, but not other baselines (cf. Table 5).
The high performance of FSPool and PointNet is not surprising, as both models employ architectures
that are well-suited for detecting extreme values (max or min), a property known to be critical for
capturing local and global geometric features of point clouds (Zhang et al., 2019a). Overall, these
results corroborate the findings reported in the original experiments (Qi et al., 2017a).

7.5 QM9 EXPERIMENTS

Finally, we evaluated our models on two regression tasks derived from the QM9 molecular
dataset (Ramakrishnan et al., 2014). Each molecule is represented as a set of atoms with associ-
ated 3D coordinates, ranging from 3 to 29 atoms per molecule. In the first task, the goal was to
predict the HOMO energy level, while in the second task we predicted the LUMO energy level. As
shown in Table 5, QUANN-2 achieves the best performance across all baselines on both tasks.

8 DISCUSSION

Figure 4: Relative number of outcomes (cf.
Table 5), where the model in the given row
outperformed the model in the given column.
An asterisk and a double asterisk indicate sta-
tistical significance (p < 0.05) and very high
significance (p < 0.01), respectively.

Conclusions In this work, we introduced
QUANNs, a novel approach for set function
approximation that leverages a neuralized Kol-
mogorov mean as a trainable pooling operation. We
presented theoretical benefits of this construction
and hypothesized that these advantages should
promote the learning of more transferable latent
representations and improved generalization. The
obtained empirical results provide evidence in
support of these hypotheses and show that QUANNs
significantly outperform their state-of-the-art
alternatives (cf. Figure 4) (RQ3).

Limitations As the major limitation of QUANNs
we consider their limited capacity in approximating
sum-decomposable set functions (cf. Section 5.2).
Therefore, if the target set function is expected to be
additive or expansive, a simple sum may provide bet-
ter alternative to NKM. Similarly, when data are lim-
ited, NKM may be unnecessarily flexible and prone
to overfitting, whereas a fixed function may provide
better inductive bias and computational simplicity.

Similar to most previous works, our theoretical and experimental results are restricted to countable
sets. Intuitively, extending QUANNs to uncountable sets may be possible by replacing the sum in
Eq. 4 with an appropriate form of computational integration. However, we cannot guarantee which
of the theoretical benefits of our method would carry over in this setting, and the approximation of
set functions over uncountable domains remains an open question.

Applications QUANNs provide a general and expressive framework for learning central tenden-
cies over arbitrary collections of representations, making them potentially useful across a variety
of domains. For instance, QUANNs could be employed within graph neural networks, replacing
conventional message-passing aggregators with a learnable generalized mean, which is fundamen-
tally different from the approaches of Corso et al. (2020) and Ong & Veličković (2022), who use
learnable fusion of simple aggregates and learnable pairwise operations, respectively. Similarly, in
multi-modal and multi-view learning (Guo et al., 2019), where information from several modalities
or sources must be fused, QUANNs offer a principled way to learn the fusion rule for combining
representations from each view. QUANNs could also be applied in federated learning (Guendouzi
et al., 2023), where model updates from multiple clients must be aggregated.
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Table 5: Model performance across all experiments, grouped by model class (Unary in the upper ta-
ble; Binary and Non-Janossy in the lower). All values report mean performance across experimental
replicates with corresponding standard deviations. Bold and underlined values denote the best and
second-best performance across all models, respectively.

(a) Unary models

DeepSet PointNet NormDeepSet HPDS QUANN-1
Mean Std Mean Std Mean Std Mean Std Mean Std

Agg. MNIST, MSE ↓
max 0.120 0.012 0.079 0.002 0.128 0.014 0.071 0.009 0.067 0.022
mean 0.095 0.013 0.115 0.011 0.089 0.005 0.047 0.005 0.023 0.004
mode 3.903 0.150 5.498 0.270 4.119 0.170 4.011 0.295 2.219 0.163
sum 5.924 0.694 18.740 0.921 7.706 1.575 5.844 0.738 4.066 0.673
variance 1.747 0.226 2.143 0.121 1.927 0.132 1.265 0.414 0.605 0.171

Agg. MNIST - Pre-trained encoders, MSE ↓
max 0.421 0.041 0.199 0.018 0.408 0.025 0.314 0.068 0.045 0.014
mean 0.207 0.008 0.317 0.023 0.201 0.005 0.153 0.006 0.021 0.003
mode 3.880 0.143 6.384 0.170 3.626 0.095 3.300 0.085 1.043 0.337
sum 15.241 1.129 83.217 2.177 17.281 1.756 18.115 2.764 3.074 0.313
variance 4.245 0.086 3.766 0.182 3.950 0.173 3.774 0.296 0.625 0.212

nmax Omniglot, Balanced ACC ↑
10 0.579 0.009 0.566 0.076 0.544 0.011 0.610 0.017 0.734 0.007
15 0.584 0.007 0.523 0.036 0.519 0.001 0.535 0.015 0.711 0.017
20 0.588 0.007 0.515 0.012 0.527 0.002 0.543 0.011 0.674 0.033
25 0.592 0.004 0.545 0.077 0.536 0.006 0.537 0.009 0.655 0.001

nmin ModelNet40, ACC ↑
256 0.648 0.007 0.788 0.005 0.649 0.006 0.658 0.009 0.676 0.003
512 0.649 0.005 0.788 0.002 0.520 0.011 0.667 0.007 0.688 0.013
1024 0.645 0.012 0.791 0.006 0.534 0.007 0.663 0.013 0.686 0.013

Task QM9, MSE ↓
homo 179.423 10.715 153.419 7.299 166.695 6.495 212.237 7.899 160.345 12.676
lumo 399.119 13.734 401.247 3.917 458.711 10.189 674.320 20.098 374.646 9.096

(b) Binary & Non-Janossy models

Binary Non-Janossy

SetTransformer QUANN-2 FSPool SlotAtt LAF
Mean Std Mean Std Mean Std Mean Std Mean Std

Agg. MNIST, MSE ↓
max 0.099 0.009 0.069 0.014 0.095 0.018 0.085 0.025 0.571 0.092
mean 0.031 0.002 0.023 0.003 0.075 0.007 0.029 0.005 0.050 0.012
mode 3.085 0.367 1.579 0.408 2.847 0.479 3.255 0.124 4.219 0.370
sum 4.090 0.601 2.861 0.251 5.202 0.441 66.324 5.957 20.920 3.681
variance 2.284 0.298 0.605 0.043 1.317 0.201 1.956 0.120 1.383 0.197

Agg. MNIST - Pre-trained encoders, MSE ↓
max 0.079 0.016 0.042 0.008 0.230 0.038 0.077 0.013 0.653 0.045
mean 0.046 0.006 0.020 0.002 0.142 0.019 0.049 0.002 0.101 0.022
mode 2.837 0.185 0.756 0.169 3.475 0.381 2.556 0.178 2.851 0.911
sum 4.725 0.456 2.535 0.377 9.520 0.509 61.432 5.679 14.319 5.439
variance 2.322 0.351 0.616 0.134 2.583 0.241 1.825 0.026 1.775 0.321

nmax Omniglot, Balanced ACC ↑
10 0.525 0.050 0.723 0.011 0.557 0.074 0.613 0.006 0.508 0.008
15 0.603 0.003 0.711 0.015 0.579 0.079 0.618 0.005 0.528 0.003
20 0.606 0.004 0.693 0.017 0.575 0.060 0.618 0.009 0.535 0.006
25 0.606 0.006 0.635 0.069 0.640 0.012 0.616 0.005 0.545 0.010

nmin ModelNet40, ACC ↑
256 0.676 0.006 0.773 0.011 0.796 0.011 0.726 0.003 0.660 0.020
512 0.679 0.009 0.762 0.011 0.791 0.013 0.739 0.014 0.671 0.028
1024 0.678 0.009 0.782 0.005 0.794 0.012 0.727 0.012 0.688 0.008

Task QM9, MSE ↓
homo 165.998 2.392 104.821 10.472 176.240 7.769 164.640 19.453 297.712 84.158
lumo 461.948 11.837 258.039 20.471 480.726 32.999 386.630 11.782 657.083 77.112
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A DERIVATIVE OF THE KOLMOGOROV MEAN

We analyze the derivative of the Kolmogorov mean with respect to a single input element xj . Given
an invertible and differentiable transformation ψ, the Kolmogorov mean of a set X = {x1, . . . ,xn}
is defined as:

Mf (X) = f−1

(
1

n

n∑
i=1

f(xi)

)
. (8)

Let zi = f(xi) and define the aggregated representation z̄ = 1
n

∑n
i=1 zi. Then:

y =Mf (X) = f−1(z̄).

Our goal is to compute the sensitivity of y with respect to a single input xj . Applying the multivariate
chain rule:

∂Mf (X)

∂xj
=
∂f−1(z̄)

∂z̄
· ∂z̄
∂xj

. (9)

The second term is straightforward:

∂z̄

∂xj
=

1

n

∂zj
∂xj

=
1

n
Jf (xj), (10)

where Jf (xj) =
∂f(xj)
∂xj

is the Jacobian of f at xj .

For the first term, we use the inverse function theorem: the Jacobian of the inverse map is the inverse
of the Jacobian of the forward map:

∂f−1(z̄)

∂z̄
= Jf−1(z̄) = [Jf (y)]

−1
, where y =Mf (X). (11)

Combining these results, we obtain:

∂Mf (X)

∂xj
=

1

n
[Jf (y)]

−1 · Jf (xj) (12)

Key properties Since f is invertible by the definition of Kolmogorov mean, its Jacobian Jf is non-
singular. Therefore, the resulting derivative ∂Mf (X)/∂xj is also guaranteed to be non-singular.
Moreover, if f is also monotonic, the resulting derivative is positive (in the scalar case) or has
a positive-definite symmetric part (in the multivariate case). The resulting derivative of the Kol-
mogorov mean thus inherits at least two important structural properties:

• Dimension preservation (from non-singularity) – NKM maps any infinitesimal input per-
turbation δxj to an output perturbation δy so that δy is non-zero along all non-zero dimen-
sions of δxj . The NKM thus acts as a smooth aggregator that maps small input neighbor-
hoods to small latent neighborhoods so that no dimension is flattened to zero.

• Local alignment (from positive-definiteness) – NKM maps any infinitesimal input pertur-
bation δxj to an output perturbation δy that satisfies δy⊤δxj > 0 ensuring that small input
perturbations produce output changes locally aligned with the input shift.

B CHOICE OF ψ-NETWORK ARCHITECTURE

In all our experiments, we used the RevNet (Gomez et al., 2017) architecture to implement the
generating function ψ of the NKM. RevNet is composed of a sequence of invertible blocks, where
each block operates on a partitioned input vector (x1, x2) and is defined as:

x′1 = x1 + f(x2),

x′2 = x2 + g(x′1),
(13)
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where f and g are arbitrary neural networks (we used ReLU-activated MLPs), and the transformation
is easily invertible by sequentially subtracting these updates in reverse. We selected RevNet for its
simplicity and efficiency, making it an intuitive choice for learning ψ.

To further investigate the relationship between the performance of QUANN and the architectural
design of the neural network implementing the generating function ψ, we repeated the synthetic
data experiments (cf. Section 7.1) using only QUANN models, under different architectures imple-
menting the generating function ψ.

Use of RealNVP coupling The RevNet blocks used to implement the generating function ψ were
replaced with conceptually similar but more expressive RealNVP coupling blocks (Dinh et al., 2014;
2016). This modification preserved the invertibility constraint while increasing the representational
capacity of ψ. The results (cf. Figure 5) did not reveal clear consistent pattern indicating improve-
ment or worsening of the model performance, indicating that while architectural enhancements may
yield marginal gains in some tasks, the overall effectiveness of QUANNs does not critically depend
on the specific choice of invertible block, provided it is sufficiently expressive and scalable.

Varying RevNet capacity We systematically varied the number of RevNet blocks and the number
of hidden layers per block. The resulting performance metrics, summarized in Figure 6, indicate that
the impact of these architectural choices is highly task-dependent. That is, no single configuration
consistently outperforms others across all aggregation functions. These findings suggest that, in
practice, it is not possible to determine the optimal design of ψ a priori. Instead, users are advised
to empirically explore different configurations in order to identify the most effective architecture for
a given task.

Figure 5: QUANN performance in synthetic data experiment in dependence on the choice of the
ψ-network architecture (RevNet vs RealNVP coupling). The results show that there is no clear
consistent pattern indicating improvement or worsening of the model performance due to altered
network architecture.

C SCALABILITY OF NEURALIZED KOLMOGOROV MEANS

The NKM computation scales linearly with the number of elements in the input set: O(n), involving
n forward passes through the generating function ψ, followed by a single pass through its inverse
ψ−1. The scaling behavior with respect to the input dimensionality, d, depends on the choice of
neural architecture used to implement ψ. When ψ is realized as a RevNet, the memory and com-
putational costs scale linearly with d: O(d). Overall, these properties make NKM a practical and
scalable choice for processing even large and high-dimensional input sets.

D POSSIBLE EXTENSIONS & MODIFICATIONS OF QUANNS

In our experiments, we purposefully refrained from using regularization techniques or adopting
more complex architectures, to maintain a clear epistemological focus on the core properties of
the proposed models. Nevertheless, we identify at least three promising avenues for extension and
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Figure 6: QUANN performance in synthetic data experiment in dependence on the choice of the
ψ-network architecture (number of RevNet blocks and hidden layers per block). The results show
that there is not universal relationship between the choice of the architecture and the associated
performance.

modification of our work: (i) the adoption of regularization techniques, particularly set-specific nor-
malization layers such as SetNorm (Zhang et al., 2022); (ii) hierarchical extensions of QUANNs,
analogous to how PointNet++ (Qi et al., 2017b) extends the original PointNet (Qi et al., 2017a) and
(iii) the introduction of “multi-head” learnable pooling, where multiple Neuralized Kolmogorov
Means (with independently trained generating functions) are applied in parallel and then concate-
nated, may substantially boost expressivity of the models.

D.1 PERMUTATION-EQUIVARIANT QUANNS

Our proposed framework focuses on learning permutation-invariant functions. A common strategy
to extend permutation-invariant models to permutation-equivariant ones is to augment each element
with global, sum-pooled features and then apply an element-wise function to combine local and
global information (e.g., (Segol & Lipman, 2020)). Analogously, permutation-equivariant QUANNs
layer can be obtained by augmenting elements after applying the inverse transformation:

fi(X) = ρ

xi, ψ
−1 1

|Pk(X)|
∑

π∈Pk(X)

ψ
(
ϕ(xi)

) (14)

Table 6: ModelNet40 classification obtained
by the permutation-equivariant models.

ACC↑
n = 100 n = 1000

Model Mean Std Mean Std

DeepSet 0.798 0.021 0.844 0.017
QUANN-1 0.786 0.015 0.835 0.022
QUANN-2 0.846 0.012 0.882 0.018

To evaluate the performance of permutation-
equivariant layers, we conducted the following
experiment. We implemented the permutation-
equivariant variant of DeepSets as described in Za-
heer et al. (2017) (Section 3.1, Equivariant Model,
and Appendix C). We then assessed this model under
different pooling operations using the ModelNet40
dataset, strictly adhering to the preprocessing proto-
col outlined in Zaheer et al. (2017) (Section H), in-
cluding zero-mean/unit-variance normalization and
fixed set cardinality (n = 100 and n = 1000). The best performance we obtained closely matched
the results originally reported in Zaheer et al. (2017).

We then implemented an analogous model in which the equivariant DeepSets layers were replaced
with QUANN-based equivariant layers as defined in Equation 14. While the equivariant QUANN-1
achieved performance comparable to that of equivariant DeepSets, the equivariant QUANN-2 model
substantially outperformed both, as shown in Table 6.
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E EXPERIMENTS DETAILS

E.1 DATASETS

Synthetic dataset Each point cloud X = (xi)
n
i=1 consisted of n ∈ N vectors randomly sam-

pled from x ∈ (0, 1)16. Number of vectors n was sampled uniformly from interval [2, 1024]. The
obtained vectors were subsequently transformed using affine transformations of the form ax + b,
where a ∈ (0, 1) is a scalar and b ∈ (−10, 10)16 is a translation vector sampled independently for
each cloud. To assign labels, we applied a selected aggregation function F (X) : Rd → Rd, com-
puted across the set of transformed points. We experimented with a total of ten distinct aggregation
functions, encompassing a range of statistical descriptors (cf. Table 8). The resulting dataset was
partitioned into training, validation, and test subsets consisting of 20 × 103, 2 × 103, and 3 × 103

clouds respectively.

MNIST-sets dataset MNIST is a widely used benchmark dataset consisting of grayscale 28× 28
pixels images of handwritten digits (0–9) (LeCun et al., 1998). We constructed a set dataset derived
from the MNIST images and their corresponding digit labels. Each instance in our dataset was
created by a set of randomly selected MNIST images of varying sizes, where the set label was
obtained by applying an aggregation function to the set of associated image labels. The number of
elements in each set, n, was sampled uniformly between nmin = 2 and nmax = 16. We employed
ten different aggregation functions, including common measures of central tendency (e.g., mean,
median), extremal values (max), summation, variance, and others. The task was to estimate the set
labels. For each aggregating function we generated a new datasets, including training, validation
and testing subsets; consisting of of 20× 103, 2× 103, and 3× 103 instances respectively.

Omniglot-sets dataset Omniglot is a collection of handwritten characters drawn from approxi-
mately 50 different alphabets, containing over 1,600 unique character classes, originally proposed
for evaluation of a few-shot learning (Lake et al., 2015). Following a similar procedure to the
MNIST-set dataset, we constructed variable-sized sets from the Omniglot dataset by randomly sam-
pling images from the Omniglot collection. Each set was assigned a binary label vector indicating
which of the 50 alphabets were represented in the set, based on the presence or absence of their
characters. This framing naturally leads to a binary multi-label classification task, where the ob-
jective is to predict which alphabets appear in a given set. We sampled between nmin and nmax
images, where the minimum set size was fixed at nmin = 5 was maximum was varying across
nmax ∈ {10, 15, 20, 25} to explore the effect of increasing the upper bound on the set size on the
models’ performance. For each value of nmax, we generated a new dataset comprising training,
validation, and test subsets, consisting of of 20× 103, 2× 103, and 3× 103 instances, respectively.

ModelNet40 dataset ModelNet40 is a 3D object recognition dataset containing CAD models from
40 object categories, commonly used in point cloud classification tasks (Wu et al., 2015). Each ob-
ject is represented as a point cloud consisting of a varying number of 3D coordinates. We uniformly
subsampled each object to obtain a fixed number of points n ∈ {256, 512, 1024}. The resulting
point clouds were then normalized to fit within a unit sphere centered at the origin, ensuring geo-
metric consistency across all instances. The classification task involved predicting the correct object
category from the point cloud representation. For each value of n, we generated a new dataset com-
prising training, validation, and test subsets, consisting of 20 × 103, 2 × 103, and 3 × 103 objects,
respectively.

QM9 dataset QM9 consists of computed geometric, energetic, electronic, and thermodynamic
properties for 134,000 stable small organic molecules made up of C, H, O, N, and F (Ramakrishnan
et al., 2014). These properties were obtained through computational simulation and, although they
are close to experimentally measured values, the dataset cannot be strictly considered real-world.
Each molecule consists of a variable number of atoms with associated 3D coordinates. The number
of atoms ranges from 3 to 29, so the dataset to be viewed naturally as a set-valued input of varying
cardinality. We conducted two independent prediction tasks: estimating the HOMO and LUMO
energy levels, whose values we converted to milli-electron volts (meV) for improved numerical
stability. For each task, we trained and evaluated the models using independent training, validation,
and test splits, comprising 80%, 10%, and 10% of the data, respectively.
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E.2 MODELS IMPLEMENTATION

All models, including our proposed QUANNs, its ablated variants, and the baseline methods, were
implemented in PyTorch. The baselines were implemented based on the methodological descriptions
provided in their respective papers and, when available, their official code repositories. Every effort
was made to reproduce their original implementation faithfully and accurately.

To ensure a fair comparison across models, we standardized the encoder ϕ and estimator ρ archi-
tectures used in all experiments (cf. Table 11). This consistency was maintained across all models,
thereby isolating the impact of the aggregation mechanism as the primary variable under investiga-
tion.

Furthermore, to ensure comparable learning capacity between QUANN-1/-2 and the unary or bi-
nary aggregation-based baselines, we intentionally reduced the capacity of QUANNs’ encoder and
estimator networks. Specifically, one hidden layer was removed from each of these components in
QUANNs. This adjustment led to all models having approximately the same number of learnable
parameters, which mitigates any performance differences that could otherwise be attributed to model
size (cf. Table 12).

E.3 TRAINING & TESTING

In all experiments, each model was trained using only the training portion of the dataset. During
training, we explored a range of learning rates in order to identify optimal training configurations.
Following training, model selection was performed based on performance on the validation set.
Specifically, for each model and learning rate configuration, we measured the validation loss and
selected the trained instance that achieved the lowest validation error. Once the best model for each
method was selected, final evaluation was conducted on the test portion of the dataset. The resulting
test loss or, where applicable, another performance metric was recorded. Information about hyper-
paramters and loss functions selection are summarized in the Table 10.

E.4 STATISTICAL EVALUATION

Performance evaluation For each real-world dataset experiment, we performed 4 independent
experimental replicates. For synthetic data experiments, we conducted 10 replicates. All reported
values represent the mean and standard deviation computed across these experimental replicates.
To assess whether one model significantly outperformed another, we adopted a commonly used
informal heuristic: a model was considered to perform significantly better if the difference in mean
performance exceeded the sum of the corresponding standard deviations.

Win-loss matrices The models were additionally compared in pair-wise fashion and the results
were conveyed as a win-loss matrix (Figure 4), summarizing the total number of outcomes where
the model in the given row outperformed the model in the given column (comparing mean values
only, irrespectively of the standard deviation), normalized by the total number of outcomes the
models participated in (cf. Table 5).

Binomial test To assess the statistical significance of the win proportions in the win-loss matrix, a
one-tailed binomial test was conducted for each entry. The test was designed to evaluate whether the
observed proportion of wins for a given model is greater than what would be expected by chance.
The null hypothesis thus says that observed proportion of the wins r is not greater than 0.5 – the
expected proportion under random chance:

H0 : r ≤ 0.5

H1 : r > 0.5

The entries with the p–value < 0.05 were considered significant (*), and those with p–value < 0.01
were considered highly significant (**).
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E.5 COMPUTATIONAL RESOURCES

The experiments were performed across 4 NVIDIA RTX A6000 GPUs, and 28 AMD EPYC-Rome
Processors, on Ubuntu 20.04.6 LTS (Focal Fossa). The project code is available at: https://
github.com/tomastokar/Quasi-Arithmetic-Neural-Networks

F SUPPLEMENTARY TABLES

Table 7: Performance of individual models in the additional MNIST-set aggregation experiments.
All values represent the Mean Squared Error (MSE; lower is better), averaged across multiple ex-
perimental replicates, with standard deviations reported. Values highlighted by bold indicate best
performance, while those highlighted by underline show the second best performance.

Unary Binary Non-Janossy

DeepSet PointNet NormDeepSet HPDS QUANN-1 SetTransformer QUANN-2 FSPool SlotAtt

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Geometric mean 0.212 0.014 0.117 0.016 0.188 0.023 0.117 0.012 0.106 0.024 0.110 0.014 0.085 0.024 0.129 0.022 0.102 0.026
LogMeanExp 0.118 0.029 0.096 0.018 0.114 0.019 0.081 0.011 0.053 0.011 0.076 0.025 0.061 0.025 0.105 0.020 0.070 0.009
harmonic 0.079 0.016 0.082 0.004 0.070 0.007 0.063 0.005 0.030 0.004 0.037 0.010 0.024 0.005 0.060 0.016 0.033 0.008
median 0.665 0.042 0.849 0.053 0.680 0.041 0.376 0.028 0.218 0.051 0.382 0.046 0.137 0.021 0.417 0.085 0.259 0.021
midrange 0.059 0.015 0.026 0.002 0.062 0.004 0.030 0.004 0.026 0.008 0.057 0.009 0.024 0.007 0.044 0.017 0.035 0.003

Table 8: Summary of the point cloud aggregation functions used in the synthetic data experiments
(cf. Section 7.1). Each function maps sets of vectors in Rd to a single representative vector (Rd →
Rd). Each function captures different statistical or geometric properties of the input point set.

Type Function Name Expression

Central tendencies Marginal median (median(x·,j))
d
j=1

Geometric median arg min
z∈Rd

n∑
i=1

∥xi − z∥1

Medoid arg min
xi∈X

n∑
j=1

∥xi − xj∥2

Quadratic mean

(
1

n

n∑
i=1

x2
i

)1/2

Extremes Midpoint
1

2
(xi + xj) , where (i, j) = argmax

i,j
∥xi − xj∥2

VecMaxNorm arg max
xi∈X

∥xi∥2
Row max (max(x·,j))

d
j=1

LogSumExp log

(
n∑

i=1

exp(xi)

)

Moments Variance
1

n

n∑
i=1

(xi − x̄)2

Skewness
1

n

n∑
i=1

(xi − x̄

σ

)3
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Table 9: Summary of the labels aggregation functions used in the aggregation-of-MNIST-images
experiment. Each function operates on a set of scalars {x1, x2, . . . , xn}.

Function Name Formula

Mean
1

n

n∑
i=1

xi

Median median(x1, x2, . . . , xn)
Mode mode(x1, x2, . . . , xn)

Geometric Mean

(
n∏

i=1

xi

)1/n

Harmonic Mean
n∑n

i=1
1
xi

Log-Mean-Exp log

(
1

n

n∑
i=1

exi

)
Midrange

mini xi +maxi xi
2

Variance
1

n

n∑
i=1

(xi − x̄)2, where x̄ = 1
n

∑n
i=1 xi

Maximum max
i
xi

Sum
n∑

i=1

xi

Table 10: The hyper-parameters and loss function selection as used in our experiments.
Dataset Learning Rate Batch Size Epochs Latent Dim Loss Performance Metric

Synthetic data 1.0× 10−4 32 20 16 MSE MSE
5.0× 10−4

1.0× 10−3

5.0× 10−3

MNIST-set 1.0× 10−4 32 50 128 MSE MSE
5.0× 10−4

1.0× 10−3

Omniglot-set 1.0× 10−4 32 50 128 BCE Ballanced ACC
5.0× 10−4

1.0× 10−3

ModelNet40 1.0× 10−4 32 50 128 MSE ACC
5.0× 10−4 256
1.0× 10−3
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Table 11: Summary of encoder ψ and predictor ρ architectures used for individual modalities across
the given datasets. Note, dim indicates latent space dimension.

Dataset Encoder ϕ Estimator ρ

Synthetic Input: R16 Input: Rdim

FC 128 + ReLU FC 128 + ReLU
FC dim FC 16

MNIST-set Input: R1×28×28 Input: Rdim

Conv 16, kernel 3× 3, stride 1, pad 1 + ReLU FC 256 + ReLU
Conv 32, kernel 3× 3, stride 1, pad 1 + ReLU FC 256 + ReLU
Conv 64, kernel 3× 3, stride 1, pad 1 + ReLU FC 1
MaxPool2d
FC dim

Omniglot-set Input: R1×28×28 Input: Rdim

Conv 16, kernel 3× 3, stride 1, pad 1 + ReLU FC 256 + ReLU
Conv 32, kernel 3× 3, stride 1, pad 1 + ReLU FC 256 + ReLU
Conv 64, kernel 3× 3, stride 1, pad 1 + ReLU FC 50
MaxPool2d
FC dim

ModelNet40 Input: R3 Input: Rdim

FC 256 + ReLU FC 256 + ReLU
FC 256 + ReLU FC 256 + ReLU
FC dim FC 40

Table 12: Number of trainable parameters per model across all experiments.
Synthetic MNIST MNIST-pretrained Omniglot ModelNet40 QM9

Ablation 1 8480
Ablation 2 15776
Ablation 3 11696
DeepSet 196225 99073 208818 208808 200065
NormDeepSet 196225 99073 208818 208808 200065
HPDS 196226 99074 208819 208809 200066
QUANN-1 11696 196737 99585 209330 209320 134785
SetTransformer 263553 166401 269874 271144 267393
QUANN-2 246657 149505 252978 320552 316801
FSPool 196245 99093 208838 208036 134293
SlotAtt 281217 184065 287538 288808 285057
LAF 197761 100609 210354 210344 201601

21



Published as a conference paper at ICLR 2026

G SUPPLEMENTARY FIGURES

Figure 7: UMAP projections of the MNIST test set embeddings obtained from the encoder networks
(ϕ) trained under different Janossy methods to approximate various aggregation functions. Each
point corresponds to an image, colored by its digit class label. Notably, only the encoders trained via
SetTransformer, QUANN-1 (unary pooling), and QUANN-2 (binary pooling) produce embeddings
that exhibit clear class-wise separation over all tasks, highlighting their superior ability to organize
inputs in a semantically meaningful latent space.
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Figure 8: Set function models trained with a generic vs. a fixed, pre-trained MNIST image encoder.
Subplots correspond to a different aggregating functions, and show the model performance (MSE,
lower is better), with error bars indicating standard deviations across experimental replicates. Only
QUANN-1 and -2 retain, or improve, their performance despite fixed encoder (points close to, or
below, the identity line), whereas baselines experience a significant performance drop (points above
the identity lines); despite comparable number of trainable parameters (cf. Table 12).
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H PROOFS

Corollary H.1 (Permutation invariance of Quasi-arithmetic Neural Networks). Let X be a finite set
of elements as described in Section 2 , and let F̂ (X) be a set function approximation as described
in Eq. 4. Then, F̂ is permutation invariant with respect to the elements of the input set X.

Proof. For any permutation π of the indices {1, . . . , n}, we have:

F̂ (X ′) = ρ

(
ϕ−1

(
1

n

n∑
i=1

ψ(ϕ(xπ(i)))

))
= ρ

(
ϕ−1

(
1

n

n∑
i=1

ψ(ϕ(xi))

))
= F̂ (X),

since summation is invariant under permutation. Thus, F̂ is permutation invariant.

Corollary H.2 (Kolmogorov Mean with Linear Generator is Equal to Arithmetic Mean). Let
Mψ(X) be Kolmogorov mean as defined in Equation 3. If ψ : R → R is a linear function of
the form ψ(x) = w1x + w2 for constants w1 ̸= 0 and w2 ∈ R, then Mψ is equal to the arithmetic
mean.

Proof. Let ψ(x) = w1x + w2, with w1 ̸= 0, so that ψ is invertible with inverse ψ−1(y) = (y −
w2)/w1. The Kolmogorov mean is then computed as:

Mψ(x1, . . . , xn) = ψ−1

(
1

n

n∑
i=1

ψ(xi)

)
= ψ−1

(
1

n

n∑
i=1

(w1xi + w2)

)
.

Simplifying the expression inside the inverse:

1

n

n∑
i=1

(w1xi + w2) = w1

(
1

n

n∑
i=1

xi

)
+ w2.

and apply ψ−1:

ψ−1

(
w1

(
1

n

n∑
i=1

xi

)
+ w2

)
=
w1

(
1
n

∑n
i=1 xi

)
+ w2 − w2

w1
=

1

n

n∑
i=1

xi.

Therefore,

Mψ(X) =
1

n

n∑
i=1

xi.

Proof of therorem 5.1. Let’s decompose U as the following union:

U = Uψ=I ∪ Uψ ̸=I.

where Uψ ̸=I denotes set of functions that can be uniformly approximated by QUANNs of the
form equation 4 with ψ = I, while ρ, ϕ are arbitrary neural networks.

By the representation result of Bueno & Hylton (2021), every permutation-invariant set function
F : Pf (X) → Y that is uniformly continuous with respect to the Wasserstein metric can be uniform
approximated by a function of the form

F (X) = ρ

(
1

|X|
∑
x∈X

ϕ(x)

)
,

where ρ and ϕ are arbitrary chosen neural networks.

This representation corresponds to the QUANN architecture specialized to ψ = I (i.e. the quasi-
arithmetic mean reduces to a sum or mean when ψ is the identity) and so Uψ=I = UW
From the above we obtain that U = Uψ=I ∪ Uψ ̸=I = UW ∪ Uψ ̸=I and therefore:

U ⊇ UW ,
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Proposition H.3 (Approximation of Mean-Decomposable Set Function). LetX = {x1, . . . , xn} be
a finite set as defined in Section 2, and consider a mean-decomposable set function F(x) of the form:

F (X) = a

(
1

n

n∑
i=1

b(xi)

)
,

where:

• b : X → Rd is a continuous function;

• a : Rd → Rd′ is a Lipschitz continuous function with Lipschitz constant La, for some
d, d′ ∈ N.

Let F̂ (X) denote the approximation of F (X) produced by the model described in Section 5, which
constructs:

• a continuous function ϕ ≈ b,

• a generator ψ approximating any linear map x 7→ w1x+ w2, and

• a continuous function ρ ≈ a.

Then, for any ϵ > 0, if ψ approximates a linear function sufficiently well and both ϕ and ρ approx-
imate b and a, respectively, within corresponding tolerances, the approximation error is bounded
as:

∥F (X)− F̂ (X)∥ ≤ ϵ.

Proof. Let µb := 1
n

∑n
i=1 b(xi) and µψ,ϕ := ψ−1

(
1
n

∑n
i=1 ψ(ϕ(xi))

)
. The approximation error

can be expressed as:
∥F̂ (X)− F (X)∥ = ∥a(µb)− ρ(µψ,ϕ)∥

By the triangle inequality and the Lipschitz continuity of a, along with the universal approximation
property of ρ (i.e., ∥a(z)− ρ(z)∥ ≤ ϵρ for any z), we have:

∥F̂ (X)− F (X)∥ = ∥a(µb)− ρ(µψ,ϕ)∥ (15)
≤ ∥a(µb)− a(µψ,ϕ)∥+ ∥a(µψ,ϕ)− ρ(µψ,ϕ)∥ (16)
≤ La ∥µb − µψ,ϕ∥+ ϵρ, (17)

where La is the Lipschitz constant of a.

We now focus on bounding ∥µb − µψ,ϕ∥. By definition:

∥µb − µψ,ϕ∥ =

∥∥∥∥∥ 1n
n∑
i=1

b(xi)− ψ−1

(
1

n

n∑
i=1

ψ(ϕ(xi))

)∥∥∥∥∥ .
From Corollary H.2, if ψ approximates a linear function ψ(x) ≈ w1x + w2 such that ∥ψ(x) −
(w1x + w2)∥ ≤ ϵψ , then in the limit as ϵψ → 0, the Kolmogorov mean reduces to the arithmetic
mean:

lim
ϵψ→0

µψ,ϕ =
1

n

n∑
i=1

ϕ(xi).

Using this and the universal approximation property of ϕ, i.e., ∥b(x)− ϕ(x)∥ ≤ ϵϕ, we can bound:

lim
ϵψ→0

∥µb − µψ,ϕ∥ =

∥∥∥∥∥ 1n
n∑
i=1

b(xi)−
1

n

n∑
i=1

ϕ(xi)

∥∥∥∥∥ (18)

=

∥∥∥∥∥ 1n
n∑
i=1

(b(xi)− ϕ(xi))

∥∥∥∥∥ (19)

≤ 1

n

n∑
i=1

∥b(xi)− ϕ(xi)∥ (20)

≤ ϵϕ. (21)
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Substituting into the earlier inequality:

lim
ϵψ→0

∥F̂ (X)− F (X)∥ ≤ Laϵϕ + ϵρ.

Finally, since both ϵϕ and ϵρ can be made arbitrarily small, we can write:

lim
ϵψ→0

∥F̂ (X)− F (X)∥ ≤ ϵ,

for an arbitrarily small ϵ > 0.

Proposition H.4 (Approximation of Max-Decomposable Set Function). Let X = {x1, . . . , xn} be
a finite set as defined in Section 2, and consider a mean-decomposable set function F(x) of the form:

F (X) = a

(
max
x∈X

b(x)

)
,

where:

• b : X → Rd is a continuous function;

• a : Rd → Rd′ is a Lipschitz continuous function with Lipschitz constant La, for some
d, d′ ∈ N.

Let F̂ (X) denote the approximation of F (X) produced by the model described in Section 5, which
constructs:

• a continuous function ϕ ≈ b,

• a generator ψ approximating any exponential function x 7→ exp(wx), s.t. w > 0, and

• a continuous function ρ ≈ a.

Then, for any ϵ > 0, if ψ approximates an exponential family function sufficiently well and both ϕ
and ρ approximate b and a, respectively, within corresponding tolerances, the approximation error
is bounded as:

∥F (X)− F̂ (X)∥ ≤ La log (n) + ϵ.

Proof. Let Mb := maxx∈X b(x) and µψ,ϕ := ψ−1( 1n
∑n
i=1 ψ(ϕ(xi))). The approximation error

can be expressed as:

∥F (X)− F̂ (X)∥ =
∥∥∥a(Mb)− ρ(µψ,ϕ)

∥∥∥ (22)

By the triangle inequality and the Lipschitz continuity of a, along with the universal approximation
property of ρ (i.e., ∥a(z)− ρ(z)∥ ≤ ϵρ for any z), we have:

∥F (X)− F̂ (X)∥ = ∥a(Mb)− ρ
(
µψ,ϕ

)
∥ (23)

≤ ∥a(Mb)− a(µψ,ϕ)∥+ ∥a(µψ,ϕ) + ρ(µψ,ϕ)∥ (24)
≤ La∥Mb − µψ,ϕ∥+ ϵρ (25)

where La is the Lipschitz constant of a.

We now focus on the bounding ∥Mb − µψ,ϕ∥. By definition:

∥Mb − µψ,ϕ∥ =
∥∥∥Mb − ψ−1

( 1
n

∑
x∈X

ψ(ϕ(x))
)∥∥∥ (26)
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When ψ approximates an exponential function ψ(x) ≈ exp (wx) such that ∥ψ(x)−exp (wx)∥ ≤ ϵψ
then in the limit as ϵψ → 0, the above norm can be computed as:

lim
ϵψ→0

∥Mb − µψ,ϕ∥ =
∥∥∥Mb −

1

w
log
( 1
n

n∑
i=i

exp(wϕ(x))
)∥∥∥ (27)

=
∥∥∥ 1
w

log
( 1
n

n∑
i=i

exp(wϕ(x))
)
−Mb

∥∥∥ (28)

=
∥∥∥ 1
w

log
( 1
n

n∑
i=i

exp(wϕ(x))
)
− 1

w
log (exp (wMb))

∥∥∥ (29)

=
∥∥∥ 1
w

log
( 1
n

n∑
i=i

exp(wϕ(x)− wMb)
)∥∥∥ (30)

(31)

We will now establish the lower bound on the sum inside the logarithm. We will leverage the
approximation boundary ∥ϕ(x)− b(x)∥ ≤ ϵϕ; and that b(x) =Mb for at least one x ∈ X .

1

n

n∑
i=1

exp(wϕ(x)− wMb) =
1

n

n∑
i=1

exp(w(ϕ(x)−Mb)) (32)

≥ 1

n

n∑
i=1

exp(w(b(x)−Mb − ϵϕ)) (33)

≥ 1

n

∑
x∈X, b(x)=Mb

exp(w(b(x)−Mb − ϵϕ)) (34)

≥ 1

n
exp (−wϵϕ) (35)

Given this bound we establish the upper bound on the limit of the above norm:

1

n

n∑
i=1

exp(wϕ(x)− wMb) ≥
1

n
exp(−wϵϕ) =⇒ lim

ϵψ→0
∥Mb − µψ,ϕ∥ ≤ 1

w
log (n) + ϵϕ (36)

Substituting into the earlier inequality:

lim
ϵψ→0

∥F̂ (X)− F (X)∥ ≤ La(
1

w
log (n) + ϵϕ) + ϵρ (37)

Finally, since both ϵϕ and ϵρ can be made arbitrarily small, we can write:

lim
ϵψ→0

∥F̂ (X)− F (X)∥ ≤ La
1

w
log (n) + ϵ (38)

for an arbitrarily small ϵ ¿ 0.

Proposition H.5 (Approximation of Sum-Decomposable Set Function). Let X = {x1, . . . , xn} be
a finite set as defined in Section 2, and consider a sum-decomposable set function F(x) of the form:

F (X) = a

(
n∑
i=1

b(xi)

)
,

where:

• b : X → Rd is continuous function bounded by the interval (B0, B1);
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• a : Rd → Rd′ is a Lipschitz continuous function with Lipschitz constant La, for some
d, d′ ∈ N.

Let F̂ (X) denote the approximation of F (X) produced by the model described in Section 5, which
constructs:

• a continuous function ϕ ≈ wb ,w > 0,

• a continuous function ρ ≈ a.

Then, for any ϵ > 0, if ψ approximates any continuous invertible function and both ϕ and ρ approx-
imate functions wb and a, respectively, within corresponding tolerances, the approximation error is
bounded as:

∥F (X)− F̂ (X)∥ ≤ La(nB1 − wB0) + ϵ

Proof. Let Sb :=
∑n
i=1 b(xi) and µψ,ψ = ψ−1( 1n

∑n
i=1 ψ(ϕ(x))). The approximation error can be

expressed as:

∥F (X)− F̂ (X)∥ =
∥∥∥a(Sb)− ρ(µψ,ϕ)

∥∥∥ (39)

Same as in the proofs of Propositions H.3 and H.4:

∥F (X)− F̂ (X)∥ = ∥a(Sb)− ρ(µψ,ϕ)∥ (40)
≤ ∥a(Sb)− a(µψ,ϕ)∥+ ∥a(µψ,ϕ) + ρ(µψ,ϕ)∥ (41)
≤ La∥Sb − µψ,ϕ∥+ ϵρ (42)

Since wb(x) − ϵϕ < ϕ(x) < wb(x) + ϵϕ and B0 < b(x) < B1 then leveraging that Kolmogoov
mean is neither larger than the largest input, nor smaller than the smallest input (cf. Section 4), we
obtain: wB0 − ϵϕ < µψ,ϕ < wB1 + ϵϕ.

Given this bound we establish the upper bound on the above norm:

∥Sb − µψ,ϕ∥ =
∥∥∥Sb − ψ−1

( 1
n

∑
x∈X

ψ(ϕ(x))
)∥∥∥ (43)

≤ ∥nB1 − wB0 + ϵϕ∥ (44)

Substituting into the earlier inequality:

∥F̂ (X)− F (X)∥ ≤ La((nB1 − wB0) + ϵϕ) + ϵρ (45)

Finally, since both ϵϕ and ϵρ are arbitrarily small, we can write:

∥F̂ (X)− F (X)∥ ≤ La(nB1 − wB0) + ϵ (46)

Proposition H.6 (Expected value of the Approximation of Sum-Decomposable Set Function). (Ex-
tending the Proposition H.5) Assuming cardinality n of the set X follows independent distribution
p(n), with n̄ being its expected value, then, for any ϵ > 0, if ψ approximates any invertible con-
tinuous function and both ϕ and ρ approximate functions n̄B1/B0 · b and a, respectively, within
corresponding tolerances, the expected value of the approximation error is bounded as:

E
[
∥F̂ (X)− F (X)∥

]
≤ ϵ (47)

Proof. From the previous proposition we obtain that:

∥F̂ (X)− F (X)∥ ≤ La(nB1 − wB0) + ϵ (48)

The expected value of the approximation error is:

E
[
∥F̂ (X)− F (X)∥

]
≤ La(n̄B1 − wB0) + ϵ (49)
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When the scale w, learned by phi, approximates the n̄B1/B0: w ≈ n̄B1/B0 · b, such that ∥w −
n̄B1/B0 · b∥ < ϵw then in the limit ϵw → 0, the above expected value is bounded by:

lim
ϵw→0

E
[
∥F̂ (X)− F (X)∥

]
≤ Laϵw + ϵ (50)

Finally, since both ϵ and ϵw are arbitrarily small, we can write:

lim
ϵw→0

E
[
∥F̂ (X)− F (X)∥

]
≤ ϵ (51)

for an arbitrarily small ϵ > 0.
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