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ABSTRACT

Foundation models have recently shown remarkable promise by leveraging ex-
tensive pre-training on diverse datasets to acquire generalizable representations,
which enable effective transfer to a wide range of downstream tasks. In the graph
domain, however, most existing pre-training models are tailored to specific do-
mains, primarily due to the inherent differences in semantic meanings of graph
features across various contexts. Additionally, most existing models struggle to
capture the rich topological complexity of graph structures, leading to inadequate
exploration of the embedding space. To address these challenges, we propose
a novel Graph Foundational Structural Encoder (GFSE) that identifies univer-
sal structural patterns, facilitating a unified feature embedding space suitable for
diverse domains, including molecular structures, social networks, and citation
networks. GFSE is the first cross-domain graph structural encoder pre-trained
with multiple self-supervised learning objectives. Built on a Graph Transformer,
GFSE incorporates attention mechanisms biased by graph structural information,
allowing it to encode intricate multi-level and fine-grained topological features
within complex graph structures. The pre-trained GFSE produces generic and
theoretically expressive positional and structural encoding for graphs, which can be
seamlessly integrated with various downstream graph feature encoders, including
graph neural networks for graphs with vectorized features and Large Language
Models for text-attributed graphs. Comprehensive experiments on synthetic and
real-world datasets demonstrate GFSE’s capability to significantly enhance the
model’s performance while requiring substantially less task-specific fine-tuning.
Notably, GFSE boosts the performance by an average margin of 20.48% across
eight real-world datasets, highlighting its potential as a powerful and adaptable
foundational encoder for graph-structured data.

1 INTRODUCTION

Foundation models are recently attracting a surge of interest in natural language processing (Achiam
et al., 2023; Bubeck et al., 2023; Touvron et al., 2023), computer vision (Radford et al., 2021; Ramesh
et al., 2021), audio (Yang et al., 2023; Borsos et al., 2023), etc. However, the application of such
models in the graph domain remains relatively under-explored. Due to the inherent difference in
dataset-specific features, most prior graph pre-training models are specialized for certain areas, such
as molecules (Zhang et al., 2020; Sypetkowski et al., 2024), proteins (Nijkamp et al., 2023), and
knowledge graphs (Galkin et al., 2023). These specialized models require domain-specific knowledge
and suffer from limited transferability to different graph domains. Recent efforts attempt to harness
LLMs to unify feature spaces of different graph domains using text (Chen et al., 2024b; Tang et al.,
2023; Liu et al., 2023a; Kong et al., 2024). However, the text-based representations used by LLMs
inherently lose the rich structural information encoded in the graph structure, leading to unsatisfactory
performance on graph learning tasks (Fatemi et al., 2023; Zhao et al., 2023; Wang et al., 2024).

To advance the applicability of graph pre-trained models across diverse domains, we propose a
paradigm shift that emphasizes the inherent structural patterns within graphs as universal attributes
that are domain-agnostic and not tied to specific datasets. These patterns facilitate knowledge
transfer across downstream tasks and datasets. For instance, social networks commonly exhibit small-
world properties and community structures, while biological networks reveal recurring motifs and
hierarchical modularity. Similarly, citation networks and the World Wide Web share characteristics
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Figure 1: A) GFSE is pre-trained on 8§ datasets from 6 different domains. Pre-training tasks include
reconstruction (shortest path distance regression, motif counting) and contrastive learning (commu-
nity detection, graph contrastive learning). B) GFSE generates generic and expressive Positional
and Structural Encoding (PSE) to tackle topological tasks. GFSE can also be seamlessly integrated
into downstream feature encoders for feature-enriched tasks by concatenating with initial vectorized
features or prepending the generated PSE to the textual description as a soft token.

like scale-free degree distributions and core-periphery structures. However, developing a graph
pre-trained model that can capture these diverse structural patterns in a generalizable manner, while
remaining applicable enough to handle domain-specific adaptation, presents significant challenges.
These challenges highlight the need for innovative pre-training strategies that focus on universal
graph characteristics rather than domain-specific features.

Proposed work. To address the challenges of cross-domain pre-training and effectively capturing
universal structural encoding, we propose GFSE, a Graph Foundational Structural Encoder, as shown
in Figure 1. GFSE is pre-trained across diverse graph domains using multiple self-supervised pre-
training tasks, including shortest path distance regression, motif counting, local community detection,
and graph-level contrastive learning. Each pre-training task targets a critical and necessary aspect of
graph structure, enabling GFSE to capture a comprehensive understanding of graph topology. GFSE
employs a Graph Transformer enhanced with biased attention mechanisms. Notably, the relative
positional encoding, derived from the random walk matrix, is explicitly integrated into the attention
bias term. This design allows GFSE to effectively capture intricate structural dependencies among
node pairs during pre-training, ensuring both efficiency and theoretically guaranteed expressiveness.
GFSE’s versatility extends to various graph learning scenarios. The pre-trained GFSE can produce
generic and expressive Positional and Structural Encodings (PSE) for topological tasks. In feature-
enriched contexts, the generated PSE can seamlessly augment vectorized features or integrate with
text encoders (e.g., LLMs) for text-attributed graphs. This applicability enables GFSE to serve as a
powerful component in any graph foundational model.

The contributions of this work: (1) We propose GFSE, the first cross-domain graph structural encoder
pre-trained with four essential self-supervised learning objectives. Extensive experiments show the
effectiveness of these pre-training tasks, leading to an average performance improvement of 20.48%
across eight real-world datasets on downstream graph models. (2) We provide theoretical justification
and empirical results demonstrating GFSE’s ability to generate expressive PSE. (3) GFSE serves as a
plug-and-play solution for any graph foundational model to incorporate structural information. By
focusing on universal structural patterns, GFSE paves the way for more generalizable and adaptable
graph encoding, potentially reducing the need for domain-specific pre-training in many applications.

2 RELATED WORK

Graph Pre-training. Graph self-supervised learning approaches are typically pre-training graph
models, e.g., GNNs or Graph Transformers, on a massive amount of labeled graphs with inherent
features by reconstructing the structures or masked attributes (Cui et al., 2020; Hou et al., 2022; Kipf
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& Welling, 2016b; Hu et al., 2020b; Wang et al., 2017; Xia et al., 2024; Xia & Huang, 2024; Zhao
et al., 2024b; Mizera et al., 2024). Some works also utilize contrastive learning to enhance node and
graph-level representation learning (Han et al., 2022; Hassani & Khasahmadi, 2020; Velickovic et al.,
2019; Hu et al., 2019; Lee et al., 2022; Li et al., 2021; Lu et al., 2021; Sun et al., 2019; 2021; Xu et al.,
2021a; Galkin et al., 2023; Zhao et al., 2024a). These methods, while effective in certain domains,
exhibit limited generalizability across different graph domains due to their tailored design for specific
types of data. Additionally, there have been graph prompt techniques (Huang et al., 2024; Fang et al.,
2024) that can be used to enhance model adaptation over graphs. There have also been some attempts
at cross-domain graph pre-training models (Qiu et al., 2020; Davies et al., 2023). Unfortunately, all
these models rely on one singular pre-training task (i.e., contrastive learning), and usually fail to
capture fine-grained structural features at node level or edge level (Mao et al., 2024).

LLM-based Graph Foundation Model. With the success of foundation models in the NLP realm,
recent efforts also harness LLMs to develop domain-specific graph foundation models by flattening
graph structures and associated textural information into prompts (Chen et al., 2024a; Tang et al.,
2023; Ye et al., 2023; Qian et al., 2023; Zhao et al., 2023; Guo et al., 2023; Chen et al., 2024b; Liu
et al., 2023a; Kong et al., 2024; Chen et al., 2024c; Fan et al., 2024; Zhang et al., 2024; Li et al.,
2024). Nevertheless, recent studies show that LLM demonstrates an unsatisfying ability to reason
and understand complicated structures within graph (Fatemi et al., 2023; Zhao et al., 2023; Wang
et al., 2024). In this work, we focus on developing a foundation model dedicated to encoding the rich
topological information, without relying on associated text. Our approach complements LLMs on
text-attributed graphs, serving as a foundational structural encoder for general graphs.

Positional and Structural Encoding (PSE). Traditional PSEs include hand-crafted features such
as Laplacian PE (Davies et al., 2024; Kreuzer et al., 2021; Beaini et al., 2021; Wang et al., 2022),
shortest-path distance (Li et al., 2020; Ying et al., 2021), kernel distance (Mialon et al., 2021), random-
walk encoding (Ma et al., 2023; Dwivedi et al., 2021; Briiel-Gabrielsson et al., 2022; Rampések
et al., 2022), node degree centrality (Ying et al., 2021), efc. Some studies have introduced specialized
networks designed to adaptively learn PSE to enhance performance (Kreuzer et al., 2021; Dwivedi
et al., 2021; Chen et al., 2022; Lim et al., 2022). GPSE (Liu et al., 2023b) proposes to pre-train a
positional and structural encoder on domain-specific graphs to generate PSE. However, GPSE still
suffers from limited transferability and expressiveness across other domains, due to its simplistic
pre-training backbone and randomized node features. Consequently, the effectiveness of GPSE varies
with specific tasks and graph models. Finding the most effective and versatile PSE remains an open
challenge that requires further innovation.

3 PROPOSED METHOD

As shown in Figure 1, we collect graph pre-training datasets from six different domains, including
molecules, proteins, social networks, images, product networks, and academic networks. GFSE
utilizes a transformer-based architecture with biased attention to incorporate relative inductive bias
within graph structures (Sec. 3.1). GFSE is pre-trained with four challenging self-supervision tasks
simultaneously, each designed to enhance a crucial aspect of structural awareness and promote
encoding quality (Sec. 3.2). GFSE generates expressive positional and structural encoding (PSE)
for topological tasks. Moreover, the generated PSE can be seamlessly integrated into graphs with
vectorized features or textual features, to enhance the downstream performance (Sec. 3.3).

3.1 ARCHITECTURE

Previous work (Liu et al., 2023b) uses randomized features to replace initial node features. However,
it leads to poor generalizability across different domains. In this work, we propose to use both
absolute and relative random-walk positional encoding as the initial features. Formally, let G(V, E
represent an input graph, where V and F denote the set of nodes and edges, respectively. A € RNV
indicates the adjacency matrix, where N is the number of nodes, and D is the degree matrix. Random
Walk matrix is defined as M = D! A, where M ; indicates the transition probability from the i-th
node to the j-th node. Following previous works on random walk encoding (Ma et al., 2023), we
calculate the d-dimensional encoding for each node and all node pairs.

Pi = [IaMaM27' o 7Md]i,i7 Rl,] = [IanMQa T aMd}’i,j (1)
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P € RV*4 and R € RV*N*4 are used as the initial node features and edge features in GFSE.

Pre-training Backbone. GFSE is built on a GPS architecture (Rampasek et al., 2022) for
pre-training, due to its scalability and generalizability. Each GPS layer contains local mes-
sage passing and global attention modules to capture both neighbor and long-range informa-
tion. In the /-th layer, the node encoding P and relative edge encoding R are fed into
both message passing layers (MPNN) and Biased Attention Module (BiasAttn) parallelly.

Pt R = MPNN* (PY, RY, A) P4 = BiasAttn® (PY,RY) (2) MatMul

The node encoding is then updated by P“*! = MLP* (P4 + P4, SoftTMax

Attention Bias. The global attention in the original GPS framework does

not account for relative edge encoding while leaving them entirely for the 6’9;

message-passing layers. However, incorporating relative edge encoding Scale %

in global attention is crucial for capturing long-range dependencies, as the I

receptive field of message-passing layers is inherently constrained by their | MMl Linear

depth. As shown in Figure 2, to build a theoretically more powerful GPS, 3 ,1 v

we explicitly incorporate relative edge encoding into global attention, where | 1 |

the attention weight between the ¢-th and the j-th nodes is computed by CEC I
i.; = SoftMax(a; ; + Linear(R; ;)), where Linear : R? — R indicates @

a hnear layer that maps the d-dimensional relative encoding to a scalar. a; ;

denotes the original attention weight computed by scaled-dot self-attention

on the node encoding P in each GPS layer.

Attention Bias

Figure 2: Biased Atten-
tion based on random

walk matrix.
3.2 SELF-SUPERVISED PRE-TRAINING TASKS

GFSE is pre-trained with four structural tasks, including reconstruction and contrastive learning.
Each task highlights a specific structural aspect, thereby augmenting the model’s expressiveness and
capability to capture complex graph structures. Let P € R™ *4e represent the output after L GPS
layers. We decode P with independent MLP heads for each pre-training task.

Shortest Path Distance Regression is an edge-level reconstruction task. Shortest Path Distance
(SPD) encodes the global proximity and connectivity between nodes, which helps to discern nodes’
positions and relations within the entire graph (Li et al., 2020). We pre-compute the shortest path
distance via the Dijkstra algorithm (Dijkstra, 1959) to create the label SPD € RV*¥ _ The loss for
shortest path distance regression is computed by Lspp = ﬁ dijev || hspp(PL ||P]L) — SPD; ;|I%,

where || indicates the concatenation operation and hgpp indicates a task-specific head.

Motif Counting is a node-level reconstruction task, which allows the model to better identify each
node’s role in the surrounding subgraphs. We follow previous works (Bouritsas et al., 2022) to count
the number of certain motifs surrounding each node. To improve expressiveness, we include a variety
of small motifs, called graphlets (Przulj et al., 2004; Przulj, 2007), with different numbers of vertices,
which are beyond usual types like stars, paths, cycles, and cliques. We refer to Appendix B.2 for more
technical details. Let Y™ € Z* denote the node-level motif label, where k is the number of graphlet
types. The loss is formulated as Lyc = ﬁ Siev lhmc(PE) — Y™, where hyc : RS — R¥ is
the task-specific head for motif counting.

Community Detection is an edge-level contrastive learning task that aims to identify densely
connected subgraphs, where nodes within a community are more closely linked to each other than
to nodes outside the community. Such community structures are ubiquitous in various real-world
networks, e.g., social networks, and transportation systems. We employ the Louvain Community
Detection Algorithm (Blondel et al., 2008) to extract the community structure from pre-training
graphs, which clusters nodes into communities based solely on graph topology without node features.
We approach this task in a contrastive learning manner by minimizing the embedding distances
between intra-community nodes while maximizing the distance between inter-community nodes by

Lcp = Z Z —sim(i, j)) + (1 = Y;%;) max(0, € — (1 — sim(é, 7)) 3)

eV jeVv
where the similarity score sim(¢, j) is calculated by sim(z, j) = W and z; = hep(PF) with
a head hcp. € is a margin hyperparameter. Y%, is a binary label that indicates if the i-th node and the
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7-th node are in the same community. Through Eq. 3, GFSE learns to discern community boundaries
and distinguish nodes based on local community structures.

Graph Contrastive Learning is a graph-level contrastive learning task that aims to distinguish
graphs from different datasets. The motivation is rooted in the observation that similar structural char-
acteristics in different domains may exhibit distinct meanings. For example, a subgraph representing
a protein interaction network in a biological dataset might correspond to a specific functional module,
whereas a similar structure in a social network could represent a tightly-knit community or interest
group. Therefore, GFSE distinguishes graphs from different datasets, in addition to performing
structural pre-training tasks within a single graph. The loss for this task is computed by

exp (sim (ZG,”ZGJ-) /7')

Zszl ]]'[Gw“Gi] exp (Sim (zGi ’ sz) /T) ,

LGCL = — 1og (4)

where 7 is the temperature, G; and G are from the same dataset, z¢;, = GlobalPool(hgcL(P§,))

is the output of the global pooling applied to the final layer’s representation P, for the graph G, K
is the number of negative samples, and 1g, «¢,] i an indicator function that determines whether
graphs G, and G, originate from different datasets.

Multi-task Loss Weighing. Each pre-training task targets a different structure aspect, enabling GFSE
to capture a comprehensive understanding of graph topology. For instance, the shortest path distance
regression task focuses on learning the global connectivity within graphs, while motif counting delves
into the occurrence of specific subgraph patterns. This diverse set of tasks covers a wide range of
structural properties, from local neighborhoods to global graph characteristics. Since the loss scale
and difficulty vary significantly across tasks, we introduce task-specific uncertainty (Kendall et al.,
2018), which is learnable during pre-training to unify the scales of all losses. Task-specific uncertainty
is used to automatically balance different pre-training losses, i.e., Lspp, Lmc, Lcp, and Lger (see
Appendix C.3 for more details). Moreover, the evolution of uncertainty values provides insights into
each task’s contribution to the overall pre-training process.

3.3 COMBINATION WITH DOWNSTREAM FEATURE ENCODER

Application on Graphs with Vectorized Features. GFSE can be readily employed to generate
expressive PSE for various graph applications. Let X° € RV *9= denote the initial node features for
a given graph with N nodes and P* € R *9e denote PSE generated by GFSE, where d,, and d,, are
dimensions of node features and PSE, respectively. P can then be concatenated with the initial node
features X° to create a new feature matrix X% = [X°||PL] € RV *(d=+de) which augments the
node features with structural information. This structure-enriched feature X" can subsequently be
fed into downstream graph models, such as graph neural networks or graph transformers, enhancing
their performance on various tasks. For large-scale graphs, where computing PSE for the entire graph
may be computationally prohibitive, we thereby sample the neighborhood structure around each node
and compute the PSE for these localized subgraphs. This process can be efficiently parallelized,
enabling scalable and efficient generation of PSE for large graphs.

Application on Text-attributed Graphs. Language models are typically employed to process the
text-attributed graphs, where GFSE can be seamlessly applied to incorporate structural information.
Given the generated PX € RY*% an MLP is employed to project P into the embedding space
of the language model. This projected PSE is then prepended as a soft token to the associated
text, effectively incorporating the graph’s structural information into the model input. Subsequently,
these structure-enriched tokens are fed into downstream large language models (LLMs), enhancing
their performance on graph-related tasks. The process, involving training a lightweight MLP and
fine-tuning LLM with Parameter-Efficient Fine-Tuning (PEFT) techniques such as LoRA (Hu et al.,
2021), makes it scalable and efficient for large-scale text-attributed graph applications.

3.4 EXPRESSIVE POWER OF GFSE

We show that GFSE can generate highly expressive PSE by incorporating relative edge encoding into
the attention computation in the Graph Transformer backbone. Specifically, we employ the Structural
Encoding enhanced Global Weisfeiler-Lehman test (SEG-WL) (Zhu et al., 2023), a generalized WL
test that incorporates relative structural encoding into the isomorphism algorithm, to characterize
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the expressiveness of GFSE. For an input graph G(V, E) with node set V' and edge set E, let
fp:V —» Xand fr : V x V — X indicate the node-level and edge-level structural encoding,
respectively. Different from traditional WL test, SEG-WL updates the node labels at the ¢-th iteration
by g:(v) = hash ({{(gt—1(u), fr(v,u)) : w € V}}) and go(v) = hash(fp(v)). SEG-WL can be
viewed as a high-level abstraction of the learning paradigm of our pre-training architecture with
biased attention (Eq. 2), where relative structural encoding between any two nodes is considered for
updating node representations (Zhu et al., 2023). Let RW(d)-SEG-WL denote the case that fp and fr
are determined by P and R with d dimension, i.e., fp(v;) = P; € R? and fr(v;,v;) = R;; € R?
for the i-th and j-th nodes. We have the following propositions.

Proposition 3.1. RW(d)-SEG-WL (d > 3) is strictly more expressive than 1-WL in testing non-
isomorphic graphs.

Proposition 3.2. There exist pairs of graphs that RW(d)-SEG-WL can distinguish, but 3-WL can not.

The theoretical proof and empirical verification are given in Appendix D. RW-SEG-WL is able to
distinguish all low-order graphs with orders equal to or less than 8 and successfully distinguishes
most strongly regular graphs where 3-WL fails to distinguish. RW-SEG-WL stands as an expressivity
upper bound of our proposed GFSE. The pre-training tasks are meticulously designed to push GFSE
towards achieving the upper bound established by RW-SEG-WL. These pre-training tasks optimize
both node-level and edge-level structural encoding, progressively refining the effectiveness of the
model in generating expressive encoding.

3.5 COMPUTATIONAL COMPLEXITY

The complexity of developing GFSE comprises two parts: pre-computation of self-supervision labels
and pre-training. For the pre-computation, we adopt Dijkstra Fibonacci-heap solution (Dijkstra, 1959)
to compute the shortest path distance between node pairs, which results in the time complexity of
O(|E| + |V|log |V]) with node set V" and edge set E. A brute-force implementation of the subgraph
isomorphism counting of fixed size ¢ is O(|V|*). We consider the graphlets with at most 5 nodes.
One can also choose special graphlet types, e.g., paths, cycles, and triangles, which can be efficiently
enumerated (Giscard et al., 2019). Approximating and scalable algorithms can be further used to
accelerate this pre-processing step (Fu et al., 2024; Ying et al., 2020; Pashanasangi & Seshadhri,
2020). For pre-training, the complexity is O(|V'|?) for full attention computation and O(d|V||E|)
for initial encoding computation of P and R. Notably, the model’s PSE generation process requires
less than five minutes for all downstream datasets. See runtime evaluations in Appendix F.3.

4 EXPERIMENTS

GFSE is pre-trained to recognize complex structural patterns. We first evaluate the pre-training
performance in Sec. 4.2 and empirically assess the expressiveness of GFSE on synthetic datasets
(Sec. 4.3). We then evaluate GFSE in a wide range of downstream graph learning tasks in Sec. 4.4.
Specifically, we conduct experiments with pre-trained models on molecular datasets in Sec. 4.5 and
pre-trained LLMs on text-attributed graphs in Sec. 4.6.

4.1 PRE-TRAINING SETUP

Dataset. We utilize a diverse collection of cross-domain datasets for pretraining, ensuring a broad
spectrum of graph structures and scales, including MolPCBA, MolHIV, MNIST, peptides, ogbn-
proteins, Pokec, ogbn-arxiv and ogbn-product (Wu et al., 2018; Bhatia et al., 2016; Mikolov et al.,
2013; Szklarczyk et al., 2019; Chiang et al., 2019; Takac & Zabovsky, 2012; Dwivedi et al., 2023;
2022). These datasets cover several real-world graph domains, such as social networks, academic
networks, efc. Table 7 in Appendix C.1 presents the detailed statistics of datasets used for pre-training.
For large-scale graphs, we first partition them into sets of subgraphs by the METIS algorithm (Karypis
& Kumar, 1997) to handle scalability issues. Training samples from different datasets are mixed and
randomly shuffled to form a large-scale pre-training dataset.

Pre-training Setting. The pre-training stage is conducted on the standard train/validation/test splits
of the pre-training datasets. The dimension of initial encoding d is set as 8. We adopt GIN (Xu et al.,
2018) as the message-passing layer in the GPS and adopt 8 GPS layers with 8 heads and 128 hidden
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dimensions in each layer. The output dimension is 64 by default. We use Adam as the optimizer with
an initial learning rate of 0.001 and the batch size is set as 256. The maximum training epochs is 100.
An early stopping strategy is used to mitigate overfitting. The pre-training is implemented on the
NVIDIA A40 48GB GPU. We refer to Appendix C.4 for more details.

4.2 PRE-TRAINING EVALUATION

GFSE is pre-trained with four self-supervised learning tasks. We iteratively change the mes-
sage passing layers (e.g., GatedGCN (Bresson & Laurent, 2017), GCN (Kipf & Welling, 2016a)
and GIN (Xu et al., 2018)) and replace the biased attention with traditional self-attention in
the default GFSE architecture. We evaluate the pre-training performance on the standard test
split from the pre-training datasets with different architectures as shown in Figure 3. Accu-
racy is used to measure community detection and graph contrastive learning tasks, indicat-
ing the proportion of node (graph) pairs that are correctly predicted. MSE and MAE are
used for shortest path distance and motif counting tasks. See more details in Appendix C.2.
The four self-supervision tasks .

emphasize different structural as- ~ °** o2
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ing. GFSE is thereby built on Figure 3: Performance of the pre-trained models with different
GIN and biased attention as the architectures. MAE for motif counting is shown in the log scale.
default architecture. TF is the abbreviation of transformer.

The pre-trained GFSE is able to generate effective PSE, which can reconstruct other pre-defined PSE,
such as LapPE (Lim et al., 2022) and ElstaticPE (Kreuzer et al., 2021). We provide experimental
results in Appendix F.1. The ability to reconstruct various types of PSE, without taking them as
training objectives explicitly, demonstrates the sufficiency and effectiveness of the chosen tasks in
pre-training the model for comprehensive and generalizable graph representations.

4.3 EXPRESSIVENESS POWER EVALUATION

We empirically evaluate the structure-awareness Table 1: Test accuracy (%) enhanced by different
of the positional and structural encoding (PSE) positional and structural encoding. The results are
generated by GFSE on three benchmarking averaged over five random seeds. The best results
datasets that require discerning intricate graph in each dataset are bolded.

topologies. We evaluate the performance boost

brought by the PSE generated by GFSE in com- Triangle-S  Triangle-L Pattern Cluster
parison to two traditional positional encodings, EII:?EWEE ggéé } é '23 gggg %8-3(6)
. +Lap X X . .

RWSE and LapPE. We test on various down-  y;'p.Gpgg 52.80 1742 5566 2096
stream graph learning models, including MLP, = MLP+GFSE 98.71 2554 5779 2128
GIN (Xu et al., 2018), transformer (Vaswani  GIN 99.68 4258 8558  60.84

~ GIN+RWSE 99.70 4078 8534 6130
et al., 2017) and GPS .(Rampasek.et al., 2022). GIN+LapPE 99.74 104s seas  els3
We further compare with the learning-based ap-  GIN+GPSE 99.32 2532 8519  61.95
proach: GPSE (Liu et al., 2023b). See Ap- _GIN+GFSE 2 LTINS SR G

endix A for more baseline details. Trian- Transformer (TF) for Triangle and GPS for Others

p : TF/ GPS 21.68 2358 8663 7776
gle (Knyazev et al., 2019) poses triangle count-  TF/ Gps+RWSE 35.96 1138 8668  77.72
ing as a 10-way graph-level classification task. g ; ggg%ﬁg zggg ;21»23 gggg ;Z;g
Half of the test set are graphs with a similar sizeé g, Gps+GESE 02.82 3015 8798  77.86

to those in the training and validation set (de-
noted as Triangle-S). The left are graphs with larger sizes (denoted as Triangle-L), which present
greater challenges to the model’s expressive power. Pattern and Cluster (Dwivedi et al., 2023) are
graph datasets generated with the Stochastic Block Model (SBM) (Abbe, 2018) that require the
model to discern graph patterns and local clusters. Both are node-level classification tasks. As shown
in Table 1, GFSE generates expressive and robust PSE that consistently improves the base model’s
performance, whereas other structural encodings exhibit considerable variation across different
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datasets or different base models. Notably, the performance boost brought by GFSE is particularly
significant for the Transformer on the Triangle dataset, increasing accuracy from 21.68% to 92.82%
for Triangle-S. This demonstrates that GFSE has a stronger enhancement effect on models that
originally lack structural bias.

4.4 DOWNSTREAM EVALUATION

Dataset and Baseline. We conduct a comprehensive evaluation of the PSE generated by GFSE on
eight real-world graph datasets: MolPCBA, Peptides-func, Peptides-struct, OGB-Arxiv, and MNIST
that are in the pre-training dataset, while ZINC (Gémez-Bombarelli et al., 2018), PubMed (Yang
et al., 2016) and CIFAR10 (Dwivedi et al., 2023) that are out of the pre-training distribution. We
adhere to the experimental setting and hyper-parameters established by previous works (Rampasek
et al., 2022) to implement message-passing neural networks, Transformer, and GPS (Rampasek et al.,
2022). We augment the initial node features with the PSE generated by GFSE and evaluate the
performance on downstream tasks, comparing it against established structural encoding methods
including RWSE, LapPE, and GPSE (Liu et al., 2023b).

Results. We report the average performance over five random seeds in Table 2 and Table 3 (See
standard deviations in Appendix F.2). We observe that the optimal selection of structural encoding
typically varies across different datasets and base models. For example, RWSE tends to be more
beneficial than LapPE for small molecular graph learning (e.g., MolPCBA and ZINC), while most
structural encodings surprisingly degrade the performance on the PubMed dataset. Notably, the
performance gains are most pronounced when integrating PSE with Transformer architecture, demon-
strating the critical role of structured encodings in compensating for the absence of inherent structural
sensitivity in Transformers. The last row shows the average improvement (%) brought by our PSE on
base models. The consistent improvements across different settings underscore the robustness and
generalizability of GFSE, making it an optimal choice for enhancing the capabilities of graph models,
especially in contexts where traditional structural encodings fail to deliver.

Table 2: Performance on MolPCBA, ZINC (subset), Table 3: Test Accuracy (%) on Arxiv,

Peptides-func and Peptides-struct. PubMed, MNIST and CIFARI10.
MoIPCBA  ZINC  Peptides-func  Peptides-struct .
AP 1 MAE | :&P T v 1{,[ AE | u Arxiv PubMed MNIST CIFAR10
GCN 0.2424 0.3670 0.5930 0.3496 GateGCN 71.69 76.86 97.34 67.31
GCN+LapPE 0.2417  0.2052 0.6021 0.2688 GateGCN+LapPE 71.95 74.83 97.10  65.08
GCN+RWSE 0.2438  0.1741 0.5827 0.3270 . ) ot op
GCN:GPSE 01958  0.1218 05959 0.2710 GateGCN+RWSE 71.83 76.11  96.84  65.26
GCN+GFSE 0.2477  0.1237 0.6131 0.2513 GateGCN+GPSE 72.17 71.97 96.94 65.63
GIN 0.2703 0.5260 0.5498 0.3547 GateGCN+GFSE72.61 78.39 97.44 68.39
GIN+LapPE 0.2701  0.2203 0.5323 0.2650
GIN:R%SSE 0.2781 0.1731 0.5410 0_32§2 Transformer (TF) 5.86 66.63 97.29  69.04
GIN+GPSE 0.2765  0.2162 0.5389 0.2581 TF+LapPE 5.86 66.27 96.95 69.01
GIN+GFSE 0.2839  0.1689 0.5532 0.2674 TF+RWSE 5.86 64.43 97.81 70.70
E:anifor?gr (TF) 8-?2;32 8-6%? g-?igg 8-31?2 TF+GPSE 21.56 65.89 97.78 69.57
+Lap 1178 .5 .63 .25
TF+RWSE 0.2083  0.2193 0.6326 0.3344 TF+GFSE 23.84 66.30 98.03 71.33
TF+GPSE 0.2040  0.1883 0.6534 0.2479
TF+GFSE 0.2376  0.1548 0.6)642 0.2436 g§§+LapPE ggg? ’%gg 82(1)2 %gg
GPS 0.2869  0.1182 0.6535 0.2500 ’ ’ ' '
GPS+LapPE 0.2939  0.1078 0.6192 02301 GPS+RWSE 72.14 7287 98.19 7130
GPS+RWSE 0.2907  0.0700 0.6603 0.2739 GPS+GPSE 71.21 7371 98.08  72.31
GPS+GPSE 0.2011  0.0648 0.6688 0.2464 GPS+GFSE 72.30 7420 98.15 74.11
GPS+GFSE 0.2916  0.0613 0.6874 0.2474 s
GFSE Imp.(%) 32.60 76.43 2.78 42.47 GFSE Imp.(%) 6.84 038 031 1.99

4.5 INTEGRATION WITH PRE-TRAINED SELF-SUPERVISED MODELS ON MOLECULES

Settings and Methods. We use the small molecular property prediction datasets namely Tox21,
Sider, BBBP, ClinTox, and MUV from the OGB benchmark (Hu et al., 2020a) as a downstream
task for GFSE. We evaluate the effectiveness of GFSE under two settings: training from scratch and
fine-tuning pre-trained models. In the training from scratch setting, we directly concatenate GFSE’s
PSE with the raw node features to create new input features. This augmented representation is then
fed into a randomly initialized model from the beginning of training. We take GINE (Xu et al., 2018)
and GPS (Rampaések et al., 2022) as our backbone. In the fine-tuning setting, we assess GFSE’s ability
to enhance pre-trained models by concatenating the node encodings obtained from a pre-trained
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Table 4: Test ROC-AUC(%) performance on small molecular property prediction datasets. The best
results with the same feature encoder for each dataset are bolded.

Tox21 Sider BBBP ClinTox MUV
Bascline w/o  SSP 768+ 08 61.7+08 679+09 57.0+28 798+ 16
Structural  GraphCL 757405 608+07 695+05 70.1+19 745+13
Encoding  GraphLoG 754409 612+11 725+08 767+33 760+ 1.1
GINE 745+ 04 586+01 677+07 743+15 748+06
GINE+RWSE 753402 584+18 667+14 7T7.6+14 764+08
GINE+LapPE 776408 572+1.1 658+03 756+29 77.0+08
GINE+GPSE 749+ 04 60.1+08 664+0.1 789+35 758+13
Train GINE+GFSE 755+07 60.9+05 69.1+13 80.1+15 77.7+12
From Seratch  5pg 739402 586+04 671403 803+24 680+06
GPS+RWSE 746413 564+06 67.9+10 832+46 69.7+06
GPS+LapPE 748+ 1.1 605+06 67.9+0.6 789+ 14 70.1+22
GPS+GPSE 751407 566+17 678407 738+07 683+0.1
GPS+GFSE 763+14 61.8+05 68.0+05 83.6+38 73.6+05
GraphMAE 754+ 04 598+05 695+16 77.4+29 763+ 24

Fine-tune GraphMAE+RWSE 763+ 0.5 60.5+08 664 +37 767+53 77.7+15
Pre-trained GraphMAE+GFSE  759+09 62.1+08 705+14 772+£52 781+13

Models MoleBERT 76805 628+1.1 719+16 789+30 786=£18
MoleBERT+RWSE  77.8 £0.7 63.1+0.6 665+2.1 739432 804+1.3
MoleBERT+GFSE  78.0 £ 0.4 63.1+0.7 689421 781421 80.5%+2.0

model with the PSE generated by GFSE. The concatenated features are then fed into the final read-out
layers for prediction. During fine-tuning, the parameters of both the pre-trained model and the
read-out layers are continuously updated. We select the pre-trained models, GraphMAE (Hou et al.,
2022) and MoleBERT (Xia et al., 2022) as the backbones and compare with other baselines without
structural encoding, namely SSP (Hu et al., 2019), GraphLoG (Xu et al., 2021b), GraphCL (You
et al., 2020). Refer to Appendix E.| for more implementation details.

Results. Experimental results are shown in Table. 4. For training the models from scratch, on
both GINE and GPS, PSE consistently improves model performance, achieving better results than
all the other structural feature augmentation methods across all datasets. As to fine-tuning, our
PSE significantly boosts the performance of MoleBERT on three out of five datasets and achieves
state-of-the-art performance on Tox21, Sider and MUV datasets. In the case of GraphMAE, PSE
achieves better performance than RWSE in four out of five datasets, and also significantly enhances
the performance of the backbone (GraphMAE) in four out of five datasets.

4.6 INTEGRATION WITH LARGE LANGUAGE MODELS

Settings and Methods. We perform experiments on e-commerce networks from Amazon (He &
McAuley, 2016; McAuley et al., 2015), which are text-attributed graphs with detailed descriptions
for each node (i.e., product item). Edges indicate co-viewed or co-purchased relations between
two nodes. The dataset statistics of three selected categories can be found in Table 8. We employ
a lightweight MLP to align the PSE generated by GFSE with the language model’s embedding
space, which ensures seamless integration of structural information into the language model. We
concatenate the textual description of a central node with those of its one-hop neighbors and prepend
the PSE as a soft token, followed by a special graph token at the end. This combined sequence
is then encoded by LLaMA?2 (Touvron et al., 2023). The hidden embedding of the special graph
token is used as the representation for the central node. Following the previous setting (Zhu et al.,
2024), we compute the cosine similarity between the representations of node pairs as the edge
likelihood. We train the MLP and fine-tune the language model with LoRA (Hu et al., 2021) using
a contrastive loss (Hadsell et al., 2006). More evaluation details can be found in Appendix E.2.
Results. Hit@1 and Mean Reciprocal

) Table 5: Comparison with general-domain baselines
Rank (MRR) results are reported in Table 5.

We select InstructGLM (YC et al., 2023) Hit@cll()tl;v[RR Hit@}iomi/IRR Hit@Slpor;VIRR
as a baseline, which has been fine-tuned  “gucGim 7623  82.60 | 79.82 8593 | 6250 73.25
on graph domains without structural infor-  “Fpeuned LLaMA 7473 82.87 | 7893 8607 | 6252 7577
mation infusion. Additionally, we include +GraphSAGE 7622 84.16 | 73.74 81.66 | 6226 7536
comparisons against GraphSAGE (Hamil- +GFSE (Ours)  76.84 84.68 | 7985 86.77 | 6479 7624

ton et al., 2017), which was trained from
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scratch as a PSE encoder with LLaMA finetuning together. The term Finetuned LLaMA refers to
the LLaMA model fine-tuned without incorporating any PSE. As seen from the table, GFSE, which
is pre-trained on cross-domain graph data as a structural encoder, consistently outperforms other
methods across all datasets. In particular, GFSE provides an average boost of 2.01% in performance
over InstructGLM and a 3.53% improvement over GraphSAGE encoder across the three datasets.
These gains demonstrate the effectiveness of GFSE in graph-based language modeling tasks. See
more discussions in Appendix F.2.

4.7 ABLATION STUDIES

We analyze the sensitivity and effect of each pre-
training task and model architecture in terms of
the performance boost of the generated PSE in
downstream tasks. The results are illustrated in
Table 6. Firstly, we iteratively remove one of

Table 6: Ablation studies on the pre-training tasks
and model architecture of GFSE. Best results are
shown in bold.

ZINC CIFAR10 ogbn-arxiv

the four pre-training tasks and follow the same MAE| ACCt  ACC?

1 - 1 _ GPS w/o PE 0.1182 71.49 70.68
setting to pre-train and evaluate GFSE. We' ob MupmemtbyGESE  oeels  7am 1w
serve that the removal of each task results in a  ~ Pretraining Tasks

. : : . v/o C ity D i 0.0637 72.38 70.34
discernible reduction in downstream task per- 1o vt Cougting 00731 0 a7
formance. Notably, the shortest path distance e e hewresion 0 s 7300 7o
task is particularly critical for the ZINC and  ~ Modeldrchitecrure ™~~~ ~ ~ =~~~ "~~~ """ """ ToTmmoos

. . GIN+Traditional A i 0.0872 73.13 71.85
CIFAR10 datasets, while local community de- Bissed Attontion Only ol e e
tection plays a significant role in enhancing per- GIN Only 00640 7231 7234

formance on academic datasets.

We further conduct ablation studies on the main com-

ponents of GFSE. Specifically, we use traditional atten- o175 Z?(aj;tlfsgo:at:;[t)'is:a:ecaern'ng
. . . . (Y I
tion to replace biased attention as a baseline and remove  ~ 5] — Motif Counting

—— Community Detection

GIN or attention modules respectively. We notice that all
the above pre-training architecture variants lead to per-
formance degradation. The hybrid approach outperforms
both attention-only and GIN-only setups, suggesting that
integrating sophisticated attention mechanisms can com-
pensate for the absence of global information in local
message-passing layers. Figure 4 illustrates the trajectory 0000
of task uncertainty (c2) across different pre-training tasks Epochs

w.r.t. pre-training epochs. Higher values of o2 reduce

the respective task’s contribution to the overall training Figure 4: Learning task uncertainty (5%)
loss. We observe that all tasks show a sharp decline in W.r:f. pre-training epochs

uncertainty during the pre-training process. Notably, motif counting maintains a lower uncertainty
throughout the training process compared to other tasks, suggesting that it might be inherently more
straightforward for the model to optimize or more integral to the model’s overall learning structure.

Task Uncertainty (02
o
=
o
o

o
=)
a
o

5 CONCLUSION

GFSE represents a significant advancement in cross-domain graph foundational models, leveraging
multiple self-supervised learning objectives to capture comprehensive structural information from
diverse graph domains. By integrating relative positional encoding within a Graph Transformer,
GFSE provides a robust framework for generating expressive positional and structural encodings.
Extensive experiments on synthetic and real-world datasets validate GFSE’s ability to enhance the
performance of various graph feature encoders, broadening its applicability across numerous graph-
related tasks. Building upon the promising results of GFSE, one potential direction is to explore
the impact of pre-training dataset diversity on the model’s ability to capture multi-level topological
features. Investigating techniques to curate more representative and varied pre-training datasets could
further enhance GFSE’s generalization capabilities across different graph domains.

10



Under review as a conference paper at ICLR 2025

Reproducibility Statement. @ The code is available at https://anonymous.4open.
science/r/GFSE-E8CO. Detailed descriptions of the datasets used in our experiments, along
with the specific data processing steps, can be found in Appendix B and Appendix C.1. Pre-training
setting can be found in Appendix C.4.

Ethics Statement. Our work does not raise significant ethical concerns. The datasets used are
publicly available, and we comply with all privacy and legal standards in their use. No human
subjects were involved in this study, and there are no potential conflicts of interest or sponsorship
issues.
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A POSITIONAL AND STRUCTURAL ENCODING

Random Walk Structural Encoding. Random walk structural encoding (RWSE) (Dwivedi et al.,
2021; Rampasek et al., 2022) uses landing probabilities derived from random walks of varying
lengths, starting from each node in the graph to capture both structural and positional relationships
among nodes. Formally, let G(V, E') represent an input graph, where V' and E denote the set of N
nodes and edges, respectively. A € RV indicates the adjacency matrix and D is the degree matrix.
Random Walk matrix is defined as M = D~' A, where M ; indicates the transition probability
from the ¢-th node to the j-th node. The RWSE with d steps for the ¢-th node is defined as

RWSE,; = [I, M,M?,--- , M, ;, ®)

Laplacian Positional Encoding. Laplacian positional encoding (LapPE) (Kreuzer et al., 2021;
Dwivedi et al., 2023) method emerges as a significant advancement for enriching node representations
with spectral information. LapPE utilizes the eigenvectors of the graph Laplacian matrix to encode the
relative positions of nodes within a graph. These eigenvectors reflect a local coordinate system that
captures meaningful structural information, while also preserving the global topological properties of
the original graph. The Laplacian matrix L, = D— A has the full eigendecomposition as L = UAU "
We use the £ smallest non-trivial eigenvectors of the Laplacian matrix to create the LapPE. The
LapPE with k eigenvectors for the ¢-th node is expressed as:

LapPE, = [uy i, U2, ,up;] € RY, 6)

where u; denotes the ¢-th smallest non-trivial eigenvectors and kis the number of eigenvectors
used. Laplacian PE is particularly useful in situations where nodes are inherently anonymous and
lack unique features. However, the Laplacian encoding faces challenges from the arbitrary sign of
normalized eigenvectors, introducing 2* possible configurations for k eigenvectors. To manage this
complexity during training, eigenvectors are randomly sampled from these possibilities. Alternatively,
resolving the sign ambiguity by taking the absolute values of eigenvectors simplifies the model but
can significantly reduce the expressiveness of the positional features.

Pre-trained Positional and Structural Encoder. Graph Positional and Structural Encoder
(GPSE) (Liu et al., 2023b) is a graph encoder pre-trained on molecule datasets by reconstruct-
ing traditional positional encoding, such as LapPE, RWSE, CycleSE, efc. The model takes as input
graph adjacency matrix and randomly generates node features by X ~ A(0,I) to improve the
expressiveness. The pre-training architecture is a deep MPNN with 20 layers and residual connection
and gating mechanism. Moreover, GPSE utilizes a virtual node technique in each graph to enable
global message passing. However, GPSE suffers from poor generalizability across other domains,
due to its pretraining setting and randomized node features.

B DATASET PRE-PROCESSING

B.1 SHORTEST PATH DISTANCE REGRESSION

Shortest Path Distance (SPD) Regression is an edge-level reconstruction task. SPD encodes the global
proximity and connectivity between nodes, which helps to discern nodes’ positions and relations
within the entire graph (Li et al., 2020). For data preprocessing, we pre-calculate the N x N SPD
matrix of a given graph before the pretraining phase and save the matrix with the graph data for fast
retrieval. We utilize the Dijkstra algorithm (Dijkstra, 1959) to compute the shortest path distances
between node pairs, which serve as SPD labels. During pretraining, we randomly select node pairs
and fetch their SPD as labels to perform the edge-level reconstruction task. The loss for shortest path
distance regression is computed as:

1
1B] Z ||hsen (P |P}) — SPD; ;|

i,jeEV

Lspp =

where || denotes the concatenation operation and hgpp indicates the task-specific head.
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B.2 MOoOTIF COUNTING

Motif Counting is formulated as a node-level reconstruction task. We explicitly use subgraph
isomorphism counting as a form of self-supervision during pretraining, allowing the model to better
leverage structural information and identify each node’s role in the surrounding subgraphs (Bouritsas
et al., 2022). We follow previous works on subgraph isomorphism to count the number of certain
motifs surrounding each node. A key concept in our preprocessing step is "Automorphism orbits," as
introduced by Przulj (Przulj, 2007). This concept helps in identifying unique roles of nodes within
the counted motifs. The detailed counting method is as follows:

1. Define the subgraph structures to be counted: Enumerate all graphlets with the number
of nodes less than or equal to 4. This limitation is due to the exponential growth in the
number of graphlets with increasing nodes, which becomes computationally infeasible.

2. Assign indexed orbits: For each subgraph (or motif), assign each vertex a uniquely indexed
orbit to facilitate accurate counting.

3. Count specified subgraphs: Utilize the subgraph_isomorphism function from the
Python package graph—-tool to count specified subgraphs throughout the entire graph.
This count is used to determine orbits for each node in the entire graph, forming an orbit
degree vector.

4. Save and prepare node-level labels: Save these vectors with the data as node-level labels,
which are then prepared for our node-level reconstruction task.
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Figure 5: Illustration of various subgraphs (graphlets) used in the motif counting. Each subgraph is
indexed and labeled for reference.
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C EXPERIMENTS

C.1 DATASET

MOolPCBA dataset consists of 437,929 molecular graphs, each representing a compound from the
PubChem BioAssay database. This dataset is used for multi-label binary classification tasks across
128 targets, focusing on predicting the bioactivity of compounds against various protein targets. The
primary evaluation metric for this dataset is Average Precision (AP).

MolHIV contains 41,127 molecular graphs derived from the MoleculeNet benchmark. Each graph
represents a molecule, with nodes as atoms and edges as chemical bonds. The task is a binary
classification to predict the ability of molecules to inhibit HIV replication, with AUROC as the
evaluation metric.

MNIST dataset includes 70,000 images converted into graphs. Each image represents a handwritten
digit, with nodes representing pixels and edges representing pixel adjacency. The task is a 10-way
classification to identify the digit in the image, evaluated using accuracy (ACC).
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Table 7: Pretraining Dataset Information. class. represents classification task and reg. represents
regression task.

Dataset Num. Num. Num. Pred. Pred. Num. Metric
graphs nodes edges level task tasks

MolPCBA 437,929 25.97 28.11 graph class. (binary) 128 AP
MolHIV 41,127 25.51 27.46 graph class. (binary) 1 AUROC
MNIST 70,000 70.57 281.65 graph class. (10-way) 1 ACC
Peptides-func 15,535 150.94 153.65 graph class. (binary) 10 AP
Peptides-struct 15,535 150.94 153.65 graph reg. 11 MAE
ogbn-proteins 1 132,534 39,561,252 node  class. (binary) 112  AUROC
Pokec 1 1,632,803 30,622,564 node  class. (binary) 1 ACC
ogbn-arxiv 1 169,343 1,166,243 node class. (40-way) 1 ACC
ogbn-products 1 2,449,029 61,859,140 node class. (47-way) 1 ACC
ZINC 249,456 23.2 49.8 graph reg. 1 MAE
PubMed 19,717 88,648 500 node class. (3-way) 1 ACC
CIFAR10 60,000 117.6 941.2 graph class. (10-way) 1 ACC

Peptides-func comprises 15,535 graphs, each representing a peptide. Nodes represent amino acids,
and edges represent peptide bonds. The task involves binary classification to predict the functional
properties of the peptides, with Average Precision (AP) as the evaluation metric.

Peptides-struct also contains 15,535 peptide graphs but focuses on regression tasks to predict
structural properties of peptides, such as bond angles and distances. The evaluation metric is Mean
Absolute Error (MAE).

ogbn-proteins dataset is a large-scale graph with 132,534 nodes and 39,561,252 edges, representing
protein-protein interaction networks. Each node is a protein, and edges represent interactions. The
task is binary classification at the node level to predict protein functions, evaluated using AUROC.

Pokec is a social network dataset from the Pokec online social network in Slovakia. It includes one
large graph with 1,632,803 nodes (users) and 30,622,564 edges (friendships). The task is binary
classification to predict user attributes, such as gender, with accuracy (ACC) as the metric.

ogbn-arxiv dataset consists of a single large graph with 169,343 nodes and 1,166,243 edges, repre-
senting the citation network of arXiv papers. Each node is a paper, and edges represent citation links.
The task is 40-way classification to predict the primary subject area of each paper, evaluated using
accuracy (ACC).

ogbn-products dataset includes a large graph with 2,449,029 nodes and 61,859,140 edges, repre-
senting an Amazon product co-purchasing network. Nodes represent products, and edges represent
co-purchasing relationships. The task is 47-way classification to predict the product category, with
accuracy (ACC) as the metric.

ZINC contains 249,456 molecular graphs, where each graph represents a molecule from the ZINC
database. The task is regression to predict molecular properties like solubility, with Mean Absolute
Error (MAE) as the evaluation metric.

PubMed dataset includes a citation network of 19,717 scientific publications. Nodes represent papers,
and edges represent citations. The task is 3-way classification to predict the subject areas of the
papers, evaluated using accuracy (ACC).

CIFAR10 dataset has 60,000 images transformed into graphs, where each image represents a colored
object. Nodes represent pixels, and edges represent pixel adjacency. The task is a 10-way classification
to identify the object in the image, evaluated using accuracy (ACC).

C.2 PRE-TRAINING METRIC
We use an accuracy metric to measure Community Detection and Graph Contrastive Learning and

use mean squared error (MSE) to measure the performance of Shortest Path Distance regression and
Motif Counting.
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Table 8: Dataset statistics of three categories from Amazon e-commerce networks

#nodes #edges avg. degree avg. # tokens

Clothing 469,274 2,578,746 10.99 117.83
Home 453,121 3,732,948 16.48 133.94
Sports 293,712 2,390,076 16.27 125.08

Table 9: Test performance of the pre-trained model with different architectures on four pre-training
tasks.

. Community Detection Graph Contrastive Elanring  Shortest Path Distance Motif Counting
Architecture

Accuracy Accuracy MSE MAE (log)
GatedGCN 0.859 0.831 0.155 2.592
GCN 0.883 0.823 0.141 2.593
GIN 0.892 0.853 0.141 2.611
None+TF 0.828 0.841 0.214 2.603
GCN+TF 0.829 0.841 0.212 2.602
GIN+TF 0.829 0.860 0.193 2.603
None+TF(w/ bias) 0.829 0.863 0.218 2.603
GCN+TF(w/ bias) 0.927 0.857 0.134 2.591
GIN+TF(w/ bias) 0.932 0.862 0.114 2.580

* For the community detection task, we set € as 1 in Eq. 3. The predicted label between the i-th node
and the j-th node Y;; is 1 if sim(é, j) > 0.5 and 0 otherwise. Accuracy is calculated by comparing

the predicted label ?;C with the ground truth labels Y;%; and is defined as the proportion of correctly
predicted labels out of all possible node pairs:

Yapev LY =Y5)
vivi-1/2

where 1(-) is an indicator function and |V'|(|V'| — 1)/2 is the total number of unique node pairs in
the graph. This metric effectively measures how well the model can identify community structures
by correctly classifying node pairs as being in the same community or in different communities.

Accuracy(CD) = @)

* For the graph contrastive learning task, we evaluate pre-training performance using the accuracy
metric, which measures the model’s ability to correctly classify graphs as originating from the
same or different datasets. The accuracy is computed by:

> 1Ve.6, =Ya,q,)
N )

where YG“Gj is the predicted label indicating whether graph G; and G; are from the same dataset

Accuracy(GCL) =

®)

and Y, g, is the ground truth label. YG“G]. is 1 if sim(zg,, sz) > 0 and 0 otherwise. N is the
total number of evaluated graph pairs.

* For shortest path distance regression, the mean squared error (MSE) is used as a metric, which is
defined as:

1 LpL 2
MSE(SPD) = & Z (hspo(PF||PL) — SPD; ;). )
(i,j)eEE
The ground truth SPD is normalized by the graph diameter to ensure scale consistency and training
stability.

* For the motif counting task, the mean absolute error is used as a metric, which is defined as:

1
> llhwc(PF) = Y|, (10)

i€V

where Y, is the pre-computed label for the i-th node.

C.3 UNCERTAINTY-BASED LOSS WEIGHING

The scale of the loss of different tasks can be different, causing the overall loss to be dominated
by a certain task, and ultimately the loss of the other tasks cannot affect the learning process of the
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network-sharing layers. We use the uncertainty-based loss-weighing method (Kendall et al., 2018)
to automatically balance the four pre-training tasks and unify the different scales. Moreover, the
uncertainty value reflects the contribution of each task towards the overall pre-training process. A
higher uncertainty value indicates a lower contribution (Kendall et al., 2018). Let o, and £ represent
the task-specific uncertainty value for the task 7. The overall pre-training loss is computed by:

1 1 1 1
L= Lspp + ——Lyvc + ——Lep + Locr
T%p Thc op oL (1D

+ log ospp + log omc + log ocp + log ogeL-

C.4 PRE-TRAINING SETTING

The pre-training stage is conducted on the standard train/validation/test splits of the pre-training
datasets. The dimension of initial encoding d is set as 8. We try GatedGCN (Bresson & Laurent,
2017), GCN (Kipf & Welling, 2016a) and GIN (Xu et al., 2018) as the message-passing layers
in the GPS. The number of GPS layers is tuned in the range of [4, 16] and the number of heads
is tuned within {4,8,16}. The hidden dimension is tuned {32,64,128,256}. The output PSE
dimension is in {32, 64}. The temperature 7 in Eq. 4 is set as 0.1 and the margine in Eq. 3 is 0. We
use Adam as the optimizer with an initial learning rate of 0.001 and the batch size is set as 256.
The maximum training epochs is 100. An early stopping strategy is used to mitigate overfitting.
The pre-training and downstream evaluation are implemented on the NVIDIA A40 48GB GPU.
Experiments on the molecule dataset run on a server with one AMD EPYC 7763 64-Core processor
and a NVIDIA RTX 6000 GPU card. The code is available at the following anonymous link:
https://anonymous.4open.science/r/GFSE-ESCO.

D EXPRESSIVENESS

D.1 THEORETICAL PROOF

For an input graph G(V, E) with node set V and edge set E, let fp : V — X and fR: V xV — X
indicate the node-level and edge-level structural encoding, respectively. SEG-WL updates the
node labels at the ¢-th iteration by g:(v) = hash ({{(gt—1(w), fr(v,u)) : w € V}}) and go(v) =
hash(fp(v)).

Proposition D.1. RW(d)-SEG-WL (d > 3) is strictly more expressive than WL in testing non-
isomorphic graphs.

Proposition D.2. There exist pairs of graphs that RW(d)-SEG-WL can distinguish, but 3-WL can not.

Proof. We first introduce Neighbor-SEG-WL, which is the SEG-WL test when fp is an identity
encoding and fr(u,v) equals 1 if (u,v) € E and 2 otherwise. Previous works have proved the
following Proposition (Zhu et al., 2023).

Proposition D.3. Two non-isomorphic graphs can be distinguished by WL if and only if they are
distinguishable by Neighbor-SEG-WL.

Therefore, Neighbor-SEG-WL is a specific example of SEG-WL test that has equivalent expres-
siveness to the 1-WL test. We then prove that RW-SEG-WL is strictly more expressive than
Neighbor-SEG-WL. Let dyeo(u, v) indicate the edge-level encoding fr in Neighbor-SEG-WL.
Note dneg(vi,vj) = 2 if and only if A;; = 0. Recall that fr(-,-) in RW-SEG-WL satisfies
fr(vi,v;) = Ry; € R with R = [I,M,--- , M%) where M = D~'A. Therefore, fg in RW-
SEG-WL strictly contains the information of dy,c,. Therefore, if two non-isomorphic graphs can be
distinguished by WL, they can be distinguished by RW-SEG-WL. Proposition D.1 is proved.

To prove Proposition D.2, we provide an example in Figure 6 which shows the Shrikhande graph and
the Rook’s 4 x 4 graph, a pair of strongly regular graphs SRG(16,6,2,2). It is proved that they cannot
be distinguished by 3-WL (Arvind et al., 2020). We empirically verified that RW(d)-SEG-WL with
d > 4 can distinguish these two graphs. O

D.2 SYNTHETIC GRAPH ISOMORPHISM TESTS
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To evaluate the expressive power of RW-SEG-
WL, we perform synthetic graph isomorphism
tests on low-order graphs and strongly regular
graphs. We consider low-order graphs with up to
8 nodes. Strongly regular graph SRG(n, k, A, i)
means graphs with n nodes, where each node
has k neighbors. Each adjacent pair of nodes has
the same number A of neighbors in common and
each non-adjacent node pair has p neighbors in
common. Strongly regular graphs are known to  (a) The Shrikhande graph (b) The Rook’s 4x4 graph
be challenging cases for graph isomorphism test

algorithms due to their highly symmetric struc- Figure 6: RW(d)-SEG-WL can distinguish the
ture. We compare with 1-WL and SPD-SEG- Shrikhande graph and the Rook’s 4 x 4 graph when
WL, where fp is an identity encoding and fr d > 4 while 3-WL fails

is defined as the shortest path distance between

two nodes. Note SPE-SEG-WL can be viewed as an expressivity upper bound of Graphormer (Ying
et al., 2021). The results are shown in Table 10. We observe that RW-SEG-WL can distinguish signif-
icantly more non-isomorphic graphs than 1-WL and SPD-SEG-WL. Specifically, with d equals 8, i.e.,
when considering random walk with 8 steps, RW-SEG-WL successfully distinguish all low-order
graphs and strongly regular graphs. When setting d = 4, there are 16 pairs of strongly regular graphs
that cannot be distinguished by RW-SEG-WL. Therefore, it is natural to develop a graph transformer
equipped with a relative random-walk encoding that can accurately capture important graph structures
and demonstrate strong expressive power.

Table 10: Results of synthetic graph isomorphism tests

Low-Order Graphs (Parameter:n) Strongly Regular Graphs (Parameter:(n, k, A, (1)

Parameter 5 6 7 8 (25,12,5,6) (26,10,3,4) (29,14,6,7) (36,14,4,6) (40,12,24) 45,12,3,3)
# graphs 21 112 853 11117 15 10 41 180 28 78

# graph pairs 210 6216 363378 61788286 105 45 820 16110 378 3003

number of undistinguishable graph pairs

WL 0 3 17 312 105 45 820 16110 378 3003
SPD-SEG-WL 0 2 12 186 105 45 820 16110 378 3003
RW-SEG-WL(d=8) 0 0 0 0 0 0 0 0 0 0

E EVALUATION DETAILS

E.1 INTEGRATION WITH PRE-TRAINED MODELS ON MOLECULES

All models are fine-tuned, trained or tested using five different seeds from 42 to 46, with the results
averaged. Additionally, for the results of our generated PSE, we select three different seeds to
obtain three GFSE checkpoints. Each GFSE is used to run the downstream task five times with the
aforementioned seeds (42 — 46), and all results are averaged.

For the training from scratch setting, we adopt and modify the code base from GPS (Rampések
et al., 2022) '. RWSE and LapPE are of dimension 32 for molecule benchmark in Table 4 across
all the datasets. For other downstream graph tasks in Table 2 and Table 3, we follow exactly as the
hyper-parameters established in GPS (Rampések et al., 2022). Given a graph G(V, E), we directly
concatenate the PSE and the raw node feature as the new input feature, then send them into the very
beginning of a model with randomly initialized parameters, which is as follows:

X' = concat(X,PSE) (12)
9 = MLP[pooling[GraphModel(X")]], (13)

where X denotes the raw node feature of the input graph, X’ is the input feature augmented with
structural information, GraphModel denotes our backbones GNN or GPS, and the read-out layer
consists of pooling and MLPs to obtain the final prediction.

"https://github.com/rampasek/GraphGPS
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For the fine-tuning setting in the molecule benchmark, we concatenate the node encodings obtained
from a pre-trained model with the extra structural features. Then we send the concatenated features
into the final read-out layers for the final prediction. Note that during the fine-tuning process, the
parameters of the entire model (both the pre-trained model and the read-out layer) are continuously
updated.

X' = GNN(X) (14)

9 = MLP[pooling[concact(X’, PSE)]], (15)

where X’ denotes the latent node features output from the pre-trained models, PSE denotes the extra
structural feature generated by GFSE, the read-out layer consists of pooling and MLPs, where the
hyper-parameters follow exactly as (Xia et al., 2022). We report the performance of the model which
achieves the best validation performance during training.

E.2 INTEGRATION WITH LARGE LANGUAGE MODELS

To incorporate the graph structural information into the language model, we use a lightweight MLP to
project the 32-dimensional PSE generated by GFSE into the 4096-dimensional embedding space of
LLaMAZ2-7B (Touvron et al., 2023). The MLP ensures alignment between the PSE and the language
model’s embeddings, facilitating smooth integration of graph information. We then concatenate the
textual description of the central node with those of its one-hop neighbors, prepend the projected
PSE as a soft token, and append a special graph token at the end of the sequence. This tokenized
sequence is fed into the language model, and the hidden embedding corresponding to the special
graph token is extracted to represent the central node. We use a contrastive loss between positive
node pair (7, j) € E and negative node pair (¢, j') ¢ E to train the MLP and finetune the language
model

=Y (dfj + max (7 — dijr, 0)2) , with dij = 1 — cos(v;, v;), (16)
(i)eE

where v; indicates the representation of the node ¢, and 7 is the similarity margin (set as 0.5 in our
experiments).

F MORE EXPERIMENTAL RESULTS
F.1 RECONSTRUCTION OF OTHER PSE TYPES

Table 11: Performance of other PSE reconstruction on 5% MolPCBA dataset. The coefficient of
determination R? scores are reported as the metric.

PSE type ElstaticPE LapPE RWSE HKdiagSE CycleSE

GPSE 0.964 0973 0984  0.981 0.977
Ours 0.947 0970 0987  0.984 0.992

Table 11 demonstrates that the PSE generated by our pre-trained GFSE, followed by a trainable
lightweight MLP, is capable of reconstructing various pre-defined PSE types on 5% MolPCBA
dataset. We evaluate this using the coefficient of determination R? scores as a metric. Notably,
our model performs competitively compared with GPSE, achieving an R? of 0.987 for RWSE and
0.992 for CycleSE, given the fact that GPSE directly adopts PSE reconstruction as its training
objective. Instead, our method generalizes well across different PSEs without being directly trained
for reconstruction. This suggests that our structural self-supervision tasks are effective and sufficient
in capturing important structural information.

F.2 DOWNSTREAM EVALUATION PERFORMANCE

We report the standard deviations of downstream performances in Table 12 and Table 13.

Table 14 compares our approach with GraphPEFT. GraphPEFT involves two steps: pre-training a
graph encoder on domain-specific graph data and fine-tuning it on evaluation datasets.
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Table 12: Performance on MolPCBA, ZINC (subset), Peptides-func and Peptides-struct.

MolPCBA ZINC Peptides-func  Peptides-struct
AP 1 MAE | AP+ MAE |

GCN 0.242440.0034  0.367010.0110  0.593010.0023  0.3496+0.0013
GCN+LapPE 0-2417i0.0047 0-205210.0132 0.602110_0051 0.2688i0_0027
GCN+RWSE 0.2438+0.0028 0.174140.0528 0.5827+0.0046 0.3270+0.0019
GCN+GPSE 0.195810.0074 0.121810.0613 0.595910.0034 0.271040.0041
GCN+GFSE 0.2477 100091 01237100108 0.613120.007  0.251310 0054
GIN 0.27031+0.0023  0.5260+0.0510  0.5498+0.0079  0.3547+0.0045
GIN+LapPE 0.2701:&0.0013 0-2203:t0A0386 0.5323:&()‘0083 0.265010(0041
GIN+RWSE 02781500031 0.173120.0014 05410400065 0.32820 0037
GIN+GPSE 0.276510.0073  0.216210.0420  0.5389+0.0004  0.2581.0.0046
GIN+GFSE 0.2839.0.0046 0.1689100524 0.55321¢.0103 0.267410.0039
Transformer (TF) 0.0808i0.0117 0-6943i0,0328 0-4800i0.0076 0-4192i0,0028
TF+LapPE 0.178440.0320  0.510140.0724  0.6307+0.0001  0.251410.0031
TF+GPSE 0.204040.0531 0.1883+0.0263 0.6534+0.0041 0.247940.0068
TF+GFSE 0.237610.0342 0.1548100796 0.6642.00025 0.2436.0.0071
GPS 0.28694+0.0045 0.118240.0049 0.653540.0041 0.250040.0012
GPS+LapPE 0.293910.0016 0.1078+0.0084  0.649410.0037  0.2501+0.0026
GPS+RWSE 0.2907+0.0028 0.0700+0.0040 0.6603+0.0085 0.273910.0063
GPS+GPSE 0.291140.0036 0.0648+0.0030 0.6688+0.0151 0.2464 19 0025
GPS+GFSE 0.29164+0.0061 0.06139 0026 0.68741¢ 0120 0.24744+0.0051
GFSE Imp.(%) 32.60 76.43 2.78 42.47

Table 13: Test Accuracy (%) on ogbn-arxiv, PubMed, MNIST and CIFAR10.

ogbn-arxiv.  PubMed MNIST CIFAR10
GateGCN 71.69:‘:0.21 76.86i0,41 97-34i0.14 67.31i0,31
GateGCN+LapPE 71'95ﬂ:(].137 74.83i0‘24 97~10:t0.28 65.08i0'26
GateGCN4+RWSE  71.831¢965 76.111939 96.841027 65.2640.68
GateGCN+GPSE 72.1710.42 71.9710.36 96.9440.17 65.634+0.27
GateGCN+GFSE 72.61:&0‘53 78.39;&084 97.44:&()‘31 68.39;&047
Transformer (TF) 5.864+0.00 66.631073 97.294011  69.0440.98
TF+LapPE 5.8610‘00 66.27i()‘46 96~95i0.38 69~01i0A61
TF+RWSE 5.8610_00 64.43;&0_37 97.8110_58 70.70;&0_45
TF+GPSE 21.561274 65.89:&0,14 97.781032 69.57:&0,16
TF+GFSE 23.84.315 66.301063 98.031084 71.3310023
GPS 70.68410.71 T4.261060 98.0540.12 71.494035
GPS+LapPE 69.5110.38 73.68:&0,37 98.1610.28 71.87:&0,21
GPS+RWSE 72141084 72.871044 98.191030 71.304033
GPS+GPSE 1214031  73.7lao70 98.0840.13 72314095
GPS+GFSE 72301013 T4.201035 98.151046 74111003
GFSE Imp.(%) 6.84 0.38 0.31 1.99

This process requires a domain- Table 14: Comparison with GraphPEFT

specific encoder for each dataset, in-

creasing the adaptation cost when
moving across different domains.
In contrast, our model is designed

for general-domain usage,

a more flexible and cost-effective

offering

Cloth Home Sport
Hit@el MRR | Hitel MRR | Hitel MRR
GraphPEFT 7695 8471 | 79.87 86.76 | 64.61 77.34
w.0. pre-training ~ 76.74  84.57 | 79.68 86.63 | 64.44 77.21
LLaMA + GFSE 76.84  84.68 | 79.85 86.77 | 6479 76.24

adaptation without requiring domain-
specific pre-training. As shown in the table, our model consistently outperforms the version of
GraphPEFT that skips the domain-specific pre-training step (w.o. pre-training). This further high-
lights the robustness and generalizability of our approach, as it avoids the need for costly pre-training
on specific domains while still achieving competitive or superior results. Specifically, for the "Sport"
dataset, our model demonstrates comparable performance to GraphPEFT with pre-training, further

underscoring the adaptability of GFSE in varied contexts.
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F.3 EFFICIENCY EVALUATION

During the pre-training stage on eight datasets, the average time is around 30 to 40 minutes for each
epoch with a single NVIDIA A40 48GB GPU. Total training time is less than two days, which is
relatively efficient for a comprehensive multi-dataset pre-training process.

We compare the inference efficiency
of GFSE with handcrafted positional
encodings, such as LapPE and RWSE
in Table 15 and Table 16. Specif-
ically, we generate 1,000 synthetic

Table 15: Runntimes (s) of PSE computation on random
synthetic graph with increasing numbers of nodes

PSE / Graph size 100 300 500 1000

Erdos-Rényi graphs for various graph ]}i@ls’ g % g%g 3131 g é (5)3
SIZSS (1?0’ 30?1’ 5(.)0’ and IQ,O%OandeS) Pre-computation  0.0007 0.601 6.603 0.006
and evaluate the time required for pre- GFSE Inference ~ 0.908 3.958 10.770 48.106

computation and inference in GFSE.

As shown in the table, both
LapPE and RWSE exhibit sig-
nificant increases in computation
time as the graph size grows. Pre-

Table 16: Runntimes (s) on real-world graph dataset

Dataset ZINC-subset MolHIV ~ MolPCBA  Peptides = MNIST  CIFAR10

. . . LapPE 25 sec 37 sec 6.13 min 73 sec 96 sec 2.55 min
computation times requlred by RWSE 11 sec 58 sec 8.33 min - - -
GFSE inference remain minimal GFSE 4.17 sec 17.23sec 297 min 1521 sec 49.38sec  1.27 min

for all graph sizes, underlining
the model’s efficiency in this phase. In Table 16, we observe that GFSE demonstrates superior
scalability in inference, making it a more efficient option for large-scale graph processing.

G DISCUSSION

Limitation and Social Impact. While GFSE represents a significant step forward in developing
general and expressive foundation models for graph-structured data, there are certain limitations to
consider. For example, the effectiveness of GFSE may be influenced by the diversity and quality of
the pre-training datasets, as biases or under-representation in the data could propagate to the learned
representations. Future work could focus on expanding the diversity and scale of pre-training datasets
to mitigate such biases and improve the robustness of GFSE across more diverse domains

From a social impact perspective, the development of structural graph foundation models like GFSE
holds significant promise in advancing various application domains that rely on graph analytics. In
fields such as computational biology, social network analysis, and recommendation systems, GFSE
could enable more accurate and efficient modeling of complex structured data, leading to improved
understanding and decision-making. Furthermore, by reducing the need for extensive task-specific
fine-tuning, GFSE could democratize the use of powerful graph learning techniques, making them
more accessible to researchers and practitioners with limited computational resources.
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