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Abstract

This paper reports on the reproducibility study on the paper ‘Explaining RL Decisions with
Trajectories’ by Deshmukh et al. (2023). The authors proposed a method to elucidate the
decisions of an offline RL agent by attributing them to clusters of trajectories encountered
during training. The original paper explored various environments and conducted a human
study to gauge real-world performance. Our objective is to validate the effectiveness of
their proposed approach. This paper conducted quantitative and qualitative experiments
across three environments: a Grid-world, an Atari video game (Seaquest), and a contin-
uous control task from MuJoCo (HalfCheetah). While the authors provided the code for
the Grid-world environment, we re-implemented it for the Seaquest and HalfCheetah en-
vironments. This work extends the original paper by including trajectory rankings within
a cluster, experimenting with alternative trajectory clustering, and expanding the human
study. The results affirm the effectiveness of the method, both in its reproduction and in the
additional experiments. However, the results of the human study suggest that the method’s
explanations are more challenging to interpret for humans in more complex environments.
Our implementations can be found on GitHub.

1 Introduction

Reinforcement Learning (RL) demonstrates remarkable performance in dynamic settings, enabling real-
time decision-making through direct engagement with the environment. However, the application of RL
in practical contexts poses significant challenges. Offline RL research, which relies on pre-collected data
rather than real-time interaction, attempts to solve issues of learning efficiency and environmental risks. An
important issue that remains is the lack of explainability of the RL decision-making processes.

Previous studies have focused on explaining RL agents’ by highlighting important aspects of observations
leading to agent decisions (Gupta et al., 2019; Iyer et al., 2018; Greydanus et al., 2018). Seeking to tackle
this issue from a different perspective, Deshmukh et al. (2023) introduced an approach that highlights which
past experiences (‘trajectories’ from pre-collected data) are responsible for an RL agent’s decision. This
concept of ‘attributing’ an algorithm’s decisions to training data has previously demonstrated effectiveness
in supervised learning settings by Nguyen et al. (2021). In RL, trajectories are sequences of states, actions,
and rewards from an environment that an agent traverses. The paper proposes a trajectory attribution
solution in offline RL scenarios using sequence modelling networks.
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This work aims to examine the results by reproducing and extending the experiments presented in the
original paper. To assess the approach’s efficacy, the original paper conducted experiments across diverse
environments, including: i) Grid-world, a puzzle game where the objective is to navigate from a starting
point to a winning position while avoiding obstacles, characterised by discrete state and action spaces. ii)
Seaquest, an Atari game where the player controls a submarine that must shoot enemies while saving divers,
without running out of oxygen. It has a continuous state space where observations are screen frames and
a discrete action space (Bellemare et al., 2013). iii) HalfCheetah, a continuous control task where the goal
is to make a ’cheetah’ figure move forward by manipulating its joint angles, featuring continuous state and
action spaces (Todorov et al., 2012). Figure 1 shows example states for all three environments.

In this paper, we successfully reproduce the explanation framework and experiments in the three environ-
ments above. To provide a comprehensive overview, Section 2 outlines its scope, and Section 3 details the
proposed method and experiment implementation details. Replicated qualitative and quantitative results
are discussed in Section 4.1, with additional experiments and a human study in Section 4.2. The process of
reproducing the experiments is discussed in Section 5, concluding in Section 6.

(a) Grid-world (b) Seaquest (c) HalfCheetah

Figure 1: Visual representations of example states in the Grid-world, Seaquest, and HalfCheetah
environments. In the Grid-world visualization, winning states are depicted in green, while losing states
are shown in red. The HalfCheetah state visualization utilized the built-in renderer.

2 Scope of Reproducibility

The scope of reproducibility in this paper is centered around the author’s explainability framework for deep
reinforcement learning. The main claim made by the author is as follows:

‘The proposed approach is efficient in terms of attribution quality and practical scalability across a spectrum
of environments, including grid worlds, video games (Atari), and continuous control scenarios (MuJoCo).’

Supporting claims and observations derived from the original paper include:

1. Interpretable Trajectory Clustering: Trajectory clusters generated by various suitable algo-
rithms demonstrate consistent semantically meaningful high-level behavior.

2. Qualitative Performance: The method effectively explains agent actions with semantic intent by
attributing relevant trajectory clusters.

3. Quantitative Performance: The method achieves consistent quantitative results for multiple
relevant metrics outlined in Section 3.2.

4. Human Study Insights: Humans predominantly choose trajectories attributed by the method as
the best explanation and sometimes fail to correctly identify the factors influencing an RL decision.

By reproducing the experiments and analyses conducted in the original paper for the Grid-world, Seaquest,
and HalfCheetah environments, we aim to validate the main claim by affirming these Sub-claims.
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Figure 2: Trajectory Attribution in Offline RL. Figure from original paper Deshmukh et al. (2023)

3 Methodology

3.1 Description of methods

This section will detail the proposed trajectory attribution process illustrated in Figure 2. Initially, a set of
trajectories, representing sequences of environment states, actions, and rewards, is acquired. In step a each
trajectory is encoded into a latent sequence using a seq2seq model, which differs for each environment. A
trajectory’s embedding τj is defined as the average of the vectors from its encoded sequence.

In step b, the encoded trajectories T = {τj} are grouped into clusters C by a clustering algorithm, which is
set to the X-means algorithm (Pelleg & Moore, 2000) by default. This algorithm automatically determines
the number of clusters, identifying diverse patterns in trajectories without imposing a fixed cluster number
as a hyperparameter. The original authors suggest the potential applicability of various algorithms for
trajectory clustering, a claim that we examine in this paper. The explanations generated by the framework
thus attribute decisions to clusters of trajectories, rather than individual trajectories. This addresses the
computational constraints that come with large trajectory datasets.

In step c, a ‘complementary dataset’ is created for each cluster cj by removing it from the original dataset.
For each complementary dataset as well as the entire dataset, an embedding dj is computed. This is done by
applying a softmax with temperature Tsoft to the sum of trajectories. Note that the original paper mentions
dividing the sum of embeddings by a normalizing factor before applying the softmax with temperature, but
that dividing by Tsoft achieves the same results.

In step d, an RL agent is trained on every cluster’s complementary dataset, as can be seen in Figure 2d.
These ‘explanation policy’ agents will be used for the cluster attribution. This process, along with the
generation of all cluster data embeddings, is detailed in Algorithm 1.

In step e, actions from the original policy are attributed to a cluster by explanation policy agents. They
select an action for the observed state and the algorithm chooses candidates based on the highest distances to
the original agent’s action. The metric for this distance is not specified in the original paper. The candidate
cluster with the smallest Wasserstein distance to the original dataset’s cluster embedding is selected as the
responsible cluster for the state-action pair, as outlined in Algorithm 2. Essentially, this means that the
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Algorithm 1: trainExpPolicies
Data: Offline Data {τi}, Trajectory Embeddings T , Trajectory Clusters C, Offline RL Algorithm

offlineRLAlgo
Result: Explanation Policies {πj}, Complementary Data Embeddings {dj}
for cj in C do
{τi}j ← {τi} − cj ; // Compute complementary dataset corresponding to cj

Tj ← gatherTrajectoryEmbeddings(T, {τi}j) ; // Gather corresponding trajectory embeddings
Explanation policy, πj ← offlineRLAlgo({τi}j);
Complementary data embedding, dj ← generateDataEmbedding(Tj , M, Tsoft);

Output: Explanation Policies {πj}, Complementary Data Embeddings {dj}

algorithm identifies the cluster whose exclusion significantly alters the action while minimally affecting the
data embedding.

Algorithm 2: generateClusterAttribution
Data: State s, Original Policy πorig, Explanation Policies {πj}, Original Data Embedding dorig,

Complementary Data Embeddings {dj}
Result: Final Cluster Attribution cfinal
Original action, aorig ← πorig(s);
Actions suggested by explanation policies, aj ← πj(s);
daorig,aj ← calcActionDistance(aorig, aj) ; // Compute action distance
K ← argmax(daorig,aj

) ; // Get candidate clusters using argmax
wk ←Wasserstein(dorig, dk) ; // Compute Wasserstein distance between dk and dorig
cfinal ← argmin(wk) ; // Choose cluster with the minimum data embedding distance
Output: cfinal

Every environment’s algorithm implementation uses a different seq2seq trajectory encoder. The Grid-world
implementation uses a tokenizer to encode the states and actions as numbers, followed by a trajectory
transformer as introduced by Janner et al. (2021) modified by replacing the transformer module with a
Long Short-Term Memory (LSTM) cell (Hochreiter & Schmidhuber, 1997). The Seaquest environment
uses a decision transformer as introduced by Chen et al. (2021). The HalfCheetah implementation uses
an unmodified trajectory transformer. The deep RL agents used for the explanation policies differ per
environment implementation. The Grid-world implementation uses a simple model-based algorithm using a
table of transition probabilities and action values computing using the Bellman equation (Bellman, 1957).
The Seaquest implementation uses Discrete Soft Actor-Critic (SAC) agents (Christodoulou, 2019). The
HalfCheetah implementation uses regular SAC agents (Haarnoja et al., 2018). For Grid-world and Seaquest,
a binary function determined action distance, while the actions with the top 3 Euclidean distances were
chosen as candidates for HalfCheetah.

To gain an insight into the semantic meaning of a cluster, we select one trajectory that is most representative.
This is done by ranking trajectories within a cluster in terms of how similar they are to the observation to be
explained. By comparing all the observations in a trajectory to the observation using a similarity metric, we
measure the relevance of the trajectory. This allows us to choose the most similar trajectory as the individual
attribution. For Seaquest, we compare mean squared error with structural similarity, which should be more
representative of similarity (Wang et al., 2004; Wang & Bovik, 2009). The HalfCheetah observations are
vectors, for which the use of the Euclidean distance is satisfactory.

3.2 Evaluation metrics

To quantify the effects of the proposed algorithm, the authors introduced five metrics. First, shown in
Equation 1, Initial State Value Estimate (ISVE) (Paine et al., 2020) represents the expected rewards
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after completing a full trajectory, based on an initial state s0 by some value function V . A higher ISVE
indicates that a policy is trained well.

E(V (s0)) (1)

The second metric is the Local Mean Absolute Action Value Difference (LMAAVD) in Equation
2. The action values, cumulative rewards of taking a certain action, are calculated using the action-value
function Q. LMAAVD considers the absolute difference between actions suggested by an explanation policy
πj for cluster j, as perceived by the original policy πorig.

E(|∆Qπorig |) = E(|Qπorig(πorig(s))−Qπorig(πj(s))|) (2)

The Action Contrast Measure (ACM) in Equation 3 measures the likelihood that an action suggested
by πj is different than the action suggested by πorig in state s. A higher ACM value for a cluster j means
that πj is likely to suggest a different action than πorig.

E(1(πorig(s) ̸= πj(s))) (3)

The Normalized Wasserstein Difference (NWD), as shown in Equation 4, is a way to represent the
difference between a complementary dataset embedding d̄j for cluster j and the original dataset embedding
d̄orig, normalized to the range [0, 1]. A lower NWD means that a complementary dataset resembles the
original dataset closely, which is preferable for the candidate clusters. A lower NWD means that a comple-
mentary dataset resembles the original dataset closely. This is preferable for the candidate clusters because
we want to find the cluster with the smallest change to the original dataset that leads to a different action.
Intuitively, this cluster is likely to be the most responsible for the original decision.

Wdist(dorig, dj) (4)

Cluster Attribution Frequency (CAF) in Equation 5 represents the probability distribution P that the
j-th cluster cj gets assigned as the responsible cluster cfinal for a decision made by πorig.

P (cfinal = cj) (5)

3.3 Datasets and Models

Grid-world. The original paper uses 5 Dyna-Q agents placed at random start locations to obtain trajectories
of lengths 1 to 15, which resulted in a dataset of 60 trajectories (Sutton, 1990). Trajectories with no final
reward were ignored. 10 trajectories with a negative total reward were included as well as 50 trajectories
with a positive total reward. This dataset was used to train the trajectory embedding LSTM and the agents.

Seaquest. We used ‘seaquest-mixed-v4’ from d4rl-Atari (Fu et al., 2020), as the original paper does not
mention a specific dataset version. It consists of 1M pairs of observations, actions, and rewards. One observa-
tion is an 84x84 grayscale image. Corresponding to the original paper, we extracted 717 trajectories, divided
into sub-trajectories of length 30. We used model weights for the decision transformer from Huggingface.

HalfCheetah. We used ‘half-cheetah-medium-v2’ from d3rlpy (Seno & Imai, 2022), as the specific version
was not mentioned in the original paper. The dataset consists of 1000 trajectories of length 1000, which
are divided into sub-trajectories of size 25 to make the trajectories less complex, as described in the original
paper. We used model weights for the trajectory transformer from its original implementation which was
trained on the same dataset.
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3.4 Hyperparameters

Grid-world. The modified trajectory transformer was trained on the same dataset as the offline agents. The
Dyna-Q agents were trained for 2 episodes with 5 evaluation episodes per epoch, where a training episode
is one full run through the environment, with learning rates 0.1 and gamma value 0.95. The modified
trajectory transformer with LSTM hidden layer size 32 was trained for 25 epochs with a learning rate 1,
clipping gradients to a maximum norm of 10. The X-means algorithm was run with a cluster range between
2 and 10 clusters and Tsoft was set to 10. The offline agents had a minimum action value and transition
probability of 10−9.

Seaquest and HalfCheetah: Seaquest’s transformer ran with a vocab size of 18, a block size of 90,
and 2719 timesteps, utilizing the ’reward-conditioned’ model type. HalfCheetah’s transformer used default
parameters with a sliding window of size 10. The X-means algorithm operated with a cluster range of 2 to 8
for Seaquest and 2 to 10 for HalfCheetah. Discrete SAC and regular SAC agents from d3rlpy (Seno & Imai,
2022) were employed for Seaquest and HalfCheetah respectively, with hyperparameters consistent with the
original paper: actor, critic, and temperature learning rates of 3× 10−4, batch size of 256 for Seaquest and
512 for HalfCheetah. Tsoft was set to 103 and 104 for Seaquest and HalfCheetah respectively.

3.5 Experimental setup

To gain insight into the amount of variability in the results, we conducted five runs with different random
seeds for each of the environments and reported the means and standard deviations. The clustering was kept
the same for each run because otherwise cluster labels would be shuffled.

Grid-world. We trained the RL policies until convergence, defined by maximum changes between iterations
with a threshold of 10−4. We calculate the metrics for each agent and attribute individual trajectories from
the responsible clusters. Additionally, we experimented with different clustering algorithms instead of X-
means to verify their impact on the results.

Seaquest and HalfCheetah. We trained the RL policies for 10 epochs of 104 steps. We compute the
expected action values for each action for 1000 random observations with the original policy and all of the
explanation policies. Using this information we attribute responsible clusters and calculate the metrics.
After that, we attribute individual trajectories from the responsible clusters. To evaluate the clustering
effectiveness, we compare the Principal Component Analysis (PCA) of the clustered embeddings to the
original paper. We also do qualitative and quantitative analyses of the trajectory attributions.

Human study. Similarly to the original paper, we included two types of questions where the participant
needs to select trajectories they think best explain an RL agent’s action given an observation. Question
Type 1 has two options with one being correct. Question Type 2 has four options with two being correct.
To extend the original study, we broadened the scope to include Seaquest and HalfCheetah, increased the
number of participants from 10 to 18 who had a good understanding of the RL field, and added two new
question types. Question Type 3 asks the participants to rank trajectories belonging to the same cluster by
relevance. Question Type 4 is an open-ended question, allowing the participant to explain previous answers
or clarify what is unclear for each question. Lastly, we increased the number of questions for each type of
questions per environment from 3 to 6 (for Type 1 and 2). Example questions can be found in Figure 3.

3.6 Computational requirements

The computational requirements are listed in Table 1. Carbon emissions are included and calculated using
Machine Learning Impact calculator (Lacoste et al., 2019). Experiments were conducted using a private
infrastructure, which has a carbon efficiency of 0.432 kgCO2eq/kWh. The scale of our experiments was
relatively small so the environmental impact was minimal.
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(a) Responsible Trajectory (b) Type 1 & 4 question

(c) Type 2 & 4 question (d) Type 3 & 4 question

Figure 3: Human Survey Question Examples for the Grid-world part of our extended human study.
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Table 1: Computational requirements. Environment-specific requirements are listed, as well as the esti-
mated kgCO2eq Emissions. Estimations were calculated using MachineLearning Impact calculator (Lacoste
et al., 2019).

Spec Gridworld Seaquest HalfCheetah
Ran on Jupyter Notebook Python script Python script
OS 64-bit Ubuntu 22.04 Windows 11 Pro 64-bit Ubuntu 22.04
CPU 6-core Ryzen 4500u Intel Core i5-12400F 6-core Ryzen 4500u

at 2.3 GHz at 4.4 GHz at 2.3 GHz
GPU Radeon Graphics NVIDIA GeForce GTX 960 Radeon Graphics
RAM 16GB 16GB 16GB
Total compute time (h) 1 20 40
kgCO2eq Emissions 0.13 1.56 2.59

4 Results

4.1 Results reproducing original paper

In this section, we reproduce the quantitative and qualitative results from the original paper along with an
extension of the original human study detailed in Section 4.2.2.

4.1.1 Effectiveness of trajectory embedding & cluster generation

We attempted to prove that our reproduction of the trajectory embedding and cluster generation works
similarly to the original paper’s implementation. To achieve this, we generated the same figures as the
original paper displaying a 2-D PCA of the trajectory embeddings per cluster. The plots for Seaquest and
HalfCheetah are shown in Figure 4. Both environments show similar separation of clusters and PCA value
ranges to the plots in the original paper. When inspecting the clusters by hand, they appear to encompass
similar semantic behaviour (e.g. ‘lining up the player with an enemy’ for Seaquest and ‘landing from a high
jump’ for HalfCheetah). The Grid-world PCA plot generated by the provided code is identical to the original
paper, which is shown in Appendix 5b. These observations support Sub-claim 1 made in Section 2.

4.1.2 Qualitative analysis of trajectory attributions

All three environment implementations behave similarly to the observations made in the original paper.
The attributed trajectory clusters include trajectories that are both semantically related and distant to the
observation that is to be explained. As mentioned in Section 4.1.1, clusters tend to contain trajectories
with a similar semantic meaning. These observations support Sub-claim 2 made in Section 2. For example,
an attributed cluster from the Grid-world implementation may include trajectories that pass through the
same state that is to be explained, as well as trajectories that don’t. Similar observations were made for the
Seaquest and HalfCheetah implementations.

4.1.3 Quantitative analysis of trajectory attributions

The quantitative experiments measured the metrics described in Section 3.2 for the three different envi-
ronments’ implementations. The code for the Grid-world experiments provided by the authors successfully
reproduced quantitative results, see Appendix A.2. The quantitative results of the Seaquest experiments are
shown in Table 2a. These results are different from those in the original paper. The ISVE and LMAAVD
metrics mentioned in Section 3.2 are lower in all policies suggesting that they are poorly trained. The use
of a reward scaler in the agents of the original paper could explain the large differences in ISVE values.
However, there is no way to verify this without accessing the code of the original authors. In addition, one
of the clusters’ complementary datasets has a NWD of 0, which is caused by the normalization process from
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Figure 4: Principal Component Analysis (PCA) plot depicting Clusters of Trajectory Em-
beddings for Seaquest and HalfCheetah. These clusters represent semantically meaningful high-level
behaviors and the trajectory embeddings are similar to those in the original paper.

the original paper. The non-normalized Wasserstein distances are not zero. As a result of this, the policy
trained on this complementary dataset always gets picked whenever it has a different action, in the case of
discrete action spaces. This undermines Sub-claim 1 discussed in Section 2 since one cluster can not always
be the relevant one. Sub-claim 3 does hold since we were able to achieve quantitative results for the relevant
metrics. The quantitative results of the HalfCheetah experiments are shown in Table 2b. The results are
comparable to the ones presented in the original paper for all metrics. This also supports Sub-claim 3 in
Section 2.

4.2 Results beyond original paper

To further test the claim of the original paper, we performed additional experiments. The results will be
discussed in the section below.

4.2.1 Ranking Trajectories Within a Cluster

The use of mean squared error for Seaquest resulted in trajectories that were not consistently similar to
the given observation, which is in line with the findings of Wang & Bovik (2009). However, we found that
Structural Similarity provided an accurate ranking of the similarity in the trajectories, agreeing with Wang
et al. (2004). We find that trajectories suggested through the Euclidean distance metric in the HalfCheetah
implementation returned trajectories that look similar to the trajectory leading up to the observation that
is to be explained, more so than returning a random trajectory from the attributed cluster.

4.2.2 Human study results

Analysis of the Type 1 questions reveals that in simpler environments, participants predominantly favour
trajectories identified by our algorithm as the optimal explanation for the agent’s actions, supporting Sub-
claim 4 in Section 2. However, as environmental complexity increases, participants struggle to discern the
factors influencing the agent’s decision, unlike our algorithm. The accuracies for question type 1 are 77.92%,
71.48%, and 29.55% for Grid-world, Seaquest, and HalfCheetah respectively.

1Shuffling the clusters is not feasible as this would also shuffle the policies thus making the averages per index include
different clusters.
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Table 2: Quantative analysis of Seaquest & HalfCheetah Trajectory Attribution. A higher Initial
State Value Estimate (ISVE) means a better-trained policy. Higher Local Mean Absolute Action Value
Difference (LMAAVD) and Action Contrast Measure (ACM) mean that explanation policies suggest more
contrasting actions. Normalized Wasserstein Distance (NWD) represents the difference between the comple-
mentary and original dataset of the given cluster. The Cluster Attribution Frequency (CAF) measures how
often each cluster gets recognized as the responsible cluster. Clusters with low NWD and high ACM and
LMAAVD are desirable. For each metric, the highest scoring cluster is denoted in bold. The means and
standard deviations are calculated from five runs. Standard deviations of 0.000 have been denoted as ‘—’.
Note the lack of standard deviations for the NWD metric, there was no difference between experiment runs
because clusters were kept constant 1.

Table 2a: Quantitative analysis results for the Seaquest environment implementation.

ISVE LMAAVD ACM NWD CAF
π E(V (s0)) E(|∆Qπorig |) E(1(πorig(s) ̸= πj(s)) Wdist(d̄, d̄j) P(cfinal = cj)

orig 1.8286 ± — - - - -
0 1.9277 ± — 0.3790 ± — 0.9240 ± — 0.7831 0.0030 ± —
1 1.9551 ± — 0.3818 ± — 0.9330 ± — 0.2261 0.0010 ± —
2 1.8403 ± — 0.3897 ± — 0.9330 ± — 0.0000 0.9329 ± —
3 1.9595 ± — 0.3822 ± — 0.9320 ± — 0.0406 0.0090 ± —
4 1.9703 ± — 0.4047 ± — 0.9440 ± — 1.0000 0.0000 ± —
5 1.9964 ± — 0.3721 ± — 0.9160 ± — 0.2368 0.0000 ± —
6 1.9421 ± — 0.3835 ± — 0.9270 ± — 0.8785 0.0000 ± —
7 1.7458 ± — 0.4029 ± — 0.9320 ± — 0.0358 0.0541 ± —

Table 2b: Quantitative analysis results for the HalfCheetah environment implementation.

ISVE LMAAVD ACM NWD CAF
π E(V (s0)) E(|∆Qπorig |) E(1(πorig(s) ̸= πj(s)) Wdist(d̄, d̄j) P(cfinal = cj)

orig 151.222± 6.2520 - - - -
0 158.8762± 7.3547 0.7462± 0.0892 0.8527± 0.0751 0.5290 0.0048± 0.0057
1 158.3154± 5.4562 0.6234± 0.1238 0.7296± 0.1428 1.0000 0.0000± —
2 189.3018± 8.3362 0.7567± 0.1399 0.7888± 0.0907 0.3199 0.1434± 0.0430
3 159.4749± 9.4689 0.6945± 0.0925 0.7537± 0.1102 0.4184 0.0146± 0.0140
4 203.7592± 21.2017 0.7509± 0.1129 0.8067± 0.0556 0.9267 0.0000± —
5 122.0764± 3.2605 1.4960± 0.3245 1.2818± 0.2074 0.3910 0.1194± 0.0369
6 162.9265± 21.6331 1.5264± 0.6830 1.1268± 0.2711 0.1901 0.3502± 0.0922
7 147.2848± 4.0694 0.6449± 0.0636 0.6890± 0.0789 0.0000 0.1678± 0.0557
8 178.0963± 4.0394 0.6301± 0.0249 0.7031± 0.0308 0.3480 0.0896± 0.0204
9 158.9716± 10.1533 0.6606± 0.2046 0.7106± 0.1449 0.2130 0.1102± 0.0421

In response to Type 2 questions, it becomes evident that not all trajectories generated by our algorithm
are deemed relevant by humans; some are rated as no better than random, further confirming Sub-claim 4.
Specifically, 76.56%, 66.95%, and 36.1% of participants selected trajectories generated by our algorithm for
Grid-world, Seaquest, and HalfCheetah, respectively. Moreover, the accuracy decay follows a similar trend
to the one observed in Type 1 questions.

To further investigate the factors that humans consider relevant, we look at the results of Type 3 questions.
People tend to prioritize trajectories with the shortest path to the goal in Grid-world and visually similar
trajectories for Seaquest and HalfCheetah, ranking them highest. Type 4 question responses support these
observations. In Grid-world, 90% of participants cited ‘reaching the goal state’, 80% mentioned ‘shorter
trajectories’, and 20% referenced ‘exhibiting similar actions’ as influential factors in their decisions.
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4.2.3 Alternative Trajectory Clustering

To validate Sub-claim 1 in Section 2 beyond the X-means algorithm, alternative clustering methods were
investigated. The goal is to assess if these alternatives, when applied to Grid-world trajectory data, generate
similar clusters and high-level semantic behaviour.

If the clustering made by a potential algorithm is topologically and semantically similar to X-means, the
algorithm is suitable for use in the framework. To validate the similarity, we used two metrics: Self-Organizing
Map (SOM) (Kohonen, 1990) and Normalized Mutual Information (NMI). SOM is valuable for preserving
the topology of high-dimensional data and is particularly effective in capturing spatial relationships. NMI
quantifies the shared information between true and predicted clustering assignments. Both metrics yield
scores between 0 and 1. A score of 1 indicates perfect agreement and a score of 0 indicates no mutual
information, comparable to random chance. If a clustering scores high on both metrics, it is suitable for use
in the framework.

Table 3: Clustering Evaluation Results. Self-Organizing Map (SOM), Normalized Mutual Information
(NMI), and number of clusters compared to X-means for various clustering algorithms applied to the Grid-
world trajectory dataset. More information on the tested algorithms is listed in Appendix A.3

Method X-means K-means K-medians Dbscan Agglo Optic Claran Cure Rock
SOM - 0.819 0.819 0.561 0.851 0.561 0.879 0.851 0.842
NMI - 0.924 0.924 0.761 0.942 0.761 0.891 0.942 0.933
# Clusters 10 10 10 4 10 4 6 10 8

Looking at the two metrics in Table 3, it is clear that the clusters generated by most algorithms are similar
to X-means. This supports the claim made by the author that there are alternative clustering methods that
could effectively capture similar high-level semantic behaviour in trajectories.

5 Discussion

5.1 Reproducibility experiment experience

What was easy. The code was not publicly available when the reproducibility study was conducted, so
contact was made with the authors to request the implementation code. They kindly provided the Grid-world
experiment code on short notice. We thank the authors for their fast response and clear communication. The
provided codebase produced the same results as presented in the paper. The authors provided references to
pretrained decision and trajectory transformers for the Seaquest and HalfCheetah environments respectively.
The authors mentioned libraries used in their implementations. The proposed algorithm is intuitive, which
helps with reproducibility.

What was difficult. Version numbers for the libraries utilized in the experiments are missing from the
original paper. This resulted in dependency issues which took time to solve. It is not entirely clear from the
paper how metrics such as the ISVE and action distance were calculated for the Seaquest and HalfCheetah
environments. The provided Grid-world code didn’t help with clarity as the state and action spaces are
different to the other two environments. This made comparing quantitative results difficult. To explore
differences between ISVE values in the Seaquest environment with the original paper, we trained Discrete
SAC agents with a multiplication reward scaler set to 40. This resulted in action values in the range of
[0.1691, 70.4030], which is much closer to the values from the original paper. Therefore, we suspect that the
original paper used an unmentioned reward scaler in the Seaquest environment. No softmax temperature
values were disclosed in the original paper. For Seaquest and HalfCheetah, the softmax inputs were very
large, so a high temperature was needed to return softmax outputs other than 0 and 1. In the original
paper no experimental reruns were reported. Thus, the robustness of the quantitative results presented in
the original paper is uncertain.
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5.2 Utility of explanations

The qualitative analysis and human study showed that the explanations generated by the proposed method
are only interpretable to humans if the trajectories themselves are interpretable. As environment complexity
increases, it becomes difficult to distinguish trajectories from one another. For example, the HalfCheetah
environment trajectories tend to look similar. This means even though the method might attribute the
perfect trajectory cluster to an action, the explanation can still be unclear. This is due to the inherent
difficulty of understanding RL trajectories for humans in complex environments like HalfCheetah.

6 Conclusion

This paper has demonstrated our successful reproduction of the study on ‘Explaining RL decisions with
trajectories’ (Deshmukh et al., 2023). Despite implementation difficulties, in Section 4 we achieved results
that generally align with the original work qualitatively and quantitatively, achieving interpretable trajectory
clustering. In addition to this, we build upon the work in the following ways. In Section 4.2.1 we proposed
methods to rank individual trajectories within a cluster to get a clearer representation of the framework’s
explanations. In Section 4.2.2 the human study was extended. The results show that more complex environ-
ments lead to significantly worse interpretability for humans. In Section 4.2.3 alternative clustering methods
were tested, which showed that multiple clustering algorithms are suitable for the explanation framework.
The results were made more robust by running the experiment multiple times.

In general, our results reaffirm the authors’ claim that the approach is efficient regarding attribution quality
and practical scalability. However, trajectory interpretability is still an important factor in the usefulness of
the explanations. For future work, the human study results from Section 4.2.2 suggest that improvements
in terms of the explanations’ interpretability could be made to increase the usefulness of the explanation
framework. For more complex environments, the trajectory embeddings and corresponding behaviour pat-
terns could be analysed further, leading to more semantically meaningful clusters. This would improve the
interpretability of the explanations because the clusters would be more distinct.
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A Appendix

A.1 Evaluation Metrics

A clear overview of the evaluation metrics used for quantitative analysis can be found in Table 4

Table 4: Metrics used for quantative analysis. In these formulas, V represents a value function, that
returns a reward based on an input state s. s0 represents state 0 of a given trajectory; the initial state. Q
is an action-value function that returns the estimated cumulative reward of taking an action decided by a
policy, either the original policy πorig or an explanation policy πj of cluster j, in state s. Wdist is a function
that returns the Wasserstein distance between its inputs, which are the original dataset embedding d̄ and the
complementary dataset embedding d̄j of cluster j. Finally, P (cfinal = cj) denotes the probability distribution
that the j-th cluster cj is the attributed cluster cfinal for a given decision.

Abbreviation Name Formula
ISVE Initial State Value Estimate E(V (s0))
LMAAVD Local Mean Absolute Action-Value Difference E(|∆Qπorig |) = E(|Qπorig(πorig(s))−Qπorig(πj(s))|)
ACM Action Contrast Measure E(1(πorig(s) ̸= πj(s)))
NWD Normalized Wasserstein Distance Wdist(d, dj)
CAF Cluster Attribution Frequency P (cfinal = cj)
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(a) Ours (b) Original paper

Figure 5: PCA Plot depicting Clusters of Trajectory Embeddings of the Gridworld environment for
a) our results and b) the original paper. The clusterings are almost identical to the ones presented in the
original paper.

A.2 Gridworld Trajectory Attribution Results

The results of the Gridworld trajectory attribution were very similar to the original since we were provided
with the original code by the authors. Therefore, we chose to present the results of Table 5 here.

Table 5: Quantative analysis of Gridworld Trajectory Attribution. A higher Initial State Value Esti-
mate (ISVE) means a better-trained policy. Higher Local Mean Absolute Action Value Difference (LMAAVD)
and Action Contrast Measure (ACM) mean that explanation policies suggest more contrasting actions. Nor-
malized Wasserstein Distance (NWD) represents the difference between the complementary and original
dataset of the given cluster. The Cluster Attribution Frequency (CAF) is a measure of how often each
cluster gets recognized as the responsible cluster. Clusters with low NDD and high ACM and LMAAVD
are desirable. For each metric, the highest scoring cluster is denoted in bold. The means and standard
deviations are calculated from five runs. Standard deviations of 0.000 have been denoted as ‘—’.

ISVE LMAAVD ACM NWD CAF
π E(V (s0)) E(|∆Qπorig |) E(1(πorig(s) ̸= πj(s)) Wdist(d̄, d̄j) P(cfinal = cj)

orig 0.3061 ± — - - - -
0 0.2990 ± — 0.0313 ± — 0.0408 ± — 0.0009 ± — 0.2000 ± —
1 0.3053 ± — 0.0395 ± — 0.0408 ± — 0.0020 ± — 0.0000 ± —
2 0.3049 ± — 0.0309 ± — 0.1224 ± — 0.0001 ± — 0.8000 ± —
3 0.3055 ± — 0.0015 ± — 0.0204 ± — 1.0000 ± — 0.0000 ± —
4 0.3054 ± — 0.0224 ± — 0.1224 ± — 0.0428 ± — 0.0000 ± —
5 0.3057 ± — 0.0275 ± — 0.0204 ± — 0.0011 ± — 0.0000 ± —
6 0.3046 ± — 0.0137 ± — 0.1224 ± — 0.0008 ± — 0.0000 ± —
7 0.3055 ± — 0.0119 ± — 0.0204 ± — 0.0003 ± — 0.0000 ± —
8 0.3057 ± — 0.0008 ± — 0.0204 ± — 0.0003 ± — 0.0000 ± —
9 0.3046 ± — 0.0291 ± — 0.1428 ± — 0.0005 ± — 0.0000 ± —

In addition to the similar results of Table 5, the clusters found are also identical to those of the original
paper. For that reason, we present Figure 5 here.
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A.3 Clustering Algorithm Information

Table 6 lists the sources for the different clustering algorithms.

Table 6: Clustering algorithm sources.

Algorithm Source
K-Means (MacQueen et al., 1967)
K-Medians (Jain & Dubes, 1988)
Dbscan (Ester et al., 1996)
Agglo (Jain & Dubes, 1988)
Optic (Ankerst et al., 1999)
Claran (Ng & Han, 2002)
Cure (Guha et al., 1998)
Rock (Guha et al., 2000)

16


	Introduction
	Scope of Reproducibility
	Methodology
	Description of methods
	Evaluation metrics
	Datasets and Models
	Hyperparameters
	Experimental setup
	Computational requirements

	Results
	Results reproducing original paper
	Effectiveness of trajectory embedding & cluster generation
	Qualitative analysis of trajectory attributions
	Quantitative analysis of trajectory attributions

	Results beyond original paper
	Ranking Trajectories Within a Cluster
	Human study results
	Alternative Trajectory Clustering


	Discussion
	Reproducibility experiment experience
	Utility of explanations

	Conclusion
	Appendix
	Evaluation Metrics
	Gridworld Trajectory Attribution Results
	Clustering Algorithm Information


