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ABSTRACT

The method of Alternating Projections (AP) is a fundamental iterative technique
with applications to problems in machine learning, optimization and signal pro-
cessing. Examples include the Gauss-Seidel algorithm which is used to solve
large-scale regression problems and the Kaczmarz and projections onto convex
sets (POCS) algorithms that are fundamental to iterative reconstruction. Progress
has been made with regards to the questions of efficiency and rate of conver-
gence in the randomized setting of the AP method. Here, we extend these results
with volume sampling to block (batch) sizes greater than 1 and provide explicit
formulas that relate the convergence rate bounds to the spectrum of the underly-
ing system. These results, together with a trace formula and associated volume
sampling, prove that convergence rates monotonically improve with larger block
sizes, a feature that can not be guaranteed in general with uniform sampling (e.g.,
in SGD).

1 INTRODUCTION

Solving a system of linear equations is one of the most fundamental computational problems. It
is core to many problems in optimization, machine learning and signal processing that require so-
lutions to large-scale linear systems. Advances in computational efficiency of solving large-scale
linear systems directly translate to more efficient algorithms for non-linear optimization (Wilson
et al., 2021). Randomization of classical algorithms such as coordinate descent and gradient descent
has been instrumental in solving large-scale optimization problems. Characterizing the convergence
of these randomized algorithms for solving linear systems is key to optimizing their performance
and developing acceleration techniques that are used for more general classes (e.g., strongly convex)
of objective functions. Broadly speaking, these randomized descent algorithms are row-space and
column-space methods for solving a consistent linear system Ax = b, that in the randomized setting
can be viewed as a sequence of alternating projections onto certain subspaces (see Section 2) spec-
ified by A. When a single column/row is selected at each iterate (e.g., coordinate descent or SGD)
these are rank-1 projections onto hyperplanes, and more generally when a subset of columns/rows
are chosen (e.g., block coordinate descent with size n) the resulting rank-n projections are onto
subspaces with codimension n.

Due to their sequential stochastic nature, these algorithms lend themselves to a Markovian view
that facilitates the use of ergodic theory of (continuous state space) Markov chains to determine
convergence criteria as well as rates of convergence. Analyzed as a time-homogeneous Markov
chain, the existence and uniqueness of the stationary measure concentrated at the solution of the
linear system is guaranteed by a stochastic version of the contraction mapping theorem. Likewise,
the rate of convergence can be bounded using the spectral gap of a certain operator (see Section 2)
that is constructed, for each algorithm, from A. While these results are well understood in Markov
chain theory, establishing the relationship between the spectral gap—and hence the rate—to the
spectrum of A has been a fundamental theoretical challenge. Understanding this relationship is of
practical importance since performance of competing iterative methods such as Krylov subspace
methods (e.g., conjugate gradients) are well understood in terms of the spectrum of A (Saad, 2003).

For the base case of rank-1 projections (e.g., coordinate descent or SGD), when rows/columns of
A are sampled, i.i.d., with probabilities according to their lengths (Strohmer & Vershynin, 2009;
Leventhal & Lewis, 2010), the spectral gap is simply determined from the smallest singular value
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of A. We demonstrate that for rank-n projectors (e.g., block coordinate descent), the spectral gap is
entirely determined from all of the singular values of A when subsets are sampled, i.i.d., according
to their volumes. Establishing the relationship between the spectral gap and the singular values of A
is a significant departure from standard results on (deterministic) block methods. In block methods
the rate depends on the condition of the worst block in a partition of A – a quantity that depends on
the performance of the partitioning method and is decoupled from the spectrum of A.

Our theory shows the exact process by which the spectral gap improves with n. We demonstrate that
the singular values of A, or equivalently eigenvalues of ATA are nonlinearly transformed with an
attraction towards their mean as n increases. This evolution, we show, is the nth step in a recursive
formulation of the Cayley-Hamilton theorem known as the Faddeev–LeVerrier algorithm.

To sample with probabilities according to volumes when n is relatively small (as large as n = 15, as
our experiments show) one can employ rejection sampling; for larger n efficient volume sampling
is made possible by more sophisticated techniques that were developed by the pioneering work
of (Deshpande & Rademacher, 2010; Deshpande et al., 2006).

2 RANDOMIZED DESCENT ALGORITHMS

Randomized algorithms for solving a linear system of equations Ax = b, by and large, descend
on an objective function that guarantees almost sure convergence. The specifics of the objective
function as well as the descent varies from technique to technique. In this section we show that the
method of alternating projections presents a unifying perspective for the analysis of these techniques.

Given an N × N positive definite matrix A, the randomized Gauss-Seidel algorithm updates the
iterate, xk, a single coordinate at a time which is chosen at random. The objective function being
minimized here is f(x) = ∥A1/2(x − x⋆)∥2, with x⋆ being the solution to the linear system. A
descent along a direction d with exact line search updates the iterate xk according to (Leventhal &
Lewis, 2010):

xk+1 = xk +
⟨d,b−Axk⟩

⟨d,Ad⟩
d = xk + d

(
dTAd

)−1

dT (b−Axk). (1)

Randomized Gauss-Seidel, chooses d to be a randomly-chosen coordinate vector en (i.e., all zeros
except along the nth coordinate axis of x) resulting in a coordinate descent in iterations xk → x⋆.

Similarly the randomized Kaczmarz algorithm considers the objective function f(x) = ∥x − x⋆∥2
for a consistent system of equations. Given a matrix A ∈ RM×N with M ≥ N rows, the descent
direction d is chosen randomly from rows of A. To facilitate accessing subsets of rows, we consider
the collection of rows in A as a set and denote by a ∈ A a vector whose transpose, aT , is some
row of A, and by ba the corresponding element of b ∈ RM on the right hand side of the system
Ax = b. The one-step optimal descent along this direction is accomplished by:

xk+1 = xk +
ba − ⟨a,xk⟩

⟨a,a⟩
a. (2)

This results in a descent in iterations xk → x⋆ that lies at the intersection of all hyperplanes repre-
sented by rows of A.

Common to these descent algorithms is a notion of projection onto a subspace described by the
underlying linear system Ax = b. For Gauss-Seidel these subspaces are the ones spanned by the
rows a ∈ A1/2 (with the nth row corresponding to the choice of en and ∥a∥2 = An,n) which is
well defined for a symmetric positive definite matrix. In contrast, in Kaczmarz, the subspaces are
simply spanned by rows a ∈ A. Let P a

1 := aaT /∥a∥2 denote the rank-1 orthogonal projector
onto the space spanned by a. The dynamics of these iterations can be analyzed by the contraction
they introduce in each step to an error vector zk by alternating projections:

zk+1 = (I − P a
1 )zk. (3)

For the Gauss-Seidel method the notion of error vector is a residual measure zk := A1/2(xk − x⋆)
and in the Kaczmarz iterations the error is simply zk := xk−x⋆. When subspace projections P a

1 are
chosen at random, as discussed in the next section, the randomized iterations introduce a contraction
in the error vector zk. This contraction can be quantified by analyzing the expected norm of the
error vector, E∥zk∥2, that can be used to bound the rate of convergence.
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2.1 CONVERGENCE RATE

Existence and uniqueness of the invariant measure for the Markov chain—the point mass at the so-
lution of the linear system Ax = b—can be demonstrated under very general conditions (Hairer,
2018) for these randomized alternating projection algorithms. It is easy to show that randomized
alternating projections are Feller Markov processes, which upon the application of the Krylov-
Bogoliubov theorem guarantees the existence of an invariant measure. Conversely, deterministic
contraction, a property of orthogonal projections, guarantees the uniqueness of this invariant mea-
sure (see (Hairer, 2018) for details).

Given a probability distribution for randomly (and independently) choosing a coordinate en in
Gauss-Seidel, or choosing a row a ∈ A in Kaczmarz, the geometric rate of convergence is de-
pendent on the mean of the projections P a

1 that this distribution engenders. In particular, a lower
bound on the rate of convergence is obtained from the spectral radius of the average contraction
in (3): λmaxE [I − P a

1 ] = λmax (I − E[P a
1 ]) = 1− λmin (E[P a

1 ]). The key quantity in this bound
is the spectral gap (i.e., the smallest eigenvalue) of the operator representing the average of all the
noted rank-1 projectors:

τ1 := λmin (E[P a
1 ]) . (4)

To elaborate, given a starting point x0, the randomized Gauss-Seidel’s residual decays geometrically
as: E∥rk∥2 ≤ (1− τ1)

k∥r0∥2 and Kaczmarz’s error as E∥xk − x⋆∥2 ≤ (1− τ1)
k∥x0 − x⋆∥2.

A fundamental challenge is to relate this spectral gap, τ1, to quantities that can be measured and
computed from A. While in the deterministic realm of alternating projections this quantity depends
on a series of subspace angles that are difficult to compute (Galántai, 2005; Deutsch, 1995; Nelson
& Neumann, 1987), in the randomized regime, the spectral gap (and hence the rate) is simply deter-
mined from the smallest singular value of A if the probability distribution is set to select a projector
P a

1 with a probability proportional to length of a squared: pr(a) ∼ ∥a∥2. These probabilities are
simply the diagonal elements of A in Gauss-Seidel and lengths of rows of A in Kaczmarz. This
was first observed for the randomized Kaczmarz algorithm in (Strohmer & Vershynin, 2009) where
E[P1] = ATA/Tr (AAT ) and τ1 = λmin(A

TA)/Tr (AAT ) and then leveraged in the random-
ized Gauss-Seidel (coordinate descent) case (Leventhal & Lewis, 2010) where E[P1] = A/TrA
and τ1 = λmin(A)/TrA.

2.2 VOLUME SAMPLING

To facilitate faster convergence in practical applications, there has been a long line of research inves-
tigating block methods for iterative solvers such as block Gauss-Seidel and block Kaczmarz (Saad,
2003; Elfving, 1980) that have also been explored in randomized settings (Needell & Tropp, 2014;
Liu & Wright, 2016; Gower & Richtárik, 2015; Tu et al., 2017). The critical difficulty in block
methods is that the convergence rate depends on the worst condition number among all blocks in a
given partition of A – a quantity that is disconnected from the spectrum of A.

Generalizing (1) to coordinate descent on a block of n coordinates, a matrix D containing n coor-
dinate vectors replaces d, giving:

xk+1 = xk +D
(
DTAD

)−1
DT (b−Axk). (5)

DTAD selects a principal minor of A that is chosen according to the descent coordinates. The
subspaces for projections in this case are spanned by subsets of size n chosen from rows of A1/2,
that we denote by An ⊂ A1/2 with AnA

T
n = DTAD (for Kaczmarz An ⊂ A). The rank-n

projectors that introduce contraction in each step of (3) are given by Pn := AT
n

(
AnA

T
n

)−1
An.

Then the convergence rate is similarly bounded by 1 − τn with the spectral gap of the expected
projector:

τn := λmin (E[Pn]) . (6)

We establish that the spectral gap is determined from an evolution of singular values of A towards
their mean when subsets are chosen with probabilities proportional to the square of the volumes
they subtend. Specifically the expected projector E[Pn] =

∑
An

pr(An)Pn is formed with proba-
bilities according to their volumes: pr(An) ∼ det(AnA

T
n ) which is simply the determinant of the

corresponding minor of A. As we will see the normalization constant that is the sum of all squared

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

volumes voln :=
∑

An
det(AnA

T
n ), can be calculated efficiently for any n using a trace formula

despite the combinatorial nature of all subset of size n. This means that for small n (in fact, as large
as n = 15, as our experiments demonstrate) one can employ simple rejection sampling techniques
for volume sampling and for large n more sophisticated Markov chain sampling techniques (Desh-
pande & Rademacher, 2010; Deshpande et al., 2006) provide efficient volume sampling.

3 RESULTS

We demonstrate that under volume sampling the spectrum of E[Pn] as n increases evolves from the
spectrum of E[P1] = A/N towards its mean (see Fig. 1 for an example). We prove that this evo-
lution is described recursively by the Faddeev-LeVerrier algorithm traditionally used for computing
coefficients of the characteristic polynomial of A. For the Gauss-Seidel method with a block size
n, the spectrum of A is transformed according to the spectrum of the matrix Φn, with Φ1 := A,
defined recursively for n > 1 as:

Φn = Φ1

(
TrΦn−1

n− 1
I−Φn−1

)
. (7)

We show that E[Pn] = Φn/TrΦn This shows that the spectral gap τn = λmin(Φn)/TrΦn is
a polynomial of degree n over the spectrum of A. For n = 1 the results of (Leventhal & Lewis,
2010) follows. For n = 2 this implies the spectrum of A is transformed by the quadratic polynomial
Φ2(x) = (TrA)x− x2. Specifically the spectral gap τ2 = λmin(Φ2)/TrΦ2 is the smallest eigen-
value after this quadratic transformation and TrΦ2 is the sum of those transformed eigenvalues.
More generally the spectrum of A is transformed according to the degree-n polynomial:

Φn(x) :=

n∑
p=1

(−1)p−1voln−px
p, (8)

where voln :=
∑

An
detAnA

T
n is the sum of squared volumes of all subsets of size n that consti-

tutes the normalization factor discussed in Section 2.2. We show that for any n, the trace formula
voln = TrΦn provides an efficient computation of the normalization factor that avoids the combi-
natorially large computation over all subset of size n. This process is the same for Kaczmarz except
for the starting point: Φ1 := ATA which coincides with (Strohmer & Vershynin, 2009) for n = 1
and provides a similar evolution of eigenvalues of ATA for block sizes n > 1.

The evolution of spectrum in (7) introduces an attraction to their mean as they progress towards
equalization as ΦN = I according to the Cayley-Hamilton theorem. To illustrate the nature of this
evolution, as n increases, Fig. 1 shows the process on two examples of spectra with a linear decay
and an exponential decay.

4 PROJECTIONS WITH VOLUME SAMPLING

As discussed in Section 3 when subsets of n rows are selected An ⊂ A1/2 according to their
volumes, the expected projector E[Pn] = Φn/TrΦn evolves in a recursive fashion described by (7).
In this section we prove this result by establishing a combinatorial analysis of the set of projectors
corresponding to all subsets An together with a recursive expansion for rank-n orthogonal projectors
that to the best of our knowledge is new.

4.1 RECURSIVE EXPANSION OF PROJECTORS

Lemma 1. Let U denote the span of n linearly independent vectors {a1, . . . ,an}. For each 1 ≤
s ≤ n, let Ps

1 := asa
T
s /∥as∥2 be the orthogonal projector into the subspace spanned by as, and

Ps̄
n−1 be the orthogonal projector into the subspace Us̄ of U , spanned by all but as. Furthermore,

let the angle between as and Us̄ be denoted by θs. Then the orthogonal projector into U has the
expansion:

Pn =

n∑
s=1

1

sin2 θs
Ps

1

(
I−Ps̄

n−1

)
. (9)
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Figure 1: Evolution of spectrum towards its mean with exemplar linear and exponential decay with
N = 8 according to volume sampling with (7).

Proof. Let L denote the expansion on the right hand side of (9). We prove Pn = L. First, we note
that for any t ̸= s, Ps̄

n−1at = at, which implies that
(
I−Ps̄

n−1

)
at = 0. We decompose as =

a
∥
s+a⊥

s into its components in the subspace Us̄ and orthogonal to that subspace: a∥
s = Ps̄

n−1as and
a⊥
s =

(
I−Ps̄

n−1

)
as. The length of the orthogonal component is therefore ∥a⊥

s ∥ = ∥as∥ sin θs.

We now use these observations to show that

Lat = at 1 ≤ t ≤ n.

Based on the above, the only term in the summation corresponding to Lat that is non-zero is when
s = t, so that

Lat =
1

sin2 θt
Pt

1a
⊥
t =

〈
at,a

⊥
t

〉
sin2 θt∥at∥2

at.

Now
〈
at,a

⊥
t

〉
= ∥at∥∥a⊥

t ∥ cos(∠(a⊥
t ,at)), and since ∠(a⊥

t ,at) is complementary to θt =

∠(a∥
t ,at), we get

〈
at,a

⊥
t

〉
= ∥at∥∥a⊥

t ∥ sin θt. Plugging in ∥a⊥
t ∥ = ∥at∥ sin θt then gives the

result.

For any vector z orthogonal to U , we have: Ps̄
n−1z = 0 and Ps

1z = 0 since z is orthogonal to all
the n vectors a1, . . . ,an; therefore, Lz = 0.

This shows L = Pn is the orthogonal projector into U , which is unique.

We expand on the notion of orthogonal projectors and introduce a quasi projector that is well-defined
even when the vectors are not linearly independent:

Qn := AT
nadj(Gn)An. (10)

The adjugate matrix, adj(Gn), is also the cofactor matrix of Gn := AnA
T
n due to its symmetry.

When the vectors are linearly dependent Qn = 0 (as we will see), otherwise the quasi projector is a
scaled version of the orthogonal projector:

Qn = v2nPn where v2n := detGn. (11)

5
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Here v2n represents the (square of) n-volume of the parallelepiped formed by the rows chosen in An.
Using this volume definition, we can present a corollary to Theorem 1:
Corollary 1 (Recursive Quasi Projector). Under the assumptions of the lemma, let vs1 := ∥as∥ and
vs̄n−1 denote the volume of the parallelepiped formed by all but as. Moreover, let Qs

1 = as a
T
s and

Qs̄
n−1 denote the quasi projectors corresponding to Ps

1 and Ps̄
n−1, respectively. Then we have:

Qn =

n∑
s=1

Qs
1

((
vs̄n−1

)2
I−Qs̄

n−1

)
. (12)

Proof. The volume of the parallelepiped can be computed from the volume of any facet, vs̄n−1, and
the corresponding height, vs1 sin θs: vn = vs̄n−1v

s
1 sin θs.

Lemma 2. For a linearly dependent set of vectors, {a1, . . . ,an}, the quasi projector Qn = 0, the
zero matrix.

Proof. Based on (10), QT
nQn = 0 since Gnadj(Gn) = (detGn)I = 0. This implies that all

columns of Qn have zero norm. Hence Qn = 0. On the other hand, since Corollary 1 is under the
linearly independent assumption, we show, using a continuity argument, that for a linearly dependent
set Corollary 1 still holds.

The quasi projector, defined by (10) Qn := AT
nadj(Gn)An, has elements that are each a contin-

uous function of vectors a1, . . . ,an that constitute rows of An. This follows from the elements
of the adjugate matrix (minors) being signed volumes of subsets of a’s. Volume (determinant) is a
continuous function of its set of vectors. Corollary 1 can therefore be expanded to include linearly
dependent sets since any linearly dependent set of n ≤ N vectors in RN can be perturbed to become
a linearly independent set.

4.2 COMBINATORIAL ANALYSIS

We can now go back and perform an expectation analysis for E[Pn] over all subset An of size n.
As a reminder, for Gauss-Seidel with a symmetric positive definite A ∈ RN×N there are the

(
N
n

)
subsets of rows of A1/2 with each AnA

T
n being a principal minor of A. In case of Kaczmarz

with A ∈ RM×N and M ≥ N , there are
(
M
n

)
subsets An that are simply the subsets of rows.

The combinatorial arguments are identical for Gauss-Seidel and Kaczmarz and we present the more
general argument based on M rows that in the case of Gauss-Seidel simplifies to M = N .

We introduce a choice function that indexes these possible choices: (i) 7→ {a1, . . . ,an} denotes the
set of n rows corresponding to the ith choice, 1 ≤ i ≤

(
M
n

)
. For example, vn(i) denotes the volume

of the parallelepiped formed by the vectors from the rows selected for the ith choice, and likewise,
Qn(i) and Pn(i) denote the corresponding quasi projector and orthogonal projector.

We establish E[Pn], as a polynomial in the matrix A, when expectation is taken according to volume
probability for the ith choice set proportional to v2n(i). Recalling the definition of voln, sum of
squared volumes voln =

∑
i v

2
n(i), we have: pr(i) = v2n(i)/voln. Then the average projector

is E[Pn] =
∑

i pr(i)Pn(i) = 1/voln
∑

i Qn(i). To state our key result, we define a total quasi
projector for a matrix A:

Φn :=

(Mn )∑
i=1

Qn(i).

We now fully characterize Φn, specifically its spectrum, in our main result. When n = 1 the total
quasi projector is Φ1 = A =

∑
i Q1(i) =

∑
a∈A1/2 aaT for Gauss-Seidel (and for Kaczmarz the

Gram matrix: Φ1 = ATA =
∑

i Q1(i) =
∑

a∈A aaT ). For a larger set of rows n > 1 we show
that Φn is a degree-n polynomial of the Gram matrix.
Theorem 1 (Total Quasi Projector). For n > 1 rows we have:

Φn = Φ1(voln−1I−Φn−1) (13)

where voln = voln(A) :=
∑(Mn )

i=1 v2n(i).

6
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Proof. Before arguing over the
(
M
n

)
choices, we first expand the set of choices and define an operator

that sums quasi projectors over all n-ordered choices of M rows with replacement for a total of Mn

choices:

Φ̃n :=

Mn∑
j=1

Qn(j) =
∑
a1∈A

∑
a2∈A

· · ·
∑

an∈A

Qn.

We denote the sum of volumes in the expanded setting as ṽoln :=
∑Mn

j=1 v
2
n(j). The expanded

choices allow for summation over individual vectors that can sift through the recursion in (12). For
example, the first term in (12) for s = 1 shows:∑

a1∈A

∑
a2∈A

· · ·
∑

an∈A

Q1
1

(
(v1̄n−1)

2I−Q1̄
n−1

)
=

∑
a1∈A

Q1
1

∑
a2,...,an∈A

(
(v1̄n−1)

2I−Q1̄
n−1

)
=

∑
a∈A

Q1

∑
a1,...,an−1∈A

(
(vn−1)

2I−Qn−1

)
= Φ1

(
ṽoln−1I− Φ̃n−1

)
.

Observing that the result of this summation is independent of s, allows us to establish:

Φ̃n = nΦ1

(
ṽoln−1I− Φ̃n−1

)
.

Now we observe that in a particular choice of n-rows with replacement, if any row of A is selected
more than once v2n(j) = 0 and Qn = 0 for any n. This means we can shrink the space of choices to
n-permutations without replacement, with a total of MPn := M !/(M −n)! choices, and still obtain
the same Φ̃n:

MPn∑
j=1

Qn(j) = Φ̃n = nΦ1

(
ṽoln−1I− Φ̃n−1

)
.

To further shrink the space of choices to n-combinations, we note that permuting the order of the
rows in a particular choice does not change the squared volume of the parallelepiped they form.
This means voln = ṽoln/n! for any n. Moreover, permuting the rows in a particular choice does
not change the orthogonal projector Pn and consequently Qn. This means Φn = Φ̃n/n! for any n:

Φn =
n

n!
Φ1

(
(n− 1)! voln−1I− Φ̃n−1

)
=

1

(n− 1)!
Φ1((n− 1)! voln−1I− (n− 1)!Φn−1)

= Φ1(voln−1I−Φn−1).

As a consequence, unwinding the recursion, we have:
Corollary 2 (Polynomial Form).

Φn =

n∑
p=1

(−1)p−1voln−pΦ
p
1. (14)

Since singular values of A, when squared, match the eigenvalues of Φ1, this establishes (8).

An important consequence of the theorem is that the volume measures, voln associated with a set of
vectors a ∈ A, can be recursively computed efficiently, which is of independent interest (McMullen,
1984; Dyer et al., 1998; Gover & Krikorian, 2010):
Theorem 2 (Volume Computation of all n-subsets). Given a set of M vectors, arranged in rows of
A, the sum of squared volumes of parallelepipeds formed by size-n subsets is:

voln =

(Mn )∑
i=1

v2n(i) =
TrΦn

n
.

The trace formula avoids the combinatorially-large computation over all subsets.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Proof. Using the fact that TrPn = rank(Pn) = n, and linearity of trace, we have TrQn = nv2n.
Summing over all choices gives us:

TrΦn =

(Mn )∑
i=1

TrQn(i) = n

(Mn )∑
i=1

v2n(i) = nvoln.

This shows the recursion in (13) can be written entirely in terms of Φ1:

Φn = Φ1

(
TrΦn−1

n− 1
I−Φn−1

)
.

This provides a recursive form of a Cayley-Hamilton expansion for Φn, in terms of powers of A for
Gauss-Seidel (and powers of ATA for Kaczmarz) and their traces known as the Faddeev–LeVerrier
algorithm.

5 EXPERIMENTS

We ran multiple instances of kernel ridge regression problems solved using randomized Gauss-
Seidel for various values of block size n. We found that the convergence rates in each instance was
patterned according to our theoretical predictions. We therefore present results from a prototypical
numerical experiment.

0 200 400 600 800 1000 1200 1400

10 12

10 10

10 8

10 6

10 4

10 2

100

102

n = 1
n = 10
n = 15

Figure 2: Convergence results for randomized Gauss-Seidel with block sizes of n = 1, 10, and 15.
Dashed lines correspond to the rate bounds predicted by theory. The case n = 1 corresponds to the
results of (Leventhal & Lewis, 2010). Each faint curve corresponds to a different run of the iterative
algorithm. The solid lines correspond to ensemble averages across these trials. 30 trials were used
to compute the ensemble average.

The details of the experimental setup was as follows. We generated multiple datasets {⟨ai, bi⟩}Ni=1
where the dimensionality of ai was set to be either 10, 25, or 100. Datasets ranged in size from
N = 25 to 40. We limited the size of the dataset to a range for which a simple rejection sampler
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could be used to sample rows according to their subtended volume. This was done to validate the
theoretical results of the paper without the influence of any confounding effects introduced by a more
sophisticated volume sampler (Deshpande & Rademacher, 2010) that while efficient, is influenced
by burn-in and variance of stationary distribution effects. A shift invariant Gaussian kernel was then
applied to the data to create one, two, or three clusters: Kij = exp(−γ||ai − aj + Ci,j ||22), where
Ci,j was set to 0 if ai and aj belonged to the same cluster, and was set to randomly chosen and
preset quantities for every pairing of disparate cluster memberships. This allowed us to experiment
with varying levels of block dominance in K and concomitant effects on its spectrum. We then
solved the linear system (K + λI)x = b using randomized Gauss-Seidel where at each iteration
n = 1, 10 or 15 coordinates were simultaneously updated. The tuning parameters γ, λ were set to
various fixed values. Note that (K + λI) is always symmetric positive definite for appropriately
chosen λ and therefore randomized Gauss-Seidel converges.

In each experiment 30 independent trials of randomized Gauss-Seidel were run using i.i.d. volume
sampled rows of block size 1, 10 and 15. The modified residual rk = (K + λI)1/2 (xk − x⋆) was
computed at each iteration and ∥rk∥2 was recorded. These residuals were then averaged across the
trials to create an ensemble average, and was plotted in addition to the specific randomized trial of
Gauss-Seidel. Also was plotted the rate bound as predicted by our theory. The results are presented
in Figure 2.

The main implication of our results is establishing the explicit relationship between the rate of
convergence in randomized AP (e.g., Gauss-Seidel) for solving Ax = b to the spectrum of A.
As discussed in Section 2, 1 − τn provides a bound on the rate of convergence and the spectral
gap τn is simply the spectral gap of E[Pn] that is related to the spectrum of A through (7). This
recursive process stipulates the evolution of the spectrum of E[Pn] as n increases from 1 where the
spectrum is that of E[P1] = A/N , towards its mean. We present an empirical validation of these
theoretical results on the evolution of the spectrum of A, and as a result show how the spectral gap
τn increases as block size n grows, in Figure 3. Note in particular that due to the recursive nature
of the formula 8, the spectral gap can be computed very efficiently for problems of very large sizes.
An appropriate choice of n can then be made based on balancing the larger computational cost of
volume sampling n rows vis-a-vis the rate gains provided by a larger n.

6 CONCLUSION

This paper generalizes the results of (Strohmer & Vershynin, 2009; Leventhal & Lewis, 2010) that
establish the relationship between the performacne of randomized Gauss-Seidel and Kaczmarz al-
gorithms to the spectrum of A when single coordinates or rows (i.e., n = 1) are sampled according
to their lengths. We establish that when n > 1 coordinates (or rows) are selected according to their
volumes, the spectral gap that bounds the convergence rate is similarly determined from the spec-
trum of A that is nonlinearly transformed according to the Faddeev-LaVerrier algorithm. We derive
a recursive formulation of this evolution of spectrum towards its mean and establish efficient vol-
ume computation results that avoids combinatorially large computations over subsets. These results
establish the convergence of the method of alternating projections under volume sampling for which
efficient algorithms have been developed in theoretical computer science.

7 REPRODUCIBILITY STATEMENT

The essential result of this paper is the evolution of the spectrum of a matrix A under the Faddeev-
Laverrier algorithm is described recursively in (7) and in explicit polynomial form given in (8).
Given the spectrum of A its evolution at any n can be efficiently computed using the recursive
Φn and the volume computation formula voln = TrΦn that is established in Theorem 3. Hence
the evolution process in Fig. 1 and Fig. 3 are reproducible. The convergence results in Fig. 2 are
implementing (5) with randomness implemented by a simple rejection sampler. This experiment is
also reproducible with minimal effort.
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1 14 27 40

10 4

10 3

10 2

10 1

n = 1
n = 10
n = 15

Figure 3: Log-scale view of spectrum of E[P1] = A/N (n = 1), to E[Pn] for n = 10 and n = 15
and the corresponding spectral gap, τn, from the experiment in the previous figure and its evolution
according to (7).
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