
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIMDIFFPDE: SIMPLE DIFFUSION BASELINES FOR
SOLVING PARTIAL DIFFERENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We showcase good capabilities of the plain diffusion model with Transformers
(SimDiffPDE) for general partial differential equations (PDEs) solving from var-
ious aspects, namely simplicity in model structure, scalability in model size, flex-
ibility in training paradigm, and universality between different PDEs. Specif-
ically, SimDiffPDE reformulates PDE-solving problems as the image-to-image
translation problem, and employs plain and non-hierarchical diffusion model with
Transformer to generate the solutions conditioned on the initial states/parameters
of PDEs. We further propose a multi-scale noise to explicitly guide the diffusion
model in capturing information of different frequencies within the solution do-
main of PDEs. SimDiffPDE achieves a remarkable improvement of +51.4% on
the challenging Navier-Stokes equations. In benchmark tests for solving PDEs,
such as Darcy Flow, Airfoil, and Pipe for fluid dynamics, as well as Plasticity and
Elasticity for solid mechanics, our SimDiffPDE-B achieves significant relative im-
provements of +21.1%, +11.3%, +15.2%, +25.0%, and +23.4%, respectively.
Models and code shall be released upon acceptance.

1 INTRODUCTION

Solving partial differential equations (PDEs) is immensely important in extensive real-world appli-
cations, such as weather forecasting (Pathak et al., 2022; Chen et al., 2023; Bi et al., 2023), industrial
design (Sekar et al., 2019; Jing et al., 2022; Liu et al., 2024), and material analysis (Roubı́ček, 2013;
Kadic et al., 2019). As a basic scientific problem, it is usually difficult to obtain analytic solutions
for PDEs. Therefore, the solutions of PDEs are typically discretized into meshes and then solved
by numerical methods (Rodi, 1997; Zhao, 2008; Greenfeld et al., 2019), which usually takes a few
hours or even days for complex structures (Umetani & Bickel, 2018). To deal with these issues,
there has recently been rapid progress in deep learning-based methods (Li et al., 2020; 2024b; Lu
et al., 2021), which typically tackles the challenging task using convolutional neural networks or
transformers. Thanks to their impressive nonlinear modeling capacity, they can learn to approxi-
mate the input and output mappings of PDE-governed tasks from data during training and then infer
the solution significantly faster than numerical methods (Goswami et al., 2022; Wu et al., 2023).

To date, major deep-learning-based methods can be broadly classified into three categories: (1)
neural approaches that approximate the solution function of the underlying PDE (Han et al., 2018;
Raissi et al., 2019); (ii) hybrid approaches (Arcomano et al., 2022; Bar-Sinai et al., 2019; Berthelot
et al., 2023; Greenfeld et al., 2019; Kochkov et al., 2021; Sun et al., 2023), where neural networks
either augment numerical solvers or replace plats of them; (iii) neural approaches in which the
learned evolution operator iteratively maps the current approximate solution to a future state of the
approximate solution (Bhatnagar et al., 2019; Brandstetter et al., 2022a;b). Despite that approaches
(i) have achieved great success in modeling inverse and high-dimensional problems, and approaches
(ii-iii) have started advance fluid and weather modeling in two and three dimensions, these methods
typically learn a deterministic mapping between input coefficients and their solutions. However, due
to the chaotic nature of some dynamics system described by PDE, e.g., Navier-Stokes equation, even
small ambiguities of the spatially averaged states as the inputs can lead to fundamentally different
solutions over time, which leads the deterministic methods providing non-robust answers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100 120

×10!"

60

40

50

30

20

Galerkin

OFormer

GNOT

ONO

L2
 E

rr
or

Transolver

0 20 40 60 80 100 120

6.5

5.5

4.5

1111
1111

3.4

SimDiffPDE-XS

SimDiffPDE-S

SimDiffPDE-B

SimDiffPDE-L

SimDiffPDE-XL

Running Time(s/epoch)

L2
 E

rr
or

Running Time(s/epoch)

3.0

2.0

1.0

0.0

×10!#

L2
 E

rr
or

XLLBSXS

Figure 1: Left: Comparison of model performance across different benchmarks. XS: XS-
SimDiffPDE, S: S-SimDiffPDE, B: B-SimDiffPDE, L: L-SimDiffPDE, and XL: XL-SimDiffPDE.
Right: Comparison of model performance across different model sizes.

In comparison, generative diffusion models (Rombach et al., 2022) offer substantial potential for
solving PDEs, especially those describing highly nonlinear systems, exhibiting capabilities similar
to those in video prediction based on initial frames and auxiliary conditioning. Specifically, diffusion
models can construct generative distributions that closely approximate the underlying probabilistic
solution distributions instead of one solution point. Therefore, by ensembling solutions by sampling
difference Guassian noise as inputs during the inference phase, diffusion models can produce more
robust and accurate solutions of PDEs that particularly describe nonlinear and even chaotic systems.

In this paper, we demonstrate that plain diffusion models can be repurposed as effective and gen-
eral PDE solvers (SimDiffPDE), with the multi-scale noise. The key to unlocking the potential of
diffusion models lies in their ability to efficiently capture patterns of multiple scales in the solu-
tion domain. However, we observe that the default Guassin noise can not efficiently destroy the
large-scale pattern in the forward process, and therefore the diffusion model can not learn to re-
cover the large-scale pattern efficiently in the reverse process. By adding multi-scale noise in the
forward process, the diffusion models are more explicitly required to learn to denoise the multi-
scale noise to reconstruct multi-scale patterns of PDE solutions. During the inference phase, we
leverage the test-time ensemble method to consider the generated solution distributions by sampling
multiple Guassian noises as inputs. The two designs not only maintains structural simplicity but
also significantly improves accuracy and robustness compared to previous state-of-the-art solvers.
Our model consistently surpasses previous state-of-the-art models across six benchmarks involv-
ing various types of PDEs (Wu et al., 2024; 2022; Li et al., 2022b; Hao et al., 2023; Xiao et al.,
2023). Notably, we achieve a +51.4% improvement in the challenging Navier-Stokes equations.
For benchmarks for solving partial differential equations, e.g., Darcy Flow, Airfoil and Pipe that de-
scribe fluids, Plasticity and Elasticity that describe solids, our SimDiffPDE-B achieves considerable
relative improvements of +21.1%, +11.3%, +15.2%, +25.0%, and +23.4%, respectively.

Besides the superior performance, we also show the surprisingly good capabilities of SimDiffPDE
from various aspects, namely simplicity, scalability, flexibility and universality. 1) For simplicity,
due to the strong generative feature representation ability, the SimDiffPDE framework is rather sim-
ple. For example, it does not require any specific domain knowledge for architecture design and en-
joys a plain and non-hierarchical structures by simply stacking several diffusion transformer layers.
2) The simplicity in structure brings the excellent scalability properties of SimDiffPDE. To be more
specific, one can easily control the model size by stacking different number of diffusion transformer
layers and increase or decrease feature dimensions, e.g., we design SimDiffPDE-XS, SimDiffPDE-
S, SimDiffPDE-B, SimDiffPDE-L and SimDIffPDE-XL, to balance the inference speed and per-
formance for various deployment requirements. 3) For flexiblity, we demonstrate our SimDiffPDE
can adapt well to different input resolutions with minor modifications. 4) Lastly, our SimDiffPDE
showcases the good feasibility to various PDE equations, including Navier-Stokes equation, Darcy
flow equation, hyper-elastic problem and plastic forging problem.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In summary, the contributions of this paper can be outlined as follows: (1) We propose a simple
yet high-performing generative baseline model for solving various PDEs, named SimDiffPDE. This
model achieves consistent leading results across six datasets covering various grid types and PDE
types, improving performance by an average of 22.0% compared to the second-best model, without
complex network architectures or tailored designs. (2) We leverage a multi-scale noise strategy
that further unlocks the potential of diffusion models in solving PDEs, enabling efficient capture of
information at different frequencies and precise construction of the solution distribution for PDEs.

2 RELATED WORK

2.1 DIFFUSION MODEL

Diffusion models have been widely applied to various tasks, including image generation (Ho et al.,
2022a), image restoration (Xia et al., 2023), super-resolution (Li et al., 2022a), text-to-image gen-
eration (Ruiz et al., 2023), video generation (Ho et al., 2022b), and audio generation (Liu et al.,
2023). Additionally, diffusion models have been used to generate datasets related to PDEs (Lienen
et al., 2023). Among these, Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) are
widely utilized. This model achieves data generation through a forward noise-adding process and
a reverse denoising process. In the forward process, noise is gradually added to the real data until
it approximates a standard normal distribution. In the reverse process, the model learns the condi-
tional probability distribution between input conditions and output results, gradually denoising from
pure noise to recover a high-quality target distribution. Leveraging the ability of DDPM to learn the
probability distribution between input conditions and output results, we apply it to solve PDEs.

2.2 DEEP LEARNING PDES SOLVER

For a long time, various numerical methods (Smith, 1985; Moukalled et al., 2016) have been
widely used to solve PDEs. With the rise of deep learning, physics-informed neural networks
(PINNs) (Raissi et al., 2019); the other class is data-driven neural operators. Physics-informed
neural networks was proposed by Raissi et al. (2019), where the constraints of PDEs (including
equations, boundary conditions, and initial conditions) are used as a loss function. By employing
a self-supervised learning approach to train neural networks (Ren et al., 2022; Yu et al., 2022),
the model’s output gradually conforms to these constraints, resulting in an approximate solution.
However, this paradigm requires a rigorous formalization of partial differential equations and relies
heavily on network optimization, which limits its practicality. Neural operators establishes the
mapping between inputs and outputs through neural operators, widely applied in the solution of par-
tial differential equations (PDEs) (Li et al., 2020). The core idea of this operator is to approximate
integration using linear projections in the Fourier domain. Based on this foundation, many improve-
ments have emerged. For instance, U-FNO (Wen et al., 2022) and U-NO (Rahman et al., 2022)
have proposed using the U-Net (Ronneberger et al., 2015) architecture to enhance the performance
of FNO. F-FNO (Tran et al., 2021) utilizes factorization in the Fourier domain, while WMT (Gupta
et al., 2021) introduces a neural operator learning scheme based on multiwavelets.

With the rise of Transformers (Vaswani, 2017), the recently high-performing Transolver (Wu et al.,
2024) on multiple PDE benchmarks propose to construct mappings of inputs to outputs by learning
the intrinsic physical states of the PDEs captured by learnable slices. However, these methods are
essentially deterministic, which is not robust due to the chaotic nature of some PDEs. In contrast,
SimDiffPDE leverages the characteristics of diffusion models to establish complex probability dis-
tributions between input conditions and output results. Simultaneously, through a multi-scale noise
approach, it explicitly distinguishes and learns mutliscale information in PDE solution space.

3 SIMDIFFPDE: SIMPLE DIFFUSION BASELINE FOR SOLVING PARTIAL
DIFFERENTIAL EQUATIONS

3.1 PDE SOLVING AS DIFFUSION GENERATIVE FORMULATION

We approach solving partial differential equations (PDEs) as a conditional denoising diffusion gen-
eration task. Specifically, we define PDEs over an input domain Ω ⊂ RCxg , where Cxg denotes the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

x

y

Multi-scale noise

yt

ϵ

�ϵ
Add

Noise

Concat Diffusion

|| ϵ-�ϵ ||Multi-loss

Diffusion77

Gaussian noise

Concat Denoise
�ϵ

�𝒚𝒚x

yt-1yt

Training Phase Inference Phase

Figure 2: Left: Structure diagram of the SimDiffPDE training phase. Right: Structure diagram of
the SimDiffPDE inference phase.

dimension of input space, and then discretize Ω into N mesh points, represented as xg ∈ RN×Cxg .
Our goal is to train SimDiffPDE to model the conditional distributions y = D(y|x) as the solution
of PDE, where x combines geometric inputs xg and observed quantities xu ∈ RN×Cxu . Therefore,
the complete input is x ∈ RN×Cx , with Cx = Cxg + Cxu .

In the forward process, starting from the conditional distribution at y0 := y, Gaussian noise is
gradually added over time steps t ∈ {1, 2, 3, · · · , T} to obtain the noisy samples: yt as

yt =
√
ᾱty0 +

√
1− ᾱtϵ, (1)

where ϵ ∼ N (0, I), ᾱt :=
∏t

s=1 1−βs, and {β1, β2, β3, · · · , βT } represents the variance schedule
of a process over T steps. In the reverse process, the conditional denoising model ϵθ (·), which is
parameterized by learned parameters θ, progressively removes noise from yt to obtain yt−1.

During training, parameters θ are updated by taking a data pair (x,y) from the training data. At a
random time step t, noise ϵ is applied to y, and the noise estimate ϵ̂ = ϵθ (yt,x, t) is calculated.
One of the denoising objective function is minimized, with a noise objective L as follows:

LMulti = Ey0,ϵ∼N (0,I),t∼U (T)∥ϵ− ϵ̂∥Multi = Ey0,ϵ∼N (0,I),t∼U (T) (∥ϵ− ϵ̂∥1 + ∥ϵ− ϵ̂∥2) , (2)

where || · ||1 and || · ||2 denote L1 and L2 norm, respectively. During inference, y := y0 is recon-
structed from a normally distributed variable yt by the learned denoiser ϵθ (yt,x, t) iteratively.

3.2 NETWORK ARCHITECTURE

Architecture We propose a simple yet highly effective baseline model for PDEs based on diffu-
sion models, while exploring their potential in this context. To achieve this, we keep the architecture
straightforward, avoiding complex modules and elaborate tricks, even though these could poten-
tially enhance the model’s performance. To ensure the simplicity of the baseline model, we adopt
the standard diffusion transformer block with AdaLN-Zero from Peebles & Xie (2023). The overall
framework of SimDiffPDE is shown in Figure 2.

Training phase During training phase, we randomly select the input x and its corresponding out-
put y from the training set of the PDEs, and then add multi-scale noise ϵMulti ∈ RN×Cy (described
in Sec. 3.3) to y to obtain noisy yt. Next, we concatenate the noisy yt ∈ RN×Cy and x ∈ RN×Cx

along the feature dimension to obtain s ∈ RN×Cs , where Cs = Cx +Cy. Then, we input s into the
diffusion transformer block. When inputting s into the diffusion with transformer, the first step is to
perform patch embedding on s and time embedding on time step t ∈ RN×Cs used for the diffusion
process. Finally, we input the embedded variables into the diffusion transformer block to predict
noise ϵ̂ ∈ RN×Cy . In the training process, we use the loss function mentioned in Eq. 2. Experi-
ments show that adding the L1 loss on top of the L2 loss can more effectively capture high-frequency
information in the solution domain of PDEs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Generate Gaussian
noise at different scales Upsample to the PDE solution domain scale Weighted sum of the

upsampled noise

Figure 3: Visualization of the multi-scale noise implementation process. First, generate standard
Gaussian noise of varying sizes, then upsample this noise to match the dimensions of the PDE
solution domain, and finally, linearly combine the upsampled noise to create multi-scale noise.

Inference phase In the inference process of SimDiffPDE, it start with sampling from a standard
Gaussian distribution yt ∈ RN×Cy . Next, we concantenate the yt and the input conditions x of the
PDEs along the feature dimension and fed into the trained diffusion transformer block. During the
execution of the time steps, SimDiffPDE gradually denoise to ultimately generate the solution ŷ ∈
RN×Cy corresponding to the PDE. We further leverage the test-time ensemble for better solutions,
which will be described in Sec. 3.4.

3.3 MULTI-SCALE NOISE

We propose a multi-scale noise approach to enhance the diffusion model’s ability to capture and
effectively relate various frequency noises. Specifically, as shown in Figure 3, our process has the
following steps. First, Given the resolution n × n of the PDE’s resolution domain, we generate the
Gaussian noise ϵk ∼ N (0, I) with a resolution of mk ×mk, where mk ≤ n. Second, we upsample
the different scales of Gaussian noise ϵk generated in Step 1 to match the size of the PDE solution
domain, resulting in the noise ϵ′k with the resolution of n × n through linear interpolation. Finally,
we obtain the final noise ϵMulti through a weighted linear combination ϵMulti =

∑K
k=0 wkϵ

′
k,

where ϵMulti with the resolution of n × n. The implementation of this approach is illustrated in
Algorithm 1 in Appendix C.1. In the follows, we discuss how multi-scale Guassian noise improves
PDE solver.

Remark 3.3.1 (Using Guassian noise is less efficient to destroy low-frequency flow pattern than
using multi-scale noise in forward process.) The default Guassian noise can not efficiently destroy
the low-frequency pattern because default implementation samples every pixel from Guassian distri-
bution independently and therefore its frequency is rather high. However, the proposed multi-scale
noise ensembles noises with various frequencies, which shows better abilities to destroy patterns of
various frequency. Empirically, we show noisy inputs which add 100 single-scale and multi-scale
Guassian noise in the forward process (Figure 4). It is evident that multi-scale Guassian noise is
more efficient to destroy the low-frequency pattern of solution domain. We claim the observation
also applies to other noisy steps and illustrate the solution map added 1, 10, 50 and 500 steps of
noise in Appendix D.2. We find that, as shown in Table 9, using multi-scale noise can significantly
improve the accuracy of solving low-frequency information within the solution domain of PDEs.
We can more intuitively illustrate this improvement using Figure 7 (Bottom Right).

Remark 3.3.2 (Using multi-scale noise can more effectively capture patterns of large scales, i.e.,
low-frequency information). The core of diffusion models is to destroy the pattern and map them
to Guassian distribution in the forward process and require the model to reconstruct the pattern by
deep learning models in the backward process. The single-scale Guassian noise can not effectively
destroy the low-frequency information, which leads the diffusion model inefficiently learning low-
frequency information and large-scale patterns. In contrast, multi-scale noise can more effectively

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Add 100 steps of single Gaussian noise

Add 100 steps of multiscale Guassian noise

Ground-truth solution map

All frequency Large-scale Pattern
(Low Frequency Information)

Small-scale Pattern
(High Frequency Information)

Figure 4: Illustration of the noisy solution maps at different frequencies using Guassian noise and multi-scale
noise, respectively. Guassian and multi-noise perturbations are applied to the original images 100 times each,
followed by Fourier and inverse Fourier transforms to extract different frequency components(0-3, 3-7, 7-20,
20-56) based on their distance from the zero-frequency point.

destroy both large-scale and small-scale patterns in the forward process, which can enforce the
diffusion model to learn and reconstruct especially low-frequency information in solution domain.

3.4 TEST-TIME ENSEMBLE

Due to the nonlinear nature of PDEs, the small variation of the input parameters or states can lead
to significant variations of solutions in some PDEs. With the stochastic nature of the DDPM infer-
ence process, different initial noises yt can lead to varying solutions, which allows SimDiffPDE to
simulate the nonlinear dynamics of PDEs. To better leverage this feature, we leverage a testing-time
ensemble strategy for more accurate and robust solutions of PDEs.

Given the same input x, we obtain a series of solutions {y1,y2, · · · ,yn}. We employ an iterative
method to estimate the scale factors ŝi and translations t̂i of these solutions relative to a specific
range. Due to the continuity and smoothness of PDE solutions, we achieve alignment of the solutions
by minimizing the distance between pairs of transformed solutions (ŷ′

i, ŷ
′
j). Specifically, ŷ′ =

ŷ× ŝ+ t̂. In each optimization step, we compute the median of the single solution points in the PDE
solution domain as m(a,b) = median(ŷ′

1(a,b), ŷ
′
2(a,b), · · · , ŷ′

n(a,b)) to derive the merged
PDE solution. To prevent the solutions from converging to a trivial solution (e.g., all solutions
being the same) and to ensure that m maintains an intensity within the unit range, we introduce an
additional regularization term R = |min(m)| + |1 −max(m)|. Therefore, the objective function
can be expressed as

min
s1,s2,··· ,sn
t1,t2,··· ,tn

√√√√ 1

Bn

n−1∑
i=1

n∑
j=i+1

∥ŷ′
i − ŷ′

i∥22 + λR

 , (3)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Summary of experimental benchmarks, including different types of PDEs. Mesh denotes
the size of the discrete mesh.

Geometry Benchmarks Dimension Mesh

Point Cloud Elasticity 2D 972

Structured Mesh
Plasticity 2D+TIME 3,131

Airfoil 2D 11,271
Pipe 2D 16,641

Regular Grid Navier-Stokes 2D+TIME 4,096
Darcy 2D 7,225

Table 2: Performance comparison based on six benchmarks, showing relative L2 error (↓). Lower
values indicate better performance. ”/” indicates that the baseline is not applicable to this benchmark.
Relative promotion refers to the relative error reduction with respect to the second best model:
Relative Promotion = 1− Our error

Second best error on each benchmark.

Model
Point Cloud Structured Meshes Regular Grids

Elasticity Plasticity Airfoil Pipe Navier-Stokes Darcy

FNO (Li et al., 2020) / / / / 0.1556 0.0108
WMT (Gupta et al., 2021) 0.0359 0.0076 0.0075 0.0077 0.1541 0.0082
U-FNO (Wen et al., 2022) 0.0239 0.0039 0.0269 0.0056 0.2231 0.0183
geo-FNO (Li et al., 2023) 0.0229 0.0074 0.0138 0.0067 0.1556 0.0108
U-NO (Rahman et al., 2022) 0.0258 0.0034 0.0078 0.0100 0.1713 0.0113
F-FNO (Tran et al., 2021) 0.0263 0.0047 0.0078 0.0070 0.2322 0.0077
LSM (Wu et al., 2022) 0.0218 0.0025 0.0059 0.0050 0.1535 0.0065
Galerkin (Cao, 2021) 0.0240 0.0120 0.0118 0.0098 0.1401 0.0084
HT-Net (Liu et al., 2022) / 0.0333 0.0065 0.0059 0.1847 0.0079
Oformer (Li et al., 2022b) 0.0183 0.0017 0.0183 0.0168 0.1705 0.0124
GNOT (Hao et al., 2023) 0.0086 0.0336 0.0076 0.0047 0.1380 0.0105
FactFormer (Li et al., 2024a) / 0.0312 0.0071 0.0060 0.1214 0.0109
ONO (Xiao et al., 2023) 0.0118 0.0048 0.0061 0.0052 0.1195 0.0076
Transolver (Wu et al., 2024) 0.0064 0.0012 0.0053 0.0033 0.0900 0.0057

SimDiffPDE-S 0.0057 0.0010 0.0049 0.0030 0.0529 0.0050
Relative Promotion 10.9% 16.7% 7.5% 9.1% 41.2% 12.2%
SimDiffPDE-B 0.0049 0.0009 0.0047 0.0028 0.0437 0.0045
Relative Promotion 23.4% 25.0% 11.3% 15.2% 51.4% 21.1%
SimDiffPDE-L 0.0043 0.0008 0.0043 0.0024 0.0394 0.0041
Relative Promotion 32.8% 33.3% 18.9% 27.3% 56.2% 28.1%
SimDiffPDE-XL 0.0039 0.0007 0.0040 0.0022 0.0355 0.0037
Relative Promotion 39.1% 41.7% 24.5% 33.3% 60.6% 35.1%

where the binomial coefficient Bn =
(
n
2

)
indicates the total number of possible combinations of

solution pairs from n solutions. After iterative optimization, the merged solution m is regarded as
our ensemble solution. Due to the diversity and complexity of PDE solutions, this integration step
does not require ground truths. Through multiple inferences, we can capture the spatial features and
dynamic variations of the solutions, thereby enhancing the robustness and accuracy of predictions.

4 EXPERIMENT

Benchmarks Our experiments cover various types of PDEs, including point clouds, structured
meshes, and regular grids, as shown in Table 1. The Navier-Stokes and Darcy equations were
introduced by Li et al. (2020), while Elasticity, Plasticity, and Airfoil problems were proposed by
Li et al. (2023), all of which are widely followed.

Baselines We comprehensively compare SimDiffPDE with baseline , including neural operators
like FNO (Li et al., 2020), Transformer-based solvers such as GNOT (Hao et al., 2023), and the
recent state-of-the-art Transolver (Wu et al., 2024).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Compared to the series of benchmarks proposed by Li et al. (2020), the performance of
the model at different Reynolds numbers, showing the relative L2 error (↓). The smaller, the better.
Where ν represents viscosity, T is the discrete time step, and N is the size of the training dataset.

ν = 1e− 3 ν = 1e− 4 ν = 1e− 5
Model T = 50 T = 30 T = 20

N = 1000 N = 1000 N = 1000

FNO-3D 0.0086 0.1918 0.1893
FNO-2D 0.0128 0.1559 0.1556
U-Net 0.0245 0.2051 0.1982
TF-Net 0.0225 0.2253 0.2268
Res-Net 0.0701 0.2871 0.2753

SimDiffPDE-B 0.0062 0.0342 0.0437

4.1 MAIN RESULTS

To clearly benchmark our model among various PDE solvers, we first conduct experiments on six
well-established datasets, which can be easily obtained from previous studies (Hao et al., 2023; Wu
et al., 2024) to create a comprehensive leaderboard.

Point clouds For point cloud-based tasks, SimDiffPDE achieves a significant improvement over
competing methods. Specifically, in the elasticity task, SimDiffPDE outperforms the previous best
model, Transolver (Wu et al., 2024), by a margin of 23.4%, with an impressive relative L2 error
of 0.0049. This demonstrates the model’s strong ability to handle irregular and unstructured data,
making it highly effective for point cloud applications.

Structured meshes SimDiffPDE also excels in tasks utilizing structured meshes, which are fre-
quently employed in simulations of plasticity, airfoil flow, and pipe flow. In the plasticity task,
SimDiffPDE achieves a relative error of just 0.0009, representing a 25.0% improvement over the
next best model. Similarly, it achieves relative improvements of 11.3% and 15.2% in the airfoil and
pipe tasks, respectively, further demonstrating its superiority in structured mesh-based problems.

Regular grids In the most demanding benchmarks, based on regular grids, SimDiffPDE sets a new
benchmark, particularly in the Navier-Stokes and Darcy flow tasks. In the Navier-Stokes benchmark,
SimDiffPDE shows a remarkable 51.4% improvement with a relative L2 error of 0.0437, far outper-
forming the nearest competitor. Table 3 demonstrates that SimDiffPDE achieves leading accuracy
in solving the Navier-Stokes equations at different Reynolds numbers, indicating that our model can
effectively apply to the Navier-Stokes equations across various Reynolds numbers, highlighting the
feasibility of SimDiffPDE. In the Darcy benchmark, the model delivers a 21.1% improvement, fur-
ther solidifying its effectiveness. These results underline SimDiffPDE’s ability to accurately capture
complex dynamics in regular grid simulations. Furthermore, as shown in Table 11 in Appendix,
SimDiffPDE outperforms the second-best model, Transolver (Wu et al., 2024), in solving the Darcy
benchmark across different resolutions.

4.2 ABLATION STUDY

Training noise To verify whether the use of multi-scale noise can better capture the frequency
information in the solution domain of PDEs, especially low-frequency information, we conducte a
comparative experiment. As shown in Table 4, we analyze the errors in the model’s generated results
for high-frequency and low-frequency components under two training noise conditions. The exper-
imental results indicate that using multi-scale noise improves the model’s precision in generating
both low-frequency and high-frequency information, with a particularly significant enhancement in
low-frequency generation. Table 9 in Appendix C.1 presents the full-frequency errors of five bench-
marks under two types of training noise. It was found that training with multi-scale noise reduced
the average error across the five benchmarks by 12.4% compared to using Gaussian noise. This
result further demonstrates the effectiveness of multi-scale noise. Appendix B.3 shows the details
of the ablation experiment implementation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Comparison of Gaussian noise and multi-scale noise on training results, showing the rela-
tive L2 error (↓). Relative promotion refers to the relative error reduction with respect to the second
best model: Relative Promotion = 1− Our error

Second best error on each benchmark. GN - Gaussian Noise, MN
- Multi-scale Noise.

Benchmark
High Frequency Error Low Frequency Error

GN MN Relative Promotion GN MN Relative Promotion

Plasticity 0.0285 0.0253 11.2% 0.0010 0.0008 20.0%
Airfoil 0.1153 0.1038 10.0% 0.0051 0.0042 17.6%
Pipe 0.0964 0.0872 9.5% 0.0029 0.0024 17.2%
Navier–Stokes 0.2062 0.1857 9.9% 0.0499 0.0406 18.6%
Darcy 0.1076 0.0954 11.3% 0.0048 0.0037 22.9%

5.0

4.6

4.2

1 2 3 5 10

5.0

4.6

4.2

L2
 E

rr
or

 o
f

N
av

ie
r-S

to
ke

s

L2
 E

rr
or

 o
f

D
ar

cy
Number of Noise at Different Scales

×10-2 ×10-3

4.6

4.4

4.2

2.95

2.85

2.75

L2
 E

rr
or

 o
f

N
av

ie
r-S

to
ke

s

L2
 E

rr
or

 o
f

Pi
pe

×10-2 ×10-3

Predictions
1 2 3 5 10 15 20

Figure 5: Left: Comparison of the impact of different quantities of noise at various scales on solution
error. Right: Comparison of the impact of different ensemble sizes on solution error.

To further investigate the validity of multi-scale noise, we choose two representative benchmarks
with more high-frequency and low-frequency components, respectively: Navier-Stokes, Darcy. By
adjusting the number of noise components in the multi-scale noise, we find that, as shown in Fig-
ure 5 (Left), training with noise composed of three different scales can reduce the error by 13.2%,
and training with noise composed of five different scales leads to an 16.9% improvement on average.
It was observed that, due to the limited size of the PDE solution domain, marginal improvements
gradually decrease when the number of different scales exceeds five. It should be noted that using
more noise at different scales implies that the selected noise will have smaller scale differences.
Appendix C.1 provides further details.

Test-time ensembling We conduct tests to evaluate the effectiveness of the proposed test-
time ensembling scheme by aggregating various quantities of predictions in the benchmarks of
Navier–Stokes and Pipe. As shown in Figure 5 (Right), a single prediction from SimDiffPDE yields
quite good results. Ensemble of 5 predictions reduces the relative error on Navier–Stokes by about
5.0%, while ensemble of 10 predictions provides an improvement of approximately 7.5%. It is ob-
served that, as a system effect, performance steadily increases with the number of predictions, but
the marginal improvements decrease when the number of predictions exceeds 10.

4.3 MODEL ANALYSIS

Scalability of data size and model size Our proposed SimDiffPDE show good scalbility on
both data and model size. As shown in Figure 6 (Right), we select different number of training
samples from Darcy, and verify that the SimDiffPDE-B can consistently achieve lower errors with
the increasing number of training samples. We also verify that our propose SimDiffPDE have good
scalability on model size in Table 2. We demonstrate that the error of PDE solution consistently
decreases with the model size increasing from SimDiffPDE-S to SimDiffPDE-XL. These findings
provide a solid foundation for the application of large-scale PDE solvers.

Flexibility to various resolutions To validate the flexibility of SimDiffPDE, we tested inputs at
different resolutions, with disparities reaching up to 100 times. The results indicate that SimDiff-
PDE performs consistently well across all resolutions, as shown in Figure 6 (Left), with its solution
accuracy consistently surpassing that of the second-best model. Table 11 Appendix C.3 provides
specific numerical comparisons. These results demonstrate the robust flexibility of SimDiffPDE.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

9.0

5.0

7.0

412 852 1412 2212 4112

Input Resolution

L2
 E

rr
or

 o
f

D
ar

cy

L2
 E

rr
or

 o
f

D
ar

cy

×10-3 ×10-3

4.5

3.5

2.5
1000 2000 3000 4000 5000

Number of Training Samples

SimDiffPDE-B

Transolver

Figure 6: Left: Comparison of the solving performance of Transolver (Wu et al., 2024) and SimD-
iffPDE on Darcy benchmarks at different resolutions. Right: Comparison of the effects of different
training sample sizes on solution accuracy.

Figure 7: Case study on error maps. Top Left image shows the performance of Transolver (Wu et al.,
2024) and SimDiffPDE on the Navier-Stokes benchmark, where SimDiffPDE significantly improves
in regions with abundant high-frequency information, such as sharp boundaries. Top Right image
compares the two methods on the Airfoil benchmark, highlighting that SimDiffPDE outperforms
Transolver (Wu et al., 2024). Bottom Left image illustrates the performance of both methods on the
Darcy benchmark, where SimDiffPDE excels in areas rich in low-frequency information, particu-
larly in the center. Bottom Right image examines the impact of training with Gaussian noise versus
multi-scale noise on solving low-frequency information in the Darcy benchmark, demonstrating that
training with multi-scale noise significantly enhances the accuracy of low-frequency information so-
lutions. GN - Gaussian Noise, MN - Multi-scale Noise.

Case study To provide a clearer demonstration of the advantages of SimDiffPDE in solving dif-
ferent PDEs, we plot the error maps of various benchmarks, as shown in Figure 7. Compared to the
second-best model, Transolver (Wu et al., 2024), SimDiffPDE exhibits significant improvements in
the low-frequency region, such as the central area of the Darcy benchmark solution domain, shown
as Figure 7 (Bottom Left). Additionally, in the high-frequency region, particularly at sharp bound-
aries within the Navier–Stokes benchmark solution domain, SimDiffPDE also achieves commend-
able advancements, shown as Figure 7 (Top Left). These results further confirm that SimDiffPDE
effectively captures the features of different frequencies within the PDE solution domain and estab-
lishes an accurate solution distribution.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce SimDiffPDE, the first PDE solver based on a diffusion model with
Transformers. Unlike traditional deep learning PDE solvers that create a deterministic mapping
between input conditions and output results, SimDiffPDE employs DDPM and multi-scale noise
to capture complex physical and geometric states across various frequencies in the PDE solution
domain. This approach establishes a complex probability distribution between inputs and outputs,
resulting in high-precision solutions. SimDiffPDE has achieved state-of-the-art performance on
six widely recognized benchmarks. In the future, our goal is to extend SimDiffPDE to solve non-
stationary PDEs in continuous time, similar to video generation, while also exploring large-scale
pre-training of SimDiffPDE.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Troy Arcomano, Istvan Szunyogh, Alexander Wikner, Jaideep Pathak, Brian R Hunt, and Edward
Ott. A hybrid approach to atmospheric modeling that combines machine learning with a physics-
based numerical model. Journal of Advances in Modeling Earth Systems, 14(3):e2021MS002712,
2022.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven dis-
cretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64:525–545, 2019.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. Nature, 619(7970):533–538, 2023.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for pde modeling. arXiv preprint arXiv:2209.04934, 2022a.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022b.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, and Hao Li. Fuxi: A
cascade machine learning forecasting system for 15-day global weather forecast. npj Climate and
Atmospheric Science, 6(1):190, 2023.

Clive L Dym, Irving Herman Shames, et al. Solid mechanics. Springer, 1973.

Somdatta Goswami, Katiana Kontolati, Michael D Shields, and George Em Karniadakis. Deep
transfer operator learning for partial differential equations under conditional shift. Nature Ma-
chine Intelligence, 4(12):1155–1164, 2022.

Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, and Ron Kimmel. Learning to optimize
multigrid pde solvers. In International Conference on Machine Learning, pp. 2415–2423. PMLR,
2019.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in neural information processing systems, 34:24048–24062, 2021.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510,
2018.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Sali-
mans. Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–
8646, 2022b.

M King Hubbert. Darcy’s law and the field equations of the flow of underground fluids. Transactions
of the AIME, 207(01):222–239, 1956.

WANG Jing, LI Runze, HE Cheng, CHEN Haixin, Ran Cheng, ZHAI Chen, and Miao Zhang. An
inverse design method for supercritical airfoil based on conditional generative models. Chinese
Journal of Aeronautics, 35(3):62–74, 2022.

Muamer Kadic, Graeme W Milton, Martin van Hecke, and Martin Wegener. 3d metamaterials.
Nature Reviews Physics, 1(3):198–210, 2019.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li, and Yueting
Chen. Srdiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing,
479:47–59, 2022a.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. arXiv preprint arXiv:2205.13671, 2022b.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
Advances in Neural Information Processing Systems, 36, 2024a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural oper-
ator with learned deformations for pdes on general geometries. Journal of Machine Learning
Research, 24(388):1–26, 2023.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024b.

Marten Lienen, David Lüdke, Jan Hansen-Palmus, and Stephan Günnemann. From zero to turbu-
lence: Generative modeling for 3d flow simulation. arXiv preprint arXiv:2306.01776, 2023.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. arXiv
preprint arXiv:2301.12503, 2023.

Jian Liu, Jianyu Wu, Hairun Xie, Guoqing Zhang, Jing Wang, Wei Liu, Wanli Ouyang, Junjun Jiang,
Xianming Liu, Shixiang Tang, et al. Afbench: A large-scale benchmark for airfoil design. arXiv
preprint arXiv:2406.18846, 2024.

Xinliang Liu, Bo Xu, and Lei Zhang. Ht-net: Hierarchical transformer based operator learning
model for multiscale pdes. arXiv preprint arXiv:2210.10890, 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Doug McLean. Understanding aerodynamics: arguing from the real physics. John Wiley & Sons,
2012.

Fadl Moukalled, Luca Mangani, Marwan Darwish, F Moukalled, L Mangani, and M Darwish. The
finite volume method. Springer, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural oper-
ators. arXiv preprint arXiv:2204.11127, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Pu Ren, Chengping Rao, Yang Liu, Jian-Xun Wang, and Hao Sun. Phycrnet: Physics-informed
convolutional-recurrent network for solving spatiotemporal pdes. Computer Methods in Applied
Mechanics and Engineering, 389:114399, 2022.

W Rodi. Comparison of les and rans calculations of the flow around bluff bodies. Journal of wind
engineering and industrial aerodynamics, 69:55–75, 1997.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Tomáš Roubı́ček. Nonlinear partial differential equations with applications, volume 153. Springer
Science & Business Media, 2013.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 22500–
22510, 2023.

Vinothkumar Sekar, Mengqi Zhang, Chang Shu, and Boo Cheong Khoo. Inverse design of airfoil
using a deep convolutional neural network. Aiaa Journal, 57(3):993–1003, 2019.

Gordon D Smith. Numerical solution of partial differential equations: finite difference methods.
Oxford university press, 1985.

Zhiqing Sun, Yiming Yang, and Shinjae Yoo. A neural pde solver with temporal stencil modeling.
In International Conference on Machine Learning, pp. 33135–33155. PMLR, 2023.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

Nobuyuki Umetani and Bernd Bickel. Learning three-dimensional flow for interactive aerodynamic
design. ACM Transactions on Graphics (TOG), 37(4):1–10, 2018.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Ad-
vances in Water Resources, 163:104180, 2022.

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing
transformers with conservation flows. arXiv preprint arXiv:2202.06258, 2022.

Haixu Wu, Tengge Hu, Huakun Luo, Jianmin Wang, and Mingsheng Long. Solving high-
dimensional pdes with latent spectral models. arXiv preprint arXiv:2301.12664, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

Bin Xia, Yulun Zhang, Shiyin Wang, Yitong Wang, Xinglong Wu, Yapeng Tian, Wenming Yang,
and Luc Van Gool. Diffir: Efficient diffusion model for image restoration. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 13095–13105, 2023.

Zipeng Xiao, Zhongkai Hao, Bokai Lin, Zhijie Deng, and Hang Su. Improved operator learning by
orthogonal attention. arXiv preprint arXiv:2310.12487, 2023.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse pde problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, 2022.

Ye Zhao. Lattice boltzmann based pde solver on the gpu. The visual computer, 24:323–333, 2008.

A OVERVIEW

In this appendix, we provide detailed content that complements the main paper. Section B elabo-
rates on the implementation details of the experiments, including benchmarks, evaluation metrics
and frequency analysis of information in the solution domain of PDEs. Section C provides a more
detailed analysis of experiments related to multi-scale noise, training strategies, and model flexibil-
ity. Section D presents a visual representation of the details of the SimDiffPDE denoising process
and provides a visual analysis of the noise addition process using multi-scale noise.

B IMPLEMENTATION DETAILS

B.1 BENCHMARKS

We validate the performance of our model on three benchmarks: the Navier-Stokes equations, the
Darcy flow equations, and the airfoil problem using Euler’s equations. For detailed information
about the benchmarks, please refer to Table 5. Our tests involve the following two types of PDEs:

• Solid material (Dym et al., 1973): Elasticity and Plasticity.

• Navier-Stokes equations for fluid (McLean, 2012): Navier-Stokes, Airfoil and Pipe.

• Darcy’s law (Hubbert, 1956): Darcy.

The following are the detailed information for each benchmark.

Elasticity This benchmark evaluates the internal stress distribution within an elastic material based
on its structural configuration, discretized into 972 points (Li et al., 2023). For each sample, the input
is a tensor of shape 972× 2, representing the 2D coordinates of the discretized points. The output is
the corresponding stress at each point, resulting in a tensor of shape 972 × 1. The dataset consists
of 1000 samples with varying structures for training, and an additional 200 samples are reserved for
testing.

Plasticity This benchmark aims to predict the future deformation of a plastic material subjected
to an impact from an arbitrarily shaped die (Li et al., 2023). Each input is a die shape, discretized
into a structured mesh and stored as a tensor of shape 101 × 31. The output is the deformation at
each mesh point over 20 time steps, represented by a tensor of shape 20× 101× 31× 4, where the
four channels capture the deformation in different directions. The dataset comprises 900 training
samples with different die shapes, and 80 samples are used for testing.

Navier-Stokes This benchmark simulates incompressible viscous flow on a unit torus, where the
fluid density is constant and the viscosity is set to 1e − 3, 1e − 4 and 1e − 5. The fluid field is
discretized into a 64× 64 regular grid. The task is to predict the future 10 steps of the fluid based on
the observations from the previous 10 steps. The model is trained using 1,000 fluid instances with
different initial conditions and tested with 200 new samples.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: The benchmarks Elasticity, Navier–Stokes, Darcy Flow, Plasticity, Pipe and Airfoil were
created by Li et al. (2020). Dim represents the dimension of the dataset, Mesh refers to the size of
the discretized grid, and Dataset includes the number of samples in the training and testing sets.

Geometry Benchmarks Dim Mesh Input Output Dataset

Point Cloud Elasticity 2D 972 Structure Inner Stress (1000, 200)

Regular
Grid

Navier–Stokes 2D+Time 4,096 Past Velocity Future Velocity (1000, 200)

Regular
Grid

Darcy Flow 2D 7,225 Porous
Medium

Fluid Pressure (1000, 200)

Structured
Mesh

Plasticity 2D+Time 3,131 External Force Mesh Displace-
ment

(900, 80)

Structured
Mesh

Airfoil 2D 11,271 Structure Mach Number (1000, 200)

Structured
Mesh

Pipe 2D 16,641 Structure Fluid Velocity (1000, 200)

s

Airfoil This benchmark estimates the Mach number based on airfoil shapes. The input shapes
are discretized into a structured grid of 221 × 51, and the output is the Mach number at each grid
point (Li et al., 2023). All shapes are deformations of the NACA-0012 case provided by the National
Advisory Committee for Aeronautics. A total of 1,000 different airfoil design samples are used for
training, with an additional 200 samples for testing.

Pipe This benchmark estimates the horizontal fluid velocity within a pipe based on its structural
design (Li et al., 2023). The pipe is discretized into a structured mesh of size 129 × 129, resulting
in an input tensor of shape 129× 129× 2 that encodes the positions of the mesh points. The output
is a velocity tensor of shape 129 × 129 × 1, capturing the fluid velocity at each point. The dataset
includes 1000 training samples with varying pipe geometries, and 200 test samples generated by
modifying the pipe’s centerline.

Darcy This benchmark is utilized to simulate fluid flow through porous media (Li et al., 2020). In
the experiment, the process is discretized into a regular grid of 421× 421, and the data is downsam-
pled to a resolution of 85 × 85 for the main experiments. The model’s input is the structure of the
porous medium, while the output is the fluid pressure at each grid point. A total of 1,000 samples
are used for training and 200 samples for testing, covering various structures of the medium.

B.2 METRICS

To visually demonstrate the state-of-the-art performance of our model and ensure fair comparison
with other models, we choose to use relative L2 to measure the error in the physics field. The relative
L2 error of the model prediction field ϕ̂ compared to the given physical field ϕ can be calculated as
follows:

Relative L2 Loss =
∥y − ŷ∥2
∥y∥2

(4)

B.3 FREQUENCY ANALYSIS IN PDES

In this study, we introduce the use of high-frequency and low-frequency filters to analyze the dif-
ferences between the generated solutions of PDEs and their ground truth solutions. These filters are

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

implemented through convolution operations to extract different frequency features from the images.
The specific implementation is as follows:

B.3.1 HIGH-FREQUENCY FILTER

Definition: The high-frequency filter is used to retain the high-frequency components of the image,
primarily emphasizing edges and details. We choose a simple high-pass filter defined as follows:

highpass_kernel = np.array([[0, -1, 0],
[-1, 4, -1],
[0, -1, 0]], np.float32)

Explanation:

• This filter applies a large positive weight (4) to the center pixel and negative weights to the
surrounding pixels, enhancing edge information.

• In the convolution operation, the filter subtracts the average value of surrounding pixels,
highlighting areas with significant changes, thus achieving high-frequency component ex-
traction.

B.3.2 LOW-FREQUENCY FILTER

Definition: The low-frequency filter is used to smooth the image and remove high-frequency noise.
We use a simple averaging filter defined as follows:

lowpass_kernel = np.ones((8, 8), np.float32) / 64

Explanation:

• This filter is an 8x8 averaging filter, where each element has a value of 1/64 (the total sum
of 8× 8). This means that in the convolution operation, the filter calculates the average of
the surrounding 64 pixels.

• By retaining low-frequency components, this filter effectively reduces high-frequency noise
in the image, resulting in a smoother appearance.

By employing the aforementioned methods, we can effectively distinguish information of different
frequencies within the solution domain of PDEs, enabling a series of related experiments.

C SUPPLEMENTARY ANALYSIS

C.1 ANALYSIS OF EXPERIMENTS ON MULTI-SCALE NOISE

In the main text, we demonstrate that using multi-scale noise can better capture both high-frequency
and low-frequency information in the solution domain of PDEs, leading to improved prediction
results. Table 9 presents the generation effects of multi-scale noise across all frequencies in the
PDEs solution domain.

Table 6: Comparison of the impact of different quantities of noise at various scales on solution error,
showing the relative L2 error (↓).

Number of Different Scales Noise Navier–Stokes Darcy
1 0.0512 0.0051
2 0.0475 0.0049
3 0.0437 0.0045
5 0.0419 0.0043
10 0.0407 0.0042

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In multi-scale noise, a scale pyramid is constructed by sampling multiple Gaussian noises. These
Gaussian noises are then combined using upsampling, weighted averaging, and renormalization.
The weight for the i-th layer of the pyramid is computed as si, where 0 < s < 1 represents the
intensity of the influence of different scales noise. To make this noise more akin to the Gaussian
noise used in the original DDPM formulation, we suggest adjusting the weights of the layers i > 0
according to the diffusion schedule. Specifically, at time step t, the weight assigned to the i-th layer
is given by

(
st
T

)i
, where T is the total number of diffusion steps. Moreover, as shown in Table 8,

employing a cosine annealing strategy for sampling s can further enhance the model’s performance.

In addition, we conducted experiments on the number of Gaussian noises that make up the multi-
scale noise, as shown in Table 6.

Table 7: Comparison of the impact of different of different loss strategies on solution error, showing
the relative L2 error (↓).

L1 Loss L2 Loss L2 Error ↓
✓ × 0.3743
× ✓ 0.0826
✓ ✓ 0.0437

Table 8: Comparison of the impact of
different of different noise strategies on
solution error, showing the relative L2

error (↓). GN - Gaussian Noise, AS -
Annealing Strategy, MN - Multi-scale
Noise.

GN AS MN L2 Error ↓
✓ × × 0.0732
✓ ✓ × 0.0512
× × ✓ 0.0562
× ✓ ✓ 0.0437

Table 9: Comparison of solution accuracy using multi-
scale noise and Gaussian noise, showing the relative
L2 error (↓). Relative promotion refers to the reduc-
tion in error compared to training with Gaussian noise:
Relative Promotion = 1− Our error

Second best error on each bench-
mark. GN - Gaussian Noise, MN - Multi-scale Noise.

Benchmark GN MN Relative Promotion

Plasticity 0.0010 0.0009 10.0%
Airfoil 0.0054 0.0047 13.0%
Pipe 0.0032 0.0028 12.5%
Navier–Stokes 0.0512 0.0437 14.6%
Darcy 0.0051 0.0045 11.8%

Moreover, to provide a more intuitive demonstration of our multi-scale noise construction process,
we use pseudocode to better illustrate this procedure, as shown in Algorithm 1.

Algorithm 1 Multi-scale Noise
Input: PDE’s Solution y, Number of Scales k, Strength α, Upsampler U
(b, c, w, h)← shape(y) ▷ Get dimensions of PDE’s solution
EMulti ← randn(b, c, w, h) ▷ Initialize Multi-scale noise
for i = 0 to k − 1 do ▷ Loop over k iterations

r ← rand(1)× 2 + 2 ▷ Generate random scaling factor
w ← max(1, ⌊w/(ri)⌋) ▷ Update width with scaling
h← max(1, ⌊h/(ri)⌋) ▷ Update height with scaling
EMulti ← EMulti + U(randn(b, c, w, h))× αi ▷ Add upsampled noise
if w == 1 or h == 1 then ▷ Check for minimum dimensions

break ▷ Exit loop if dimensions are 1
end if

end for
return EMulti

std(EMulti)
▷ Return Multi-scale noise

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.2 ANALYSIS OF EXPERIMENTAL STRATEGIES

As shown in Table 7, our experiments indicate that adding L1 error guidance to L2 error training
improves training results. Additionally, Table 10 demonstrates that employing both multi-scale noise
and multi-loss strategies significantly enhances model performance.

Table 10: Comparison of the impact of different of different training strategies on solution error,
showing the relative L2 error (↓).

Multi-scale noise +
Annealing

Multi-loss L2 Error ↓

× × 0.2562
✓ × 0.2273
× ✓ 0.0532
✓ ✓ 0.0437

C.3 ANALYSIS OF FLEXIBILITY

As mentioned in the main text, our model exhibits strong flexibility, capable of handling inputs of
varying resolutions while achieving state-of-the-art performance, as shown in Table11.

Table 11: Comparison of performance between SimDiffPDE and Transolver (Wu et al., 2024) across
different mesh resolutions, showing the relative L2 error (↓). Relative promotion refers to the reduc-
tion in error compared to training with Gaussian noise: Relative Promotion = 1 − Our error

Second best error on
each benchmark.

Number of Mesh Points 1,681 3,364 7,225 10,609 19,881 44,521 168,921
(Resolution) (41×41) (58×58) (85×85) (103×103) (141×141) (211×211) (411×411)

Transolver (Wu et al., 2024) 0.0089 0.0058 0.0057 0.0057 0.0062 0.0063 0.0060
SimDiffPDE 0.0073 0.0052 0.0045 0.0044 0.0054 0.0052 0.0053
Relative Error Reduction 18.0% 10.3% 21.1% 22.8% 12.9% 17.5% 11.7%

D VISUALIZATION

D.1 VISUALIZATION OF DENOISING PROCESS

To provide a clearer visualization of the inputs in the benchmark, the denoising process of SimDiff-
PDE, and the comparison between the output results and the actual results, we have visualized this
entire process. Please refer to the Figure 8 for details.

D.2 VISUALIZATION OF ADDING NOISE USING MULTI-SCALE NOISE

In the main text, we present visualizations of adding noise to the original image using multi-scale
noise and Gaussian noise over 100 time steps. To better illustrate this process, we will present
visualizations of adding noise to the original image using multi-scale noise and Gaussian noise over
1, 10, 50, and 500 time steps. These correspond to Figure 9, Figure 10, Figure 11, and Figure 12,
respectively. You can find these figures at the end of the appendix.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 8: Denoising performance for PDEs: (1) Navier-Stokes Equation; (2) Darcy Flow Equation;
(3) Airfoil Problem with Euler’s Equation.

Ground-truth solution map

Add 1 step of single Gaussian noise

Add 1 step of multiscale Guassian noise

All frequency Large-scale Pattern
(Low Frequency Information)

Small-scale Pattern
(Low Frequency Information)

Figure 9: Illustration of the noisy solution maps at different frequencies using Guassian noise and
multi-scale noise, respectively. Guassian and multi-noise perturbations are applied to the original
images 1 time each, followed by Fourier and inverse Fourier transforms to extract different frequency
components(0-3, 3-7, 7-20, 20-56) based on their distance from the zero-frequency point.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Ground-truth solution map

Add 10 steps of single Gaussian noise

Add 10 steps of multiscale Guassian noise

All frequency Large-scale Pattern
(Low Frequency Information)

Small-scale Pattern
(Low Frequency Information)

Figure 10: Illustration of the noisy solution maps at different frequencies using Guassian noise and
multi-scale noise, respectively. Guassian and multi-noise perturbations are applied to the original
images 10 times each, followed by Fourier and inverse Fourier transforms to extract different fre-
quency components(0-3, 3-7, 7-20, 20-56) based on their distance from the zero-frequency point.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Ground-truth solution map

Add 50 steps of single Gaussian noise

Add 50 steps of multiscale Guassian noise

All frequency Large-scale Pattern
(Low Frequency Information)

Small-scale Pattern
(Low Frequency Information)

Figure 11: Illustration of the noisy solution maps at different frequencies using Guassian noise and
multi-scale noise, respectively. Guassian and multi-noise perturbations are applied to the original
images 50 times each, followed by Fourier and inverse Fourier transforms to extract different fre-
quency components(0-3, 3-7, 7-20, 20-56) based on their distance from the zero-frequency point.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Ground-truth solution map

Add 500 steps of single Gaussian noise

Add 500 steps of multiscale Guassian noise

All frequency Large-scale Pattern
(Low Frequency Information)

Small-scale Pattern
(Low Frequency Information)

Figure 12: Illustration of the noisy solution maps at different frequencies using Guassian noise and
multi-scale noise, respectively. Guassian and multi-noise perturbations are applied to the original
images 500 times each, followed by Fourier and inverse Fourier transforms to extract different fre-
quency components(0-3, 3-7, 7-20, 20-56) based on their distance from the zero-frequency point.

22

	Introduction
	Related Work
	Diffusion model
	Deep learning PDEs solver

	SimDiffPDE: Simple Diffusion Baseline for Solving Partial Differential Equations
	PDE solving as diffusion generative formulation
	Network architecture
	Multi-scale noise
	Test-time ensemble

	Experiment
	Main results
	Ablation study
	Model analysis

	Conclusion and future work
	Overview
	Implementation details
	Benchmarks
	Metrics
	Frequency analysis in PDEs
	High-Frequency Filter
	Low-Frequency Filter

	Supplementary Analysis
	Analysis of Experiments on Multi-scale Noise
	Analysis of experimental strategies
	Analysis of Flexibility

	Visualization
	Visualization of denoising process
	Visualization of adding noise using multi-scale noise

