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ABSTRACT

We showcase good capabilities of the plain diffusion model with Transformers
(SimDiffPDE) for general partial differential equations (PDEs) solving from var-
ious aspects, namely simplicity in model structure, scalability in model size, flex-
ibility in training paradigm, and universality between different PDEs. Specif-
ically, SimDiffPDE reformulates PDE-solving problems as the image-to-image
translation problem, and employs plain and non-hierarchical diffusion model with
Transformer to generate the solutions conditioned on the initial states/parameters
of PDEs. We further propose a multi-scale noise to explicitly guide the diffusion
model in capturing information of different frequencies within the solution do-
main of PDEs. SimDiffPDE achieves a remarkable improvement of +51.4% on
the challenging Navier-Stokes equations. In benchmark tests for solving PDEs,
such as Darcy Flow, Airfoil, and Pipe for fluid dynamics, as well as Plasticity and
Elasticity for solid mechanics, our SimDiffPDE-B achieves significant relative im-
provements of +21.1%, +11.3%, +15.2%, +25.0%, and +23.4%, respectively.
Models and code shall be released upon acceptance.

1 INTRODUCTION

Solving partial differential equations (PDEs) is immensely important in extensive real-world appli-
cations, such as weather forecasting (Pathak et al., 2022; Chen et al., 2023; Bi et al., 2023), industrial
design (Sekar et al., 2019; Jing et al., 2022; Liu et al., 2024), and material analysis (Roubı́ček, 2013;
Kadic et al., 2019). As a basic scientific problem, it is usually difficult to obtain analytic solutions
for PDEs. Therefore, the solutions of PDEs are typically discretized into meshes and then solved
by numerical methods (Rodi, 1997; Zhao, 2008; Greenfeld et al., 2019), which usually takes a few
hours or even days for complex structures (Umetani & Bickel, 2018). To deal with these issues,
there has recently been rapid progress in deep learning-based methods (Li et al., 2020; 2024b; Lu
et al., 2021), which typically tackles the challenging task using convolutional neural networks or
transformers. Thanks to their impressive nonlinear modeling capacity, they can learn to approxi-
mate the input and output mappings of PDE-governed tasks from data during training and then infer
the solution significantly faster than numerical methods (Goswami et al., 2022; Wu et al., 2023).

To date, major deep-learning-based methods can be broadly classified into three categories: (1)
neural approaches that approximate the solution function of the underlying PDE (Han et al., 2018;
Raissi et al., 2019); (ii) hybrid approaches (Arcomano et al., 2022; Bar-Sinai et al., 2019; Berthelot
et al., 2023; Greenfeld et al., 2019; Kochkov et al., 2021; Sun et al., 2023), where neural networks
either augment numerical solvers or replace plats of them; (iii) neural approaches in which the
learned evolution operator iteratively maps the current approximate solution to a future state of the
approximate solution (Bhatnagar et al., 2019; Brandstetter et al., 2022a;b). Despite that approaches
(i) have achieved great success in modeling inverse and high-dimensional problems, and approaches
(ii-iii) have started advance fluid and weather modeling in two and three dimensions, these methods
typically learn a deterministic mapping between input coefficients and their solutions. However, due
to the chaotic nature of some dynamics system described by PDE, e.g., Navier-Stokes equation, even
small ambiguities of the spatially averaged states as the inputs can lead to fundamentally different
solutions over time, which leads the deterministic methods providing non-robust answers.
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Figure 1: Left: Comparison of model performance across different benchmarks. XS: XS-
SimDiffPDE, S: S-SimDiffPDE, B: B-SimDiffPDE, L: L-SimDiffPDE, and XL: XL-SimDiffPDE.
Right: Comparison of model performance across different model sizes.

In comparison, generative diffusion models (Rombach et al., 2022) offer substantial potential for
solving PDEs, especially those describing highly nonlinear systems, exhibiting capabilities similar
to those in video prediction based on initial frames and auxiliary conditioning. Specifically, diffusion
models can construct generative distributions that closely approximate the underlying probabilistic
solution distributions instead of one solution point. Therefore, by ensembling solutions by sampling
difference Guassian noise as inputs during the inference phase, diffusion models can produce more
robust and accurate solutions of PDEs that particularly describe nonlinear and even chaotic systems.

In this paper, we demonstrate that plain diffusion models can be repurposed as effective and gen-
eral PDE solvers (SimDiffPDE), with the multi-scale noise. The key to unlocking the potential of
diffusion models lies in their ability to efficiently capture patterns of multiple scales in the solu-
tion domain. However, we observe that the default Guassin noise can not efficiently destroy the
large-scale pattern in the forward process, and therefore the diffusion model can not learn to re-
cover the large-scale pattern efficiently in the reverse process. By adding multi-scale noise in the
forward process, the diffusion models are more explicitly required to learn to denoise the multi-
scale noise to reconstruct multi-scale patterns of PDE solutions. During the inference phase, we
leverage the test-time ensemble method to consider the generated solution distributions by sampling
multiple Guassian noises as inputs. The two designs not only maintains structural simplicity but
also significantly improves accuracy and robustness compared to previous state-of-the-art solvers.
Our model consistently surpasses previous state-of-the-art models across six benchmarks involv-
ing various types of PDEs (Wu et al., 2024; 2022; Li et al., 2022b; Hao et al., 2023; Xiao et al.,
2023). Notably, we achieve a +51.4% improvement in the challenging Navier-Stokes equations.
For benchmarks for solving partial differential equations, e.g., Darcy Flow, Airfoil and Pipe that de-
scribe fluids, Plasticity and Elasticity that describe solids, our SimDiffPDE-B achieves considerable
relative improvements of +21.1%, +11.3%, +15.2%, +25.0%, and +23.4%, respectively.

Besides the superior performance, we also show the surprisingly good capabilities of SimDiffPDE
from various aspects, namely simplicity, scalability, flexibility and universality. 1) For simplicity,
due to the strong generative feature representation ability, the SimDiffPDE framework is rather sim-
ple. For example, it does not require any specific domain knowledge for architecture design and en-
joys a plain and non-hierarchical structures by simply stacking several diffusion transformer layers.
2) The simplicity in structure brings the excellent scalability properties of SimDiffPDE. To be more
specific, one can easily control the model size by stacking different number of diffusion transformer
layers and increase or decrease feature dimensions, e.g., we design SimDiffPDE-XS, SimDiffPDE-
S, SimDiffPDE-B, SimDiffPDE-L and SimDIffPDE-XL, to balance the inference speed and per-
formance for various deployment requirements. 3) For flexiblity, we demonstrate our SimDiffPDE
can adapt well to different input resolutions with minor modifications. 4) Lastly, our SimDiffPDE
showcases the good feasibility to various PDE equations, including Navier-Stokes equation, Darcy
flow equation, hyper-elastic problem and plastic forging problem.
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In summary, the contributions of this paper can be outlined as follows: (1) We propose a simple
yet high-performing generative baseline model for solving various PDEs, named SimDiffPDE. This
model achieves consistent leading results across six datasets covering various grid types and PDE
types, improving performance by an average of 22.0% compared to the second-best model, without
complex network architectures or tailored designs. (2) We leverage a multi-scale noise strategy
that further unlocks the potential of diffusion models in solving PDEs, enabling efficient capture of
information at different frequencies and precise construction of the solution distribution for PDEs.

2 RELATED WORK

2.1 DIFFUSION MODEL

Diffusion models have been widely applied to various tasks, including image generation (Ho et al.,
2022a), image restoration (Xia et al., 2023), super-resolution (Li et al., 2022a), text-to-image gen-
eration (Ruiz et al., 2023), video generation (Ho et al., 2022b), and audio generation (Liu et al.,
2023). Additionally, diffusion models have been used to generate datasets related to PDEs (Lienen
et al., 2023). Among these, Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) are
widely utilized. This model achieves data generation through a forward noise-adding process and
a reverse denoising process. In the forward process, noise is gradually added to the real data until
it approximates a standard normal distribution. In the reverse process, the model learns the condi-
tional probability distribution between input conditions and output results, gradually denoising from
pure noise to recover a high-quality target distribution. Leveraging the ability of DDPM to learn the
probability distribution between input conditions and output results, we apply it to solve PDEs.

2.2 DEEP LEARNING PDES SOLVER

For a long time, various numerical methods (Smith, 1985; Moukalled et al., 2016) have been
widely used to solve PDEs. With the rise of deep learning, physics-informed neural networks
(PINNs) (Raissi et al., 2019); the other class is data-driven neural operators. Physics-informed
neural networks was proposed by Raissi et al. (2019), where the constraints of PDEs (including
equations, boundary conditions, and initial conditions) are used as a loss function. By employing
a self-supervised learning approach to train neural networks (Ren et al., 2022; Yu et al., 2022),
the model’s output gradually conforms to these constraints, resulting in an approximate solution.
However, this paradigm requires a rigorous formalization of partial differential equations and relies
heavily on network optimization, which limits its practicality. Neural operators establishes the
mapping between inputs and outputs through neural operators, widely applied in the solution of par-
tial differential equations (PDEs) (Li et al., 2020). The core idea of this operator is to approximate
integration using linear projections in the Fourier domain. Based on this foundation, many improve-
ments have emerged. For instance, U-FNO (Wen et al., 2022) and U-NO (Rahman et al., 2022)
have proposed using the U-Net (Ronneberger et al., 2015) architecture to enhance the performance
of FNO. F-FNO (Tran et al., 2021) utilizes factorization in the Fourier domain, while WMT (Gupta
et al., 2021) introduces a neural operator learning scheme based on multiwavelets.

With the rise of Transformers (Vaswani, 2017), the recently high-performing Transolver (Wu et al.,
2024) on multiple PDE benchmarks propose to construct mappings of inputs to outputs by learning
the intrinsic physical states of the PDEs captured by learnable slices. However, these methods are
essentially deterministic, which is not robust due to the chaotic nature of some PDEs. In contrast,
SimDiffPDE leverages the characteristics of diffusion models to establish complex probability dis-
tributions between input conditions and output results. Simultaneously, through a multi-scale noise
approach, it explicitly distinguishes and learns mutliscale information in PDE solution space.

3 SIMDIFFPDE: SIMPLE DIFFUSION BASELINE FOR SOLVING PARTIAL
DIFFERENTIAL EQUATIONS

3.1 PDE SOLVING AS DIFFUSION GENERATIVE FORMULATION

We approach solving partial differential equations (PDEs) as a conditional denoising diffusion gen-
eration task. Specifically, we define PDEs over an input domain Ω ⊂ RCxg , where Cxg denotes the

3
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Figure 2: Left: Structure diagram of the SimDiffPDE training phase. Right: Structure diagram of
the SimDiffPDE inference phase.

dimension of input space, and then discretize Ω into N mesh points, represented as xg ∈ RN×Cxg .
Our goal is to train SimDiffPDE to model the conditional distributions y = D(y|x) as the solution
of PDE, where x combines geometric inputs xg and observed quantities xu ∈ RN×Cxu . Therefore,
the complete input is x ∈ RN×Cx , with Cx = Cxg + Cxu .

In the forward process, starting from the conditional distribution at y0 := y, Gaussian noise is
gradually added over time steps t ∈ {1, 2, 3, · · · , T} to obtain the noisy samples: yt as

yt =
√
ᾱty0 +

√
1− ᾱtϵ, (1)

where ϵ ∼ N (0, I), ᾱt :=
∏t

s=1 1−βs, and {β1, β2, β3, · · · , βT } represents the variance schedule
of a process over T steps. In the reverse process, the conditional denoising model ϵθ (·), which is
parameterized by learned parameters θ, progressively removes noise from yt to obtain yt−1.

During training, parameters θ are updated by taking a data pair (x,y) from the training data. At a
random time step t, noise ϵ is applied to y, and the noise estimate ϵ̂ = ϵθ (yt,x, t) is calculated.
One of the denoising objective function is minimized, with a noise objective L as follows:

LMulti = Ey0,ϵ∼N (0,I),t∼U (T)∥ϵ− ϵ̂∥Multi = Ey0,ϵ∼N (0,I),t∼U (T) (∥ϵ− ϵ̂∥1 + ∥ϵ− ϵ̂∥2) , (2)

where || · ||1 and || · ||2 denote L1 and L2 norm, respectively. During inference, y := y0 is recon-
structed from a normally distributed variable yt by the learned denoiser ϵθ (yt,x, t) iteratively.

3.2 NETWORK ARCHITECTURE

Architecture We propose a simple yet highly effective baseline model for PDEs based on diffu-
sion models, while exploring their potential in this context. To achieve this, we keep the architecture
straightforward, avoiding complex modules and elaborate tricks, even though these could poten-
tially enhance the model’s performance. To ensure the simplicity of the baseline model, we adopt
the standard diffusion transformer block with AdaLN-Zero from Peebles & Xie (2023). The overall
framework of SimDiffPDE is shown in Figure 2.

Training phase During training phase, we randomly select the input x and its corresponding out-
put y from the training set of the PDEs, and then add multi-scale noise ϵMulti ∈ RN×Cy (described
in Sec. 3.3) to y to obtain noisy yt. Next, we concatenate the noisy yt ∈ RN×Cy and x ∈ RN×Cx

along the feature dimension to obtain s ∈ RN×Cs , where Cs = Cx +Cy. Then, we input s into the
diffusion transformer block. When inputting s into the diffusion with transformer, the first step is to
perform patch embedding on s and time embedding on time step t ∈ RN×Cs used for the diffusion
process. Finally, we input the embedded variables into the diffusion transformer block to predict
noise ϵ̂ ∈ RN×Cy . In the training process, we use the loss function mentioned in Eq. 2. Experi-
ments show that adding the L1 loss on top of the L2 loss can more effectively capture high-frequency
information in the solution domain of PDEs.

4
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Generate Gaussian 
noise at different scales Upsample to the PDE solution domain scale Weighted sum of the 

upsampled noise

Figure 3: Visualization of the multi-scale noise implementation process. First, generate standard
Gaussian noise of varying sizes, then upsample this noise to match the dimensions of the PDE
solution domain, and finally, linearly combine the upsampled noise to create multi-scale noise.

Inference phase In the inference process of SimDiffPDE, it start with sampling from a standard
Gaussian distribution yt ∈ RN×Cy . Next, we concantenate the yt and the input conditions x of the
PDEs along the feature dimension and fed into the trained diffusion transformer block. During the
execution of the time steps, SimDiffPDE gradually denoise to ultimately generate the solution ŷ ∈
RN×Cy corresponding to the PDE. We further leverage the test-time ensemble for better solutions,
which will be described in Sec. 3.4.

3.3 MULTI-SCALE NOISE

We propose a multi-scale noise approach to enhance the diffusion model’s ability to capture and
effectively relate various frequency noises. Specifically, as shown in Figure 3, our process has the
following steps. First, Given the resolution n × n of the PDE’s resolution domain, we generate the
Gaussian noise ϵk ∼ N (0, I) with a resolution of mk ×mk, where mk ≤ n. Second, we upsample
the different scales of Gaussian noise ϵk generated in Step 1 to match the size of the PDE solution
domain, resulting in the noise ϵ′k with the resolution of n × n through linear interpolation. Finally,
we obtain the final noise ϵMulti through a weighted linear combination ϵMulti =

∑K
k=0 wkϵ

′
k,

where ϵMulti with the resolution of n × n. The implementation of this approach is illustrated in
Algorithm 1 in Appendix C.1. In the follows, we discuss how multi-scale Guassian noise improves
PDE solver.

Remark 3.3.1 (Using Guassian noise is less efficient to destroy low-frequency flow pattern than
using multi-scale noise in forward process.) The default Guassian noise can not efficiently destroy
the low-frequency pattern because default implementation samples every pixel from Guassian distri-
bution independently and therefore its frequency is rather high. However, the proposed multi-scale
noise ensembles noises with various frequencies, which shows better abilities to destroy patterns of
various frequency. Empirically, we show noisy inputs which add 100 single-scale and multi-scale
Guassian noise in the forward process (Figure 4). It is evident that multi-scale Guassian noise is
more efficient to destroy the low-frequency pattern of solution domain. We claim the observation
also applies to other noisy steps and illustrate the solution map added 1, 10, 50 and 500 steps of
noise in Appendix D.2. We find that, as shown in Table 9, using multi-scale noise can significantly
improve the accuracy of solving low-frequency information within the solution domain of PDEs.
We can more intuitively illustrate this improvement using Figure 7 (Bottom Right).

Remark 3.3.2 (Using multi-scale noise can more effectively capture patterns of large scales, i.e.,
low-frequency information). The core of diffusion models is to destroy the pattern and map them
to Guassian distribution in the forward process and require the model to reconstruct the pattern by
deep learning models in the backward process. The single-scale Guassian noise can not effectively
destroy the low-frequency information, which leads the diffusion model inefficiently learning low-
frequency information and large-scale patterns. In contrast, multi-scale noise can more effectively

5
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Add 100 steps of single Gaussian noise

Add 100 steps of multiscale Guassian noise

Ground-truth solution map

All frequency Large-scale Pattern
(Low Frequency Information)

Small-scale Pattern 
(High Frequency Information)

Figure 4: Illustration of the noisy solution maps at different frequencies using Guassian noise and multi-scale
noise, respectively. Guassian and multi-noise perturbations are applied to the original images 100 times each,
followed by Fourier and inverse Fourier transforms to extract different frequency components(0-3, 3-7, 7-20,
20-56) based on their distance from the zero-frequency point.

destroy both large-scale and small-scale patterns in the forward process, which can enforce the
diffusion model to learn and reconstruct especially low-frequency information in solution domain.

3.4 TEST-TIME ENSEMBLE

Due to the nonlinear nature of PDEs, the small variation of the input parameters or states can lead
to significant variations of solutions in some PDEs. With the stochastic nature of the DDPM infer-
ence process, different initial noises yt can lead to varying solutions, which allows SimDiffPDE to
simulate the nonlinear dynamics of PDEs. To better leverage this feature, we leverage a testing-time
ensemble strategy for more accurate and robust solutions of PDEs.

Given the same input x, we obtain a series of solutions {y1,y2, · · · ,yn}. We employ an iterative
method to estimate the scale factors ŝi and translations t̂i of these solutions relative to a specific
range. Due to the continuity and smoothness of PDE solutions, we achieve alignment of the solutions
by minimizing the distance between pairs of transformed solutions (ŷ′

i, ŷ
′
j). Specifically, ŷ′ =

ŷ× ŝ+ t̂. In each optimization step, we compute the median of the single solution points in the PDE
solution domain as m(a,b) = median(ŷ′

1(a,b), ŷ
′
2(a,b), · · · , ŷ′

n(a,b)) to derive the merged
PDE solution. To prevent the solutions from converging to a trivial solution (e.g., all solutions
being the same) and to ensure that m maintains an intensity within the unit range, we introduce an
additional regularization term R = |min(m)| + |1 −max(m)|. Therefore, the objective function
can be expressed as

min
s1,s2,··· ,sn
t1,t2,··· ,tn

√√√√ 1

Bn

n−1∑
i=1

n∑
j=i+1

∥ŷ′
i − ŷ′

i∥22 + λR

 , (3)
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Table 1: Summary of experimental benchmarks, including different types of PDEs. Mesh denotes
the size of the discrete mesh.

Geometry Benchmarks Dimension Mesh

Point Cloud Elasticity 2D 972

Structured Mesh
Plasticity 2D+TIME 3,131

Airfoil 2D 11,271
Pipe 2D 16,641

Regular Grid Navier-Stokes 2D+TIME 4,096
Darcy 2D 7,225

Table 2: Performance comparison based on six benchmarks, showing relative L2 error (↓). Lower
values indicate better performance. ”/” indicates that the baseline is not applicable to this benchmark.
Relative promotion refers to the relative error reduction with respect to the second best model:
Relative Promotion = 1− Our error

Second best error on each benchmark.

Model
Point Cloud Structured Meshes Regular Grids

Elasticity Plasticity Airfoil Pipe Navier-Stokes Darcy

FNO (Li et al., 2020) / / / / 0.1556 0.0108
WMT (Gupta et al., 2021) 0.0359 0.0076 0.0075 0.0077 0.1541 0.0082
U-FNO (Wen et al., 2022) 0.0239 0.0039 0.0269 0.0056 0.2231 0.0183
geo-FNO (Li et al., 2023) 0.0229 0.0074 0.0138 0.0067 0.1556 0.0108
U-NO (Rahman et al., 2022) 0.0258 0.0034 0.0078 0.0100 0.1713 0.0113
F-FNO (Tran et al., 2021) 0.0263 0.0047 0.0078 0.0070 0.2322 0.0077
LSM (Wu et al., 2022) 0.0218 0.0025 0.0059 0.0050 0.1535 0.0065
Galerkin (Cao, 2021) 0.0240 0.0120 0.0118 0.0098 0.1401 0.0084
HT-Net (Liu et al., 2022) / 0.0333 0.0065 0.0059 0.1847 0.0079
Oformer (Li et al., 2022b) 0.0183 0.0017 0.0183 0.0168 0.1705 0.0124
GNOT (Hao et al., 2023) 0.0086 0.0336 0.0076 0.0047 0.1380 0.0105
FactFormer (Li et al., 2024a) / 0.0312 0.0071 0.0060 0.1214 0.0109
ONO (Xiao et al., 2023) 0.0118 0.0048 0.0061 0.0052 0.1195 0.0076
Transolver (Wu et al., 2024) 0.0064 0.0012 0.0053 0.0033 0.0900 0.0057

SimDiffPDE-S 0.0057 0.0010 0.0049 0.0030 0.0529 0.0050
Relative Promotion 10.9% 16.7% 7.5% 9.1% 41.2% 12.2%
SimDiffPDE-B 0.0049 0.0009 0.0047 0.0028 0.0437 0.0045
Relative Promotion 23.4% 25.0% 11.3% 15.2% 51.4% 21.1%
SimDiffPDE-L 0.0043 0.0008 0.0043 0.0024 0.0394 0.0041
Relative Promotion 32.8% 33.3% 18.9% 27.3% 56.2% 28.1%
SimDiffPDE-XL 0.0039 0.0007 0.0040 0.0022 0.0355 0.0037
Relative Promotion 39.1% 41.7% 24.5% 33.3% 60.6% 35.1%

where the binomial coefficient Bn =
(
n
2

)
indicates the total number of possible combinations of

solution pairs from n solutions. After iterative optimization, the merged solution m is regarded as
our ensemble solution. Due to the diversity and complexity of PDE solutions, this integration step
does not require ground truths. Through multiple inferences, we can capture the spatial features and
dynamic variations of the solutions, thereby enhancing the robustness and accuracy of predictions.

4 EXPERIMENT

Benchmarks Our experiments cover various types of PDEs, including point clouds, structured
meshes, and regular grids, as shown in Table 1. The Navier-Stokes and Darcy equations were
introduced by Li et al. (2020), while Elasticity, Plasticity, and Airfoil problems were proposed by
Li et al. (2023), all of which are widely followed.

Baselines We comprehensively compare SimDiffPDE with baseline , including neural operators
like FNO (Li et al., 2020), Transformer-based solvers such as GNOT (Hao et al., 2023), and the
recent state-of-the-art Transolver (Wu et al., 2024).
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Table 3: Compared to the series of benchmarks proposed by Li et al. (2020), the performance of
the model at different Reynolds numbers, showing the relative L2 error (↓). The smaller, the better.
Where ν represents viscosity, T is the discrete time step, and N is the size of the training dataset.

ν = 1e− 3 ν = 1e− 4 ν = 1e− 5
Model T = 50 T = 30 T = 20

N = 1000 N = 1000 N = 1000

FNO-3D 0.0086 0.1918 0.1893
FNO-2D 0.0128 0.1559 0.1556
U-Net 0.0245 0.2051 0.1982
TF-Net 0.0225 0.2253 0.2268
Res-Net 0.0701 0.2871 0.2753

SimDiffPDE-B 0.0062 0.0342 0.0437

4.1 MAIN RESULTS

To clearly benchmark our model among various PDE solvers, we first conduct experiments on six
well-established datasets, which can be easily obtained from previous studies (Hao et al., 2023; Wu
et al., 2024) to create a comprehensive leaderboard.

Point clouds For point cloud-based tasks, SimDiffPDE achieves a significant improvement over
competing methods. Specifically, in the elasticity task, SimDiffPDE outperforms the previous best
model, Transolver (Wu et al., 2024), by a margin of 23.4%, with an impressive relative L2 error
of 0.0049. This demonstrates the model’s strong ability to handle irregular and unstructured data,
making it highly effective for point cloud applications.

Structured meshes SimDiffPDE also excels in tasks utilizing structured meshes, which are fre-
quently employed in simulations of plasticity, airfoil flow, and pipe flow. In the plasticity task,
SimDiffPDE achieves a relative error of just 0.0009, representing a 25.0% improvement over the
next best model. Similarly, it achieves relative improvements of 11.3% and 15.2% in the airfoil and
pipe tasks, respectively, further demonstrating its superiority in structured mesh-based problems.

Regular grids In the most demanding benchmarks, based on regular grids, SimDiffPDE sets a new
benchmark, particularly in the Navier-Stokes and Darcy flow tasks. In the Navier-Stokes benchmark,
SimDiffPDE shows a remarkable 51.4% improvement with a relative L2 error of 0.0437, far outper-
forming the nearest competitor. Table 3 demonstrates that SimDiffPDE achieves leading accuracy
in solving the Navier-Stokes equations at different Reynolds numbers, indicating that our model can
effectively apply to the Navier-Stokes equations across various Reynolds numbers, highlighting the
feasibility of SimDiffPDE. In the Darcy benchmark, the model delivers a 21.1% improvement, fur-
ther solidifying its effectiveness. These results underline SimDiffPDE’s ability to accurately capture
complex dynamics in regular grid simulations. Furthermore, as shown in Table 11 in Appendix,
SimDiffPDE outperforms the second-best model, Transolver (Wu et al., 2024), in solving the Darcy
benchmark across different resolutions.

4.2 ABLATION STUDY

Training noise To verify whether the use of multi-scale noise can better capture the frequency
information in the solution domain of PDEs, especially low-frequency information, we conducte a
comparative experiment. As shown in Table 4, we analyze the errors in the model’s generated results
for high-frequency and low-frequency components under two training noise conditions. The exper-
imental results indicate that using multi-scale noise improves the model’s precision in generating
both low-frequency and high-frequency information, with a particularly significant enhancement in
low-frequency generation. Table 9 in Appendix C.1 presents the full-frequency errors of five bench-
marks under two types of training noise. It was found that training with multi-scale noise reduced
the average error across the five benchmarks by 12.4% compared to using Gaussian noise. This
result further demonstrates the effectiveness of multi-scale noise. Appendix B.3 shows the details
of the ablation experiment implementation.
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Table 4: Comparison of Gaussian noise and multi-scale noise on training results, showing the rela-
tive L2 error (↓). Relative promotion refers to the relative error reduction with respect to the second
best model: Relative Promotion = 1− Our error

Second best error on each benchmark. GN - Gaussian Noise, MN
- Multi-scale Noise.

Benchmark
High Frequency Error Low Frequency Error

GN MN Relative Promotion GN MN Relative Promotion

Plasticity 0.0285 0.0253 11.2% 0.0010 0.0008 20.0%
Airfoil 0.1153 0.1038 10.0% 0.0051 0.0042 17.6%
Pipe 0.0964 0.0872 9.5% 0.0029 0.0024 17.2%
Navier–Stokes 0.2062 0.1857 9.9% 0.0499 0.0406 18.6%
Darcy 0.1076 0.0954 11.3% 0.0048 0.0037 22.9%
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Figure 5: Left: Comparison of the impact of different quantities of noise at various scales on solution
error. Right: Comparison of the impact of different ensemble sizes on solution error.

To further investigate the validity of multi-scale noise, we choose two representative benchmarks
with more high-frequency and low-frequency components, respectively: Navier-Stokes, Darcy. By
adjusting the number of noise components in the multi-scale noise, we find that, as shown in Fig-
ure 5 (Left), training with noise composed of three different scales can reduce the error by 13.2%,
and training with noise composed of five different scales leads to an 16.9% improvement on average.
It was observed that, due to the limited size of the PDE solution domain, marginal improvements
gradually decrease when the number of different scales exceeds five. It should be noted that using
more noise at different scales implies that the selected noise will have smaller scale differences.
Appendix C.1 provides further details.

Test-time ensembling We conduct tests to evaluate the effectiveness of the proposed test-
time ensembling scheme by aggregating various quantities of predictions in the benchmarks of
Navier–Stokes and Pipe. As shown in Figure 5 (Right), a single prediction from SimDiffPDE yields
quite good results. Ensemble of 5 predictions reduces the relative error on Navier–Stokes by about
5.0%, while ensemble of 10 predictions provides an improvement of approximately 7.5%. It is ob-
served that, as a system effect, performance steadily increases with the number of predictions, but
the marginal improvements decrease when the number of predictions exceeds 10.

4.3 MODEL ANALYSIS

Scalability of data size and model size Our proposed SimDiffPDE show good scalbility on
both data and model size. As shown in Figure 6 (Right), we select different number of training
samples from Darcy, and verify that the SimDiffPDE-B can consistently achieve lower errors with
the increasing number of training samples. We also verify that our propose SimDiffPDE have good
scalability on model size in Table 2. We demonstrate that the error of PDE solution consistently
decreases with the model size increasing from SimDiffPDE-S to SimDiffPDE-XL. These findings
provide a solid foundation for the application of large-scale PDE solvers.

Flexibility to various resolutions To validate the flexibility of SimDiffPDE, we tested inputs at
different resolutions, with disparities reaching up to 100 times. The results indicate that SimDiff-
PDE performs consistently well across all resolutions, as shown in Figure 6 (Left), with its solution
accuracy consistently surpassing that of the second-best model. Table 11 Appendix C.3 provides
specific numerical comparisons. These results demonstrate the robust flexibility of SimDiffPDE.
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Figure 6: Left: Comparison of the solving performance of Transolver (Wu et al., 2024) and SimD-
iffPDE on Darcy benchmarks at different resolutions. Right: Comparison of the effects of different
training sample sizes on solution accuracy.

Figure 7: Case study on error maps. Top Left image shows the performance of Transolver (Wu et al.,
2024) and SimDiffPDE on the Navier-Stokes benchmark, where SimDiffPDE significantly improves
in regions with abundant high-frequency information, such as sharp boundaries. Top Right image
compares the two methods on the Airfoil benchmark, highlighting that SimDiffPDE outperforms
Transolver (Wu et al., 2024). Bottom Left image illustrates the performance of both methods on the
Darcy benchmark, where SimDiffPDE excels in areas rich in low-frequency information, particu-
larly in the center. Bottom Right image examines the impact of training with Gaussian noise versus
multi-scale noise on solving low-frequency information in the Darcy benchmark, demonstrating that
training with multi-scale noise significantly enhances the accuracy of low-frequency information so-
lutions. GN - Gaussian Noise, MN - Multi-scale Noise.

Case study To provide a clearer demonstration of the advantages of SimDiffPDE in solving dif-
ferent PDEs, we plot the error maps of various benchmarks, as shown in Figure 7. Compared to the
second-best model, Transolver (Wu et al., 2024), SimDiffPDE exhibits significant improvements in
the low-frequency region, such as the central area of the Darcy benchmark solution domain, shown
as Figure 7 (Bottom Left). Additionally, in the high-frequency region, particularly at sharp bound-
aries within the Navier–Stokes benchmark solution domain, SimDiffPDE also achieves commend-
able advancements, shown as Figure 7 (Top Left). These results further confirm that SimDiffPDE
effectively captures the features of different frequencies within the PDE solution domain and estab-
lishes an accurate solution distribution.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce SimDiffPDE, the first PDE solver based on a diffusion model with
Transformers. Unlike traditional deep learning PDE solvers that create a deterministic mapping
between input conditions and output results, SimDiffPDE employs DDPM and multi-scale noise
to capture complex physical and geometric states across various frequencies in the PDE solution
domain. This approach establishes a complex probability distribution between inputs and outputs,
resulting in high-precision solutions. SimDiffPDE has achieved state-of-the-art performance on
six widely recognized benchmarks. In the future, our goal is to extend SimDiffPDE to solve non-
stationary PDEs in continuous time, similar to video generation, while also exploring large-scale
pre-training of SimDiffPDE.
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A OVERVIEW

In this appendix, we provide detailed content that complements the main paper. Section B elabo-
rates on the implementation details of the experiments, including benchmarks, evaluation metrics
and frequency analysis of information in the solution domain of PDEs. Section C provides a more
detailed analysis of experiments related to multi-scale noise, training strategies, and model flexibil-
ity. Section D presents a visual representation of the details of the SimDiffPDE denoising process
and provides a visual analysis of the noise addition process using multi-scale noise.

B IMPLEMENTATION DETAILS

B.1 BENCHMARKS

We validate the performance of our model on three benchmarks: the Navier-Stokes equations, the
Darcy flow equations, and the airfoil problem using Euler’s equations. For detailed information
about the benchmarks, please refer to Table 5. Our tests involve the following two types of PDEs:

• Solid material (Dym et al., 1973): Elasticity and Plasticity.

• Navier-Stokes equations for fluid (McLean, 2012): Navier-Stokes, Airfoil and Pipe.

• Darcy’s law (Hubbert, 1956): Darcy.

The following are the detailed information for each benchmark.

Elasticity This benchmark evaluates the internal stress distribution within an elastic material based
on its structural configuration, discretized into 972 points (Li et al., 2023). For each sample, the input
is a tensor of shape 972× 2, representing the 2D coordinates of the discretized points. The output is
the corresponding stress at each point, resulting in a tensor of shape 972 × 1. The dataset consists
of 1000 samples with varying structures for training, and an additional 200 samples are reserved for
testing.

Plasticity This benchmark aims to predict the future deformation of a plastic material subjected
to an impact from an arbitrarily shaped die (Li et al., 2023). Each input is a die shape, discretized
into a structured mesh and stored as a tensor of shape 101 × 31. The output is the deformation at
each mesh point over 20 time steps, represented by a tensor of shape 20× 101× 31× 4, where the
four channels capture the deformation in different directions. The dataset comprises 900 training
samples with different die shapes, and 80 samples are used for testing.

Navier-Stokes This benchmark simulates incompressible viscous flow on a unit torus, where the
fluid density is constant and the viscosity is set to 1e − 3, 1e − 4 and 1e − 5. The fluid field is
discretized into a 64× 64 regular grid. The task is to predict the future 10 steps of the fluid based on
the observations from the previous 10 steps. The model is trained using 1,000 fluid instances with
different initial conditions and tested with 200 new samples.
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Table 5: The benchmarks Elasticity, Navier–Stokes, Darcy Flow, Plasticity, Pipe and Airfoil were
created by Li et al. (2020). Dim represents the dimension of the dataset, Mesh refers to the size of
the discretized grid, and Dataset includes the number of samples in the training and testing sets.

Geometry Benchmarks Dim Mesh Input Output Dataset

Point Cloud Elasticity 2D 972 Structure Inner Stress (1000, 200)

Regular
Grid

Navier–Stokes 2D+Time 4,096 Past Velocity Future Velocity (1000, 200)

Regular
Grid

Darcy Flow 2D 7,225 Porous
Medium

Fluid Pressure (1000, 200)

Structured
Mesh

Plasticity 2D+Time 3,131 External Force Mesh Displace-
ment

(900, 80)

Structured
Mesh

Airfoil 2D 11,271 Structure Mach Number (1000, 200)

Structured
Mesh

Pipe 2D 16,641 Structure Fluid Velocity (1000, 200)

s

Airfoil This benchmark estimates the Mach number based on airfoil shapes. The input shapes
are discretized into a structured grid of 221 × 51, and the output is the Mach number at each grid
point (Li et al., 2023). All shapes are deformations of the NACA-0012 case provided by the National
Advisory Committee for Aeronautics. A total of 1,000 different airfoil design samples are used for
training, with an additional 200 samples for testing.

Pipe This benchmark estimates the horizontal fluid velocity within a pipe based on its structural
design (Li et al., 2023). The pipe is discretized into a structured mesh of size 129 × 129, resulting
in an input tensor of shape 129× 129× 2 that encodes the positions of the mesh points. The output
is a velocity tensor of shape 129 × 129 × 1, capturing the fluid velocity at each point. The dataset
includes 1000 training samples with varying pipe geometries, and 200 test samples generated by
modifying the pipe’s centerline.

Darcy This benchmark is utilized to simulate fluid flow through porous media (Li et al., 2020). In
the experiment, the process is discretized into a regular grid of 421× 421, and the data is downsam-
pled to a resolution of 85 × 85 for the main experiments. The model’s input is the structure of the
porous medium, while the output is the fluid pressure at each grid point. A total of 1,000 samples
are used for training and 200 samples for testing, covering various structures of the medium.

B.2 METRICS

To visually demonstrate the state-of-the-art performance of our model and ensure fair comparison
with other models, we choose to use relative L2 to measure the error in the physics field. The relative
L2 error of the model prediction field ϕ̂ compared to the given physical field ϕ can be calculated as
follows:

Relative L2 Loss =
∥y − ŷ∥2
∥y∥2

(4)

B.3 FREQUENCY ANALYSIS IN PDES

In this study, we introduce the use of high-frequency and low-frequency filters to analyze the dif-
ferences between the generated solutions of PDEs and their ground truth solutions. These filters are
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implemented through convolution operations to extract different frequency features from the images.
The specific implementation is as follows:

B.3.1 HIGH-FREQUENCY FILTER

Definition: The high-frequency filter is used to retain the high-frequency components of the image,
primarily emphasizing edges and details. We choose a simple high-pass filter defined as follows:

highpass_kernel = np.array([[0, -1, 0],
[-1, 4, -1],
[0, -1, 0]], np.float32)

Explanation:

• This filter applies a large positive weight (4) to the center pixel and negative weights to the
surrounding pixels, enhancing edge information.

• In the convolution operation, the filter subtracts the average value of surrounding pixels,
highlighting areas with significant changes, thus achieving high-frequency component ex-
traction.

B.3.2 LOW-FREQUENCY FILTER

Definition: The low-frequency filter is used to smooth the image and remove high-frequency noise.
We use a simple averaging filter defined as follows:

lowpass_kernel = np.ones((8, 8), np.float32) / 64

Explanation:

• This filter is an 8x8 averaging filter, where each element has a value of 1/64 (the total sum
of 8× 8). This means that in the convolution operation, the filter calculates the average of
the surrounding 64 pixels.

• By retaining low-frequency components, this filter effectively reduces high-frequency noise
in the image, resulting in a smoother appearance.

By employing the aforementioned methods, we can effectively distinguish information of different
frequencies within the solution domain of PDEs, enabling a series of related experiments.

C SUPPLEMENTARY ANALYSIS

C.1 ANALYSIS OF EXPERIMENTS ON MULTI-SCALE NOISE

In the main text, we demonstrate that using multi-scale noise can better capture both high-frequency
and low-frequency information in the solution domain of PDEs, leading to improved prediction
results. Table 9 presents the generation effects of multi-scale noise across all frequencies in the
PDEs solution domain.

Table 6: Comparison of the impact of different quantities of noise at various scales on solution error,
showing the relative L2 error (↓).

Number of Different Scales Noise Navier–Stokes Darcy
1 0.0512 0.0051
2 0.0475 0.0049
3 0.0437 0.0045
5 0.0419 0.0043
10 0.0407 0.0042
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In multi-scale noise, a scale pyramid is constructed by sampling multiple Gaussian noises. These
Gaussian noises are then combined using upsampling, weighted averaging, and renormalization.
The weight for the i-th layer of the pyramid is computed as si, where 0 < s < 1 represents the
intensity of the influence of different scales noise. To make this noise more akin to the Gaussian
noise used in the original DDPM formulation, we suggest adjusting the weights of the layers i > 0
according to the diffusion schedule. Specifically, at time step t, the weight assigned to the i-th layer
is given by

(
st
T

)i
, where T is the total number of diffusion steps. Moreover, as shown in Table 8,

employing a cosine annealing strategy for sampling s can further enhance the model’s performance.

In addition, we conducted experiments on the number of Gaussian noises that make up the multi-
scale noise, as shown in Table 6.

Table 7: Comparison of the impact of different of different loss strategies on solution error, showing
the relative L2 error (↓).

L1 Loss L2 Loss L2 Error ↓
✓ × 0.3743
× ✓ 0.0826
✓ ✓ 0.0437

Table 8: Comparison of the impact of
different of different noise strategies on
solution error, showing the relative L2

error (↓). GN - Gaussian Noise, AS -
Annealing Strategy, MN - Multi-scale
Noise.

GN AS MN L2 Error ↓
✓ × × 0.0732
✓ ✓ × 0.0512
× × ✓ 0.0562
× ✓ ✓ 0.0437

Table 9: Comparison of solution accuracy using multi-
scale noise and Gaussian noise, showing the relative
L2 error (↓). Relative promotion refers to the reduc-
tion in error compared to training with Gaussian noise:
Relative Promotion = 1− Our error

Second best error on each bench-
mark. GN - Gaussian Noise, MN - Multi-scale Noise.

Benchmark GN MN Relative Promotion

Plasticity 0.0010 0.0009 10.0%
Airfoil 0.0054 0.0047 13.0%
Pipe 0.0032 0.0028 12.5%
Navier–Stokes 0.0512 0.0437 14.6%
Darcy 0.0051 0.0045 11.8%

Moreover, to provide a more intuitive demonstration of our multi-scale noise construction process,
we use pseudocode to better illustrate this procedure, as shown in Algorithm 1.

Algorithm 1 Multi-scale Noise
Input: PDE’s Solution y, Number of Scales k, Strength α, Upsampler U
(b, c, w, h)← shape(y) ▷ Get dimensions of PDE’s solution
EMulti ← randn(b, c, w, h) ▷ Initialize Multi-scale noise
for i = 0 to k − 1 do ▷ Loop over k iterations

r ← rand(1)× 2 + 2 ▷ Generate random scaling factor
w ← max(1, ⌊w/(ri)⌋) ▷ Update width with scaling
h← max(1, ⌊h/(ri)⌋) ▷ Update height with scaling
EMulti ← EMulti + U(randn(b, c, w, h))× αi ▷ Add upsampled noise
if w == 1 or h == 1 then ▷ Check for minimum dimensions

break ▷ Exit loop if dimensions are 1
end if

end for
return EMulti

std(EMulti)
▷ Return Multi-scale noise
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C.2 ANALYSIS OF EXPERIMENTAL STRATEGIES

As shown in Table 7, our experiments indicate that adding L1 error guidance to L2 error training
improves training results. Additionally, Table 10 demonstrates that employing both multi-scale noise
and multi-loss strategies significantly enhances model performance.

Table 10: Comparison of the impact of different of different training strategies on solution error,
showing the relative L2 error (↓).

Multi-scale noise +
Annealing

Multi-loss L2 Error ↓

× × 0.2562
✓ × 0.2273
× ✓ 0.0532
✓ ✓ 0.0437

C.3 ANALYSIS OF FLEXIBILITY

As mentioned in the main text, our model exhibits strong flexibility, capable of handling inputs of
varying resolutions while achieving state-of-the-art performance, as shown in Table11.

Table 11: Comparison of performance between SimDiffPDE and Transolver (Wu et al., 2024) across
different mesh resolutions, showing the relative L2 error (↓). Relative promotion refers to the reduc-
tion in error compared to training with Gaussian noise: Relative Promotion = 1 − Our error

Second best error on
each benchmark.

Number of Mesh Points 1,681 3,364 7,225 10,609 19,881 44,521 168,921
(Resolution) (41×41) (58×58) (85×85) (103×103) (141×141) (211×211) (411×411)

Transolver (Wu et al., 2024) 0.0089 0.0058 0.0057 0.0057 0.0062 0.0063 0.0060
SimDiffPDE 0.0073 0.0052 0.0045 0.0044 0.0054 0.0052 0.0053
Relative Error Reduction 18.0% 10.3% 21.1% 22.8% 12.9% 17.5% 11.7%

D VISUALIZATION

D.1 VISUALIZATION OF DENOISING PROCESS

To provide a clearer visualization of the inputs in the benchmark, the denoising process of SimDiff-
PDE, and the comparison between the output results and the actual results, we have visualized this
entire process. Please refer to the Figure 8 for details.

D.2 VISUALIZATION OF ADDING NOISE USING MULTI-SCALE NOISE

In the main text, we present visualizations of adding noise to the original image using multi-scale
noise and Gaussian noise over 100 time steps. To better illustrate this process, we will present
visualizations of adding noise to the original image using multi-scale noise and Gaussian noise over
1, 10, 50, and 500 time steps. These correspond to Figure 9, Figure 10, Figure 11, and Figure 12,
respectively. You can find these figures at the end of the appendix.
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Figure 8: Denoising performance for PDEs: (1) Navier-Stokes Equation; (2) Darcy Flow Equation;
(3) Airfoil Problem with Euler’s Equation.

Ground-truth solution map

Add 1 step of single Gaussian noise

Add 1 step of multiscale Guassian noise

All frequency Large-scale Pattern
(Low Frequency Information)

Small-scale Pattern
(Low Frequency Information)

Figure 9: Illustration of the noisy solution maps at different frequencies using Guassian noise and
multi-scale noise, respectively. Guassian and multi-noise perturbations are applied to the original
images 1 time each, followed by Fourier and inverse Fourier transforms to extract different frequency
components(0-3, 3-7, 7-20, 20-56) based on their distance from the zero-frequency point.
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Ground-truth solution map

Add 10 steps of single Gaussian noise

Add 10 steps of multiscale Guassian noise

All frequency Large-scale Pattern
(Low Frequency Information)

Small-scale Pattern
(Low Frequency Information)

Figure 10: Illustration of the noisy solution maps at different frequencies using Guassian noise and
multi-scale noise, respectively. Guassian and multi-noise perturbations are applied to the original
images 10 times each, followed by Fourier and inverse Fourier transforms to extract different fre-
quency components(0-3, 3-7, 7-20, 20-56) based on their distance from the zero-frequency point.
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Ground-truth solution map

Add 50 steps of single Gaussian noise

Add 50 steps of multiscale Guassian noise

All frequency Large-scale Pattern
(Low Frequency Information)

Small-scale Pattern
(Low Frequency Information)

Figure 11: Illustration of the noisy solution maps at different frequencies using Guassian noise and
multi-scale noise, respectively. Guassian and multi-noise perturbations are applied to the original
images 50 times each, followed by Fourier and inverse Fourier transforms to extract different fre-
quency components(0-3, 3-7, 7-20, 20-56) based on their distance from the zero-frequency point.
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Ground-truth solution map

Add 500 steps of single Gaussian noise

Add 500 steps of multiscale Guassian noise

All frequency Large-scale Pattern
(Low Frequency Information)

Small-scale Pattern
(Low Frequency Information)

Figure 12: Illustration of the noisy solution maps at different frequencies using Guassian noise and
multi-scale noise, respectively. Guassian and multi-noise perturbations are applied to the original
images 500 times each, followed by Fourier and inverse Fourier transforms to extract different fre-
quency components(0-3, 3-7, 7-20, 20-56) based on their distance from the zero-frequency point.
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