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ABSTRACT

Foundation models have recently shown remarkable promise by leveraging ex-
tensive pre-training on diverse datasets to acquire generalizable representations,
which enable effective transfer to a wide range of downstream tasks. In the graph
domain, however, most existing pre-training models are tailored to specific do-
mains, primarily due to the inherent differences in semantic meanings of graph
features across various contexts. Additionally, most existing models struggle to
capture the rich topological complexity of graph structures, leading to inadequate
exploration of the embedding space. To address these challenges, we propose
a novel Graph Foundational Structural Encoder (GFSE) that identifies univer-
sal structural patterns, facilitating a unified feature embedding space suitable for
diverse domains, including molecular structures, social networks, and citation
networks. GFSE is the first cross-domain graph structural encoder pre-trained
with multiple self-supervised learning objectives. Built on a Graph Transformer,
GFSE incorporates attention mechanisms biased by graph structural information,
allowing it to encode intricate multi-level and fine-grained topological features
within complex graph structures. The pre-trained GFSE produces generic and
theoretically expressive positional and structural encoding for graphs, which can be
seamlessly integrated with various downstream graph feature encoders, including
graph neural networks for graphs with vectorized features and Large Language
Models for text-attributed graphs. Comprehensive experiments on synthetic and
real-world datasets demonstrate GFSE’s capability to significantly enhance the
model’s performance while requiring substantially less task-specific fine-tuning.
Notably, GFSE boosts the performance by an average margin of 20.48% across
eight real-world datasets, highlighting its potential as a powerful and adaptable
foundational encoder for graph-structured data.

1 INTRODUCTION

Foundation models are recently attracting a surge of interest in natural language processing (Achiam
et al., 2023; Bubeck et al., 2023; Touvron et al., 2023), computer vision (Radford et al., 2021; Ramesh
et al., 2021), audio (Yang et al., 2023; Borsos et al., 2023), etc. However, the application of such
models in the graph domain remains relatively under-explored. Due to the inherent difference in
dataset-specific features, most prior graph pre-training models are specialized for certain areas, such
as molecules (Zhang et al., 2020; Sypetkowski et al., 2024), proteins (Nijkamp et al., 2023), and
knowledge graphs (Galkin et al., 2023). These specialized models require domain-specific knowledge
and suffer from limited transferability to different graph domains. Recent efforts attempt to harness
LLMs to unify feature spaces of different graph domains using text (Chen et al., 2024b; Tang et al.,
2023; Liu et al., 2023a; Kong et al., 2024). However, the text-based representations used by LLMs
inherently lose the rich structural information encoded in the graph structure, leading to unsatisfactory
performance on graph learning tasks (Fatemi et al., 2023; Zhao et al., 2023; Wang et al., 2024).

To advance the applicability of graph pre-trained models across diverse domains, we propose a
paradigm shift that emphasizes the inherent structural patterns within graphs as universal attributes
that are domain-agnostic and not tied to specific datasets. These patterns facilitate knowledge
transfer across downstream tasks and datasets. For instance, social networks commonly exhibit small-
world properties and community structures, while biological networks reveal recurring motifs and
hierarchical modularity. Similarly, citation networks and the World Wide Web share characteristics
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Figure 1: A) GFSE is pre-trained on 8 datasets from 6 different domains. Pre-training tasks include
reconstruction (shortest path distance regression, motif counting) and contrastive learning (commu-
nity detection, graph contrastive learning). B) GFSE generates generic and expressive Positional
and Structural Encoding (PSE) to tackle topological tasks. GFSE can also be seamlessly integrated
into downstream feature encoders for feature-enriched tasks by concatenating with initial vectorized
features or prepending the generated PSE to the textual description as a soft token.

like scale-free degree distributions and core-periphery structures. However, developing a graph
pre-trained model that can capture these diverse structural patterns in a generalizable manner, while
remaining applicable enough to handle domain-specific adaptation, presents significant challenges.
These challenges highlight the need for innovative pre-training strategies that focus on universal
graph characteristics rather than domain-specific features.

Proposed work. To address the challenges of cross-domain pre-training and effectively capturing
universal structural encoding, we propose GFSE, a Graph Foundational Structural Encoder, as shown
in Figure 1. GFSE is pre-trained across diverse graph domains using multiple self-supervised pre-
training tasks, including shortest path distance regression, motif counting, local community detection,
and graph-level contrastive learning. Each pre-training task targets a critical and necessary aspect of
graph structure, enabling GFSE to capture a comprehensive understanding of graph topology. GFSE
employs a Graph Transformer enhanced with biased attention mechanisms. Notably, the relative
positional encoding, derived from the random walk matrix, is explicitly integrated into the attention
bias term. This design allows GFSE to effectively capture intricate structural dependencies among
node pairs during pre-training, ensuring both efficiency and theoretically guaranteed expressiveness.
GFSE’s versatility extends to various graph learning scenarios. The pre-trained GFSE can produce
generic and expressive Positional and Structural Encodings (PSE) for topological tasks. In feature-
enriched contexts, the generated PSE can seamlessly augment vectorized features or integrate with
text encoders (e.g., LLMs) for text-attributed graphs. This applicability enables GFSE to serve as a
powerful component in any graph foundational model.

The contributions of this work: (1) We propose GFSE, the first cross-domain graph structural encoder
pre-trained with four essential self-supervised learning objectives. Extensive experiments show the
effectiveness of these pre-training tasks, leading to an average performance improvement of 20.48%
across eight real-world datasets on downstream graph models. (2) We provide theoretical justification
and empirical results demonstrating GFSE’s ability to generate expressive PSE. (3) GFSE serves as a
plug-and-play solution for any graph foundational model to incorporate structural information. By
focusing on universal structural patterns, GFSE paves the way for more generalizable and adaptable
graph encoding, potentially reducing the need for domain-specific pre-training in many applications.

2 RELATED WORK

Graph Pre-training. Graph self-supervised learning approaches are typically pre-training graph
models, e.g., GNNs or Graph Transformers, on a massive amount of labeled graphs with inherent
features by reconstructing the structures or masked attributes (Cui et al., 2020; Hou et al., 2022; Kipf
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& Welling, 2016b; Hu et al., 2020b; Wang et al., 2017; Xia et al., 2024; Xia & Huang, 2024; Zhao
et al., 2024b; Mizera et al., 2024). Some works also utilize contrastive learning to enhance node and
graph-level representation learning (Han et al., 2022; Hassani & Khasahmadi, 2020; Velickovic et al.,
2019; Hu et al., 2019; Lee et al., 2022; Li et al., 2021; Lu et al., 2021; Sun et al., 2019; 2021; Xu et al.,
2021a; Galkin et al., 2023; Zhao et al., 2024a). These methods, while effective in certain domains,
exhibit limited generalizability across different graph domains due to their tailored design for specific
types of data. Additionally, there have been graph prompt techniques (Huang et al., 2024; Fang et al.,
2024) that can be used to enhance model adaptation over graphs. There have also been some attempts
at cross-domain graph pre-training models (Qiu et al., 2020; Davies et al., 2023). Unfortunately, all
these models rely on one singular pre-training task (i.e., contrastive learning), and usually fail to
capture fine-grained structural features at node level or edge level (Mao et al., 2024).

LLM-based Graph Foundation Model. With the success of foundation models in the NLP realm,
recent efforts also harness LLMs to develop domain-specific graph foundation models by flattening
graph structures and associated textural information into prompts (Chen et al., 2024a; Tang et al.,
2023; Ye et al., 2023; Qian et al., 2023; Zhao et al., 2023; Guo et al., 2023; Chen et al., 2024b; Liu
et al., 2023a; Kong et al., 2024; Chen et al., 2024c; Fan et al., 2024; Zhang et al., 2024; Li et al.,
2024). Nevertheless, recent studies show that LLM demonstrates an unsatisfying ability to reason
and understand complicated structures within graph (Fatemi et al., 2023; Zhao et al., 2023; Wang
et al., 2024). In this work, we focus on developing a foundation model dedicated to encoding the rich
topological information, without relying on associated text. Our approach complements LLMs on
text-attributed graphs, serving as a foundational structural encoder for general graphs.

Positional and Structural Encoding (PSE). Traditional PSEs include hand-crafted features such
as Laplacian PE (Davies et al., 2024; Kreuzer et al., 2021; Beaini et al., 2021; Wang et al., 2022),
shortest-path distance (Li et al., 2020; Ying et al., 2021), kernel distance (Mialon et al., 2021), random-
walk encoding (Ma et al., 2023; Dwivedi et al., 2021; Brüel-Gabrielsson et al., 2022; Rampášek
et al., 2022), node degree centrality (Ying et al., 2021), etc. Some studies have introduced specialized
networks designed to adaptively learn PSE to enhance performance (Kreuzer et al., 2021; Dwivedi
et al., 2021; Chen et al., 2022; Lim et al., 2022). GPSE (Liu et al., 2023b) proposes to pre-train a
positional and structural encoder on domain-specific graphs to generate PSE. However, GPSE still
suffers from limited transferability and expressiveness across other domains, due to its simplistic
pre-training backbone and randomized node features. Consequently, the effectiveness of GPSE varies
with specific tasks and graph models. Finding the most effective and versatile PSE remains an open
challenge that requires further innovation.

3 PROPOSED METHOD

As shown in Figure 1, we collect graph pre-training datasets from six different domains, including
molecules, proteins, social networks, images, product networks, and academic networks. GFSE
utilizes a transformer-based architecture with biased attention to incorporate relative inductive bias
within graph structures (Sec. 3.1). GFSE is pre-trained with four challenging self-supervision tasks
simultaneously, each designed to enhance a crucial aspect of structural awareness and promote
encoding quality (Sec. 3.2). GFSE generates expressive positional and structural encoding (PSE)
for topological tasks. Moreover, the generated PSE can be seamlessly integrated into graphs with
vectorized features or textual features, to enhance the downstream performance (Sec. 3.3).

3.1 ARCHITECTURE

Previous work (Liu et al., 2023b) uses randomized features to replace initial node features. However,
it leads to poor generalizability across different domains. In this work, we propose to use both
absolute and relative random-walk positional encoding as the initial features. Formally, let G(V,E)
represent an input graph, where V and E denote the set of nodes and edges, respectively. A ∈ RN×N

indicates the adjacency matrix, where N is the number of nodes, and D is the degree matrix. Random
Walk matrix is defined as M = D−1A, where Mi,j indicates the transition probability from the i-th
node to the j-th node. Following previous works on random walk encoding (Ma et al., 2023), we
calculate the d-dimensional encoding for each node and all node pairs.

Pi = [I,M,M2, · · · ,Md]i,i, Ri,j = [I,M,M2, · · · ,Md]i,j (1)
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P ∈ RN×d and R ∈ RN×N×d are used as the initial node features and edge features in GFSE.

Pre-training Backbone. GFSE is built on a GPS architecture (Rampášek et al., 2022) for
pre-training, due to its scalability and generalizability. Each GPS layer contains local mes-
sage passing and global attention modules to capture both neighbor and long-range informa-
tion. In the ℓ-th layer, the node encoding P and relative edge encoding R are fed into
both message passing layers (MPNN) and Biased Attention Module (BiasAttn) parallelly.

Q K V

MatMul

Scale

SoftMax

𝐑 ∈ ℝ!×!×#𝐏 ∈ ℝ!×#

LinearMatMul

Attention Bias

Figure 2: Biased Atten-
tion based on random
walk matrix.

Pℓ+1
M ,Rℓ+1 = MPNNℓ

(
Pℓ,Rℓ,A

)
,Pℓ+1

T = BiasAttnℓ
(
Pℓ,Rℓ

)
(2)

The node encoding is then updated by Pℓ+1 = MLPℓ
(
Pℓ+1

M +Pℓ+1
T

)
.

Attention Bias. The global attention in the original GPS framework does
not account for relative edge encoding while leaving them entirely for the
message-passing layers. However, incorporating relative edge encoding
in global attention is crucial for capturing long-range dependencies, as the
receptive field of message-passing layers is inherently constrained by their
depth. As shown in Figure 2, to build a theoretically more powerful GPS,
we explicitly incorporate relative edge encoding into global attention, where
the attention weight between the i-th and the j-th nodes is computed by
a′i,j = SoftMax(ai,j + Linear(Ri,j)), where Linear : Rd → R indicates
a linear layer that maps the d-dimensional relative encoding to a scalar. ai,j
denotes the original attention weight computed by scaled-dot self-attention
on the node encoding Pℓ in each GPS layer.

3.2 SELF-SUPERVISED PRE-TRAINING TASKS

GFSE is pre-trained with four structural tasks, including reconstruction and contrastive learning.
Each task highlights a specific structural aspect, thereby augmenting the model’s expressiveness and
capability to capture complex graph structures. Let PL ∈ RN×de represent the output after L GPS
layers. We decode PL with independent MLP heads for each pre-training task.

Shortest Path Distance Regression is an edge-level reconstruction task. Shortest Path Distance
(SPD) encodes the global proximity and connectivity between nodes, which helps to discern nodes’
positions and relations within the entire graph (Li et al., 2020). We pre-compute the shortest path
distance via the Dijkstra algorithm (Dijkstra, 1959) to create the label SPD ∈ RN×N . The loss for
shortest path distance regression is computed by LSPD = 1

|E|
∑

i,j∈V ∥hSPD(P
L
i ∥PL

j )− SPDi,j∥2,
where ∥ indicates the concatenation operation and hSPD indicates a task-specific head.

Motif Counting is a node-level reconstruction task, which allows the model to better identify each
node’s role in the surrounding subgraphs. We follow previous works (Bouritsas et al., 2022) to count
the number of certain motifs surrounding each node. To improve expressiveness, we include a variety
of small motifs, called graphlets (Pržulj et al., 2004; Pržulj, 2007), with different numbers of vertices,
which are beyond usual types like stars, paths, cycles, and cliques. We refer to Appendix B.2 for more
technical details. Let Y m

i ∈ Zk denote the node-level motif label, where k is the number of graphlet
types. The loss is formulated as LMC = 1

|V |
∑

i∈V ∥hMC(P
L
i ) − Y m

i ∥2, where hMC : Rd
e → Rk is

the task-specific head for motif counting.

Community Detection is an edge-level contrastive learning task that aims to identify densely
connected subgraphs, where nodes within a community are more closely linked to each other than
to nodes outside the community. Such community structures are ubiquitous in various real-world
networks, e.g., social networks, and transportation systems. We employ the Louvain Community
Detection Algorithm (Blondel et al., 2008) to extract the community structure from pre-training
graphs, which clusters nodes into communities based solely on graph topology without node features.
We approach this task in a contrastive learning manner by minimizing the embedding distances
between intra-community nodes while maximizing the distance between inter-community nodes by

LCD =
∑
i∈V

∑
j∈V

Y c
i,j(1− sim(i, j)) + (1− Y c

i,j)max(0, ϵ− (1− sim(i, j))) (3)

where the similarity score sim(i, j) is calculated by sim(i, j) =
zi·zj

||zi||·||zj || and zi = hCD(P
L
i ) with

a head hCD. ϵ is a margin hyperparameter. Y c
i,j is a binary label that indicates if the i-th node and the
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j-th node are in the same community. Through Eq. 3, GFSE learns to discern community boundaries
and distinguish nodes based on local community structures.

Graph Contrastive Learning is a graph-level contrastive learning task that aims to distinguish
graphs from different datasets. The motivation is rooted in the observation that similar structural char-
acteristics in different domains may exhibit distinct meanings. For example, a subgraph representing
a protein interaction network in a biological dataset might correspond to a specific functional module,
whereas a similar structure in a social network could represent a tightly-knit community or interest
group. Therefore, GFSE distinguishes graphs from different datasets, in addition to performing
structural pre-training tasks within a single graph. The loss for this task is computed by

LGCL = − log
exp

(
sim

(
zGi

, zGj

)
/τ

)∑K
k=1 1[Gk≁Gi] exp (sim (zGi

, zGk
) /τ)

, (4)

where τ is the temperature, Gi and Gj are from the same dataset, zGi = GlobalPool(hGCL(P
L
Gi
))

is the output of the global pooling applied to the final layer’s representation PL
Gi

for the graph Gi, K
is the number of negative samples, and 1[Gk≁Gi] is an indicator function that determines whether
graphs Gk and Gi originate from different datasets.

Multi-task Loss Weighing. Each pre-training task targets a different structure aspect, enabling GFSE
to capture a comprehensive understanding of graph topology. For instance, the shortest path distance
regression task focuses on learning the global connectivity within graphs, while motif counting delves
into the occurrence of specific subgraph patterns. This diverse set of tasks covers a wide range of
structural properties, from local neighborhoods to global graph characteristics. Since the loss scale
and difficulty vary significantly across tasks, we introduce task-specific uncertainty (Kendall et al.,
2018), which is learnable during pre-training to unify the scales of all losses. Task-specific uncertainty
is used to automatically balance different pre-training losses, i.e., LSPD,LMC,LCD, and LGCL (see
Appendix C.3 for more details). Moreover, the evolution of uncertainty values provides insights into
each task’s contribution to the overall pre-training process.

3.3 COMBINATION WITH DOWNSTREAM FEATURE ENCODER

Application on Graphs with Vectorized Features. GFSE can be readily employed to generate
expressive PSE for various graph applications. Let X0 ∈ RN×dx denote the initial node features for
a given graph with N nodes and PL ∈ RN×de denote PSE generated by GFSE, where dx and de are
dimensions of node features and PSE, respectively. PL can then be concatenated with the initial node
features X0 to create a new feature matrix Xnew = [X0∥PL] ∈ RN×(dx+de), which augments the
node features with structural information. This structure-enriched feature Xnew can subsequently be
fed into downstream graph models, such as graph neural networks or graph transformers, enhancing
their performance on various tasks. For large-scale graphs, where computing PSE for the entire graph
may be computationally prohibitive, we thereby sample the neighborhood structure around each node
and compute the PSE for these localized subgraphs. This process can be efficiently parallelized,
enabling scalable and efficient generation of PSE for large graphs.

Application on Text-attributed Graphs. Language models are typically employed to process the
text-attributed graphs, where GFSE can be seamlessly applied to incorporate structural information.
Given the generated PL ∈ RN×de , an MLP is employed to project PL into the embedding space
of the language model. This projected PSE is then prepended as a soft token to the associated
text, effectively incorporating the graph’s structural information into the model input. Subsequently,
these structure-enriched tokens are fed into downstream large language models (LLMs), enhancing
their performance on graph-related tasks. The process, involving training a lightweight MLP and
fine-tuning LLM with Parameter-Efficient Fine-Tuning (PEFT) techniques such as LoRA (Hu et al.,
2021), makes it scalable and efficient for large-scale text-attributed graph applications.

3.4 EXPRESSIVE POWER OF GFSE

We show that GFSE can generate highly expressive PSE by incorporating relative edge encoding into
the attention computation in the Graph Transformer backbone. Specifically, we employ the Structural
Encoding enhanced Global Weisfeiler-Lehman test (SEG-WL) (Zhu et al., 2023), a generalized WL
test that incorporates relative structural encoding into the isomorphism algorithm, to characterize
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the expressiveness of GFSE. For an input graph G(V,E) with node set V and edge set E, let
fP : V → X and fR : V × V → X indicate the node-level and edge-level structural encoding,
respectively. Different from traditional WL test, SEG-WL updates the node labels at the t-th iteration
by gt(v) = hash ({{(gt−1(u), fR(v, u)) : u ∈ V }}) and g0(v) = hash(fP (v)). SEG-WL can be
viewed as a high-level abstraction of the learning paradigm of our pre-training architecture with
biased attention (Eq. 2), where relative structural encoding between any two nodes is considered for
updating node representations (Zhu et al., 2023). Let RW(d)-SEG-WL denote the case that fP and fR
are determined by P and R with d dimension, i.e., fP (vi) = Pi ∈ Rd and fR(vi, vj) = Rij ∈ Rd

for the i-th and j-th nodes. We have the following propositions.
Proposition 3.1. RW(d)-SEG-WL (d ≥ 3) is strictly more expressive than 1-WL in testing non-
isomorphic graphs.
Proposition 3.2. There exist pairs of graphs that RW(d)-SEG-WL can distinguish, but 3-WL can not.

The theoretical proof and empirical verification are given in Appendix D. RW-SEG-WL is able to
distinguish all low-order graphs with orders equal to or less than 8 and successfully distinguishes
most strongly regular graphs where 3-WL fails to distinguish. RW-SEG-WL stands as an expressivity
upper bound of our proposed GFSE. The pre-training tasks are meticulously designed to push GFSE
towards achieving the upper bound established by RW-SEG-WL. These pre-training tasks optimize
both node-level and edge-level structural encoding, progressively refining the effectiveness of the
model in generating expressive encoding.

3.5 COMPUTATIONAL COMPLEXITY

The complexity of developing GFSE comprises two parts: pre-computation of self-supervision labels
and pre-training. For the pre-computation, we adopt Dijkstra Fibonacci-heap solution (Dijkstra, 1959)
to compute the shortest path distance between node pairs, which results in the time complexity of
O(|E|+ |V | log |V |) with node set V and edge set E. A brute-force implementation of the subgraph
isomorphism counting of fixed size t is O(|V |t). We consider the graphlets with at most 5 nodes.
One can also choose special graphlet types, e.g., paths, cycles, and triangles, which can be efficiently
enumerated (Giscard et al., 2019). Approximating and scalable algorithms can be further used to
accelerate this pre-processing step (Fu et al., 2024; Ying et al., 2020; Pashanasangi & Seshadhri,
2020). For pre-training, the complexity is O(|V |2) for full attention computation and O(d|V ||E|)
for initial encoding computation of P and R. Notably, the model’s PSE generation process requires
less than five minutes for all downstream datasets. See runtime evaluations in Appendix F.3.

4 EXPERIMENTS

GFSE is pre-trained to recognize complex structural patterns. We first evaluate the pre-training
performance in Sec. 4.2 and empirically assess the expressiveness of GFSE on synthetic datasets
(Sec. 4.3). We then evaluate GFSE in a wide range of downstream graph learning tasks in Sec. 4.4.
Specifically, we conduct experiments with pre-trained models on molecular datasets in Sec. 4.5 and
pre-trained LLMs on text-attributed graphs in Sec. 4.6.

4.1 PRE-TRAINING SETUP

Dataset. We utilize a diverse collection of cross-domain datasets for pretraining, ensuring a broad
spectrum of graph structures and scales, including MolPCBA, MolHIV, MNIST, peptides, ogbn-
proteins, Pokec, ogbn-arxiv and ogbn-product (Wu et al., 2018; Bhatia et al., 2016; Mikolov et al.,
2013; Szklarczyk et al., 2019; Chiang et al., 2019; Takac & Zabovsky, 2012; Dwivedi et al., 2023;
2022). These datasets cover several real-world graph domains, such as social networks, academic
networks, etc. Table 7 in Appendix C.1 presents the detailed statistics of datasets used for pre-training.
For large-scale graphs, we first partition them into sets of subgraphs by the METIS algorithm (Karypis
& Kumar, 1997) to handle scalability issues. Training samples from different datasets are mixed and
randomly shuffled to form a large-scale pre-training dataset.

Pre-training Setting. The pre-training stage is conducted on the standard train/validation/test splits
of the pre-training datasets. The dimension of initial encoding d is set as 8. We adopt GIN (Xu et al.,
2018) as the message-passing layer in the GPS and adopt 8 GPS layers with 8 heads and 128 hidden
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dimensions in each layer. The output dimension is 64 by default. We use Adam as the optimizer with
an initial learning rate of 0.001 and the batch size is set as 256. The maximum training epochs is 100.
An early stopping strategy is used to mitigate overfitting. The pre-training is implemented on the
NVIDIA A40 48GB GPU. We refer to Appendix C.4 for more details.

4.2 PRE-TRAINING EVALUATION

GFSE is pre-trained with four self-supervised learning tasks. We iteratively change the mes-
sage passing layers (e.g., GatedGCN (Bresson & Laurent, 2017), GCN (Kipf & Welling, 2016a)
and GIN (Xu et al., 2018)) and replace the biased attention with traditional self-attention in
the default GFSE architecture. We evaluate the pre-training performance on the standard test
split from the pre-training datasets with different architectures as shown in Figure 3. Accu-
racy is used to measure community detection and graph contrastive learning tasks, indicat-
ing the proportion of node (graph) pairs that are correctly predicted. MSE and MAE are
used for shortest path distance and motif counting tasks. See more details in Appendix C.2.

Figure 3: Performance of the pre-trained models with different
architectures. MAE for motif counting is shown in the log scale.
TF is the abbreviation of transformer.

The four self-supervision tasks
emphasize different structural as-
pects, necessitating both local
message passing and global at-
tention. Moreover, we observe
a consistent performance boost
when applying biased attention
with explicit relative edge encod-
ing. GFSE is thereby built on
GIN and biased attention as the
default architecture.

The pre-trained GFSE is able to generate effective PSE, which can reconstruct other pre-defined PSE,
such as LapPE (Lim et al., 2022) and ElstaticPE (Kreuzer et al., 2021). We provide experimental
results in Appendix F.1. The ability to reconstruct various types of PSE, without taking them as
training objectives explicitly, demonstrates the sufficiency and effectiveness of the chosen tasks in
pre-training the model for comprehensive and generalizable graph representations.

4.3 EXPRESSIVENESS POWER EVALUATION

Table 1: Test accuracy (%) enhanced by different
positional and structural encoding. The results are
averaged over five random seeds. The best results
in each dataset are bolded.

Triangle-S Triangle-L Pattern Cluster
MLP+RWSE 98.22 11.88 50.53 20.96
MLP+LapPE 98.60 12.62 50.53 20.96
MLP+GPSE 52.80 17.42 55.66 20.96
MLP+GFSE 98.71 25.54 57.79 21.28
GIN 99.68 42.58 85.58 60.84
GIN+RWSE 99.70 40.78 85.34 61.30
GIN+LapPE 99.74 42.48 85.45 61.83
GIN+GPSE 99.32 25.32 85.19 61.95
GIN+GFSE 99.72 43.84 85.58 63.49
Transformer (TF) for Triangle and GPS for Others
TF / GPS 21.68 23.58 86.63 77.76
TF / GPS+RWSE 35.96 11.38 86.68 77.72
TF / GPS+LapPE 35.96 12.44 86.54 77.76
TF / GPS+GPSE 62.04 24.64 85.58 77.80
TF / GPS+GFSE 92.82 30.15 87.98 77.86

We empirically evaluate the structure-awareness
of the positional and structural encoding (PSE)
generated by GFSE on three benchmarking
datasets that require discerning intricate graph
topologies. We evaluate the performance boost
brought by the PSE generated by GFSE in com-
parison to two traditional positional encodings,
RWSE and LapPE. We test on various down-
stream graph learning models, including MLP,
GIN (Xu et al., 2018), transformer (Vaswani
et al., 2017) and GPS (Rampášek et al., 2022).
We further compare with the learning-based ap-
proach: GPSE (Liu et al., 2023b). See Ap-
pendix A for more baseline details. Trian-
gle (Knyazev et al., 2019) poses triangle count-
ing as a 10-way graph-level classification task.
Half of the test set are graphs with a similar size
to those in the training and validation set (de-
noted as Triangle-S). The left are graphs with larger sizes (denoted as Triangle-L), which present
greater challenges to the model’s expressive power. Pattern and Cluster (Dwivedi et al., 2023) are
graph datasets generated with the Stochastic Block Model (SBM) (Abbe, 2018) that require the
model to discern graph patterns and local clusters. Both are node-level classification tasks. As shown
in Table 1, GFSE generates expressive and robust PSE that consistently improves the base model’s
performance, whereas other structural encodings exhibit considerable variation across different
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datasets or different base models. Notably, the performance boost brought by GFSE is particularly
significant for the Transformer on the Triangle dataset, increasing accuracy from 21.68% to 92.82%
for Triangle-S. This demonstrates that GFSE has a stronger enhancement effect on models that
originally lack structural bias.

4.4 DOWNSTREAM EVALUATION

Dataset and Baseline. We conduct a comprehensive evaluation of the PSE generated by GFSE on
eight real-world graph datasets: MolPCBA, Peptides-func, Peptides-struct, OGB-Arxiv, and MNIST
that are in the pre-training dataset, while ZINC (Gómez-Bombarelli et al., 2018), PubMed (Yang
et al., 2016) and CIFAR10 (Dwivedi et al., 2023) that are out of the pre-training distribution. We
adhere to the experimental setting and hyper-parameters established by previous works (Rampášek
et al., 2022) to implement message-passing neural networks, Transformer, and GPS (Rampášek et al.,
2022). We augment the initial node features with the PSE generated by GFSE and evaluate the
performance on downstream tasks, comparing it against established structural encoding methods
including RWSE, LapPE, and GPSE (Liu et al., 2023b).

Results. We report the average performance over five random seeds in Table 2 and Table 3 (See
standard deviations in Appendix F.2). We observe that the optimal selection of structural encoding
typically varies across different datasets and base models. For example, RWSE tends to be more
beneficial than LapPE for small molecular graph learning (e.g., MolPCBA and ZINC), while most
structural encodings surprisingly degrade the performance on the PubMed dataset. Notably, the
performance gains are most pronounced when integrating PSE with Transformer architecture, demon-
strating the critical role of structured encodings in compensating for the absence of inherent structural
sensitivity in Transformers. The last row shows the average improvement (%) brought by our PSE on
base models. The consistent improvements across different settings underscore the robustness and
generalizability of GFSE, making it an optimal choice for enhancing the capabilities of graph models,
especially in contexts where traditional structural encodings fail to deliver.

Table 2: Performance on MolPCBA, ZINC (subset),
Peptides-func and Peptides-struct.

MolPCBA ZINC Peptides-func Peptides-struct
AP ↑ MAE ↓ AP ↑ MAE ↓

GCN 0.2424 0.3670 0.5930 0.3496
GCN+LapPE 0.2417 0.2052 0.6021 0.2688
GCN+RWSE 0.2438 0.1741 0.5827 0.3270
GCN+GPSE 0.1958 0.1218 0.5959 0.2710
GCN+GFSE 0.2477 0.1237 0.6131 0.2513

GIN 0.2703 0.5260 0.5498 0.3547
GIN+LapPE 0.2701 0.2203 0.5323 0.2650
GIN+RWSE 0.2781 0.1731 0.5410 0.3282
GIN+GPSE 0.2765 0.2162 0.5389 0.2581
GIN+GFSE 0.2839 0.1689 0.5532 0.2674

Transformer (TF) 0.0808 0.6943 0.4800 0.4192
TF+LapPE 0.1784 0.5101 0.6307 0.2514
TF+RWSE 0.2083 0.2193 0.6326 0.3344
TF+GPSE 0.2040 0.1883 0.6534 0.2479
TF+GFSE 0.2376 0.1548 0.6642 0.2436

GPS 0.2869 0.1182 0.6535 0.2500
GPS+LapPE 0.2939 0.1078 0.6494 0.2501
GPS+RWSE 0.2907 0.0700 0.6603 0.2739
GPS+GPSE 0.2911 0.0648 0.6688 0.2464
GPS+GFSE 0.2916 0.0613 0.6874 0.2474

GFSE Imp.(%) 32.60 76.43 2.78 42.47

Table 3: Test Accuracy (%) on Arxiv,
PubMed, MNIST and CIFAR10.

Arxiv PubMedMNISTCIFAR10
GateGCN 71.69 76.86 97.34 67.31
GateGCN+LapPE 71.95 74.83 97.10 65.08
GateGCN+RWSE 71.83 76.11 96.84 65.26
GateGCN+GPSE 72.17 71.97 96.94 65.63
GateGCN+GFSE72.61 78.39 97.44 68.39

Transformer (TF) 5.86 66.63 97.29 69.04
TF+LapPE 5.86 66.27 96.95 69.01
TF+RWSE 5.86 64.43 97.81 70.70
TF+GPSE 21.56 65.89 97.78 69.57
TF+GFSE 23.84 66.30 98.03 71.33

GPS 70.68 74.26 98.05 71.49
GPS+LapPE 69.51 73.68 98.16 71.87
GPS+RWSE 72.14 72.87 98.19 71.30
GPS+GPSE 71.21 73.71 98.08 72.31
GPS+GFSE 72.30 74.20 98.15 74.11

GFSE Imp.(%) 6.84 0.38 0.31 1.99

4.5 INTEGRATION WITH PRE-TRAINED SELF-SUPERVISED MODELS ON MOLECULES

Settings and Methods. We use the small molecular property prediction datasets namely Tox21,
Sider, BBBP, ClinTox, and MUV from the OGB benchmark (Hu et al., 2020a) as a downstream
task for GFSE. We evaluate the effectiveness of GFSE under two settings: training from scratch and
fine-tuning pre-trained models. In the training from scratch setting, we directly concatenate GFSE’s
PSE with the raw node features to create new input features. This augmented representation is then
fed into a randomly initialized model from the beginning of training. We take GINE (Xu et al., 2018)
and GPS (Rampášek et al., 2022) as our backbone. In the fine-tuning setting, we assess GFSE’s ability
to enhance pre-trained models by concatenating the node encodings obtained from a pre-trained
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Table 4: Test ROC-AUC(%) performance on small molecular property prediction datasets. The best
results with the same feature encoder for each dataset are bolded.

Tox21 Sider BBBP ClinTox MUV
Baseline w/o

Structural
Encoding

SSP 76.8 ± 0.8 61.7 ± 0.8 67.9 ± 0.9 57.0 ± 2.8 79.8 ± 1.6
GraphCL 75.7 ± 0.5 60.8 ± 0.7 69.5 ± 0.5 70.1 ± 1.9 74.5 ± 1.3
GraphLoG 75.4 ± 0.9 61.2 ± 1.1 72.5 ± 0.8 76.7 ± 3.3 76.0 ± 1.1

Train
From Scratch

GINE 74.5 ± 0.4 58.6 ± 0.1 67.7 ± 0.7 74.3 ± 1.5 74.8 ± 0.6
GINE+RWSE 75.3 ± 0.2 58.4 ± 1.8 66.7 ± 1.4 77.6 ± 1.4 76.4 ± 0.8
GINE+LapPE 77.6 ± 0.8 57.2 ± 1.1 65.8 ± 0.3 75.6 ± 2.9 77.0 ± 0.8
GINE+GPSE 74.9 ± 0.4 60.1 ± 0.8 66.4 ± 0.1 78.9 ± 3.5 75.8 ± 1.3
GINE+GFSE 75.5 ± 0.7 60.9 ± 0.5 69.1 ± 1.3 80.1 ± 1.5 77.7 ± 1.2
GPS 73.9 ± 0.2 58.6 ± 0.4 67.1 ± 0.3 80.3 ± 2.4 68.0 ± 0.6
GPS+RWSE 74.6 ± 1.3 56.4 ± 0.6 67.9 ± 1.0 83.2 ± 4.6 69.7 ± 0.6
GPS+LapPE 74.8 ± 1.1 60.5 ± 0.6 67.9 ± 0.6 78.9 ± 1.4 70.1 ± 2.2
GPS+GPSE 75.1 ± 0.7 56.6 ± 1.7 67.8 ± 0.7 73.8 ± 0.7 68.3 ± 0.1
GPS+GFSE 76.3 ± 1.4 61.8 ± 0.5 68.0 ± 0.5 83.6 ± 3.8 73.6 ± 0.5

Fine-tune
Pre-trained

Models

GraphMAE 75.4 ± 0.4 59.8 ± 0.5 69.5 ± 1.6 77.4 ± 2.9 76.3 ± 2.4
GraphMAE+RWSE 76.3 ± 0.5 60.5 ± 0.8 66.4 ± 3.7 76.7 ± 5.3 77.7 ± 1.5
GraphMAE+GFSE 75.9 ± 0.9 62.1 ± 0.8 70.5 ± 1.4 77.2 ± 5.2 78.1 ± 1.3
MoleBERT 76.8 ± 0.5 62.8 ± 1.1 71.9 ± 1.6 78.9 ± 3.0 78.6 ± 1.8
MoleBERT+RWSE 77.8 ± 0.7 63.1 ± 0.6 66.5 ± 2.1 73.9 ± 3.2 80.4 ± 1.3
MoleBERT+GFSE 78.0 ± 0.4 63.1 ± 0.7 68.9 ± 2.1 78.1 ± 2.1 80.5 ± 2.0

model with the PSE generated by GFSE. The concatenated features are then fed into the final read-out
layers for prediction. During fine-tuning, the parameters of both the pre-trained model and the
read-out layers are continuously updated. We select the pre-trained models, GraphMAE (Hou et al.,
2022) and MoleBERT (Xia et al., 2022) as the backbones and compare with other baselines without
structural encoding, namely SSP (Hu et al., 2019), GraphLoG (Xu et al., 2021b), GraphCL (You
et al., 2020). Refer to Appendix E.1 for more implementation details.

Results. Experimental results are shown in Table. 4. For training the models from scratch, on
both GINE and GPS, PSE consistently improves model performance, achieving better results than
all the other structural feature augmentation methods across all datasets. As to fine-tuning, our
PSE significantly boosts the performance of MoleBERT on three out of five datasets and achieves
state-of-the-art performance on Tox21, Sider and MUV datasets. In the case of GraphMAE, PSE
achieves better performance than RWSE in four out of five datasets, and also significantly enhances
the performance of the backbone (GraphMAE) in four out of five datasets.

4.6 INTEGRATION WITH LARGE LANGUAGE MODELS

Settings and Methods. We perform experiments on e-commerce networks from Amazon (He &
McAuley, 2016; McAuley et al., 2015), which are text-attributed graphs with detailed descriptions
for each node (i.e., product item). Edges indicate co-viewed or co-purchased relations between
two nodes. The dataset statistics of three selected categories can be found in Table 8. We employ
a lightweight MLP to align the PSE generated by GFSE with the language model’s embedding
space, which ensures seamless integration of structural information into the language model. We
concatenate the textual description of a central node with those of its one-hop neighbors and prepend
the PSE as a soft token, followed by a special graph token at the end. This combined sequence
is then encoded by LLaMA2 (Touvron et al., 2023). The hidden embedding of the special graph
token is used as the representation for the central node. Following the previous setting (Zhu et al.,
2024), we compute the cosine similarity between the representations of node pairs as the edge
likelihood. We train the MLP and fine-tune the language model with LoRA (Hu et al., 2021) using
a contrastive loss (Hadsell et al., 2006). More evaluation details can be found in Appendix E.2.

Table 5: Comparison with general-domain baselines
Cloth Home Sport

Hit@1 MRR Hit@1 MRR Hit@1 MRR
InstructGLM 76.23 82.60 79.82 85.93 62.50 73.25

Finetuned LLaMA 74.73 82.87 78.93 86.07 62.52 75.77

+ GraphSAGE 76.22 84.16 73.74 81.66 62.26 75.36

+ GFSE (Ours) 76.84 84.68 79.85 86.77 64.79 76.24

Results. Hit@1 and Mean Reciprocal
Rank (MRR) results are reported in Table 5.
We select InstructGLM (Ye et al., 2023)
as a baseline, which has been fine-tuned
on graph domains without structural infor-
mation infusion. Additionally, we include
comparisons against GraphSAGE (Hamil-
ton et al., 2017), which was trained from
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scratch as a PSE encoder with LLaMA finetuning together. The term Finetuned LLaMA refers to
the LLaMA model fine-tuned without incorporating any PSE. As seen from the table, GFSE, which
is pre-trained on cross-domain graph data as a structural encoder, consistently outperforms other
methods across all datasets. In particular, GFSE provides an average boost of 2.01% in performance
over InstructGLM and a 3.53% improvement over GraphSAGE encoder across the three datasets.
These gains demonstrate the effectiveness of GFSE in graph-based language modeling tasks. See
more discussions in Appendix F.2.

4.7 ABLATION STUDIES

Table 6: Ablation studies on the pre-training tasks
and model architecture of GFSE. Best results are
shown in bold.

ZINC CIFAR10 ogbn-arxiv
MAE ↓ ACC ↑ ACC ↑

GPS w/o PE 0.1182 71.49 70.68
Augment by GFSE 0.0613 74.11 72.30
Pre-training Tasks

w/o Community Detection 0.0637 72.38 70.34
w/o Motif Counting 0.0731 73.02 71.27
w/o Shortest Path Distance Regression 0.1074 71.58 72.06
w/o Graph Contrastive Learning 0.0856 73.02 72.13

Model Architecture
GIN+Traditional Attention 0.0872 73.13 71.85
Biased Attention Only 0.1137 70.97 71.33
GIN Only 0.0640 72.31 72.34

We analyze the sensitivity and effect of each pre-
training task and model architecture in terms of
the performance boost of the generated PSE in
downstream tasks. The results are illustrated in
Table 6. Firstly, we iteratively remove one of
the four pre-training tasks and follow the same
setting to pre-train and evaluate GFSE. We ob-
serve that the removal of each task results in a
discernible reduction in downstream task per-
formance. Notably, the shortest path distance
task is particularly critical for the ZINC and
CIFAR10 datasets, while local community de-
tection plays a significant role in enhancing per-
formance on academic datasets.
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Figure 4: Learning task uncertainty (σ2)
w.r.t. pre-training epochs

We further conduct ablation studies on the main com-
ponents of GFSE. Specifically, we use traditional atten-
tion to replace biased attention as a baseline and remove
GIN or attention modules respectively. We notice that all
the above pre-training architecture variants lead to per-
formance degradation. The hybrid approach outperforms
both attention-only and GIN-only setups, suggesting that
integrating sophisticated attention mechanisms can com-
pensate for the absence of global information in local
message-passing layers. Figure 4 illustrates the trajectory
of task uncertainty (σ2) across different pre-training tasks
w.r.t. pre-training epochs. Higher values of σ2 reduce
the respective task’s contribution to the overall training
loss. We observe that all tasks show a sharp decline in
uncertainty during the pre-training process. Notably, motif counting maintains a lower uncertainty
throughout the training process compared to other tasks, suggesting that it might be inherently more
straightforward for the model to optimize or more integral to the model’s overall learning structure.

5 CONCLUSION

GFSE represents a significant advancement in cross-domain graph foundational models, leveraging
multiple self-supervised learning objectives to capture comprehensive structural information from
diverse graph domains. By integrating relative positional encoding within a Graph Transformer,
GFSE provides a robust framework for generating expressive positional and structural encodings.
Extensive experiments on synthetic and real-world datasets validate GFSE’s ability to enhance the
performance of various graph feature encoders, broadening its applicability across numerous graph-
related tasks. Building upon the promising results of GFSE, one potential direction is to explore
the impact of pre-training dataset diversity on the model’s ability to capture multi-level topological
features. Investigating techniques to curate more representative and varied pre-training datasets could
further enhance GFSE’s generalization capabilities across different graph domains.
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Reproducibility Statement. The code is available at https://anonymous.4open.
science/r/GFSE-E8C0. Detailed descriptions of the datasets used in our experiments, along
with the specific data processing steps, can be found in Appendix B and Appendix C.1. Pre-training
setting can be found in Appendix C.4.

Ethics Statement. Our work does not raise significant ethical concerns. The datasets used are
publicly available, and we comply with all privacy and legal standards in their use. No human
subjects were involved in this study, and there are no potential conflicts of interest or sponsorship
issues.
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A POSITIONAL AND STRUCTURAL ENCODING

Random Walk Structural Encoding. Random walk structural encoding (RWSE) (Dwivedi et al.,
2021; Rampášek et al., 2022) uses landing probabilities derived from random walks of varying
lengths, starting from each node in the graph to capture both structural and positional relationships
among nodes. Formally, let G(V,E) represent an input graph, where V and E denote the set of N
nodes and edges, respectively. A ∈ RN×N indicates the adjacency matrix and D is the degree matrix.
Random Walk matrix is defined as M = D−1A, where Mi,j indicates the transition probability
from the i-th node to the j-th node. The RWSE with d steps for the i-th node is defined as

RWSEi = [I,M,M2, · · · ,Md]i,i, (5)

Laplacian Positional Encoding. Laplacian positional encoding (LapPE) (Kreuzer et al., 2021;
Dwivedi et al., 2023) method emerges as a significant advancement for enriching node representations
with spectral information. LapPE utilizes the eigenvectors of the graph Laplacian matrix to encode the
relative positions of nodes within a graph. These eigenvectors reflect a local coordinate system that
captures meaningful structural information, while also preserving the global topological properties of
the original graph. The Laplacian matrix L = D−A has the full eigendecomposition as L = UΛU⊤.
We use the k smallest non-trivial eigenvectors of the Laplacian matrix to create the LapPE. The
LapPE with k eigenvectors for the i-th node is expressed as:

LapPEi = [u1,i,u2,i, · · · ,uk,i] ∈ Rk, (6)

where ut denotes the t-th smallest non-trivial eigenvectors and kis the number of eigenvectors
used. Laplacian PE is particularly useful in situations where nodes are inherently anonymous and
lack unique features. However, the Laplacian encoding faces challenges from the arbitrary sign of
normalized eigenvectors, introducing 2k possible configurations for k eigenvectors. To manage this
complexity during training, eigenvectors are randomly sampled from these possibilities. Alternatively,
resolving the sign ambiguity by taking the absolute values of eigenvectors simplifies the model but
can significantly reduce the expressiveness of the positional features.

Pre-trained Positional and Structural Encoder. Graph Positional and Structural Encoder
(GPSE) (Liu et al., 2023b) is a graph encoder pre-trained on molecule datasets by reconstruct-
ing traditional positional encoding, such as LapPE, RWSE, CycleSE, etc. The model takes as input
graph adjacency matrix and randomly generates node features by X ∼ N (0, I) to improve the
expressiveness. The pre-training architecture is a deep MPNN with 20 layers and residual connection
and gating mechanism. Moreover, GPSE utilizes a virtual node technique in each graph to enable
global message passing. However, GPSE suffers from poor generalizability across other domains,
due to its pretraining setting and randomized node features.

B DATASET PRE-PROCESSING

B.1 SHORTEST PATH DISTANCE REGRESSION

Shortest Path Distance (SPD) Regression is an edge-level reconstruction task. SPD encodes the global
proximity and connectivity between nodes, which helps to discern nodes’ positions and relations
within the entire graph (Li et al., 2020). For data preprocessing, we pre-calculate the N ×N SPD
matrix of a given graph before the pretraining phase and save the matrix with the graph data for fast
retrieval. We utilize the Dijkstra algorithm (Dijkstra, 1959) to compute the shortest path distances
between node pairs, which serve as SPD labels. During pretraining, we randomly select node pairs
and fetch their SPD as labels to perform the edge-level reconstruction task. The loss for shortest path
distance regression is computed as:

LSPD =
1

|E|
∑
i,j∈V

∥hSPD(P
L
i ∥PL

j )− SPDi,j∥2

where ∥ denotes the concatenation operation and hSPD indicates the task-specific head.
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B.2 MOTIF COUNTING

Motif Counting is formulated as a node-level reconstruction task. We explicitly use subgraph
isomorphism counting as a form of self-supervision during pretraining, allowing the model to better
leverage structural information and identify each node’s role in the surrounding subgraphs (Bouritsas
et al., 2022). We follow previous works on subgraph isomorphism to count the number of certain
motifs surrounding each node. A key concept in our preprocessing step is "Automorphism orbits," as
introduced by Pržulj (Pržulj, 2007). This concept helps in identifying unique roles of nodes within
the counted motifs. The detailed counting method is as follows:

1. Define the subgraph structures to be counted: Enumerate all graphlets with the number
of nodes less than or equal to 4. This limitation is due to the exponential growth in the
number of graphlets with increasing nodes, which becomes computationally infeasible.

2. Assign indexed orbits: For each subgraph (or motif), assign each vertex a uniquely indexed
orbit to facilitate accurate counting.

3. Count specified subgraphs: Utilize the subgraph_isomorphism function from the
Python package graph-tool to count specified subgraphs throughout the entire graph.
This count is used to determine orbits for each node in the entire graph, forming an orbit
degree vector.

4. Save and prepare node-level labels: Save these vectors with the data as node-level labels,
which are then prepared for our node-level reconstruction task.

Figure 5: Illustration of various subgraphs (graphlets) used in the motif counting. Each subgraph is
indexed and labeled for reference.

C EXPERIMENTS

C.1 DATASET

MolPCBA dataset consists of 437,929 molecular graphs, each representing a compound from the
PubChem BioAssay database. This dataset is used for multi-label binary classification tasks across
128 targets, focusing on predicting the bioactivity of compounds against various protein targets. The
primary evaluation metric for this dataset is Average Precision (AP).

MolHIV contains 41,127 molecular graphs derived from the MoleculeNet benchmark. Each graph
represents a molecule, with nodes as atoms and edges as chemical bonds. The task is a binary
classification to predict the ability of molecules to inhibit HIV replication, with AUROC as the
evaluation metric.

MNIST dataset includes 70,000 images converted into graphs. Each image represents a handwritten
digit, with nodes representing pixels and edges representing pixel adjacency. The task is a 10-way
classification to identify the digit in the image, evaluated using accuracy (ACC).
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Table 7: Pretraining Dataset Information. class. represents classification task and reg. represents
regression task.

Dataset Num. Num. Num. Pred. Pred. Num. Metricgraphs nodes edges level task tasks

MolPCBA 437,929 25.97 28.11 graph class. (binary) 128 AP
MolHIV 41,127 25.51 27.46 graph class. (binary) 1 AUROC
MNIST 70,000 70.57 281.65 graph class. (10-way) 1 ACC
Peptides-func 15,535 150.94 153.65 graph class. (binary) 10 AP
Peptides-struct 15,535 150.94 153.65 graph reg. 11 MAE
ogbn-proteins 1 132,534 39,561,252 node class. (binary) 112 AUROC
Pokec 1 1,632,803 30,622,564 node class. (binary) 1 ACC
ogbn-arxiv 1 169,343 1,166,243 node class. (40-way) 1 ACC
ogbn-products 1 2,449,029 61,859,140 node class. (47-way) 1 ACC
ZINC 249,456 23.2 49.8 graph reg. 1 MAE
PubMed 19,717 88,648 500 node class. (3-way) 1 ACC
CIFAR10 60,000 117.6 941.2 graph class. (10-way) 1 ACC

Peptides-func comprises 15,535 graphs, each representing a peptide. Nodes represent amino acids,
and edges represent peptide bonds. The task involves binary classification to predict the functional
properties of the peptides, with Average Precision (AP) as the evaluation metric.

Peptides-struct also contains 15,535 peptide graphs but focuses on regression tasks to predict
structural properties of peptides, such as bond angles and distances. The evaluation metric is Mean
Absolute Error (MAE).

ogbn-proteins dataset is a large-scale graph with 132,534 nodes and 39,561,252 edges, representing
protein-protein interaction networks. Each node is a protein, and edges represent interactions. The
task is binary classification at the node level to predict protein functions, evaluated using AUROC.

Pokec is a social network dataset from the Pokec online social network in Slovakia. It includes one
large graph with 1,632,803 nodes (users) and 30,622,564 edges (friendships). The task is binary
classification to predict user attributes, such as gender, with accuracy (ACC) as the metric.

ogbn-arxiv dataset consists of a single large graph with 169,343 nodes and 1,166,243 edges, repre-
senting the citation network of arXiv papers. Each node is a paper, and edges represent citation links.
The task is 40-way classification to predict the primary subject area of each paper, evaluated using
accuracy (ACC).

ogbn-products dataset includes a large graph with 2,449,029 nodes and 61,859,140 edges, repre-
senting an Amazon product co-purchasing network. Nodes represent products, and edges represent
co-purchasing relationships. The task is 47-way classification to predict the product category, with
accuracy (ACC) as the metric.

ZINC contains 249,456 molecular graphs, where each graph represents a molecule from the ZINC
database. The task is regression to predict molecular properties like solubility, with Mean Absolute
Error (MAE) as the evaluation metric.

PubMed dataset includes a citation network of 19,717 scientific publications. Nodes represent papers,
and edges represent citations. The task is 3-way classification to predict the subject areas of the
papers, evaluated using accuracy (ACC).

CIFAR10 dataset has 60,000 images transformed into graphs, where each image represents a colored
object. Nodes represent pixels, and edges represent pixel adjacency. The task is a 10-way classification
to identify the object in the image, evaluated using accuracy (ACC).

C.2 PRE-TRAINING METRIC

We use an accuracy metric to measure Community Detection and Graph Contrastive Learning and
use mean squared error (MSE) to measure the performance of Shortest Path Distance regression and
Motif Counting.
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Table 8: Dataset statistics of three categories from Amazon e-commerce networks

# nodes # edges avg. degree avg. # tokens
Clothing 469,274 2,578,746 10.99 117.83
Home 453,121 3,732,948 16.48 133.94
Sports 293,712 2,390,076 16.27 125.08

Table 9: Test performance of the pre-trained model with different architectures on four pre-training
tasks.

Architecture Community Detection Graph Contrastive Elanring Shortest Path Distance Motif Counting
Accuracy Accuracy MSE MAE (log)

GatedGCN 0.859 0.831 0.155 2.592
GCN 0.883 0.823 0.141 2.593
GIN 0.892 0.853 0.141 2.611
None+TF 0.828 0.841 0.214 2.603
GCN+TF 0.829 0.841 0.212 2.602
GIN+TF 0.829 0.860 0.193 2.603
None+TF(w/ bias) 0.829 0.863 0.218 2.603
GCN+TF(w/ bias) 0.927 0.857 0.134 2.591
GIN+TF(w/ bias) 0.932 0.862 0.114 2.580

• For the community detection task, we set ϵ as 1 in Eq. 3. The predicted label between the i-th node
and the j-th node Ŷ c

i,j is 1 if sim(i, j) ≥ 0.5 and 0 otherwise. Accuracy is calculated by comparing
the predicted label Ŷ c

i,j with the ground truth labels Y c
i,j and is defined as the proportion of correctly

predicted labels out of all possible node pairs:

Accuracy(CD) =

∑
(i,j)∈V 1(Ŷ c

i,j = Y c
i,j)

|V |(|V | − 1)/2
, (7)

where 1(·) is an indicator function and |V |(|V | − 1)/2 is the total number of unique node pairs in
the graph. This metric effectively measures how well the model can identify community structures
by correctly classifying node pairs as being in the same community or in different communities.

• For the graph contrastive learning task, we evaluate pre-training performance using the accuracy
metric, which measures the model’s ability to correctly classify graphs as originating from the
same or different datasets. The accuracy is computed by:

Accuracy(GCL) =

∑
i,j 1(ŶGi,Gj

= YGi,Gj
)

N
, (8)

where ŶGi,Gj
is the predicted label indicating whether graph Gi and Gj are from the same dataset

and YGi,Gj
is the ground truth label. ŶGi,Gj

is 1 if sim(zGi
, zGj

) ≥ 0 and 0 otherwise.N is the
total number of evaluated graph pairs.

• For shortest path distance regression, the mean squared error (MSE) is used as a metric, which is
defined as:

MSE(SPD) =
1

|E|
∑

(i,j)∈E

(hSPD(P
L
i ∥PL

j )− SPDi,j)
2. (9)

The ground truth SPD is normalized by the graph diameter to ensure scale consistency and training
stability.

• For the motif counting task, the mean absolute error is used as a metric, which is defined as:

MAE(MC) =
1

|V |
∑
i∈V

∥hMC(P
L
i )− Y m

i ∥1, (10)

where Y m
i is the pre-computed label for the i-th node.

C.3 UNCERTAINTY-BASED LOSS WEIGHING

The scale of the loss of different tasks can be different, causing the overall loss to be dominated
by a certain task, and ultimately the loss of the other tasks cannot affect the learning process of the
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network-sharing layers. We use the uncertainty-based loss-weighing method (Kendall et al., 2018)
to automatically balance the four pre-training tasks and unify the different scales. Moreover, the
uncertainty value reflects the contribution of each task towards the overall pre-training process. A
higher uncertainty value indicates a lower contribution (Kendall et al., 2018). Let στ and Lτ represent
the task-specific uncertainty value for the task τ . The overall pre-training loss is computed by:

L =
1

σ2
SPD

LSPD +
1

σ2
MC

LMC +
1

σ2
CD

LCD +
1

σ2
GCL

LGCL

+ log σSPD + log σMC + log σCD + log σGCL.

(11)

C.4 PRE-TRAINING SETTING

The pre-training stage is conducted on the standard train/validation/test splits of the pre-training
datasets. The dimension of initial encoding d is set as 8. We try GatedGCN (Bresson & Laurent,
2017), GCN (Kipf & Welling, 2016a) and GIN (Xu et al., 2018) as the message-passing layers
in the GPS. The number of GPS layers is tuned in the range of [4, 16] and the number of heads
is tuned within {4, 8, 16}. The hidden dimension is tuned {32, 64, 128, 256}. The output PSE
dimension is in {32, 64}. The temperature τ in Eq. 4 is set as 0.1 and the marginϵ in Eq. 3 is 0. We
use Adam as the optimizer with an initial learning rate of 0.001 and the batch size is set as 256.
The maximum training epochs is 100. An early stopping strategy is used to mitigate overfitting.
The pre-training and downstream evaluation are implemented on the NVIDIA A40 48GB GPU.
Experiments on the molecule dataset run on a server with one AMD EPYC 7763 64-Core processor
and a NVIDIA RTX 6000 GPU card. The code is available at the following anonymous link:
https://anonymous.4open.science/r/GFSE-E8C0.

D EXPRESSIVENESS

D.1 THEORETICAL PROOF

For an input graph G(V,E) with node set V and edge set E, let fP : V → X and fR : V × V → X
indicate the node-level and edge-level structural encoding, respectively. SEG-WL updates the
node labels at the t-th iteration by gt(v) = hash ({{(gt−1(u), fR(v, u)) : u ∈ V }}) and g0(v) =
hash(fP (v)).
Proposition D.1. RW(d)-SEG-WL (d ≥ 3) is strictly more expressive than WL in testing non-
isomorphic graphs.
Proposition D.2. There exist pairs of graphs that RW(d)-SEG-WL can distinguish, but 3-WL can not.

Proof. We first introduce Neighbor-SEG-WL, which is the SEG-WL test when fP is an identity
encoding and fR(u, v) equals 1 if (u, v) ∈ E and 2 otherwise. Previous works have proved the
following Proposition (Zhu et al., 2023).

Proposition D.3. Two non-isomorphic graphs can be distinguished by WL if and only if they are
distinguishable by Neighbor-SEG-WL.

Therefore, Neighbor-SEG-WL is a specific example of SEG-WL test that has equivalent expres-
siveness to the 1-WL test. We then prove that RW-SEG-WL is strictly more expressive than
Neighbor-SEG-WL. Let dneg(u, v) indicate the edge-level encoding fR in Neighbor-SEG-WL.
Note dneg(vi, vj) = 2 if and only if Aij = 0. Recall that fR(·, ·) in RW-SEG-WL satisfies
fR(vi, vj) = Rij ∈ Rd with R = [I,M, · · · ,Md] where M = D−1A. Therefore, fR in RW-
SEG-WL strictly contains the information of dneg. Therefore, if two non-isomorphic graphs can be
distinguished by WL, they can be distinguished by RW-SEG-WL. Proposition D.1 is proved.

To prove Proposition D.2, we provide an example in Figure 6 which shows the Shrikhande graph and
the Rook’s 4× 4 graph, a pair of strongly regular graphs SRG(16,6,2,2). It is proved that they cannot
be distinguished by 3-WL (Arvind et al., 2020). We empirically verified that RW(d)-SEG-WL with
d > 4 can distinguish these two graphs.

D.2 SYNTHETIC GRAPH ISOMORPHISM TESTS
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(a) The Shrikhande graph (b) The Rook’s 4×4 graph

Figure 6: RW(d)-SEG-WL can distinguish the
Shrikhande graph and the Rook’s 4×4 graph when
d > 4 while 3-WL fails

To evaluate the expressive power of RW-SEG-
WL, we perform synthetic graph isomorphism
tests on low-order graphs and strongly regular
graphs. We consider low-order graphs with up to
8 nodes. Strongly regular graph SRG(n, k, λ, µ)
means graphs with n nodes, where each node
has k neighbors. Each adjacent pair of nodes has
the same number λ of neighbors in common and
each non-adjacent node pair has µ neighbors in
common. Strongly regular graphs are known to
be challenging cases for graph isomorphism test
algorithms due to their highly symmetric struc-
ture. We compare with 1-WL and SPD-SEG-
WL, where fP is an identity encoding and fR
is defined as the shortest path distance between
two nodes. Note SPE-SEG-WL can be viewed as an expressivity upper bound of Graphormer (Ying
et al., 2021). The results are shown in Table 10. We observe that RW-SEG-WL can distinguish signif-
icantly more non-isomorphic graphs than 1-WL and SPD-SEG-WL. Specifically, with d equals 8, i.e.,
when considering random walk with 8 steps, RW-SEG-WL successfully distinguish all low-order
graphs and strongly regular graphs. When setting d = 4, there are 16 pairs of strongly regular graphs
that cannot be distinguished by RW-SEG-WL. Therefore, it is natural to develop a graph transformer
equipped with a relative random-walk encoding that can accurately capture important graph structures
and demonstrate strong expressive power.

Table 10: Results of synthetic graph isomorphism tests

Low-Order Graphs (Parameter:n) Strongly Regular Graphs (Parameter:(n, k, λ, µ)
Parameter 5 6 7 8 (25,12,5,6) (26,10,3,4) (29,14,6,7) (36,14,4,6) (40,12,2,4) 45,12,3,3)

# graphs 21 112 853 11117 15 10 41 180 28 78
# graph pairs 210 6216 363378 61788286 105 45 820 16110 378 3003

number of undistinguishable graph pairs
WL 0 3 17 312 105 45 820 16110 378 3003
SPD-SEG-WL 0 2 12 186 105 45 820 16110 378 3003
RW-SEG-WL(d = 8) 0 0 0 0 0 0 0 0 0 0

E EVALUATION DETAILS

E.1 INTEGRATION WITH PRE-TRAINED MODELS ON MOLECULES

All models are fine-tuned, trained or tested using five different seeds from 42 to 46, with the results
averaged. Additionally, for the results of our generated PSE, we select three different seeds to
obtain three GFSE checkpoints. Each GFSE is used to run the downstream task five times with the
aforementioned seeds (42− 46), and all results are averaged.

For the training from scratch setting, we adopt and modify the code base from GPS (Rampášek
et al., 2022) 1. RWSE and LapPE are of dimension 32 for molecule benchmark in Table 4 across
all the datasets. For other downstream graph tasks in Table 2 and Table 3, we follow exactly as the
hyper-parameters established in GPS (Rampášek et al., 2022). Given a graph G(V,E), we directly
concatenate the PSE and the raw node feature as the new input feature, then send them into the very
beginning of a model with randomly initialized parameters, which is as follows:

X ′ = concat(X,PSE) (12)

ŷ = MLP[pooling[GraphModel(X ′)]], (13)

where X denotes the raw node feature of the input graph, X ′ is the input feature augmented with
structural information, GraphModel denotes our backbones GNN or GPS, and the read-out layer
consists of pooling and MLPs to obtain the final prediction.

1https://github.com/rampasek/GraphGPS
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For the fine-tuning setting in the molecule benchmark, we concatenate the node encodings obtained
from a pre-trained model with the extra structural features. Then we send the concatenated features
into the final read-out layers for the final prediction. Note that during the fine-tuning process, the
parameters of the entire model (both the pre-trained model and the read-out layer) are continuously
updated.

X ′ = GNN(X) (14)

ŷ = MLP[pooling[concact(X ′,PSE)]], (15)

where X ′ denotes the latent node features output from the pre-trained models, PSE denotes the extra
structural feature generated by GFSE, the read-out layer consists of pooling and MLPs, where the
hyper-parameters follow exactly as (Xia et al., 2022). We report the performance of the model which
achieves the best validation performance during training.

E.2 INTEGRATION WITH LARGE LANGUAGE MODELS

To incorporate the graph structural information into the language model, we use a lightweight MLP to
project the 32-dimensional PSE generated by GFSE into the 4096-dimensional embedding space of
LLaMA2-7B (Touvron et al., 2023). The MLP ensures alignment between the PSE and the language
model’s embeddings, facilitating smooth integration of graph information. We then concatenate the
textual description of the central node with those of its one-hop neighbors, prepend the projected
PSE as a soft token, and append a special graph token at the end of the sequence. This tokenized
sequence is fed into the language model, and the hidden embedding corresponding to the special
graph token is extracted to represent the central node. We use a contrastive loss between positive
node pair (i, j) ∈ E and negative node pair (i, j′) /∈ E to train the MLP and finetune the language
model

L =
∑

(i,j)∈E

(
d2ij +max (τ − dij′ , 0)

2
)
, with dij = 1− cos(vi, vj), (16)

where vi indicates the representation of the node i, and τ is the similarity margin (set as 0.5 in our
experiments).

F MORE EXPERIMENTAL RESULTS

F.1 RECONSTRUCTION OF OTHER PSE TYPES

Table 11: Performance of other PSE reconstruction on 5% MolPCBA dataset. The coefficient of
determination R2 scores are reported as the metric.

PSE type ElstaticPE LapPE RWSE HKdiagSE CycleSE

GPSE 0.964 0.973 0.984 0.981 0.977
Ours 0.947 0.970 0.987 0.984 0.992

Table 11 demonstrates that the PSE generated by our pre-trained GFSE, followed by a trainable
lightweight MLP, is capable of reconstructing various pre-defined PSE types on 5% MolPCBA
dataset. We evaluate this using the coefficient of determination R2 scores as a metric. Notably,
our model performs competitively compared with GPSE, achieving an R2 of 0.987 for RWSE and
0.992 for CycleSE, given the fact that GPSE directly adopts PSE reconstruction as its training
objective. Instead, our method generalizes well across different PSEs without being directly trained
for reconstruction. This suggests that our structural self-supervision tasks are effective and sufficient
in capturing important structural information.

F.2 DOWNSTREAM EVALUATION PERFORMANCE

We report the standard deviations of downstream performances in Table 12 and Table 13.

Table 14 compares our approach with GraphPEFT. GraphPEFT involves two steps: pre-training a
graph encoder on domain-specific graph data and fine-tuning it on evaluation datasets.
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Table 12: Performance on MolPCBA, ZINC (subset), Peptides-func and Peptides-struct.

MolPCBA ZINC Peptides-func Peptides-struct
AP ↑ MAE ↓ AP ↑ MAE ↓

GCN 0.2424±0.0034 0.3670±0.0110 0.5930±0.0023 0.3496±0.0013

GCN+LapPE 0.2417±0.0047 0.2052±0.0132 0.6021±0.0051 0.2688±0.0027

GCN+RWSE 0.2438±0.0028 0.1741±0.0528 0.5827±0.0046 0.3270±0.0019

GCN+GPSE 0.1958±0.0074 0.1218±0.0613 0.5959±0.0034 0.2710±0.0041

GCN+GFSE 0.2477±0.0021 0.1237±0.0428 0.6131±0.0074 0.2513±0.0054

GIN 0.2703±0.0023 0.5260±0.0510 0.5498±0.0079 0.3547±0.0045

GIN+LapPE 0.2701±0.0013 0.2203±0.0386 0.5323±0.0083 0.2650±0.0041

GIN+RWSE 0.2781±0.0031 0.1731±0.0614 0.5410±0.0068 0.3282±0.0037

GIN+GPSE 0.2765±0.0073 0.2162±0.0429 0.5389±0.0094 0.2581±0.0046

GIN+GFSE 0.2839±0.0046 0.1689±0.0524 0.5532±0.0103 0.2674±0.0039

Transformer (TF) 0.0808±0.0117 0.6943±0.0328 0.4800±0.0076 0.4192±0.0028

TF+LapPE 0.1784±0.0329 0.5101±0.0724 0.6307±0.0091 0.2514±0.0031

TF+RWSE 0.2083±0.0674 0.2193±0.0640 0.6326±0.0028 0.3344±0.0028

TF+GPSE 0.2040±0.0531 0.1883±0.0263 0.6534±0.0041 0.2479±0.0068

TF+GFSE 0.2376±0.0342 0.1548±0.0796 0.6642±0.0025 0.2436±0.0071

GPS 0.2869±0.0045 0.1182±0.0049 0.6535±0.0041 0.2500±0.0012

GPS+LapPE 0.2939±0.0016 0.1078±0.0084 0.6494±0.0037 0.2501±0.0026

GPS+RWSE 0.2907±0.0028 0.0700±0.0040 0.6603±0.0085 0.2739±0.0063

GPS+GPSE 0.2911±0.0036 0.0648±0.0030 0.6688±0.0151 0.2464±0.0025

GPS+GFSE 0.2916±0.0061 0.0613±0.0026 0.6874±0.0120 0.2474±0.0051

GFSE Imp.(%) 32.60 76.43 2.78 42.47

Table 13: Test Accuracy (%) on ogbn-arxiv, PubMed, MNIST and CIFAR10.

ogbn-arxiv PubMed MNIST CIFAR10
GateGCN 71.69±0.21 76.86±0.41 97.34±0.14 67.31±0.31

GateGCN+LapPE 71.95±0.37 74.83±0.24 97.10±0.28 65.08±0.26

GateGCN+RWSE 71.83±0.65 76.11±0.39 96.84±0.27 65.26±0.68

GateGCN+GPSE 72.17±0.42 71.97±0.36 96.94±0.17 65.63±0.27

GateGCN+GFSE 72.61±0.53 78.39±0.84 97.44±0.31 68.39±0.47

Transformer (TF) 5.86±0.00 66.63±0.73 97.29±0.11 69.04±0.28

TF+LapPE 5.86±0.00 66.27±0.46 96.95±0.38 69.01±0.61

TF+RWSE 5.86±0.00 64.43±0.37 97.81±0.58 70.70±0.45

TF+GPSE 21.56±2.74 65.89±0.14 97.78±0.32 69.57±0.16

TF+GFSE 23.84±3.15 66.30±0.68 98.03±0.84 71.33±0.23

GPS 70.68±0.71 74.26±0.60 98.05±0.12 71.49±0.35

GPS+LapPE 69.51±0.38 73.68±0.37 98.16±0.28 71.87±0.21

GPS+RWSE 72.14±0.84 72.87±0.44 98.19±0.30 71.30±0.33

GPS+GPSE 71.21±0.34 73.71±0.70 98.08±0.13 72.31±0.25

GPS+GFSE 72.30±0.13 74.20±0.35 98.15±0.46 74.11±0.93

GFSE Imp.(%) 6.84 0.38 0.31 1.99

Table 14: Comparison with GraphPEFT

Cloth Home Sport
Hit@1 MRR Hit@1 MRR Hit@1 MRR

GraphPEFT 76.95 84.71 79.87 86.76 64.61 77.34
w.o. pre-training 76.74 84.57 79.68 86.63 64.44 77.21

LLaMA + GFSE 76.84 84.68 79.85 86.77 64.79 76.24

This process requires a domain-
specific encoder for each dataset, in-
creasing the adaptation cost when
moving across different domains.
In contrast, our model is designed
for general-domain usage, offering
a more flexible and cost-effective
adaptation without requiring domain-
specific pre-training. As shown in the table, our model consistently outperforms the version of
GraphPEFT that skips the domain-specific pre-training step (w.o. pre-training). This further high-
lights the robustness and generalizability of our approach, as it avoids the need for costly pre-training
on specific domains while still achieving competitive or superior results. Specifically, for the "Sport"
dataset, our model demonstrates comparable performance to GraphPEFT with pre-training, further
underscoring the adaptability of GFSE in varied contexts.
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F.3 EFFICIENCY EVALUATION

During the pre-training stage on eight datasets, the average time is around 30 to 40 minutes for each
epoch with a single NVIDIA A40 48GB GPU. Total training time is less than two days, which is
relatively efficient for a comprehensive multi-dataset pre-training process.

Table 15: Runntimes (s) of PSE computation on random
synthetic graph with increasing numbers of nodes

PSE / Graph size 100 300 500 1000

LapPE 2 9.25 34 155
RWSE 2 9.76 31.48 207
Pre-computation 0.0007 0.001 0.003 0.006
GFSE Inference 0.908 3.958 10.770 48.106

We compare the inference efficiency
of GFSE with handcrafted positional
encodings, such as LapPE and RWSE
in Table 15 and Table 16. Specif-
ically, we generate 1,000 synthetic
Erdos-Rényi graphs for various graph
sizes (100, 300, 500, and 1,000 nodes)
and evaluate the time required for pre-
computation and inference in GFSE.

Table 16: Runntimes (s) on real-world graph dataset

Dataset ZINC-subset MolHIV MolPCBA Peptides MNIST CIFAR10

LapPE 25 sec 37 sec 6.13 min 73 sec 96 sec 2.55 min
RWSE 11 sec 58 sec 8.33 min - - -
GFSE 4.17 sec 17.23 sec 2.97 min 15.21 sec 49.38 sec 1.27 min

As shown in the table, both
LapPE and RWSE exhibit sig-
nificant increases in computation
time as the graph size grows. Pre-
computation times required by
GFSE inference remain minimal
for all graph sizes, underlining
the model’s efficiency in this phase. In Table 16, we observe that GFSE demonstrates superior
scalability in inference, making it a more efficient option for large-scale graph processing.

G DISCUSSION

Limitation and Social Impact. While GFSE represents a significant step forward in developing
general and expressive foundation models for graph-structured data, there are certain limitations to
consider. For example, the effectiveness of GFSE may be influenced by the diversity and quality of
the pre-training datasets, as biases or under-representation in the data could propagate to the learned
representations. Future work could focus on expanding the diversity and scale of pre-training datasets
to mitigate such biases and improve the robustness of GFSE across more diverse domains

From a social impact perspective, the development of structural graph foundation models like GFSE
holds significant promise in advancing various application domains that rely on graph analytics. In
fields such as computational biology, social network analysis, and recommendation systems, GFSE
could enable more accurate and efficient modeling of complex structured data, leading to improved
understanding and decision-making. Furthermore, by reducing the need for extensive task-specific
fine-tuning, GFSE could democratize the use of powerful graph learning techniques, making them
more accessible to researchers and practitioners with limited computational resources.
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